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Abstract
While there has been plenty of work on generating
tests from existing code, there has been limited
work on generating tests from issues. A correct
test must validate the code patch that resolves
the issue. This paper focuses on the scenario
where that code patch does not yet exist. Do-
ing so supports two major use-cases. First, it
supports TDD (test-driven development), the dis-
cipline of “test first, write code later” that has
well-documented benefits for human software en-
gineers. Second, it also validates SWE (software
engineering) agents, which generate code patches
for resolving issues. This paper introduces TDD-
Bench-Verified, a benchmark for generating tests
from issues, and Otter, an LLM-based solution for
this task. Otter augments LLMs with rule-based
analysis to check and repair their outputs, and
introduces a novel self-reflective action planner.
Experiments show Otter outperforming state-of-
the-art systems for generating tests from issues,
in addition to enhancing systems that generate
patches from issues. We hope that Otter helps
make developers more productive at resolving is-
sues and leads to more robust, well-tested code.

1. Introduction
A software engineering (SWE) issue is a bug report or fea-
ture request for improving the code in a repository. Before a
software engineer attempts to write new code that resolves
a bug, they typically write a reproduction test to confirm the
presence of the bug in the old code. In fact, even when work-
ing on a feature request, before writing new code it is rec-
ommended to create an acceptance test first, to confirm the
presence of the feature in the new code once written. This
practice is known as test-driven development (TDD), and it
improves the quality of both tests and the code itself (Beck,
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2002). The recent introduction of SWE-Bench (Jimenez
et al., 2024) has spurred work on resolving SWE issues
automatically with LLMs, typically with agents (Yang et al.,
2024; Ruan et al., 2024; Wang et al., 2024b). Such issue-
resolution systems are often called SWE agents. We posit
that, just like up-front tests help human SWE engineers,
they also help automated SWE agents.

While test generation is an active area of research, prior
work focuses on creating tests for existing code, not on
creating tests from issue descriptions alone. A recent solu-
tion SWE-Agent+ (Mündler et al., 2024) attempts to create
tests from issue descriptions albeit with limited success (the
state-of-the-art SWE-Agent+ only generates a fail-to-pass
test in 19.2% cases and is quite expensive, requiring several
LLM calls and tokens). See Section 3 for a more in-depth
discussion of related work.

This paper introduces Otter (acronym for “Otter: TDD-Test
gEnerator for Reproducing issues”). It takes as input x an
issue description and the original code in the repository,
and generates as output a set of tests y. Otter contains a
novel self-reflective action planner for deciding which code
to read and which tests to write. It also uses rule-based
code analyses and transformations throughout the workflow
to curate LLM inputs, validate LLM outputs, and repair
generated tests. Otter generates fail-to-pass tests in 31.4%
of cases, and in an ensemble of size 5 dubbed Otter++, that
increases to 37.0%. At the same time, the cost (even with
ensembling) is less than $0.10 per issue with GPT-4o. Tests
generated by Otter adhere to the same testing framework as
repository’s existing test suite, to which they can be added.

Today the most popular benchmark for automatically resolv-
ing SWE issues is SWE-bench Verified (Chowdhury et al.,
2024). To evaluate solutions such as Otter that automatically
generate tests from issues, we introduce a new benchmark,
TDD-Bench-Verified. TDD-Bench-Verified evaluates tests
by checking whether the tests a) fail on the old code before
issue resolution, b) pass on the new code, and c) cover the
code changes well. The fact that TDD-Bench-Verified is
derived from SWE-bench Verified enables us to empirically
study the effects of generated tests on SWE agents. We
observe that the tests from Otter++ can be used to trade
precision for recall on the SWE-bench Verified leaderboard.
For instance, for the system ranked 3rd on the leaderboard,
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filtering by the generated tests boosts precision from 60.8%
to 91.9% while reducing recall to 33%. This paper makes
the following contributions:

• Otter, a system that generates tests from issues, using
LLMs with a novel self-reflective action planning tech-
nique along with rule-based pre- and post-processing.

• TDD-Bench-Verified1, a benchmark for evaluating tests
generated from issues, including a high-quality dataset
and a metric based on test results and coverage.

• An empirical study on using tests generated from issues to
filter issue-resolution candidates for SWE-bench Verified.

Generated tests can assist software engineers both before
and after resolving an issue, and can increase trust in auto-
mated SWE agents.

2. Problem Statement
This work focuses on the problem of generating tests from
issues. Specifically, the input x is a pair ⟨dissue, cold⟩ of an
issue description dissue alongside the old version cold of the
code before the issue is resolved. The issue description is
typically in natural language, but it may sometimes contain
embedded code snippets or stack traces. The code is a
snapshot of all the files and folders in a Python source code
repository. The expected output y is a set of tests that should
go from failing on cold to passing on cnew, which is the new
version of the code after the issue is resolved. By failing on
cold, the tests reproduce the issue, and by passing on cnew,
they validate its resolution. Besides going from failing to
passing, the tests should also maximize coverage of the
code change (formalized in Section 5). A solution to this
problem is thus a function genTests that takes an input
x and returns tests y = genTests(x). The new code cnew
is not available to genTests , which must generate tests y
based on x alone. This is representative of the real world
where source code repositories may have regression tests for
existing code but lack tests for open issues. Otter provides
an implementation of the genTests function and, thus, a
solution to this problem.

3. Related Work
Prior to SWE-bench (Python) (Jimenez et al., 2024), De-
fects4J (Java) (Just et al., 2014) has been a popular bench-
mark in the community. The creators of Defects4J care-
fully curated and cleaned up each issue by hand. Unlike
SWE-bench, Defects4J only contains bug reports, no fea-
ture requests. The earliest system we are aware of that
generates tests from issues, Libro (Kang et al., 2023), fo-
cuses on Defects4J. Libro achieves a fail-to-pass rate of
19.9% with one generation. (Mündler et al. (2024) ported

1https://github.com/IBM/TDD-Bench-Verified

Libro to Python and measured a fail-to-pass rate of 15.2%.)
Plein et al. (2024) proposed another test-generation system
for Defects4J, reporting a fail-to-pass rate of 6%. Both
systems have relatively low success rates, and unlike our
work, neither evaluates the impact of generated tests on
issue-resolving systems.

When resolving issues, some SWE agents also generate
tests along the way. The original SWE-Agent (Yang et al.,
2024), a single-agent system, attempts to reproduce the is-
sue, as explicitly instructed in its prompt. Some multi-agent
systems—CodeR (Chen et al., 2024) and SpecRover (Ruan
et al., 2024)—start with a Reproducer agent for generating
tests. However, none of the three (SWE-Agent, CodeR, or
SpecRover) are evaluated for the effectiveness of their gen-
erated tests. Agentless (Xia et al., 2024) relies on inference
scaling, generating several candidate patches and several
tests. It then uses the tests to help rank the patches, ulti-
mately choosing a single patch to submit. The effectiveness
of the tests is evaluated indirectly by their impact on issue
resolution rate (from 27% to 32%), not directly for their
own fail-to-pass rate or coverage like in our work.

Three very recent systems are dedicated to generating tests
from Python issues. Aegis (Wang et al., 2024a) is a multi-
agent system that uses inference scaling, but the exact
dataset for their evaluation is unclear (the paper says SWE-
bench Lite, but then compares against numbers from another
system on SWT-bench Lite, which is different). Aegis is
more costly than Otter++, and unlike our work, the Aegis
paper (a) does not report coverage numbers and (b) does
not evaluate how tests can help trade off precision vs. recall
w.r.t. performance of SWE agents. EvoCoder (Lin et al.,
2024) uses experiences from prior issues to help with the
latest issue at hand, which is complementary to Otter. Un-
like our work, the generated tests are not integrated with
the existing CI pipeline. Furthermore, the experiments do
not use execution-based metrics, making it hard to compare
empirically. SWE-Agent+ adapts a patch-generating agent
to generate tests instead (Mündler et al., 2024) and achieves
19.2% fail-to-pass rate on the SWT-bench Lite dataset intro-
duced by the same paper. SWT-bench applies less rigorous
quality filters than TDD-Bench-Verified, and measures cov-
erage in a round-about way by first running additional tests
than just generated ones and then subtracting them back out.
Using tests from SWE-Agent+ as a filter improves preci-
sion of SWE agents to 47.8% while reducing recall to 20%.
Otter++ outperforms SWE-Agent+ on all of these metrics.

CodeT (Chen et al., 2023) is one of the first approaches
that leverage the same LLM to automatically generate both
code samples and corresponding test cases. CodeT then
executes generated code samples using the generated test
cases and performs a dual execution agreement to choose
the best solution and test. CodeT is not directly applicable
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Figure 1. Overview of Otter.

to our current setup because we have multiple tests but no
code patch. CodeMonkeys (Ehrlich et al., 2025) is another
relevant work that iteratively and jointly improves a patch
with a test, which is interesting and complementary to Otter.
Unlike our work, their experiments do not evaluate the fail-
to-pass rate nor the coverage of generated tests.

4. Methodology
This section describes three solutions to the problem stated
in Section 2: Otter, Otter++, and a baseline approach.

4.1. Otter: Test Generation Guided by Self-reflective
Action Planner

Figure 1 presents an overview of Otter, which has three main
components: a localizer, a planner, and a test generator.

Localizer. Before developers tackle an issue, they usually
start by gaining an understanding of the current state cold of

the project. They do this by localizing relevant existing tests
and focal functions (i.e., functions exercised by those tests
and likely places for a fix). Depending on the developer’s
familiarity with the project and the nature of the issue, the
difficulty of localization may vary. Inspired by human devel-
opers’ actions, our approach also starts with test and focal
function localization. The localizer phase collects all files
from cold that contain at least one test function for test local-
ization. It presents the list of files and the issue description
dissue to the LLM and asks it to generate 10 relevant test file
names. Our initial findings on the dev set of SWE-bench
indicated that the Top-10, Top-5, and Top-1 accuracy for test
file localization with GPT-4o are 83.6%, 76.0%, and 59.1%,
respectively. We restricted file retrieval to 10 files so as not
to overwhelm the contexts for subsequent LLM calls. Next,
the localizer validates the file names by comparing them
with the previously collected file list and drops the ones that
do not match. After localizing test files, it makes a second
LLM call with file names and test function names from
those files. The model chooses the test files and functions
relevant to dissue. The localizer again validates the retrieved
file names, but instead of dropping any hallucinated file
names, replaces them with the file names with minimal edit
distance. This ensures validity of identified files, which is
essential for the subsequent test-generation phase. Note that
even if the localizer chooses the wrong test file, if the file is
at least valid, the test generator may still succeed. Focal file
and function localization follows a similar two-LLM-call
approach. Figures 14 and 15 in the Appendix illustrate the
LLM prompts for localization.

Self-Reflective Action Planner. The second phase of Ot-
ter creates a plan, which is a list of actions for generating the
fail-to-pass tests y. There are three kinds of actions: read,
write, or modify. A read f action reads a function f from
cold to use as context in a prompt. A write f or modify f
action declares the intent to write a new test function or
modify an existing test function. Here, f is a file and func-
tion name (in the planner, write and modify actions do not
yet include the exact code for the test function, which is left
to the test generator phase of Otter). The planner starts by
executing read actions for the files and functions provided
by the localizer. Next, it prompts an LLM with the function
definitions, the issue description dissue, and instructions to
make an initial plan, restricted to only read actions. The
next step of the planner validates the planned actions: it
checks whether the actions generated by the LLM refer to
valid file and function names. The final step of the planner
is “reflect and improve plan”, an LLM call with a prompt
including feedback from validation. At this point, the plan
is no longer restricted to only read actions, and can also
contain a write or modify action. Section B in the appendix
provides statistics on read/write/modify actions generated
by the planner. The model is also instructed to self-reflect on
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the proposed plan with one of three possible outcomes: “Sat-
isfied”, “Unsatisfied”, and “Unsure”. If the model chooses
“Satisfied”, Otter moves forward to the test-generation phase.
For other options, it returns to the validation step and then
repeats the “reflect and improve plan” step. This process
is repeated at most five times. In most cases, the model is
satisfied with the plan in the first two turns. The two planner
prompts are presented in Figures 18 and 19 (Appendix).

Test Generator. The test-generation phase of Otter exe-
cutes the actions computed by the planner, which can in-
volve generating a new test (write action) or updating an
existing test (modify action). To guide the LLM in this task,
we extract the test structure and imports from the localized
test file and make them available in the prompt. This reduces
the burden on the LLM to generate imports. The file struc-
ture is relevant for new tests, to determine their insertion
point in the test file. Otter uses a different prompt for a write
vs. a modify action, illustrated in Figures 20 and 21 in the
Appendix. For new tests, the model needs to generate the
preceding function name in addition to the test. Unlike most
SWE agents, Otter does not try to generate diffs; instead, it
asks the model to generate complete test functions, even for
the modification case. Since model training data tends to
contain more complete functions than diffs, we expect the
model to perform better at generating functions.

To handle missing or hallucinated imports, Otter includes
an import-fixing step in this phase, where it looks at model-
generated imports and linting errors detected using Flake82

(a static analysis tool) to identify missing imports. Note
that Flake8 reports different styling errors; we manually
curated the error codes to catch name-related errors. In case
of missing imports, we add a dummy import to the function.
Then, we take the model-generated and dummy imports
and try to find the imported module among the files in the
codebase. If we find the module, we replace the model-
generated/dummy import with the one from the codebase;
otherwise, we continue with the model-generated/dummy
import as a fallback. Finally, we add the function in the
codebase and generate a git diff to create the test patch.

4.2. Otter++: Ensemble using Multi-Sampling with
Heterogeneous Prompting

Otter has several components (e.g., localizer, planner), but
they are not perfect. The file localizer accuracy for focal
and test localization is 82.4% and 70.6% with GPT-4o, re-
spectively. As the output from localization serves as input
to later LLM calls, those later calls may be affected by inac-
curacies in localization. Conversely, LLMs can sometimes
generate fail-to-pass tests in a zero-shot setup, even without
any context. So, selectively including and excluding parts

2https://flake8.pycqa.org/en/latest/

of localization may produce different fail-to-pass tests that
are not generated by Otter. Otter++ uses the test generated
by Otter (T1) and adds four new tests (T2–T5), obtained by
skipping the planner stage, and including neither, one, or
both of focal and test localization. In other words, Otter++
runs the test generator stage five times with different, het-
erogeneous prompts. We favor heterogeneous prompts with
greedy decoding over homogeneous prompts with higher
model temperature because our initial experiments showed
that the latter yields poorer tests and lower diversity.

To pick a single test among the five candidate tests, we
run the five tests on cold (recall that cnew is not available
yet) and analyze the execution logs. If a test passes on
cold, we just discard that test because it violates the fail-to-
pass criterion. We classify the remaining tests into three
groups: assertion failure, other failure (the test runs but
produces the wrong output), and error (the test does not run
properly, e.g., because of wrong syntax or an exception in
a fixture). We pick a test from the first non-empty group
to maximize the chance that it failed for the right reason
(i.e., it reproduces the bug described in the issue). If the
selected group has multiple tests, we break the tie with
a pre-determined ordering of the five prompts that favors
tests from prompts with more or better information: Otter,
followed by the prompts with both localizers, test localizer
only, focal localizer only, and neither localizer, in that order.

4.3. Baseline: Zero-shot Test File Generation

Recent instruction-tuned LLMs excel at following instruc-
tions (Peng et al., 2023; Zhang et al., 2023). We propose
a simple zero-shot approach to generate a fail-to-pass test
given the repository name and the issue description. Given
the prompt, the model generates a complete test file with all
necessary imports to make it compilable. In real scenarios,
test files usually have multiple test cases, but this baseline
usually generates only a single test per file.

5. TDD-Bench-Verified Benchmark
This section presents TDD-Bench-Verified, a new bench-
mark that supports evaluation of techniques for generating
tests from an issue description and an old code version, with-
out access to new code that resolves the issue (see problem
statement in Section 2).

5.1. TDD-Bench-Verified Evaluation Harness

Figure 3 shows the harness for evaluating tests y, which
typically come from a genTests solution, but the harness
can also be applied on golden tests ŷ mined from a pull
request (PR). The evaluation harness runs in a containerized
environment. Starting at the top left, tests come in the form
of a patch, which is applied (via gitapply) on the old
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code cold. Next, the harness analyzes the resulting code
cold ⊕ y to resolve the contributed test functions y. The
harness then executes y while avoiding running other tests
that occur in the same file but were not contributed in the
patch. This yields test results, including coverage achieved
on the old code. At least one of these tests should fail,
indicating that the tests reproduce the issue at hand.

Moving to the bottom part of Figure 3, the code changes
come from the golden code patch mined from the same
PR, which is applied on cold to obtain the golden new code
ĉnew. The harness executes the tests y again, this time on the
new code, to obtain a second set of test results. This time,
all tests should pass, to validate that the issue was indeed
resolved. An example test patch is presented in Figure 9.

5.2. Dataset Filters

TDD-Bench-Verified builds upon prior work from SWE-
bench (Jimenez et al., 2024) and SWE-Bench Veri-
fied (Chowdhury et al., 2024). SWE-bench uses filters
to keep only those mined instances x for which the set
of golden tests ŷ contains at least some tests that fail on
cold and pass on the golden new code ĉnew from the same
PR. SWE-Bench Verified is a subset of SWE-Bench, con-
sisting of 500 instances further vetted by human annota-
tors (Chowdhury et al., 2024). The annotators filtered out
instances where the issue description dissue was underspec-

ified or the golden tests ŷ were overly specific, i.e., would
reject some valid new code cnew. They also removed some
instances where tests failed due to environment problems.

In the same spirit, TDD-Bench-Verified applies more filters
to obtain an even higher-quality dataset. In a nutshell, the
filtering process applies the TDD-Bench-Verified evaluation
harness (Figure 3) to the golden tests ŷ from the original PR.
Specifically, substituting ŷ wherever y occurs in Figure 3
checks whether the PR indeed contributed tests that went
from failing to passing. We filter out any instance where the
contributed tests do not satisfy that criterion. Although the
human annotators of SWE-bench Verified were diligent, a
few instances slipped past their filters, and we drop those
for TDD-Bench-Verified.

Figure 2 illustrates the filtering process. Starting from the
500 instances of SWE-bench Verified, we first drop 7 in-
stances whose environment we could not recreate. Next, we
run the test harness on the golden tests ŷ. This filters out
44 additional instances because the tests do not have the ex-
pected fail-to-pass behavior (25 instances) or have zero line
coverage on the golden code patch (19 instances). In the end,
449 high-quality instances remain across 12 repositories. Ta-
ble 7 summarizes key statistics of TDD-Bench-Verified.

5.3. Evaluation Metric

Passing a test does not necessarily mean a patch is adequate
to address the issue. Aleithan et al. (2024) reported that
31.1% of the passed code patches in SWE-Bench are suspi-
cious due to weak test cases. To evaluate test adequacy, we
compute the coverage of the submitted test patch. One key
difference between SWE-Bench Verified and TDD-Bench-
Verified is that the former runs an entire test file to evaluate
the submitted patch, whereas we only run the contributed
tests y. Not running other test cases enables us to precisely
compute coverage of y. If the tests are relevant, they should
cover the deleted lines in cold and the added lines in ĉnew.
We integrated the Python Coverage package into the 12
repositories and updated the test scripts to allow us to run
specific test cases and compute coverage for them.

We define the tddScore metric that evaluates the qual-
ity of tests generated by a solution genTests over a set
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X = {x0, x1, . . .} of instances. It returns a number be-
tween 0 and 100, the higher the better. It is defined as 100
times the arithmetic mean of the per-instance scores:

tddScore(X, genTests) =
100

|X|
∑
x∈X

tddScore
(
x, genTests(x)

)
Given a set of tests y = genTests(x) submitted for an

instance, the per-instance score is a product of two factors:

tddScore(x, y) = failToPass(x, y) · adequacy(x, y)

The first factor is a binary correctness metric, using the
indicator function for the tests y failing on the old code
times the indicator function for the tests y passing on the
new code. While the solution genTests only has access to
the old code cold, the evaluation metric also uses the hidden
golden new code ĉnew right after the issue was fixed.

failToPass(x, y) =
I
(
fail ∈ runTests(y, cold)

)
· I

(
fail /∈ runTests(y, ĉnew)

)
The second factor is a fraction between 0 and 1 based on

test coverage on the old and new code:

adequacy(x, y) =
|cov(y, cold) ∩ (cold \ ĉnew)|+ |cov(y, ĉnew) ∩ (ĉnew \ cold)|

|cold \ ĉnew| + |ĉnew \ cold|

Adequacy focuses on just the coverage of lines added and
deleted when going from the old code to the new code,
because those are the most relevant lines to be tested. In
the above, cov(y, c) is the set of lines covered by running
tests y on code c; (cold \ ĉnew) is the set of lines deleted by
the PR patch; and (ĉnew \ cold) is the set of lines added by
the PR patch. We evaluate adequacy jointly for added and
deleted lines, as some code patches may contain only added
or deleted lines.

6. Evaluation
We conducted an extensive set of empirical studies, evaluat-
ing the effectiveness of our approach (§6.2) and the compo-
nents of Otter and Otter++ (§6.3), comparing our approach
against existing techniques (§6.4), and investigating the cost
effectiveness of Otter (§6.5), characteristics of the generated
tests (§6.6), usefulness of the generated tests in supporting
automated program repair (§6.7), and possible effects of
data contamination (§6.8).

6.1. Experiment Setup

The evaluation used the closed-source GPT-4o (gpt-4o-2024-
08-06) and the open-source Mistral-large model (123 billion
parameters). All experiments used greedy decoding. For
each instance, Otter makes 7–11 LLM calls for T1. Otter++
makes one additional call for each of the other four tests
(T2-T5) after the localization stage. To evaluate using the
generated tests for SWE agents, we conducted a large-scale

Table 1. Performance of Otter, Otter++, and baseline technique on
TDD-Bench-Verified.

Model Approach
# of fail-to-pass

test
# of fail-to-pass

test in (%)
tddScore Coverage

Mistral-Large
Zero-shot 57 12.7 11.8 60.6
Otter 121 26.9 25.1 70.5
Otter++ 144 32.1 28.6 70.4

GPT4o
Zero-shot 84 18.7 17.2 60.0
Otter 141 31.4 29.4 70.6
Otter++ 166 37.0 32.4 71.5

Table 2. Contribution of each component of Otter.

Model Component Approach
# of fail-
to-pass

tddScore
Change in
tddScore%

Mistral-
large

- Otter (T1) 121 25.7 -

Action Planner
without Action Planning (complete)* (T2) 96 20.2 -21.4
without Plan Refinement (Just 1 attempt) 115 23.8 -7.4
without Action Validation 107 22.1 -14.0

Localizers
without Focal Localization* (T3) 96 20.2 -21.4
without Test Localization* (T4) 77 16.5 -35.8
without Focal & Test Localization* (T5) 81 17.2 -33.1

Test Generator
without Fixing Import 117 24.6 -4.3
without Imports at Generation 114 23.7 -7.8

GPT-4o

- Otter (T1) 141 29.4 -

Action Planner
without Action Planning (complete)* (T2) 110 23.6 -19.7
without Plan Refinement (Just 1 attempt) 130 27.5 -6.5
without Action Validation 120 25.7 -12.6

Localizers
without Focal Localization* (T3) 115 25.2 -14.3
without Test Localization* (T4) 107 24.2 -17.7
without Focal & Test Localization* (T5) 110 24.2 -17.7

Test Generator
without Fixing Import 128 26.7 -9.2
without Imports at Generation 130 26.7 -9.2

* is not followed by action planning

experiment with 22 systems from the SWE-Bench leader-
board. We ran 22 × 449 × 5 = 49,390 Docker containers or
tests (one Docker container per test) to report the results.

6.2. Effectiveness of Otter, Otter++, and the Baseline

Table 1 shows that GPT-4o-based Otter and Otter++ per-
form well on test generation, creating fail-to-pass tests for
31.4% and 37% of the instances, respectively, whereas the
baseline produced such tests for 18.7% of the instances. The
improvements are also reflected in tddScore. We observe
similar performance improvements with Mistral-large. The
pass@5 rate (where one of the five tests is fail-to-pass) for
Otter++ is 44% for GPT-4o and 37% for Mistral-large.

6.3. Ablation Study

Table 2 shows the ablation study for Otter (T1). We
also present the individual performance for the other four
tests (T2–T5) produced by Otter++. We can see that all
the components contribute to Otter’s performance. Without
action planning, we lose more than 14%–20% of fail-to-pass
tests for GPT-4o and 21%–36% of the tests for Mistral-large.

6.4. Comparison with the Approaches of Mündler et al.

Mündler et al. (2024) proposed a set of approaches for gen-
erating fail-to-pass tests. We ran Otter and Otter++ on their

6
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Table 3. Comparing with approaches proposed by Mündler et al.
(2024) on the 276 instances of their SWT-Lite.

Approach
# of Fail-to-pass

Tests
in (%)

ZeroShot (GPT-4) 16 5.8
ZeroShotPlus* (GPT-4) 28 10.1
LIBRO* (GPT-4) 42 15.2
AutoCodeRover (GPT-4) 25 9.1
SWE-Agent (GPT-4) 46 16.7
SWE-Agent+ (GPT-4) 53 19.2

Otter (GPT-4o) 70 25.4
Otter++ (GPT-4o) 80 29.0

* uses “proposed patch” while generating tests

dataset to study how the approaches compare. They also
evaluated zero-shot approaches, which differ from our zero-
shot baseline. All of their approaches (including the zero-
shot ones) instruct the model to generate a novel code diff
format introduced by their paper. Two of their approaches
use a proposed patch in the prompt. Mündler et al.’s SWE-
agent and SWE-agent+ approaches are derived from SWE-
Agent, which was originally designed for generating code
patches (Yang et al., 2024). Table 3 shows the results. Otter
and Otter++ perform better than their best-performing ap-
proach, generating 70 (25.4%) and 80 (29.0%) fail-to-pass
tests compared to 53 (19.2%) fail-to-pass tests generated by
SWE-agent+.

Otter++ uses execution logs on the current code base cold
which give it an advantage in the final selection stage. The
feedback works as a contributing factor to the superior per-
formance of Otter++. Note that Otter does not use any
execution logs, yet it still performs significantly better than
LIBRO (25.4% vs. 15.2% in Table 3). The novel code diff
format proposed by Mündler et al. has similarities to our
approach. However, their format requires the model to per-
form additional tasks such as writing the file name, change
type, and line number in response to one LLM call. Addi-
tionally, to instruct the model to generate a specific format,
the authors had to include an example that is not relevant to
the issue itself. In our generation step, the model only needs
to generate the test (and prior function name for positioning
new tests).

6.5. Cost Effectiveness of Otter

Table 4 presents the cost for invoking the GPT-4o model to
process 449 instances with Otter. Each sample requires an
average of $0.06. The “reflect and improve plan” step can
make 1–5 LLM calls. Figure 4 shows that, for more than
80% of the instances, both GPT-4o and Mistral are satisfied
within two calls. Therefore, the total calls vary from 7–8
for most instances. The cost is very low because we do
not accumulate context from prior calls in subsequent calls.
We do not discuss the cost for Mistral-large because the

Table 4. Cost for running Otter and Otter++ with GPT-4o.

Component Cost Cost/Sample

Focal Localization $8.61 $0.02
Test Localization $9.63 $0.02
Action + Generate $10.94 $0.02
Total for Otter $29.18 $0.06

Additional Tests (T2-T5) $11.20 $0.02
Total for Otter++ $40.38 $0.09

Table 5. Comparing the coverage of model-generated and
developer-written golden tests.

Model Is Fail-to-pass? Otter Golden test

Mistral-large
Yes 93.1 95.5
No 63.8 93.4

GPT-4o
Yes 93.7 95.6
No 60.0 93.3

model was hosted locally. Otter++ makes four additional
calls and reuses the output from localizers. The total cost
for Otter++ (which includes Otter) is $0.09 per instance.
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Figure 4. Number of turns taken in “reflect and improve plan” step.

6.6. Characteristics of the Generated Tests

Coverage of the generated tests. We compared the cov-
erage achieved by the Otter-generates tests and the golden
tests written by developers. We observe that, for the fail-
to-pass tests, Otter-generated and golden tests have very
similar and high coverage—more than 90% with both mod-
els (Table 5). However, for the other tests, the coverage
is quite low for Otter. This indicates that tests with higher
coverage are more likely to be fail-to-pass tests.

Prompts complementarity. Figure 5 presents the overlap
among instances for which fail-to-pass tests could be gener-
ated by different prompts using the GPT-4 model. Overall,
each of the prompts is successful on some instances on
which the other prompts fail, with T1 (Otter with GPT-4o)
achieving the most success in this respect—producing fail-
to-pass tests for 24 instances on which none of the other
prompts succeeded in generating such tests. Thus, com-
bining the results from the different prompts increases the
fail-to-pass rate to 44% (38% for Mistral) at pass@5. This
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Figure 5. Number of instances with fail-to-pass tests generated by
different prompts.

Table 6. Analysis of the Otter-generated tests using GPT-4o model
from different perspectives.

Perspective Category # of Sample #of fail-to-pass fail-to-pass rate

Type of Test
PatchExisting 122 50 41.0
AdditionOnly 327 91 27.8

Test on old Codebase

Pass 69 0 0
AssertionFail 170 97 57.1
Fail 101 40 39.6
Error 109 4 3.7

Focal Localization
Correct 370 118 31.9
Wrong 79 23 29.1

Test Localization
Correct 317 117 36.9
Wrong 132 24 18.2

indicates the potential of incorporating different prompts for
test generation.

Detailed analysis of the tests. Table 6 presents the analy-
sis of the Otter-generated tests using GPT-4o model from
different perspectives. We see that the fail-to-pass rate is
higher when patching an existing test than when adding a
new test, which is expected because the model can have
better context from the existing test. Writing a new test is in-
herently more difficult than modifying an existing test. It is
expected that the test will fail on the old codebase. However,
we found 69 samples in Otter where the test passed on the
old codebase. Also, our analysis shows that tests with asser-
tion failures have a higher success rate (57.1% fail-to-pass
rate) compared to other groups. We did not see much impact
of focal localization on the performance, with 31.9% and
29.1% for correct and incorrect localization, respectively.
Test localization has a significant impact on the performance
(36.9% vs. 18.2% for correct and incorrect localization). In
our ablation study, we also found that test localization is
more important than focal localization. In Appendix E, we
discuss the impact of hallucination replacer in our pipeline.

Heterogenous prompts vs. temperature. Otter++ scaled
well with samples up to 5, giving 0.5%-5.6% improvement
(see Appendix C). Otter++ uses heterogeneous prompting

instead of higher temperature to generate multiple samples.
We make multiple LLM calls in different stages and multi-
sampling in each stage would exponentially increase the test
counts. Therefore, to compare heterogenous prompting with
temperature, we generated 5 samples at high temperature
(1.0) in the last LLM call in the Test Generator phase of
Otter (our best solution). Though the average number of fail-
to-pass test goes up (117.8 vs. 116.6), the Top-5 and Top-1
(using Otter++’s ranker) results remain lower (Top-5: 173
vs. 197 and Top-1: 146 vs. 166). That means heterogenous
prompting boosts up the overall ensemble performance if
we compare at the same number of samples. Appendix D
discusses more details.

6.7. Test Generation and SWE Agents

The tests generated by our approach can be used for filtering
bad code patches and increasing the precision of solutions
proposed by different systems from the SWE-bench Verified
leaderboard. We take the top 22 systems from the leader-
board and run the five tests generated by Otter++. We filter
out a code patch if all the tests fail on it. Figure 6 shows that
this achieves a precision of 65% to 92% while maintaining
a decent recall of 30%-41%, except for one system where
the precision increased by 22% to 167%. Note that Mündler
et al. (2024) achieved 47.8% precision at 20% recall on
SWE-Agent. Using tests generated by Otter++ achieved
much higher precision while maintaining greater recall.

Apart from filtering SWE-patches, we could use our tests
to choose the best SWE-patch, which would be a good ap-
plication of the Otter-generated tests. We have tried CodeT
ranking on candidates from the top 3 leaderboard systems on
SWE-Bench-Verified and observed 2% improvement. Note
that some of these leaderboard solutions have already been
through good rankers and used superior models. Improving
upon these samples using a ranker may be difficult.

6.8. Effect of Data Contamination

As TDD-Bench-Verified is based on historic GitHub issues,
they may be included in the pre-training data of the LLMs
we use. To see whether the model simply generates memo-
rizes tests, we performed two different experiments.

Model data cut-off date. The cutoff date for the GPT-4o
model is October 2023. Unfortunately, we have only one
sample dated post-cutoff and could not compare the two
groups. Popular GitHub repositories evolve quickly. It is
likely that only the snapshot taken during the data collection
process was seen by the model and that it performed well
on a specific year of data. Figure 7 shows the total and
fail-to-pass test distribution by year. We did not observe any
pattern in performance among the distributions by year. For
example, for 2020, 2021, and 2023, we have very similar
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performance by the model.

Test similarity. We conducted another experiment follow-
ing the approach of Schäfer et al. (2024). We compute
the similarity score between the generated test from Otter
and the most similar test from the repository, as follows:
max tp∈TP (1− dis(t∗,tp)

max(len(t∗),len(tp))
), where TP is the set of

test functions and t∗ is the generated test. Figure 8 shows
the similarity scores for new tests. For 90% of the instances,
the similarity score is less than 0.6. Table 12 in the appendix
shows some samples with more than 0.5 similarity to give
the reader some idea. From our observation, even at simi-
larity score of 0.7, the tests are significantly different. As
expected, for modified tests, the similarity is higher. How-
ever, we did not observe any difference between fail-to-pass
tests and other tests (see appendix for figures). Therefore,
the model is not simply generating memorized tests.
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Figure 8. Cumulative percentage of Otter-generated new tests, us-
ing GPT-4o, with maximum similarity less than the similarity value
shown on the x-axis.

7. Limitations
One limitation of TDD-Bench-Verified is that it is mined
from 12 popular Python repositories, so our findings may not
apply to other programming languages and repositories. We
note that SWE-bench, despite having the same limitation,
has been impactful, and one of the findings in the SWE-
bench paper is that “difficulty does not correlate with issue
resolution date”, indicating that contamination problems (if
any) are minor (Jimenez et al., 2024). Our results on data
contamination (§6.8) indicate the same thing. A limitation
of Otter is that it considers only one test file and generates
only one block of code. In real-world projects, test code can
be spread across multiple files or blocks of code. Despite
that, Otter exceeded the state-of-the-art performance, so
we leave further improvements to future work. We use the
Python coverage package for computing test coverage, but
this package can fail for various reasons, such as permission
issues, version incompatibility, or configuration problems.
In Otter, we computed coverage for all projects, including
SymPy. However, upon manual validation, we found the
coverage information for SymPy to be unreliable. Therefore,
we removed coverage from the final tddScore metric for
SymPy instances (<15% of the total instances). Note that
coverage does not affect the reported fail-to-pass scores.

8. Conclusion
The primary contribution of this paper is Otter, a system
for generating tests from issue descriptions before issue
resolution. Otter outperforms the prior state of the art in fail-
to-pass tests generated while also costing less. This paper
also contributes TDD-Bench-Verified, a new benchmark for
the same problem statement, mined from real-world GitHub
issues with strict filters and evaluation metrics. Finally, this
paper demonstrates that generated tests can improve patches
generated by SWE agents, helping them reach a precision of
between 65% and 92%. TDD-Bench-Verified and Otter gen-
erated tests are at https://github.com/IBM/TDD-Bench-Verified.
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Impact Statement
This paper presents work whose goal is to advance the field
of software testing and program repair. Developers spend a
significant amount of time resolving bugs and testing them.
We believe this work will significantly improve the devel-
opers’ experience in their day-to-day life. We envision two
ways of integrating Otter into existing developer workflows.
First, Otter can run on a new issue to propose a test, which
the stakeholders can use to clarify requirements for the de-
sired behavior after issue resolution and, following that, a
developer can use the test for test-driven development to
resolve the issue. Second, Otter can be paired with a patch-
generation solution (a “SWE agent”) to create a PR that
includes both a patch and a test.
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A. Different attributes of the TDD-Bench-Verified Instances & Sample Test Patch
Table 7 presents different attributes of the TDD instances to give some idea about the nature of the issues we are dealing
with in TDD-Bench-Verified. We also present a sample test patch in Figure 9.

Table 7. Different attributes of the TDD-Bench-Verified instances.

Project # of Instances
Fraction of

Dataset (in %)
# of Files # of Test Files

Average # of Lines
Deleted and Added

Average Word Count
in Issue Description

On Code On Tests

Astropy 18 4.0 1,990 351 11.9 28.7 304.5
Django 212 47.2 6,863 810 12.0 24.7 145.6
Flask 1 0.2 275 27 3.0 5.0 35.0
Matplotlib 32 7.1 4,656 102 9.3 20.0 260.5
Pylint 10 2.2 3,833 51 24.7 33.8 347.1
Pytest 16 3.6 639 114 24.6 53.5 250.1
Requests 5 1.1 155 9 3.6 6.6 85.2
Scikit-learn 25 5.6 1,772 242 11.8 17.1 297.6
Seaborn 2 0.5 353 34 13.5 18.5 182.5
Sphinx 41 9.1 1,917 137 17.5 26.1 186.2
Sympy 67 14.9 2,050 617 12.1 11.9 114.2
Xarray 20 4.5 394 67 17.1 24.3 301.0

Overall 449 100.0 24,897 2,561 13.2 23.3 182.0

*File counts are based on the main branches of the project (cloned on October 29, 2024).

Figure 9. Example test patch with one contributed test. Although the test file name test regression.py and test name
test missing data are available in this diff, the class TestPolyFit enclosing test missing data is missing. By applying
the test patch to the base commit and parsing the file, we retrieve TestPolyFit, which is required to run test missing data.

B. Action Counts in Self-Reflective Action Planner Phase
Table 8 presents the stats on the different types of actions proposed by the model in the self-reflective action planner phase.

C. Scaling of Otter++
Otter++ uses heterogeneous prompting and execution logs to select the best solution. Therefore, we cannot significantly
increase the number of samples. Otter++ scaled well with samples up to 5, giving 0.5%-5.6% improvement (see Table 9).
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Table 8. Stats on action count.

Model Action Average Max Min

GPT-4o
Read 5.4 21 3
Write 1.2 6 0
Modify 0.5 5 0

Mistral-large
Read 6.5 20 2
Write 1.2 5 0
Modify 0.5 5 0

Table 9. Scaling of Otter++

# of Candidate # of Fail-to-pass In %

1 141 31.4
2 154 34.3
3 157 35.0
4 164 36.5
5 166 37.0

D. Heterogenous Prompts vs Temperature
In Table 10, the Top-1 column shows “fail-to-pass @ 1” based on our actual ranker, whereas the Oracle column shows
“fail-to-pass @ N”, i.e., the result if we had a perfect ranker. Heterogeneous prompts yield better results than high-temperature
samples in both the Top-1 column and the Oracle column. This is evidence that the difference indeed comes from the
diversity of heterogeneous prompts and is not ranker specific. The difference between the Top-1 and the Oracle column is
almost the same in the first three rows (i.e., all settings with 5 samples). That said, there is still room for improvement in
the ranker, as illustrated by the last row. In the last row, an oracle that could reliably choose among all 10 samples would
perform amazingly well, motivating further work on better rankers.

E. Impact of hallucination replacer.
The localizer makes two LLM calls during which hallucinations can occur. In the first call, we drop hallucinated file names.
In the second call, we replace hallucinated file names with existing ones to ensure our pipeline functions correctly. Table 11
show that our proposed technique helps Otter achieve better performance. For example, if we didn’t replace the hallucinated
file name in the 2nd call of test localization (the last row), we would have lost 5 samples because our pipeline would have
exited with an error. Replacing the hallucinated name generated 4 fail-to-pass tests for those samples.

F. Data Contamination
Figure 10 to Figure 13 present cumulative percent of Otter generated test with different criteria, using GPT-4o, with
maximum similarity less than the similarity value shown on the x-axis. Table 12 shows examples with higher (> 0.5)
similarity score.

G. Prompts for Otter
Figure 14 to Figure 21 present all the prompts used for Otter.
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Table 10. Performance of Our Test Generation Approach in Different Settings.

Setting Individual Performance Max Average Top-1 Oracle

5 heterogeneous prompts (Otter++) 141, 110,115, 107, 110 141 116.6 166 197
5 high-temperature samples (temp=1.0) 111, 118, 126, 121, 113 126 117.8 146 173
5 = 1 greedy + 4 high-temperature samples 141, 111, 118, 126, 121 141 123.4 152 183
10 = 5 heterogeneous + 5 high-temperature 141, 110,115, 107, 110, 111, 118, 126, 121, 113 141 117.2 168 218

Table 11. Impact of hallucination replacer on GPT-4o generated tests.

Focal/Test LLM Call
#of Halluciantion

Happen
#of fail-to-pass

#of fail-to-pass
rate

Focal
LLM Call 1 19 8 42.1
LLM Call 2 5 3 60.0

Test
LLM Call 1 39 22 56.4
LLM Call 2 5 4 80.0

Table 12. Similarity between Generated Tests & Existing Tests with Similarity Score.
Generated Test Test from Repo Similarity Score

def test call command with mutually exclusive group(self):
out = StringIO()
with self.assertRaises(CommandError) as cm:
management.call command(’my command’, shop id=1, stdout=out)
self.assertIn("one of the arguments --shop-id --shop is required", str(cm.exception))

def test language preserved(self):
out = StringIO()
with translation.override(’fr’):
management.call command(’dance’, stdout=out)
self.assertEqual(translation.get language(), ’fr’)

0.50

def test ordering with related field pk(self):
class RelatedModel(models.Model):
pass

class TestModel(models.Model):
related = models.ForeignKey(RelatedModel, on delete=models.CASCADE)
class Meta:
ordering = [’related pk’]

try:
TestModel.check()

except ValidationError as e:
self.fail(f"ValidationError raised: {e}")

def test ordering pointing to foreignkey field(self):
class Parent(models.Model):
pass

class Child(models.Model):
parent = models.ForeignKey(Parent, models.CASCADE)
class Meta:
ordering = (’parent id’,)

self.assertFalse(Child.check())

0.55

def test bulk update return value(self):
for note in self.notes:
note.note = ’test-%s’ % note.id
with self.assertNumQueries(1):
updated count = Note.objects.bulk update(self.notes, [’note’])
self.assertEqual(updated count, len(self.notes))

def test simple(self):
for note in self.notes:
note.note = ’test-%s’ % note.id
with self.assertNumQueries(1):
Note.objects.bulk update(self.notes, [’note’])
self.assertCountEqual(
Note.objects.values list(’note’, flat=True),
[cat.note for cat in self.notes]

)

0.61

def test composed queries with values list(self):
ReservedName.objects.create(name=’a’, order=2)
qs1 = ReservedName.objects.all()
result1 = qs1.union(qs1).values list(’name’, ’order’).get()
self.assertEqual(result1, (’a’, 2))
result2 = qs1.union(qs1).values list(’order’).get()
self.assertEqual(result2, (2,))

def test union with values(self):
ReservedName.objects.create(name=’a’, order=2)
qs1 = ReservedName.objects.all()
reserved name = qs1.union(qs1).values(’name’, ’order’, ’id’).get()
self.assertEqual(reserved name[’name’], ’a’)
self.assertEqual(reserved name[’order’], 2)
reserved name = qs1.union(qs1).values list(’name’, ’order’, ’id’).get()
self.assertEqual(reserved name[:2], (’a’, 2))

0.66

def test type hints in uml generation(project):
klass = project.get module("data.clientmodule test")["C"]
assert hasattr(klass, "instance attrs type")
type dict = klass.instance attrs type
assert len(type dict) == 1
keys = sorted(type dict.keys())
assert keys == ["a"]
assert isinstance(type dict["a"][0], astroid.bases.Instance), type dict["a"]
assert type dict["a"][0].name == "str"

def test instance attrs resolution(project):
klass = project.get module("data.clientmodule test")["Specialization"]
assert hasattr(klass, "instance attrs type")
type dict = klass.instance attrs type
assert len(type dict) == 2
keys = sorted(type dict.keys())
assert keys == [" id", "relation"]
assert isinstance(type dict["relation"][0], astroid.bases.Instance), type dict[
"relation"

]
assert type dict["relation"][0].name == "DoNothing"
assert type dict[" id"][0] is astroid.Uninferable

0.73

def test classmethod property(app):
actual = do autodoc(app, ’property’, ’target.properties.Foo.classmethod prop’)
assert list(actual) == [
’’,
’.. py:property:: Foo.classmethod prop’,
’ :module: target.properties’,
’ :type: str’,
’’,
’ Some class property.’,
’’,

]

def test properties(app):
actual = do autodoc(app, ’property’, ’target.properties.Foo.prop’)
assert list(actual) == [
’’,
’.. py:property:: Foo.prop’,
’ :module: target.properties’,
’ :type: int’,
’’,
’ docstring’,
’’,

]

0.82
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Otter: Generating Tests from Issues to Validate SWE Patches
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Figure 10. Cumulative percent of Otter generated all tests, using GPT-4o, with maximum similarity less than
the similarity value shown on the x-axis.
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Figure 11. Cumulative percent of Otter generated modified tests, using GPT-4o, with maximum similarity less
than the similarity value shown on the x-axis.
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Figure 12. Cumulative percent of Otter generated fail-to-pass tests, using GPT-4o, with maximum similarity
less than the similarity value shown on the x-axis.
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Figure 13. Cumulative percent of Otter generated non fail-to-pass tests, using GPT-4o, with maximum similar-
ity less than the similarity value shown on the x-axis.
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Otter: Generating Tests from Issues to Validate SWE Patches

Suppose you are a very experienced developer. An issue has been created, and you need to choose the 
best possible file to make the changes. You will be given the following pieces of information. Please write 
down the file name after the "Answer" token.

1. Repository name: $REPO_NAME

2. Issue Description: $ISSUE_DESCRIPTION

3. List of file(s), that will be updated or added for addressing the pull request:

$LIST_FILES

Please write down the most suitable 10 file names from the list above based on the issue description. Write 
one file name in each line. Do not add any number or index. Also do not add any explanation. 

Answer: 

Figure 14. Prompt (1 of 2) for focal function localizer.

Suppose you are a very experienced developer. An issue has been created, and you need to choose the best 
possible files and functions to make the changes. You will be given the following pieces of information. Please 
write down the file name and function name after the "Answer" token.

1. Repository name: $REPO_NAME

2. Issue Description: $ISSUE_DESCRIPTION

3. List of file(s) and function(s), that will be updated or added for addressing the pull request:

$LIST_FILE_FUNCTION

Please write down the most suitable program files and relevant function names based on the issue description. 
You can choose multiple functions from different files but keep the list as short as possible.

Filename should be written between <Filename> & </Filename> tags.
Function should be written between <Function> & </Function> tags.

Each line should start with a file name and the function names written in that file. Please write down the function 
names from the same file in one line. 

Answer:

Figure 15. Prompt (2 of 2) for focal function localizer.
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Otter: Generating Tests from Issues to Validate SWE Patches

Suppose you are a very experienced developer. An issue has been created, and you need to choose the best 
possible test file to write a fail-to-pass test. You will be given three pieces of information. Please write down the 
test file name after the "Answer" token.

1. Repository name: $REPO_NAME

2. Issue Description: $ISSUE_DESCRIPTION

3. List of file(s), that will be updated or added for writing fail-to-pass test:

$LIST_FILES

Please write down the most suitable 10  test file names from the list above based on the issue description. Write 
one file name in each line. Do not add any number or index. Also do not add any explanation. 

Answer: 

Figure 16. Prompt (1 of 2) for test function localizer.

Suppose you are a very experienced developer. An issue has been created, and you need to choose the best 
possible test file to write a fail-to-pass test. You will be given three pieces of information. Please write down the 
file name and function name after the "Answer" token.

1. Repository name: $REPO_NAME

2. Issue Description: $ISSUE DESCRIPTION

3. List of file(s), that will be updated or added for writing fail-to-pass test:

$LIST_FILE_FUNCTION

Please write down the most suitable test files and relevant function names based on the issue description. You 
can choose multiple test from different files but keep the list as short as possible.

Filename should be written between <Filename> & </Filename> tags.
Function should be written between <Function> & </Function> tags.

Each line should start with a file name and the function names written in that file. Please write down the function 
names from the same file in one line. 

Answer: 

Figure 17. Prompt (2 of 2) for test function localizer.
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Otter: Generating Tests from Issues to Validate SWE Patches

Suppose you are a very experienced developer. An issue has been created, and you need to write a test to ensure the issue has been 
resolved. You will be given the following pieces of information.

1. Repository name: $REPO_NAME

2. Issue Description: $ISSUE_DESCRIPTION

3. Test file(s) and function(s), that will be updated or added for testing the pull request :

$LIST_TEST_FILE_FUNCTION

4. Program file(s) and functions(s), that will be updated or added for addressing the issue :

$LIST_FOCAL_FILE_FUNCTION

Now make an action list to write a fail-to-pass test. You can read necessary test and focal function to finish the task. You can only perform 
read actions.

Read: You can read a focal function/test given a file. You can read only the current version of the focal function(s)/test(s).

Each line will have one action, file name, and focal function/test.

Action should be written between <Action> & </Action> tags
Filename should be written between <Filename> & </Filename> tags
Focal function/test should be written between <Function> & </Function> tags

Please do not repeat any specific action on the same file and focal function/test pairs. You should try to identify both foca l function and 
test, based on the issue description. In most cases, choosing one focal function and one test is enough.

Answer: 

Figure 18. Prompts for “make an initial plan” step.

Suppose you are a very experienced developer. An issue has been created, and you need to write a test to ensure the issue has been resolved. You were given the following pieces of information. You proposed a set of actions. We found that some of the 
actions were valid, while others had invalid function/test names. We will present those actions below.

1. Valid Action(s): 

$VALID_ACTION

2. Invalid Action(s):

$INVALID_ACTION

Now, based on the action rule, you can modify  the action provided with the information above (e.g., replace wrong or None function name and file name with existing functions and files). We are sharing the following information.

1. Repository name: $REPO_NAME

2. Issue Description: $ISSUE DESCRIPTION

3. Test file(s) and function(s), that may be relevant to the issue:

$LIST_TEST_FILE_FUNCTION

4. Program file(s) and functions(s), that will be updated or added for addressing the issue :

$LIST_FOCAL_FILE_FUNCTION

Action Rules to Follow: 

Now make an action list to write a fail-to-pass test. You can read necessary test and program files to finish the task. You have 3 possible actions.

Read: You can read a function given a file and function name. You can read only the current version of the functions.
Write: You can write a test given a file, test function name. 
Modify: You can modify  a function given a file and test. Use this if you are modifying an existing test and you need to make minimal changes.

Try to guess the "Write"/"Modify" from the issue description and existing functions. If you think you cannot achieve the expe cted fail-to-pass function by modifying one or two lines, then write a new test for the issue. You can also propose a write if the existing 
test is too big and it is convenient to write a new one for the issue.

Each line will have one action, file name, and function name.

Action should be written between <Action> & </Action> tags
Filename should be written between <Filename> & </Filename> tags
Function should be written between <Function> & </Function> tags

After reading the functions mentioned in the valid action list, you may find that some of the functions or tests are irreleva nt. Please drop the unnecessary read actions. You should try to identify  both focal function and test, based on the issue description. In 
most cases, choosing one focal function and one test is enough. You are allowed to modify  or write only one test. Just write down the action list only; no need to explain anything. 

After writing the new action list, also write your thoughts on the  action list. You have 3 options: "Satisfied", "Unsatisfie d", and "Unsure".

Thought should be written between <Thought> & </Thought> tags. It should be the last line of the output, and nothing should b e generated after the thought.

Answer: 

Figure 19. Prompts for “reflect and improve the plan” step.
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Otter: Generating Tests from Issues to Validate SWE Patches

Suppose you are a very experienced developer. An issue has been created, and you need to write a fail -to-pass test to ensure the issue has been resolved. 

After reading the issue related and existing tests, you decided to modify a test. Now, you have to write a complete test(s). We are sharing the following information.

1. Repository name: $REPO_NAME

2. Issue Description: $ISSUE DESCRIPTION  

3. Relevant Function: 

$FUNCTION

4. Test File imports and structure:

$FILE_FUNCTION    

5. Name of the function to be modified: $NAME    

Writing Rule:

Write the complete test between the <COMPLETE_FUNC> & </COMPLETE_FUNC> tags. No need to write any explanation or add any class within the tags. Write down the fail-to-
pass test. To keep the indentation intact, start writing the function on a new line using the following format:

<COMPLETE_FUNC>

# The function will be added here

</COMPLETE_FUNC>

Remember, based on the issue description the test should fail on the existing version, which may appear in 3 ("Relevant Funct ion") and pass on the pull request. In most cases, the 
necessary imports are present in 4 (Test File imports and structure). Do not repeat any imports and include missing import wi thin function body. Make sure to use the name given in 
5 (Name of the function to be modified). Please write down the simplest fail-to-pass test, and discard other irrelevant fact(s) from the existing test. 

Answer:

Figure 20. Prompt for modifying existing test.

Suppose you are a very experienced developer. An issue has been created, and you need to write a fail -to-pass test to ensure the issue has been resolved.

After reading the issue related and existing tests, you decided to write a new test function. Now, you have to write a complete function(s). We are sharing the following information.

1. Repository name: $REPO_NAME

2. Issue Description: $ISSUE_DESCRIPTION    

3. Relevant Function: 

$FUNCTION

4. Test File imports and structure:

$FILE_FUNCTION    

5. Name of the function to be written: $NAME    

Writing Rule:

Please write the name of the prior function, after which the new function will be added. Please consider class name and inden tation provided in 4 (Test File imports and structure) while proposing the name.

Prior function name should be written between <PriorFunction> & </PriorFunction> tags. No need to add any signature or parameters.

Write the complete test between the <COMPLETE_FUNC> & </COMPLETE_FUNC> tags. No need to write any explanation or add any clas s within the tags. Write down the fail-to-pass test. To keep the indentation intact, start writing the 
function on a new line using the following format:

<COMPLETE_FUNC>

# The function will be added here

</COMPLETE_FUNC>

Remember, based on the issue description the test should fail on the existing version and pass on the pull request. In most c ases, the necessary imports are present in 4 (Test File imports and structure). Do not repeat any imports. 
Please write down the simplest fail-to-pass test. 

Answer:

Figure 21. Prompt for writing new test.
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