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ABSTRACT

Dataset condensation synthesizes a small dataset that preserves the performance
of training on the original, large-scale data. However, existing methods rely on
fully labeled data, which limits their applicability in real-world scenarios where
unlabeled data is abundant. To bridge this gap, we introduce a new task called
Semi-Supervised Dataset Condensation, which condenses both labeled and un-
labeled samples into a small yet informative synthetic labeled dataset, thereby
enabling efficient supervised learning. We propose Semi-Supervised Dual Consis-
tency Trajectory Matching (SSD), a method that leverages semi-supervised knowl-
edge distillation. The core of SSD is a two-stage trajectory matching framework
that effectively incorporates unlabeled data. First, a teacher model is trained on
the original data to generate accurate pseudo-labels using semi-supervised learn-
ing. Then, a student model is trained on the entire dataset with a novel dual
consistency regularization loss. This loss enforces both inter-model consistency
(between the student and teacher predictions) and intra-model consistency (for
the student model under different input perturbations), ensuring robust perfor-
mance. By aligning the training trajectories of the student model on the complete
dataset and the synthetic dataset, SSD optimizes and obtains a high-quality syn-
thetic dataset. Experiments on image classification benchmarks demonstrate that
SSD consistently outperforms previous methods, achieving superior performance
and efficiency in dataset condensation.

1 INTRODUCTION

Dataset condensation, also known as dataset distillation, aims to synthesize a compact dataset that
preserves the essential knowledge of a large-scale dataset. Models trained on such synthetic datasets
can achieve accuracy comparable to those trained on the original data, while offering significant
benefits in terms of efficiency and privacy. In particular, synthetic datasets are highly valuable for
scenarios that require repeated training on the same data, such as neural architecture search, contin-
ual learning, and knowledge distillation. Existing dataset condensation approaches typically assume
that the entire dataset is fully labeled. Their core methodologies focus on aligning training dynam-
ics between real and synthetic data, for example by matching gradients (Zhao et al., 2021), feature
distributions (Zhao & Bilen, 2023), or training trajectories (Cazenavette et al., 2022). However,
in real-world applications—especially in edge environments—labeled data are often scarce due to
high annotation costs, while large amounts of unlabeled data are readily available. This imbalance
poses a fundamental challenge: existing methods cannot be directly applied to generate high-quality
synthetic datasets under semi-supervised conditions. Moreover, edge-deployed models are often
required to continuously update while retaining prior knowledge, further amplifying the need for
effective condensation methods that can exploit both labeled and unlabeled samples.

To tackle this semi-supervised dataset condensation problem, as illustrated in Figure 1, one straight-
forward idea is to generate pseudo-labels for the unlabeled portion of the data before applying con-
densation. Specifically, a semi-supervised learning method can first be used to train a model on
the original dataset. This model then assigns pseudo-labels to the unlabeled samples, effectively
converting the dataset into a pseudo-fully-labeled one. Existing dataset condensation techniques
can subsequently be applied. However, since pseudo-labels are inevitably noisy, the quality of the
resulting synthetic dataset may be degraded, leading to lower accuracy in models trained on it.
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(a) Traditional Supervised Dataset Condensation
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(b) Semi-Supervised Dataset Condensation

Figure 1: Difference between traditional supervised dataset condensation and semi-supervised
dataset condensation. (a) Previous supervised dataset condensation methods requires all samples
in the dataset are labeled. (b) Our proposed semi-supervised dataset condensation could generate
high-quality synthetic dataset with both labeled and unlabeled samples for supervised learning.

Another naive approach builds on trajectory matching-based condensation methods. Here, a model
is trained on the original dataset using semi-supervised learning, and its training trajectory is
matched with that on the synthetic labeled data to produce the condensed dataset. To effectively
utilize both labeled and unlabeled data, semi-supervised techniques often combine pseudo-labeling
(Lee et al., 2013) with consistency regularization (Bachman et al., 2014; Sajjadi et al., 2016). For
example, methods like FixMatch generate pseudo-labels from weakly augmented samples and use
high-confidence ones to train on strongly augmented views (Berthelot et al., 2021). However, be-
cause the set of unlabeled samples used in each training iteration varies, trajectory matching under
this setting becomes unstable and often yields suboptimal results. Alternatively, consistency-based
methods such as Laine & Aila (2017); Tarvainen & Valpola (2017) minimize the prediction dis-
crepancy between different augmentations of the same sample. Although these methods utilize all
unlabeled data, they do not explicitly encourage low-entropy model outputs Grandvalet & Bengio
(2004), often resulting in lower final accuracy and thereby introducing more noise during dataset
condensation.

To overcome these issues, we propose a novel framework called Semi-Supervised Dual Consis-
tency Trajectory Matching (SSD) for condensing mixed-label datasets. SSD integrates the strengths
of both pseudo-labeling and consistency regularization within a knowledge distillation framework.
Specifically, a teacher model is first trained on the complete dataset using semi-supervised learning
to generate reliable pseudo-labels. To avoid directly using the teacher’s noisy and computationally
expensive training trajectory, we distill its knowledge into a compact student model. During distil-
lation, we impose a dual consistency regularization loss that enforces both inter-model consistency
(between the student and teacher predictions) and intra-model consistency (across different pertur-
bations of the same input). This strategy improves the robustness and accuracy of the student model,
producing high-quality training trajectories. Finally, the synthetic dataset is optimized by matching
the student’s training trajectories on the original and synthetic datasets. As a result, models trained
solely on the small synthetic set achieve comparable accuracy on par with those trained on the full
original dataset.

To sum up, our main contributions are listed below:

• We study the problem of Semi-Supervised Dataset Condensation (SSDC), aiming at con-
dense a mixture of labeled and unlabeled samples into a small, labeled synthetic dataset,
thereby enabling efficient supervised learning on the small dataset. To the best of our
knowedge, we are the first to study the SSDC problem.

• We propose a novel SSDC method, named by SSD, where we conduct semi-supervised
training on the teacher model for predicting accurate pseudo-labels of unlabeled samples,
while matching the training trajectories of the student model on the entire dataset with dual
consistency regularization.
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• We evaluate our method on several image classification benchmark datasets and show that
SSD outperforms baselines under different settings of IPC and model architectures.

2 RELATED WORKS

Dataset consensation, also known as dataset distillation, aims to produce a compact synthetic
dataset that retains essential information from the original data, such that models trained on the
synthetic set achieve performance comparable to those trained on the full dataset (Wang et al., 2018;
Zhao et al., 2021). To ensure the synthetic dataset captures equivalent informative content, exist-
ing methods typically optimize by matching certain signals between the original and synthetic data
during training. These signals include model gradients (Zhao et al., 2021; Zhao & Bilen, 2021),
feature distributions (Zhao & Bilen, 2023; Zhao et al., 2023; Zhang et al., 2024a), and training tra-
jectories (Cazenavette et al., 2022; Liu et al., 2024; Guo et al., 2024). A common limitation across
these approaches is the assumption that all original samples are fully labeled, which restricts their
applicability to real-world scenarios where unlabeled data is abundant. Some recent efforts have
explored dataset condensation under self-supervised learning settings, aiming to condense large un-
labeled datasets into smaller unlabeled synthetic sets (Lee et al., 2024; Joshi et al., 2025; Yu et al.,
2025). These methods allow models to first perform self-supervised pre-training on the condensed
data before fine-tuning on downstream tasks. However, they do not incorporate label information
during condensation and often require substantial computational resources. In contrast, our ap-
proach can effectively utilize available labeled samples during the condensation process, avoiding
the heavy computation typical of self-supervised methods, while directly generating a semantically
informative synthetic dataset that significantly reduces the cost of subsequent model training.

Semi-supervised learning (SSL) seeks to improve model performance by leveraging both labeled
and unlabeled data. Common SSL techniques include consistency regularization (Bachman et al.,
2014; Sajjadi et al., 2016), pseudo-labeling (Lee et al., 2013), and entropy minimization (Grand-
valet & Bengio, 2004). Early methods such as Π-Model (Laine & Aila, 2017), MeanTeacher (Tar-
vainen & Valpola, 2017), and MixMatch (Berthelot et al., 2021) encourage prediction consistency
under different perturbations of the same unlabeled sample. While these approaches make extensive
use of unlabeled data, they do not explicitly minimize the output entropy, often leading to limited
model accuracy. More recent methods like FixMatch (Sohn et al., 2020) generate pseudo-labels for
unlabeled samples by retaining only those with confidence above a preset threshold. Subsequent
variants such as FlexMatch (Zhang et al., 2021) and FreeMatch (Wang et al., 2023) introduce dy-
namic thresholding strategies—FlexMatch adjusts thresholds per class based on learning difficulty,
while FreeMatch sets thresholds adaptively according to the model’s global and per-class confi-
dence. Other methods, including OTAMatch (Zhang et al., 2024b), employ optimal transport to
refine pseudo-label assignment. Although these techniques improve final model accuracy by focus-
ing on high-confidence samples, they also lead to inconsistency in the subset of unlabeled data used
across training iterations. Simply combining such state-of-the-art SSL methods with dataset conden-
sation would prevent stable utilization of the full unlabeled dataset in each training round, ultimately
impairing the quality of the condensed dataset. Our proposed framework integrates the strengths of
existing SSL strategies, enabling comprehensive use of unlabeled samples during condensation and
improving the quality of the synthesized dataset in the semi-supervised setting.

3 METHODOLOGY

In this section, we first present the problem definition of semi-supervised dataset condensation,
followed by the detaied description of our proposed SSD framework. The overall framework of
SSD is shown in Figure 2 and Algorithm 1.

3.1 SEMI-SUPERVISED DATASET CONDENSATION

Problem Definition We consider a training dataset D = Dl ∪ Du , which consists of a labeled
dataset Dl = {(xi, yi)}Ni=1 and an unlabeled dataset Du = {xj}N+M

j=N+1. Each labeled sample
(xi, yi) ∈ X×Y denotes the i-th labeled image xi and its corresponding label yi ∈ Y = {1, . . . , C}.
Each unlabeled sample xj ∈ X represents the j-th unlabeled image in Du. We assume that the true
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Figure 2: Overview of the SSD framework. The student model is trained with dual consistency
regularization (inter-model and intra-model) to produce high-quality trajectories, which are then
used to optimize the synthetic dataset by matching trajectories on the original data.

labels of the unlabeled dataset are drawn from the same label set as the labeled dataset. The test
dataset is denoted as T = {(xi, yi)}|T |

i=1, which is independently and identically distributed (i.i.d.)
with respect to the training dataset D. The objective of this study is to generate a class-balanced
compact dataset S = {(x̂i, ŷi)}|S|

i=1, where the number of samples is significantly smaller than the
original dataset, i.e., |S| ≪ N + M . A model trained on the distilled dataset S should achieve
optimal performance on the test set T .

Matching Training Trajectory in Supervised Dataset Condensation Matching Training Trajec-
tory (MTT) (Cazenavette et al., 2022) is one of the most effective strategies in traditional supervised
dataset condensation, which optimizes the synthetic dataset S using the following pipeline:

1. Train a model MD on the original dataset D until it achieves satisfactory performance,
while recording the parameters during the training process as its training trajectory.

2. Initialize S either by randomly sampling images from D or by using Gaussian noise, and
assign labels to S with predictions from MD.

3. Initialize the student model MS with the model MD’s parameters θt from the t-th epoch,
following the training on the synthetic dataset S for N epochs to obtain the parameters
θ̂t+N .

4. Optimize the synthetic dataset S by minimizing the loss

Lmatch

(
θ̂t+N , θ∗t+M , θ∗t

)
=

∥θ̂t+N − θ∗t+M∥22
∥θ∗t − θ∗t+M∥22

,

where θ∗t and θ∗t+M denote the parameters of the model MD after the t-th and (t +M)-th training
epochs, respectively, and θ̂t+N denotes the parameters of the student model MS obtained through
inner-loop optimization using cross-entropy loss.

Motivation In supervised dataset condensation, training trajectories are generated by optimizing
all samples in the original dataset. However, in semi-supervised learning, to improve the overall
accuracy of the model, only unlabeled samples for which the model is sufficiently confident in
classification are used to train the model’s classification consistency. That is, the unlabeled samples
used during training are dynamically changing, which leads to unstable trajectory matching and thus
prevents the generation of high-quality synthetic datasets. Therefore, existing dataset condensation
methods cannot be directly combined with traditional semi-supervised learning methods. There is a
need to redesign new strategies to fully utilize unlabeled data for dataset condensation.
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Algorithm 1 SSD: semi-supervised dataset condensation with dual consistency trajectories

Input: Labeled dataset Dl, unlabeled dataset Du, the number of student models K, length of tra-
jectories M , learning rate α0 for student training, the number of iteration for outer loop Io and
inner loop Ii.

Output: Synthetic data S and learning rate α
1: Train a teacher model with semi-supervised learning objective Lpre on dataset Dl and Du.
2: Train and record training trajectories {τ∗i } of K student models with dual consistency regular-

ization objective Lref on dataset Dl and Du with learning rate α0.
3: Initialize synthetic data S = {(x̂i, ŷi)}|S|

i=1 and learnable learning rate α = α0.
4: for iteration i = 1 to Io do
5: Sample a student training trajectory τ∗ ∼ {τ∗i } with τ∗ = {θ∗t }T0 .
6: Choose a random start epoch t ≤ T+.
7: Initialize a reference model with student params θ̂t = θ∗t .
8: for iteration j = 1 to Ii do
9: Sample a mini-batch of synthetic images bt+j ∼ T .

10: Update reference model with θ̂t+j+1 = θ̂t+j − α∇Ls
ce(bt+j).

11: end for
12: Compute loss Lmatch

(
θ̂t+Ii , θ

∗
t+M , θ∗t

)
with the ending of student and reference params.

13: Update S and α with respect to Lmatch.
14: end for
15: return synthetic dataset S and learning rate α

3.2 SEMI-SUPERVISED DUAL CONSISTENCY TRAJECTORY MATCHING

Teacher Model Training To generate a synthetic dataset that adequately represents the entire orig-
inal dataset, traditional supervised dataset condensation requires using all samples of each category
in the original dataset to train the synthetic dataset. However, in semi-supervised learning scenarios,
some samples are unlabeled, making it impossible to directly apply existing methods for dataset con-
densation. A straightforward solution, therefore, is to generate pseudo-labels for unlabeled samples
via semi-supervised learning, thereby enabling direct application of dataset condensation methods
for training. To generate high-quality pseudo-labels, an teacher model needs to be trained on the
original dataset using semi-supervised learning. A common strategy in semi-supervised learning in-
volves leveraging high-confidence pseudo-labels from weakly-augmented unlabeled data to super-
vise the model’s predictions on their strongly-augmented versions, thereby enforcing consistency
regularization (Sohn et al., 2020; Xu et al., 2021; Wang et al., 2023). For example, the loss function
of FixMatch (Sohn et al., 2020) is given by

Lpre = Ls
ce + λu

fixL
u
fix,

where Ls
ce is the cross-entropy loss on the labeled dataset, and

Lu
fix =

N+M∑
j=N+1

I (max (pT (α (xj))) ≥ γ)H (ŷj , pT (A (xj)))

is the consistency regularization loss on the unlabeled dataset, H(·, ·) is the cross-entropy loss
function, pT (x) is the probability output by the teacher model after predicting sample x, ŷj =
argmax pT (α (xj)) is the pseudo-label generated for the unlabeled sample xj , γ is the confidence
threshold used to filter pseudo-labels, and α(·) and A(·) represents a weak and a strong data aug-
mentation function, respectively. After training this model, all unlabeled samples can be assigned
corresponding pseudo-labels, which provide category information of unlabeled samples for dataset
condensation. However, since these pseudo-labels may contain noise, directly using them for dataset
condensation is not an optimal choice.

Dual Consistency Training Trajectory To mitigate the impact of noise in pseudo-labels, we pro-
poses dual consistent training trajectory matching to train the synthetic dataset. Trajectory matching
requires obtaining training trajectories of models, i.e., the parameter changes of the model after each
iteration updates on the original dataset. As discussed earlier, the teacher model trained via conven-
tional semi-supervised learning only uses unlabeled samples with high confidence during training,
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meaning the samples used in each round are inconsistent. Using the trajectory of the teacher model
for dataset condensation leads to unstable results. Therefore, we proposed the use of dual consis-
tency regularization to generate training trajectories across the entire unlabeled dataset. For the
student model that generates the training trajectories, we apply an intra-model consistency regular-
ization to all unlabeled samples, that is

Lu
intra =

N+M∑
j=N+1

∥pS (α (xj))− pS (α (xj))∥22 ,

where pS(x) is the probability output by the student model after predicting sample x. To enhance
the student model’s ability to recognize unlabeled samples, we apply an inter-model consistency
regularization that requires the model’s output for samples to align with the teacher model’s output,
i.e.

Lu
inter =

N+M∑
j=1

DKL (pT (α (xj)) ∥ pS (α (xj))) .

Therefore, the student model can be trained on the complete unlabeled dataset through such dual
consistency regularization, generating stable training trajectories. The complete loss function is as
follows:

Lref = Ls
ce + λu

intraL
u
intra + λu

interL
u
inter.

By optimizing the student model using Lref via mini-batch gradient descent until convergence, and
recording the model parameters in each round, the required training trajectory {θi} can be obtained.

After obtaining the training trajectories, we can generate a fully labeled synthetic dataset through
trajectory matching. In each round of dataset distillation, we first sample a sub-trajectory of length
M from the training trajectories {θi}, denoted as {θ∗t , . . . , θ∗t+M}. Then, starting from θ∗t as the
initial parameters of the student model, we perform N rounds of updates on the synthetic dataset S
to obtain the parameters θ̂t+N . Note that traditional training trajectory matching methods use the
same loss function to update both the student model and the reference model. However, in this case,
since we aim to obtain a synthetic dataset that can be directly used for supervised learning, we only
employ cross-entropy LS to update the reference model:

Ls
ce =

|S|∑
i=1

H (ŷi, pR (α (x̂i))) .

Finally, by minimizing the discrepancy between the training endpoint of the student model and the
endpoint of the reference model’s training trajectory, the resulting synthetic dataset can simulate the
original dataset that contains both labeled and unlabeled samples.

4 EXPERIMENTS

In this section, we evaluate the performance of SSD on several common image classification datasets
by comparing the accuracy of models trained on synthetic datasets generated by SSD versus those
produced by supervised condensation methods. Subsequently, we conduct ablation studies to vali-
date the effectiveness and stability of key components in the SSD framework.

4.1 EXPERIMENTAL SETUP

Dataset We validated SSD on three commonly used benchmark datasets for image classifica-
tion, including MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017) and CIFAR10
(Krizhevsky, 2009). For each dataset, we randomly selected 10% of the samples from each category
as labeled samples, while the remaining samples served as unlabeled data.

Baselines Our baselines are listed as below:

• Random: Randomly select samples from the labeled dataset to form the balanced con-
densed dataset.

• DC (Zhao et al., 2021): The condensed dataset is obtained by performing gradient matching
on the labeled dataset.

6
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Table 1: Accuracy comparison of condensed datasets on MNIST, Fashion-MNIST, and CIFAR-10
datasets. 10% of samples are labeled. We generate 1, 10 and 50 images per classes (IPC) for each
dataset, respectively.

Dataset MNIST Fashion-MNIST CIFAR-10

IPC 1 10 50 1 10 50 1 10 50

Random 61.92 95.36 97.82 53.87 73.83 82.23 18.05 26.38 43.77
DC 90.99 97.10 98.82 70.10 82.45 83.52 27.86 43.63 51.95
DSA 85.60 96.25 98.12 70.72 82.35 82.97 27.75 44.82 51.82
DM 87.31 96.38 98.26 72.64 85.53 87.10 25.57 46.15 60.63
MTT 86.19 95.66 98.83 75.37 84.28 89.01 39.26 55.49 62.01
M3D 85.99 96.67 98.09 72.50 83.21 87.46 28.72 47.81 59.64

SSD 91.18 97.35 99.08 77.41 87.59 90.56 42.19 58.67 63.27

• DSA (Zhao & Bilen, 2021): On the basis of DC, differentiable siamese augmentation is
performed on the dataset.

• DM (Zhao & Bilen, 2023): The condensed dataset is obtained by performing distribution
matching on the samples of each category in the labeled dataset.

• MTT (Cazenavette et al., 2022): The condensed dataset is obtained through trajectory
matching, where the training trajectories are generated via FixMatch (Sohn et al., 2020) on
the entire dataset.

• M3D (Zhang et al., 2024a): An improved version of DM, where the condensed dataset is
obtained by minimizing the Maximum Mean Discrepancy (MMD) between the represen-
tation distributions of the labeled dataset and the synthetic dataset.

Implementation Details Following the previous works (Zhao et al., 2021; Zhao & Bilen, 2021;
Cazenavette et al., 2022), we employ a convolutional neural network (ConvNet) (Gidaris & Ko-
modakis, 2018) as the architecture of the student model in our experiments. The ConvNet consists
of three repeated convolutional blocks serving as the feature extractor. Each block comprises 128
filters, followed by average pooling, a ReLU activation function, and instance normalization. Fol-
lowing feature extraction, the ConvNet predicts sample categories through a linear classifier. We use
a ResNet18 (He et al., 2016) as a teacher model, which is trained on the entire dataset with FixMatch
(Sohn et al., 2020) objective. We adopt the same differentiable augmentation strategy following pre-
vious work (Zhao & Bilen, 2021; 2023; Cazenavette et al., 2022). We use the SGD optimizer to
optimize the student model with the learning rate η = 0.01 and the batch size 256. For learning rate
of synthetic images, the number of inner and outer loop iteration, and other hyperparameters, we
follow the settings in previous work (Cazenavette et al., 2022).

4.2 EXPERIMENTAL RESULTS AND ABLATION STUDIES

Main Results We generated synthetic datasets on MNIST, Fashion-MNIST, and CIFAR-10, and
present in Table 1 the accuracy of models trained on these synthetic sets, where IPC denotes the
number of images synthesized per class. Sample synthetic images generated by SSD with IPC=10
are visualized in Figure 3. As the results demonstrate, SSD achieves the best performance across
all datasets. On the relatively simple MNIST dataset, SSD outperforms the strongest baseline by a
narrow yet consistent margin of 0.19%–0.26% in average accuracy under three different settings. In
contrast, on the more challenging Fashion-MNIST and CIFAR-10 datasets, SSD surpasses the best
baselines method by 2.04%–3.18%. Moreover, the advantage of SSD is more pronounced under
low-IPC conditions, indicating its ability to produce higher-quality synthetic datasets with limited
samples. These results confirm that SSD effectively addresses the task of semi-supervised dataset
condensation, outperforming conventional dataset compression approaches.

Effectiveness of semi-supervised pretraining. To evaluate the effectiveness of using a semi-
supervised pre-trained teacher model, we trained a teacher model using only cross-entropy loss
without leveraging unlabeled data, and used it to guide the student model’s training. The results

7
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(a) MNIST (b) FMNIST (c) CIFAR-10

Figure 3: Visualization of synthetic dataset of SSD.

Table 2: Ablation results on Fashion-MNIST and CIFAR-10 datasets.

Dataset Fashion-MNIST CIFAR-10

IPC 1 10 50 1 10 50

SSD 77.41 87.59 90.56 42.19 58.67 63.27
w/o Semi-Supervised Pretraining 74.56 85.17 89.95 37.24 53.96 57.57
w/o Inter-Model Consistency 75.83 86.64 87.85 40.51 51.40 59.28
w/o Intra-Model Consistency 76.87 86.66 87.06 39.54 55.19 61.15

are presented in Table 2. Since the teacher model was trained solely on the labeled data via su-
pervised learning and did not exploit the knowledge from unlabeled samples, it achieved relatively
low accuracy. This limitation caused the student model to receive more erroneous pseudo-labels,
ultimately leading to the condensation of a lower-quality synthetic dataset. The use of these inac-
curate pseudo-labels resulted in significant performance degradation, with accuracy drops of up to
12.2These results clearly demonstrate the critical role of semi-supervised pre-training for the teacher
model in our framework.

Effectiveness of dual consistency regularization. To evaluate the effectiveness of the dual consis-
tency regularization, we conducted two ablation studies: (1) training the student model using only
cross-entropy loss and intra-model consistency (applied to labeled and unlabeled data, respectively),
and (2) training with only cross-entropy loss and inter-model consistency. Results are summarized
in Table 2. Removing either form of consistency transforms the student training into pure semi-
supervised learning or semi-supervised knowledge distillation, respectively. In the first case, the
limited capacity of the compact student model makes it difficult to effectively reduce the output
entropy for unlabeled samples using consistency regularization alone. In the second case, train-
ing the student with soft pseudo-labels from the teacher lacks the internal consistency enforcement
against perturbed samples and becomes more vulnerable to incorrect pseudo-labels. The absence of
either consistency component leads to a decline in model accuracy, thereby degrading the quality of
the condensed dataset. This resulted in maximum accuracy drops of 5.2% on Fashion-MNIST and
3.2% on CIFAR-10. These results unequivocally demonstrate the importance of the proposed dual
consistency regularization.

Impact of different student and teacher model architectures. To evaluate the impact of network
architecture on the quality of the synthesized dataset, we conducted experiments by varying the ar-
chitectures of both the teacher and student models within the SSD framework, with results reported
in Table 3. The experimental results indicate that as the model capacity increases, the quality of the
resulting synthetic dataset improves accordingly, which aligns with observations from prior super-
vised dataset condensation studies. These findings demonstrate the generalization ability of SSD
across different network architectures.

Impact of different semi-supervised pretraining methods. In SSD, we obtain a teacher model
through semi-supervised learning, with the expectation that it will generate pseudo-labels of suffi-
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Table 3: Impact of different student and teacher model architectures on CIFAR-10.

Teacher Arch. Student Arch. 1 10 50

ResNet10 ConvNet 42.34 56.08 62.75
ResNet10 ResNet10 45.98 62.83 70.21
ResNet18 ConvNet 42.19 58.67 63.27
ResNet18 ResNet10 46.96 64.86 71.08

cient quality. Therefore, the choice of semi-supervised learning algorithm may significantly impact
the quality of the resulting synthetic dataset. In this section, we employ different semi-supervised
learning algorithms—including Π-Model (Laine & Aila, 2017), MixMatch (Berthelot et al., 2021),
FixMatch (Sohn et al., 2020), and FreeMatch (Wang et al., 2023)—to train the teacher model, in-
vestigate their effect on dataset quality, and report the results in Table 4. Although the accuracy of
models trained with different methods varies to some extent, the ultimate impact on the synthetic
dataset is minimal, demonstrating the robustness of SSD to the selection of the semi-supervised
learning approach.

Table 4: Impact of different semi-supervised learning method for training the teacher model on
CIFAR-10.

IPC 1 10 50

Π-Model 41.33 57.97 63.89
MixMatch 45.89 57.88 61.59
FixMatch 42.19 58.67 63.27
FreeMatch 46.06 57.34 65.33

5 THE USE OF LARGE LANGUAGE MODELS (LLM)

In the writing of this paper, we employed a large language model (LLM) solely for the purpose of
polishing and refining the text. Specifically, we used the model to improve the fluency, clarity, and
conciseness of our original drafts. All ideas, theoretical analyses, experimental designs, and results
remain entirely our own. The LLM was not used to generate any scientific content or insights.

6 CONCLUSION

In this paper, we introduced a new task called Semi-Supervised Dataset Condensation, which
condenses both labeled and unlabeled samples into a small yet informative synthetic labeled dataset,
thereby enabling efficient supervised learning. To tackle this problem, we propose Semi-Supervised
Dual Consistency Trajectory Matching (SSD), a method that leverages semi-supervised knowledge
distillation. The core of SSD is a two-stage trajectory matching framework that effectively incor-
porates unlabeled data. First, a teacher model is trained on the original data to generate accurate
pseudo-labels using semi-supervised learning. Then, a student model is trained on the entire dataset
with a novel dual consistency regularization loss, which enforces both inter-model consistency (be-
tween the student and teacher predictions) and intra-model consistency (for the student model under
different input perturbations), ensuring robust performance. By aligning the training trajectories of
the student model on the complete dataset and the synthetic dataset, SSD optimizes and obtains a
high-quality synthetic dataset. Experiments on image classification benchmarks demonstrate that
our method outperforms all baselines consistently. In the future, we plan to extend our method to
more challenging scenarios, particularly to dataset condensation in environments where the dataset
undergoes dynamic changes.
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