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ABSTRACT

Rephrasing the convolution operation from Euclidean to non-Euclidean domains,
such as graphs and surfaces, is of great interest in the context of geometric deep
learning. By elaborating on closing a theoretical gap between an existing frame-
work for the parametric construction of non-Euclidean convolutions and a sound
theoretical definition for intrinsic surface convolutions, motivated by differential
geometry, we show that existing definitions for surface convolutions only differ in
their prior assumptions about local surface information. In the course of our ef-
forts we found a canonical prior that allows for a theoretical definition of the class
of Intrinsic Mesh CNNs, which captures the CNNs that operate on surfaces. This
class combines the practical advantages of the framework for the parametric con-
struction of non-Euclidean convolutions with a substantiated theory, that allows
for further theoretical analysis and interesting research questions. Eventually, we
conduct an experimental investigation of the canonical prior, the results of which
confirm our theory about its canonical nature.

1 INTRODUCTION

It is widely known that convolutional neural networks achieve astonishing performances in problem
domains such as computer vision (He et al., 2016; Redmon et al., 2016). However, the traditional
definition of the convolution operation is limited to Euclidean domains. The growing interest in
geometric deep learning has shown that non-Euclidean data is ubiquitous in daily life (Wu et al.,
2020; Cao et al., 2020). Besides the recent efforts to extensively investigate graph neural networks,
the problem of learning intrinsic surface properties with surface convolutions has attracted a con-
siderable amount of interest (Masci et al., 2015; Boscaini et al., 2016a; Monti et al., 2017). The
surface’s non-Euclidean nature, however, requires the traditional definition of convolutions to be
revised such that it pays attention to intrinsic surface properties. A lot of work on learning intrinsic
surface properties focuses on the shape correspondence problem (Masci et al., 2015; Boscaini et al.,
2016a; Monti et al., 2017; Poulenard & Ovsjanikov, 2018), which portrays an underlying task to a
variety of higher-level problems from computer graphics such as space-time registration and further
semantic shape analysis Van Kaick et al. (2011). From the perspective of the Machine Learning
community, it is also worth mentioning that it is thinkable to use intrinsic surface convolutions for
representation learning and generative models analogously to traditional convolutions on Euclidean
data Kingma & Welling (2013); Goodfellow et al. (2020); Ho et al. (2020).

The first work for intrinsic surface convolutions is the one from Masci et al. (2015), who have intro-
duced geodesic convolutions on Riemannian manifolds by employing the so called patch operator.
However, the algorithmic construction of the patch operator involved the computation of so called
local geodesic polar coordinate systems, which are limited in their extension on the surface. This
is why Boscaini et al. (2016a) proposed anisotropic convolutions on surfaces which overcome the
limiting radius of the mentioned coordinate systems by rephrasing the patch operator into consid-
ering spectral properties of the information on the surface. Monti et al. (2017) proposes a general
framework that defines mixture model networks which operate in non-Euclidean domains such as
graphs and surfaces. For example, geodesic- and anisotropic convolutions are obtained as particular
instances of that framework. An exceptionally profound overview of the subject of learning in non-
Euclidean domains is given in Bronstein et al. (2021), where a detailed insight into the derivation
of intrinsic manifold convolutions is given by formulating it as a particular instance of a geometric
deep learning blueprint.
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This paper elaborates on three aspects. First, we close the theoretical gap between the algorithmic
framework of Monti et al. (2017) and the theory grounded definition of Bronstein et al. (2021) for in-
trinsic surface convolutions and by that see that previous definitions on intrinsic surface convolutions
implicitly made use of what we call priors. Second, we see that those priors give rise to a notion of
learnable features for intrinsic surface convolutions. We use these as a means to characterize priors
in order to analyse their comprehensiveness. Third, we see that the prior which is required for the
connection of the framework from Monti et al. (2017) with the theory of Bronstein et al. (2021) is a
very general one. We then make use of our findings and, to be consistent with the nomenclature of
Bronstein et al. (2021), give a theoretical grounded definition of the class of Intrinsic Mesh CNNs
(IMCNNs). Eventually, we see that the results of an experimental evaluation of different IMCNNs
supports the theory of this paper.

2 BACKGROUND

2.1 GEODESIC CONVOLUTION

The adaption of Euclidean convolutions to convolutions in compact Riemannian manifolds has first
been made by Masci et al. (2015). For this, they compute local geodesic polar coordinate systems
(GPC-systems) on the surface, which consist of radial geodesics (rays) and angular level sets (con-
centric circles). These coordinates are required for the so called patch operator, which represents a
function that extracts signal values for a point x from the surface:

[D(x)s](ρ, θ) =

∫
X

vρ,θ(x, x
′)s(x′)dx′

Here, the vρ,θ(x, x
′) portray interpolation weights and s(·) the signal on the surface. Masci et al.

(2015) choose vρ,θ(x, x
′) to be proportional to a two-dimensional Gaussian, which is defined over

the geodesic polar coordinates of the pre-computed GPC-systems. Eventually, the geodesic convo-
lution in the point u on the surface is defined as:

(s ∗ t)∆θ(x) =
∑
ρ

∑
θ

t(ρ, θ +∆θ)[D(x)s](ρ, θ)

The “∆θ”-term is added because during the construction of the GPC-systems we need to select a
reference direction. That direction can be chosen arbitrarily. This problem is referred to as the
angular coordinate ambiguity. Masci et al. (2015) compute the geodesic convolution for multiple
“∆θ” and select the result which yields the largest response. This process is referred to as angular
max-pooling.

2.2 ANISOTROPIC CONVOLUTION

In addition to the angular coordinate ambiguity problem, GPC-systems suffer from being limited
by the so called injectivity radius. This is why Boscaini et al. (2016a) propose a different way of
extracting features from the surface. Therefore, they consider the anisotropic heat equation:

∂

∂τ
s(τ, x) = −∆αθs(τ, x)

where s describes the heat at x at time τ and ∆αθ the anisotropic Laplacian, which considers a
conductivity α and a rotation θ w.r.t. the maximum curvature of the surface at x. Its exact definition
is given in the appendix. This rotation to a so called fixed gauge shall resolve the angular coordinate
ambiguity. The anisotropic diffusion equation can be solved by “applying” the anisotropic heat
kernel onto an initial solution s(0, x) for the anisotropic heat equation. Thereby, the anisotropic heat
kernel is defined as:

hαθτ (x, y) =
∑
n

e−τλαθnϕαθn(x)ϕαθn(y)

where {ϕαθn}n are the Eigenfunctions of −∆αθ for the Eigenvalues {λαθn}n. Boscaini et al.
(2016a) use the anisotropic heat kernels to define the patch operator in the spectral domain:

[Dα(x)s](τ, θ) =

∫
X
hαθτ (x, y)s(y) dy∫
X
hαθτ (x, y) dy
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Eventually, Boscaini et al. (2016a) use this patch operator to define the anisotropic convolution:

(s ∗ t)(x) =
∫

k(τ, θ)[Dα(x)s](τ, θ) dτdθ

2.3 MIXTURE OBJECT NETWORKS

Monti et al. (2017) generalizes the attempts of Masci et al. (2015) and Boscaini et al. (2016a) by
proposing a general framework for defining non-Euclidean convolutions in domains such as graphs
and manifolds. This framework introduces a parametric construction of the patch operator via so
called pseudo coordinates u(x, y) and kernels wj(u(x, y)). In particular, their general patch opera-
tor has the form:

[D(x)s](j) =
∑

y∈N (x)

wj(u(x, y))s(y), j = 1, ..., J

where x portrays a point in the respective domain and N (x) a neighborhood of x. In case of
the domain being a continuous manifold, the sum should be interpreted as an integral. The final
convolution then uses the parametric patch operator:

(s ∗ t)(x) =
J∑

j=1

t(j)[D(x)s](j)

Thereby, the framework does not only allow for the parametric construction of the geodesic- (Masci
et al., 2015), or anisotropic convolutional neural networks (Boscaini et al., 2016a), but also for the
construction of traditional CNNs (LeCun et al., 1998) in the Euclidean domain, graph convolutional
neural networks (Kipf & Welling, 2016) or diffusion convolutional neural networks (Atwood &
Towsley, 2016).

2.4 CONVOLUTIONS ON A MANIFOLD

A less algorithmic and a more theory grounded perspective on intrinsic surface convolutions is given
by Bronstein et al. (2021). They motivate intrinsic surface convolutions with the help of differential
geometry. Traditionally, convolutions between a signal s and a template t in a point u are defined in
a Euclidean domain:

(s ∗ t)(u) =
∫
Rn

s(v)t(u− v)dv

The convolution shifts the template t into point u and accesses the weights of t relative to the point
u by computing u− v. Thereby, u− v yields a vector that points from v to u. This vector exhibits
a notion of relative direction between u and v. In general compact Riemannian manifolds Mn,
however, subtraction is undefined. Instead, if we want to compute the convolution in point u ∈ Mn,
we make use of tangent vectors y ∈ TuM

n from the tangent space TuM
n at u, which locally

exhibit a notion of direction. Due to the tangent vectors y being coordinate free in general, we need
to choose a basis for the tangent space in order to be able to calculate with y. This basis is given
by a frame called gauge ωu, that can be considered a map which defines a basis for each tangent
space TuM

n. Yet, multiple gauges are possible for one tangent space. Different ωu cause different
coordinates, which in turn cause different results in the convolution. This represents the theoretical
link to the aforementioned angular coordinate ambiguity problem. Sophisticated solutions to this
problem lead to the topic of gauge-equivariant convolutions on compact Riemannian manifolds
(Bronstein et al., 2021; Cohen et al., 2019; De Haan et al., 2020). However, a detailed review of
those would exceed the boundaries of this work.

While the tangent vectors y yield a helpful means to describe a local notion of direction, they
do not represent the elements of the surface on which the signal s is defined. The exponential
map expu : TuM

n → Mn portrays a local diffeomorphism, limited by the previously discussed
injectivity radius, that maps tangent vectors onto elements of the manifold.

Eventually, Bronstein et al. (2021) connects the gauge ωu, which allows us to use coordinates to
reference certain tangent vectors, the exponential map, which associates the directions locally with
points on the manifold, and the signal of interest, which is defined on the manifold, to one function
in order to define the intrinsic convolution in manifolds:
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Figure 1: Exemplary illustration of [s◦expu ◦ωu] on the Stanford Bunny. [Left] In order to describe
relative positions around u ∈ M2 we consider the tangent vectors y in tangent plane TuM

2. We
choose a basis in form of a coordinate frame via the gauge ωu within the tangent plane TuM

2

to access the tangent vectors. There is no unique gauge. That is, other gauges, e.g. ωu that give
rise to frames with a different orientation within TuM

2, are valid choices. [Right] We locally
map the tangent vectors ωu(v) = y ∈ TuM

2 at coordinates v ∈ [0, 1]2 into the surface with the
exponential map expu. The signal, e.g. local surface descriptors such as SHOT Tombari et al. (2010)
or Optimal Spectral Descriptors Litman & Bronstein (2013), is defined on the surface. Thus, given
expu(ωu(v)) = w ∈ M2, we can now extract the surface signal by calculating s(w).

Definition 1 (Intrinsic Manifold Convolution (Bronstein et al., 2021)). The intrinsic manifold con-
volution of a signal s : Mn → R defined on the n-dimensional compact Riemannian manifold Mn

with a template t : Rn → R in point u ∈ Mn is defined as:

(s ∗ t)(u) =
∫

[0,1]n

t(v) [s ◦ expu ◦ ωu](v) dv

In the case of computing convolutions on a 2-dimensional, compact Riemannian manifold M2 we
refer to it as the intrinsic surface convolution (ISC). In that case, the unit-cube [0, 1]2 is homeomor-
phic to the affine tangent plane attached to the point u ∈ M2. This allows us to visually think of
extracting local features of the manifold into the tangent plane TuM

2 and conducting the convolu-
tion within said tangent plane. See Figure 1 for a visualization.

3 INTRODUCING DIRAC TO INTRINSIC SURFACE CONVOLUTIONS

In the previous section we have discussed algorithmic (Masci et al., 2015; Boscaini et al., 2016a;
Monti et al., 2017) and mathematical (Bronstein et al., 2021) approaches to intrinsic surface convo-
lutions. In this section we bridge the theoretical gap between the framework of Monti et al. (2017)
and the theoretical definition for intrinsic surface convolutions from Bronstein et al. (2021) by first
reformulating the non-Euclidean convolution equation of Monti et al. (2017) into the definition of
Bronstein et al. (2021) and subsequently introducing a previously unused kernel to the framework.
Due to the reformulation we witness two major insights. First, the introduction of the patch operator
by Masci et al. (2015) implicitly gives rise to a notion of learnable features and they dependent on
a selected prior. Second, the mathematically motivated intrinsic surface convolution by Bronstein
et al. (2021) only differs in its kernel to the geodesic- (Masci et al., 2015) and anisotropic convolu-
tion (Boscaini et al., 2016a). We begin this section by unifying the previous definitions for intrinsic
surface convolutions.
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Theorem 1. Let p ∈ C0(Rn ×Rn) be a kernel in the sense of Monti et al. (2017), BR(0) ⊂ R2 the
disc with radius R around 0 and

[Dp(u)s](v) =

∫
BR(0)

pv(y)[s ◦ expu ◦ ωu](y) dy

the continuous version of the parametric patch operator from Monti et al. (2017). For a continuous
function t ∈ C0(Rn), called the template, we have that:

(s ∗ t)∆θ,p(u) =

∫
BR(0)

t(v)[Dp(u)s](v) dv

=

∫
BR(0)

p̃t(y)[s ◦ expu ◦ ωu](y) dy = (s ∗ p̃t)∆θ(u)

with p̃t(y) being defined as:

p̃t(y) =

∫
BR(0)

t(v)pv(y) dv

We put the proof into the appendix. As we will see in the next section, the choice of p poses a
limitation on the features p̃t(y) that can be learned by the network. It thus can be used to encode
prior knowledge and we therefore refer to it as prior and to p̃t(y) as learnable features.

Using Theorem 1, we can derive the definition for intrinsic surface convolutions of Bronstein et al.
(2021) by introducing a previously unused prior for the framework of Monti et al. (2017). Our goal
is to specify a prior that yields p̃t(y) = t(y). Considering the integral of a continuous function and
a normal distribution, we observe that for a diminishing variance, the value of that integral tends
towards the value of the function at the mean of the normal. To connect this to the previous theory,
we consider the density of that normal distribution as prior p. That is, we can achieve our goal by
integrating with a normal distribution centered at our interest point y:

φ(n)
x (y) =

1

n
√
2π

e−
1
2 (

∥x−y∥
n )

2

We now formulate our aforementioned intuition about decreasing variances over the limit of the
learnable features when using a normal distribution φ

(n)
x (y) as a prior:

lim
n→0

φ̃
(n)
t (y) = lim

n→0

∫
BR(0)

t(v)φ(n)
v (y) dv = t(y)

This assumes that the point of interest is in the integration domain, i.e., y ∈ BR(0). In order to
get back to our prior notion, we could consider the limit of the normal distributions first, which
convergences weakly against the Dirac distribution at y. By abuse of notation, we will denote this
as:

δ̃t(y) =

∫
BR(0)

t(v)δ(y − v) dv = t(y)

and define δ(·) to be the Dirac prior. By inserting the Dirac prior into Theorem 1 we get:

(s ∗ δ̃t)∆θ(u) =

∫
BR(0)

δ̃t(y)[s ◦ expu ◦ ωu](y) dy

=

∫
BR(0)

 ∫
BR(0)

t(v)δ(y − v) dv

 [s ◦ expu ◦ ωu](y) dy

=

∫
BR(0)

t(y)[s ◦ expu ◦ ωu](y) dy
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Thus, the definition for intrinsic surface convolutions by Bronstein et al. (2021) can be obtained from
the framework of Monti et al. (2017), by using the Dirac prior in the aforementioned sense. This
means, that in difference to the previously studied intrinsic surface convolutions like the geodesic-
(Masci et al., 2015) or anisotropic convolution (Boscaini et al., 2016a), we now use a different
prior. It should be pointed out that in Theorem 1 we have assumed that p has to be continuous.
Thus, strictly speaking, we are formally not allowed to simply insert the Dirac distribution into
Theorem 1, since the Dirac distribution is no continuous function. While a thorough examination of
the relaxation of the continuity assumption would give rise to a larger set of possible priors and by
that raises an interesting research question, it exceeds the scope of this work. This is why we leave it
open for future work. Nevertheless, despite using a formal approximation to define the Dirac prior,
we still can explain why it is interesting. Developing the formalities and understanding why this is
the case is the topic of the next section.

4 THE CLASS OF INTRINSIC MESH CNNS

In the previous section we have closed the theoretical gap between the general framework for non-
Euclidean convolutions of Monti et al. (2017) to the theoretically grounded definition for intrin-
sic surface convolutions by Bronstein et al. (2021) by reformulating the parametric patch operator
(Monti et al., 2017) and introducing the Dirac prior. Since priors exhibit a central notion for intrinsic
surface convolutions, we dedicate our attention in this section onto the formal characterization of
them. Due to our characterization we see that different priors pose different limitations on learnable
features. Thereby, the Dirac prior, while being of comparably simple nature, allows to learn very
general features making it a suitable canonical choice that allows for a general definition of the class
of Intrinsic Mesh CNNs (IMCNNs).

Priors are the only formal difference for different intrinsic surface convolutions. Therefore it is
evident that in order to analyse differences between different intrinsic surface convolutions, we
should study the differences between their selected priors. To that end, we characterize a prior p by
its set of learnable features:

F(p) =
{
p̃t(·) | t ∈ C0(Rn)

}
=


∫

BR(0)

t(v)pv(·) dv

∣∣∣∣∣ t ∈ C0(Rn)


Although this is a very simple characteristic of p, it already allows us to tell which priors give rise
to more comprehensive intrinsic surface convolutions than others. F(·) can be used to compare two
priors a and b against each other by comparing their sets of learnable features F(a) and F(b). For
example, if F(a) ⊊ F(b) than we know that we can learn more features with prior b than with prior
a. In other words, prior b is more comprehensive than prior a, if for any learned weights t1 there
exist learnable weights t2 such that the resulting learned features are equal, i.e. ãt1 = b̃t2 :

∀t1 ∈ C0(Rn) ∃t2 ∈ C0(Rn) ∀y ∈ Rn :

∫
BR(0)

t1(v)av(y) dv =

∫
BR(0)

t2(v)bv(y) dv (1)

The fact, that we can compare priors by comparing their sets of learnable features leads to the
following insight:
Corollary 1. Let the set of all priors be given by W = C0(Rn ×Rn). W has a partial order which
is imposed by the subset relation ⊆ in the sense that:

a, b ∈ W : a ≼ b :⇔ F(a) ⊆ F(b)

Corollary 1 represents the formalization of our previous intuition, that different priors impose dif-
ferent limitations on the learnable features and therefore can differ in their comprehensiveness. One
particularly interesting example is given by our previously introduced Dirac prior. It exhibits a very
canonical nature, which is visible by the following two aspects. On the one hand, if we compare it
to other priors a via equation 1:

∀t1 ∈ L2(Rn) ∃t2 ∈ L2(Rn) ∀y ∈ Rn : ãt1 =

∫
BR(0)

t1(v)av(y) dv = t2(y)
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we see that the Dirac prior allows to learn the features of prior a, i.e. ãt1 , directly with t2, instead of
taking a detour over learning weights t1 to use them in combination with prior a in order to compute
suitable features for the convolution. On the other hand, its set of learnable features

F(δ) =
{
δ̃t(·) | t ∈ C0(Rn)

}
=

{
t(·) | t ∈ C0(Rn)

}
= C0(Rn)

is not limited by an integral and therefore allows to learn comparably many features in contrast to
other priors p. Due to the Dirac prior’s canonical nature we think that it yields a suitable common
ground for further research in the realm of intrinsic surface convolutions. This is why we use it to
define the class of Intrinsic Mesh CNNs:
Definition 2 (Intrinsic Mesh CNNs). The class of Intrinsic Mesh CNNs (IMCNNs) is given by the
set of convolutional neural networks defined by the intrinsic surface convolutions:

(s ∗ p̃t)∆θ(u) =

∫
BR(0)

p̃t(y)[s ◦ expu ◦ ωu](y) dy

with learned features

p̃t(y) =

∫
BR(0)

t(v)pv(y) dv

that use priors which admit to learn features that are also learnable with the Dirac prior:

IMCNNs := {(s ∗ p̃t)∆θ(u) | p ≼ δ}

In the next section of this work, we conduct a variety of experiments to empirically study the perfor-
mance of different IMCNNs. Thereby, we lie our focus on the comparison of the IMCNN that uses
the Dirac prior by comparing it to IMCNNs which use other priors.

5 EXPERIMENTAL EVALUATION OF PRIORS

In the last section we have formally investigated priors by characterizing them with their sets of
learnable features. Furthermore, we have seen that the set of all priors has a partial order which is
imposed by the subset relation given by the different sets of learnable features, meaning that different
priors pose different limitations on what features the network can learn. Lastly, we gave a definition
for the class of Intrinsic Mesh CNNs with the help of the canonical nature of the Dirac prior. In
this section we practically investigate our theory by conducting several experiments with different
IMCNNs. By witnessing different performances for different IMCNNs we see that the experiments
support our theory, that different priors pose different limitations for what an IMCNN can learn.

In our experiments, we will compare the performance of IMCNNs for the (full) shape correspon-
dence problem. The shape correspondence problem is thoroughly discussed in the computer vision
community (Van Kaick et al., 2011) and can be understood as a multi-class classification problem.
The goal is to label a point x from a query shape Q with index k of the corresponding point yk on
a reference shape R. If s : Q → R is the signal defined on the query shapes Q of our dataset and
assuming R has |R| vertices, our IMCNNs shall predict a probability distribution h(s(x)) ∈ R|R|,
sometimes referred to as a soft correspondence (Masci et al., 2015), over all |R| vertices of the
reference shape R. A visual example is provided in Figure 3 in the appendix. Since we have a
multi-class classification problem, we are using the categorical cross-entropy as the loss function
for our training. Our network architecture considers three intrinsic surface convolutions with inter-
mediate angular max-pooling layers (ISC128+ReLU, AMP, ISC128+ReLU, AMP, ISC128+ReLU,
AMP, LIN6890). Each convolution computes 128-dimensional embeddings for all points in the
query shape. Besides the Dirac prior, we are also considering the Gaussian prior of the geodesic
convolution (Masci et al., 2015), an exponential prior, a X 2-prior and a student-t prior in our exper-
iments. Their definitions are given in the appendix.

For our experiments we use the FAUST dataset (Bogo et al., 2014). The dataset consists of 100
triangle meshes which portray ten human subjects in ten different poses, each one containing 6890
vertices. We split the dataset in accordance to Masci et al. (2015) into a train-, validation and
test set. The triangle meshes 0 − 79 are put into the training set, meshes 70 − 79 are used for
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Table 1: Configuration of the used hyperparameters for the conducted experiments.
Template Discretization ρ0 ≈ 0.028 Nρ = 5 Nθ = 8

GPC-systems R ≈ 0.037
Optimizer (Adam) γ ≈ 0.0009 β1 = 0.9 β2 = 0.999

validation and 80− 99 for testing purposes. Each mesh is shifted such that its centroid is located at
0. Subsequently, we uniformly scale each mesh by dividing the vertex coordinates of all dimensions
through the geodesic diameter of the mesh to get a maximal geodesic diameter of 1 for all meshes
in the dataset.

In order to compute intrinsic surface convolutions, we have to discretize template t(·) and the patch
operator [D(x)s](ρ, θ). Our template discretization is akin to the one proposed in Masci et al. (2015).
That is, we discretize t into having Nρ equi-distant radial level sets with radii ρi = (i + 1)ρ0/Nρ

for i ≥ 0, with ρ0 being the maximal radial distance, and Nθ equi-distant angular coordinate rays
with angles θj = 2jπ/Nθ. The Cartesian-product T = {ρi}

Nρ−1
i=0 × {θj}Nθ−1

j=0 yields template
vertices. We now define a tensor Traxy that associates a trainable weight matrix Tra ∈ Rm×n with
each template vertex (ρr, θa) ∈ T. Both, the coordinates T together with their associated weights T
represent the discretization of t(·).
Next, we discretize the patch operator [D(x)s](ρ, θ) as follows: First, we compute a GPC-system
at each vertex vk of a mesh Q with a maximum geodesic radius of R, by using the algorithm of
Melvær & Reimers (2012). Then we place the template vertices T into the computed GPC-systems,
causing each template vertex to lie in a triangle. Similarly to Poulenard & Ovsjanikov (2018), we
now compute the barycentric coordinates of each template vertex in each GPC-system and store
these in a tensor Bkraic with k = 0, ..., |Q| − 1; r = 0, ..., Nρ − 1; a = 0, ..., Nθ − 1; i ∈ {0, 1, 2}
and c ∈ {0, 1}. Thereby, Bkrai1 contains the i-th barycentric coordinate for template vertex (ρr, θa)
in the GPC-system that has its origin in the k-th vertex of Q. Bkrai0 contains the index of the
vertex for the associated barycentric coordinate. In theory, the signal s : Q → R is defined as a
scalar function at each point on the surface. In practice, we generalize s to be vector valued, i.e.
s : Q → Rn. Hence, s is given by a matrix S ∈ R|Q|×n, where the i-th row Si ∈ Rn contains
the signal for the vi. Lastly, we define a tensor Wraxy that defines the values p(ρr,θa)(ρx, θy) of our
prior. Combining everything to the discretized patch operator yields:

[DW(vk)S](ρr, θa) =

Nρ−1∑
x=0

Nθ−1∑
y=0

Wraxy

2∑
i=0

Bkxyi1SBkxyi0
∈ Rn

Figure 4 in the appendix visually helps to get an overview of that process. Given the discretized
patch operator, we can now formulate the discretized intrinsic surface convolution as:

(S ∗ T)W(vk) =

Nρ−1∑
r=0

Nθ−1∑
a=0

Tra[DW(vk)S](ρr, θa) ∈ Rm

Similar to Monti et al. (2017), we use 544-dimensional SHOT-descriptors (Tombari et al., 2010) to
represent the initial surface signal S. In all experiments, we use Adam (Kingma & Ba, 2014) with
an equal learning rate γ, and first and second momentum β1 and β2 over all experiments. All of the
chosen values for our hyperparameters are given in Table 1. We have conducted the experiments
using our library1 which implements the neural network layers, all necessary preprocessing proce-
dures and allows the user to easily define and test new priors. In contrast to previous work, we do not
post-process the networks results with functional maps (Masci et al., 2015; Boscaini et al., 2016a),
intrinsic Bayesian filters Monti et al. (2017) nor any other method.

Figure 2 shows that throughout all conducted experiments the IMCNN that uses the Dirac prior
achieves comparable or even better accuracy. On the one hand, this is visible by comparing the
exact accuracy, i.e. the point correspondence predictions which are correct and thus yield a geodesic
error of zero. With nearly 40% accuracy the IMCNN with the Dirac prior is better than any other
observed IMCNN. On the other hand, the graph of the IMCNN with the Dirac prior is typically the

1The code can be found in the supplement and will be made public after publication.
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Figure 2: Comparison among training results via the Princeton benchmark (Kim et al., 2011) on
the test split of the FAUST dataset. The benchmark captures the accuracy of an IMCNN, which has
learned to predict point correspondences. It does so by measuring the geodesic distance or error,
respectively, of the predicted vertex to the ground truth vertex. In the plots, the red and dashed graph
always represents the accuracy of the IMCNN that uses no prior. The other graphs represent the
accuracies of the IMCNNs with priors configured according to the attached legends.

steepest. That means that the incorrect correspondence predictions of the IMCNN with the Dirac
prior typically lie closer to the ground truth vertices compared the mispredictions of the IMCNNs
with other priors.

That is, our experiments suggest that the IMCNN with the Dirac prior learns features which even-
tually cause better predictions. We conjecture that we get these results because F(δ) is not limited
by an integral compared to the F(p) of the other priors. We thus deem the IMCNN with the Dirac
prior to be less error prone than IMCNNs that use a different prior. This is a beneficial insight since
it gives rise to the rule of thumb, that we do not have to elaborate on which priors are adequate for
a problem and which are not. The IMCNN will probably learn “a more suitable prior” implicitly
anyway.

6 CONCLUSION

Due to the efforts of this work we can conclude that rephrasing the parametric construction of Monti
et al. (2017) into the definition for intrinsic surface convolutions by Bronstein et al. (2021) with the
help of the Dirac prior gives rise to the formal class of Intrinsic Mesh CNNs. Intrinsic Mesh CNNs
can differ in their comprehensiveness as their assumed priors give rise to different sets of learnable
features. The results of our experimental evaluation support the derived theory.
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Figure 3: Illustration of the predicted shape correspondence by an IMCNN without post-processing
the results, between two normalized meshes from the FAUST-dataset Bogo et al. (2014). The right
mesh represents the reference mesh R. The left mesh portrays the query mesh Q. The IMCNN gets
a signal s(v) and barycentric coordinates defined for the query mesh vertices v ∈ Q as input and
tries to predict index k of the corresponding vertex yk ∈ R from the reference mesh. The colors
of the vertices from the query mesh carry the color of the predicted vertex from the reference mesh.
Hence, the color map visualizes the predicted correspondence.

A ANISOTROPIC LAPLACIAN

Let X be a Riemannian manifold. Boscaini et al. (2016a) define the anisotropic Laplacian ∆αθ as:

∆αθf(x) = −divX (Dαθ(x)∇Xf(x))

where Dαθ(x) represents the so called thermal conductivity tensor:

Dαθ(x) = Rθ(x)

[
α

1

]
RT

θ (x)

that uses 2×2 rotation matrices Rθ(x). Furthermore, ∇X represents the intrinsic gradient (Boscaini
et al., 2016a;b):

∇Xf(x) = ∇(f ◦ expx)(0)

The function divX yields the intrinsic divergence (Boscaini et al., 2016a;b) of a function f : X → R
and is defined as (Boscaini et al., 2016a;b):

divXf(x) =

∫
X

⟨∇Xf(x),v(x)⟩TxX dx

whereby v : X → TX represents a vector field and ⟨·, ·⟩TxX : TxX × TxX → R the Riemannian
metric on X .
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Figure 4: A visualization of a GPC-system with the center in a mesh vertex vk that is roughly
positioned in the eye of a mesh from the FAUST-dataset Bogo et al. (2014) and the discretized
template. [Top Left] The radial coordinates of the vertices captured by the local GPC-system.
Darker red colors indicate larger distances to the center vertex. The GPC-system has a maximum
geodesic radius of R ≈ 0.03 [Top Right] The angular coordinates of the vertices captured by a
local GPC-system. Darker green colors indicate larger angular distances to the reference direction.
[Bottom Left] The GPC-system from the mesh in the 2D-plane. The green vertices represent all
template vertices T for Nρ = 5 and Nθ = 8 and ρ0 ≈ 0.02. Note that in practice it can happen,
that a template vertex lies in no triangle. We circumvent that issue as described in the next picture.
[Bottom Right] The same GPC-system in the 2D-plane. Here, however, we have corrected template
vertices. All template vertices which do not fall into any triangle captured by the underlying GPC-
system, receive barycentric coordinates of 0 and thus contribute a signal of 0 to the convolution.
Visually, they will lie in the center due to the barycentric coordinates being 0. We compute the
convolution for the center vertex vk, by summing over the matrix-vector-products of the (trainable)
weight matrices T and the signal-vectors at the template vertices (→ (S ∗ T)W(vk)). The signal at
each template vertex (ρr, θa) contains prior knowledge Wra (→ [DW(vk)S](ρr, θa)). The “raw”
signal under each template vertex (ρx, θy) is determined by the values of their surrounding triangle

vertices
(
→

∑2
i=0 Bkxyi1SBkxyi0

)
.
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B PROOFS

Proof. Proof for Theorem 1: The parametric patch operator of Monti et al. (2017) for continuous
manifolds is given by:

[Dp(u)s](v) =

∫
BR(0)

pv(y)[s ◦ expu ◦ ωu](y) dy

Inserting it into the definition for intrinsic surface convolutions by Bronstein et al. (2021) yields:

(s ∗ t)∆θ,p(u) =

∫
BR(0)

t(v)[Dp(u)s](v) dv

=

∫
BR(0)

t(v)

∫
BR(0)

pv(y)[s ◦ expu ◦ ωu](y) dydv

=

∫
BR(0)

∫
BR(0)

t(v)pv(y)[s ◦ expu ◦ ωu](y) dydv

Since [s ◦ expu ◦ ωu] is continuous as a composition of continuous functions and t, pv ∈ C0(Rn)
by assumption, we can apply the theorem of Fubini to change the order of the integrals:∫

BR(0)

∫
BR(0)

t(v)pv(y)[s ◦ expu ◦ ωu](y) dvdy

=

∫
BR(0)

 ∫
BR(0)

t(v)pv(y) dv

 [s ◦ expu ◦ ωu](y) dy

=

∫
BR(0)

p̃t(y)[s ◦ expu ◦ ωu](y) dy

=(s ∗ p̃t)∆θ(u)

C PRIORS

• Dirac Prior:

δρ,θ(ρ, θ) =

{
1 if ρ = ρ and θ = θ

0 else.

• Exponential Prior:
ερ,θ(ρ, θ) = λ2exp

(
−λ

(
dr(ρ, ρ) + da(θ, θ)

))
• X 2 Prior:

X 2
ρ,θ

(ρ, θ) =

(
1

2n/2 Γ(n/2)

)2

dr(ρ, ρ)
n
2 −1da(θ, θ)

n
2 −1exp

(
−dr(ρ, ρ) + da(θ, θ)

2

)
with

Γ(1/2) =
√
π, Γ(1) = 1, Γ(r + 1) = r · Γ(r)

• Student-t Prior:

sρ,θ(ρ, θ) =
(
Γ((n+ 1)/2)√
πn Γ(n/2)

)2 (
1 +

dr(ρ, ρ)
2

n

)−n+1
2

(
1 +

da(θ, θ)
2

n

)−n+1
2

with

Γ(n+ 1) = n!, Γ(n+
1

2
) =

(2n)!

n!4n
√
π
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Thereby, the distance metrics in the radial coordinates dr(·, ·) and angular coordinates da(·, ·) are
given by:

dr(ρ, ρ) = |ρ− ρ|

da(θ, θ) =

{
min{θ − θ, θ + 2 ∗ π − θ} if θ ≥ θ

min{θ − θ, θ + 2 ∗ π − θ} else.
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