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ABSTRACT

A prominent approach to visual Reinforcement Learning (RL) is to learn an in-
ternal state representation using self-supervised methods, which has the potential
benefit of improved sample-efficiency and generalization through additional learn-
ing signal and inductive biases. However, while the real world is inherently 3D,
prior efforts have largely been focused on leveraging 2D computer vision tech-
niques as auxiliary self-supervision. In this work, we present a unified framework
for self-supervised learning of 3D representations for motor control. Our proposed
framework consists of two phases: a pretraining phase where a deep voxel-based
3D autoencoder is pretrained on a large object-centric dataset, and a finetuning
phase where the representation is jointly finetuned together with RL on in-domain
data. We empirically show that our method enjoys improved sample efficiency
in simulated manipulation tasks compared to 2D representation learning meth-
ods. Additionally, our learned policies transfer zero-shot to a real robot setup with
only approximate geometric correspondence, and successfully solve motor control
tasks that involve grasping and lifting from a single, uncalibrated RGB camera.
Videos and code are available at https://yanjieze.com/3d4rl.

1 INTRODUCTION

While deep Reinforcement Learning (RL) has proven to be a powerful framework for complex and
high-dimensional control problems, most notable successes have been in problem settings either
with access to fully observable states (Lillicrap et al., 2016; Silver et al., 2017; Andrychowicz et al.,
2020), or settings where partial observability through 2D image observations (visual RL) suffice,
e.g., playing video games (Mnih et al., 2013; Vinyals et al., 2019). While potential applications of
visual RL are far broader, it has historically been challenging to deploy in areas such as robotics, in
part due to the complexity of controlling from high-dimensional observations.

A prominent approach is to tackle the resulting complexity by learning a good representation of the
world, which reduces the information gap that stems from partial observability. Leveraging tech-
niques such as self-supervised objectives for joint representation learning together with RL has been
found to improve both sample efficiency (Yarats et al., 2019; Srinivas et al., 2020) and generalization
(Higgins et al., 2017; Nair et al., 2018; Hansen & Wang, 2021) of RL in control tasks. Recently, re-
searchers also discover training RL from embeddings produced by pretrained frozen visual encoders
trained on external datasets can match the performance of tabula rasa (from scratch) representations
while requiring less in-domain data (Xiao et al., 2022; Parisi et al., 2022).

Yet, efforts have largely been focused on applying successful techniques from 2D computer vision
to control problems. However, our world is inherently 3D and agents will arguably need to perceive
it as such in order to tackle the enormous complexity of real world environments (Dobbins et al.,
1998; Cheng et al., 2018a). For example, a robot manipulating objects may encounter challenges
such as partial occlusion and geometric shape understanding, neither of which are easily captured
by 2D images without prior knowledge or strong inductive biases (Wang et al., 2020a; Tung et al.,
2019b). These challenges are particularly pronounced in transfer settings, e.g., sim-to-real, where
an agent is trained in simulation using an imperfect model of the world and is expected to transfer
to a real robot setup that it has never encountered before (Peng et al., 2018; Yan et al., 2017).

1

https://yanjieze.com/3d4rl


Presented at Deep RL Workshop, NeurIPS 2022

R
ea

l(
Pe

rt
ur

b)
R

ea
l

Si
m

Reach Push Peg in Box Lift Robot setup

Figure 1: Overview of sim-to-real tasks. We consider four tasks for our sim-to-real experiments:
(1) reach, where the agent needs to position the gripper at the red goal, (2) push, where the agent
needs to push a green cube to the red goal, (3) peg in box, where the agent needs to place a green
peg inside a red box, and (4) lift, where the agent needs to grasp and lift a green cube into the air.
Observations are captured by a static over-the-shoulder camera (pictured). We visualize the initial
configuration of robot and objects in simulation and the success in real world.

In this paper, we propose a 3D representation learning framework for RL that includes both a pre-
training phase using external data and a joint training phase using in-domain data collected by the
RL agent. Figure 2 provides an overview of our method. In the first phase, we learn a generalizable
3D representation using a repurposed video autoencoder (Lai et al., 2021) that performs 3D deep
voxel-based novel view synthesis without assuming access to ground-truth cameras. For pretraining,
we leverage Common Objects in 3D (CO3D) (Reizenstein et al., 2021) – a large-scale object-centric
3D dataset – to steer learning towards object-centric scene representations suitable for our down-
stream manipulation tasks. In the second phase, we finetune the learned representation together
with policy learning on in-domain data collected by online interaction. Concretely, a 2D encoder
produces a 2D feature map that is shared between the two tasks and the 3D voxel is generated upon
this feature map. For the view synthesis task, we apply a random affine transformation to the voxel
representation, corresponding to a change of camera pose, and task a 3D decoder with reconstructing
the scene from the novel view. This encourages the network to learn the underlying scene geometry.
The policy learns to predict actions from the 2D feature map, and we backpropagate gradients from
both objectives to the shared encoder for in-domain finetuning. We emphasize the different views
are only utilized in training and the learned model only requires a single view for deployment,
both in simulation and on the real robot.

To validate our method, we consider a set of vision-based Meta-World (Yu et al., 2019) tasks, as
well as four robotic manipulation tasks with camera feedback both in simulation and the real world
as shown in Figure 1. For the latter, we train policies in simulated environments, and transfer zero-
shot to a real robot setup with only approximate geometric correspondence and an uncalibrated
third-person RGB camera. We also demonstrate that our model is more robust to visual changes
by using two variations of our real environment with different camera position, camera orientation,
and lighting (bottom row in Figure 1). Compared to strong baselines that pretrain representations
using 2D computer vision objectives, our method demonstrates improved sample efficiency during
policy learning and transfers better to the real world despite environment perturbations. We find
empirically that the primary aspects in which our method departs from prior work – 3D pretraining
and in-domain joint training of 3D and RL – are crucial to its success.

2 RELATED WORK

Representation learning for RL. Learning good representations for vision-based RL is a well-
studied problem. Prominent approaches include the use of auto-encoders (Lange & Riedmiller,
2010; Finn et al., 2016; Higgins et al., 2017; Nair et al., 2018; Burgess et al., 2019; Yarats et al.,
2019), learned dynamics models (Ha & Schmidhuber, 2018; Ebert et al., 2018; Dasari et al., 2019;
Janner et al., 2019; Hafner et al., 2020; Hansen et al., 2021a), auxiliary objectives (Jaderberg et al.,
2016; Srinivas et al., 2020; Yan et al., 2020; Schwarzer et al., 2021; Hansen & Wang, 2021; Stooke
et al., 2021; Ye et al., 2021), abstractions (Battaglia et al., 2016; Kulkarni et al., 2019; Veerapaneni
et al., 2019; Minderer et al., 2019; Deng et al., 2020), and data augmentation (Tobin et al., 2017;
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Peng et al., 2018; Laskin et al., 2020; Kostrikov et al., 2020; Hansen et al., 2021b). For example,
Yarats et al. and Srinivas et al. show that jointly optimizing a visual encoder using a 2D autoencoder
or contrastive objective, respectively, together with RL can improve sample-efficiency of visual RL.
Recently, researchers have also found that visual backbones pretrained using 2D computer vision
objectives on large external datasets can produce useful features for control both in simulation and
the real world (Xiao et al., 2022; Parisi et al., 2022; Nair et al., 2022; Radosavovic et al.). In
particular, Parisi et al. explores a variety of pretrained representations for control and find that the
choice of pretraining objective is important to downstream performance. Although these pretraining
methods that use a frozen visual representation have shown initial success, the domain gap between
the RL task and the pretraining data is still non-negligible. In this work we propose a 3D object-
centric pretraining recipe for control. We also find that jointly finetuning the visual backbone
on in-domain data produces better representations for RL across different representations
including ours, ImageNet pretrained, and 2D self-supervised pretrained ones, which is a neglected
factor in most previous works. Compared to these stronger, finetuned baseline approaches, our
method still performs significantly better – especially during sim-to-real transfer.

Learning 3D scene representations. Besides the aforementioned 2D-centric techniques, there are
also prior efforts in learning 3D scene representations for RL, e.g. through differentiable 3D key-
points (Chen et al., 2021; Jaritz et al., 2019), object-centric graphs (Chang et al., 2017; Tung et al.,
2020; Locatello et al., 2020; Qi et al., 2021), latent 3D features (Burgess et al., 2019; Tung et al.,
2019a; Lai et al., 2021), and neural radiance fields (Li et al., 2021; Ichnowski et al., 2021). For ex-
ample, Tung et al. learn a graph-based forward dynamics model of scene objects, and Lai et al. learn
latent 3D scene features from passive indoor navigation videos with known camera trajectories. Our
method also learns latent 3D features, but in contrast to prior work we only use a single fixed view
for policy inference, which makes our method both extendable and easy to deploy in the real world.

Sim-to-real transfer. Transferring policies learned in simulation to the real world is a hard problem
for which a number of (largely orthogonal) approaches have been proposed. For example, domain
randomization (Tobin et al., 2017; Pinto et al., 2018; James et al., 2019; Lee et al., 2019; Ramos
et al., 2019; Wang et al., 2020b; Hansen & Wang, 2021; Zhang et al., 2022) improves transfer by
artificially widening the training data distribution. Alternatively, the simulation can be iteratively
adjusted to match real world data (Chebotar et al., 2019; Hanna et al., 2021; Tsai et al., 2021; Du
et al., 2021), the learned RL policy can be adapted by finetuning in the real world (Traoré et al., 2019;
Julian et al., 2020; Hansen et al., 2021a; Kumar et al., 2021), or zero-shot transfer can be improved
by learning a better representation (Yan et al., 2017; James et al., 2019; Jangir et al., 2022). We
also consider the problem of sim-to-real transfer from the lens of representation learning due to its
generality and not requiring real world data, which often relies on human labor for collection.

3 BACKGROUND

Problem definition. We model agent and environment as a Markov Decision Process (MDP)
M = ⟨S,A, T ,R, γ⟩, where s ∈ S are states, a ∈ A are actions, T : S × A 7→ S is a transi-
tion function, r ∈ R are rewards, and γ ∈ [0, 1) is a discount factor. The agent’s goal is to learn a
policy π that maximizes discounted cumulative rewards on M. In visual RL, states s are generally
unknown, but we can use image observations o ∈ O in lieu of states, rendering it a Partially Ob-
servable MDP (Kaelbling et al., 1998). By learning a good internal representation f , we can hope
to increase mutual information between encoded observations and ground-truth states of the system
I(f(o); s), ∀o ∈ O, s ∈ S. While f can be, e.g., an off-the-shelf visual backbone pretrained on
external data, prior knowledge about the distribution of O,S (such as in-domain samples) may aid
in capturing information of the state.
Soft Actor-Critic (SAC) (Haarnoja et al., 2018) is an off-policy actor-critic algorithm that learns
a stochastic policy πθ and critic Qθ from an iteratively grown dataset D collected by interaction.
Throughout, we let θ denote the combined parameter vector. The critic is learned by minimizing the
Bellman error

LQ(θ;D) = Eo,a,r,o′∼D [(Qθ(fθ(o),a)− (r + γV)] , (1)

where V = Qθ(fθ(o
′),a′)− α log πθ(a

′|fθ(o′)) is the soft Q-target, θ is a slow-moving average of
θ, α is a learnable parameter balancing entropy maximization and value function optimization, and
o′ ∼ T (o,a), a′ ∼ πθ(·|fθ(o′)). πθ learns to maximize an entropy-regularized expected return:

Lπ(θ;D) = Eo∼D [Qθ(fθ(o),a)− α log πθ(a|fθ(o))] , (2)
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Figure 2: Overview of our approach. (left) We pretrain a 3D deep voxel-based auto-encoder on the
Common Objects in 3D (CO3D) dataset, a large object-centric dataset. (right) We train an RL policy
in simulation using the learned representation as initialization, and jointly finetune the representation
with 3D and RL objectives on in-domain data collected by the RL agent.

for a ∼ πθ(fθ(o)). Actions are sampled from π using a squashed Gaussian parameterization; see
(Haarnoja et al., 2018) for further details. In this work, we focus on learning a good representation
fθ for SAC, but we emphasize that our framework is fully agnostic to the underlying RL algorithm.

4 METHOD

We propose a 3D representation learning framework for RL that includes both a pretraining phase
using external data and a finetuning phase using in-domain data collected by an RL agent. By lever-
aging a large-scale external dataset for 3D pretraining, our learned representation can quickly be
finetuned together with RL to produce quality deep voxel-based scene representations for single-
camera visual control. Figure 2 provides an overview of our approach. We now describe an instan-
tiation of our framework with SAC as the backbone learning algorithm.

4.1 OBJECT-CENTRIC 3D PRETRAINING

Our framework is implemented as a deep voxel-based 3D auto-encoder (Lai et al., 2021) that shares
a 2D encoder with an RL policy. Given a view (image) of a 3D scene and an affine camera trans-
formation, we task the 3D auto-encoder with reconstructing a 2D view of the scene after applying
a transformation to the deep voxel representation. This task encourages the network to encode geo-
metric scene information, which is beneficial for downstream control tasks. We first detail training
of the 3D auto-encoder, and then discuss the RL policy and finetuning phase to Section 4.2.

Architecture. For brevity, we let θ denote the combined parameter vector of our network. A source
view Isrc is encoded by a 2D encoder fθ to produce feature maps Z = fθ(Isrc), Z ∈ RC×H×W . We
then reshape Z into a 3D grid of dimensions (C/D)×D×H×W and upsample the reshaped feature
maps using strided transposed 3D convolutions gθ to obtain our final deep voxel representation
V = gθ(Z) = gθ(fθ(Isrc)). Now, let Itgt denote a target view (used as reconstruction target) of the
same scene as Isrc. To obtain a camera transformation between Isrc and Itgt for our 3D reconstruction
task, we learn an additional PoseNet Fpose that estimates the rotation between two views. This
is necessary because common datasets do not have access to ground-truth cameras. Fpose takes
the concatenation [Isrc, Itgt] as input and predicts relative rotation parameterized by Euler angles
[α, β, γ]⊤ (from which we trivially obtain rotation matrix R) as well as translation t = [x, y, z]⊤,
i.e., Fpose(Isrc, Itgt) ∈ R6. We transform V by R, t and obtain a warped grid V̂ = TR,t(V ), and
predict the target view Itgt from V̂ with a 3D decoder hθ. In summary, the 3D network thus predicts
Itgt from Isrc as Îtgt = hθ(TR,t(gθ(fθ(Isrc)))), where R, t are obtained from Fpose(Isrc, Itgt).

Objective. To optimize the 3D auto-encoder and associated PoseNet, we adopt an objective similar
to that of (Lai et al., 2021). Specifically, our objective is a ℓ1-norm reconstruction loss

Lrecon

(
Îtgt, Itgt

)
= λL1

∥∥∥Îtgt − Itgt

∥∥∥
1

(3)
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Figure 3: In-domain joint training of 3D and RL. A static view is used as input to both 3D and
RL and is encoded using a shared 2D encoder. The 3D autoencoder takes 2D features as input and
reconstructs observations from a dynamic view that moves around the scene in a circular manner.

with additional losses as in Lai et al. (2021) that serve to improve reconstructions in pretraining, e.g.,
an adversarial loss. We do not find it necessary to use these additional losses during policy learning.

Training. We implement the 2D encoder fθ as an ImageNet-initialized ResNet18 and let the 3D
encoder/decoder have relatively fewer parameters, such that the majority of trainable parameters are
shared with the RL policy during finetuning. To steer learning of the encoder towards object-centric
scene representations suitable for our downstream manipulation tasks, we choose to pretrain our
network on 20 object categories from Common Objects in 3D (CO3D) (Reizenstein et al., 2021),
a large-scale object-centric 3D dataset. CO3D contains videos that rotate around objects and we
only use raw frames for training. We emphasize that the video for pretraining is not limited to
static scene videos. Since our training only takes a few frames close in time as inputs, for most
videos in the real world we can assume the structure does not change drastically in a short time,
thus the pretraining can be applied to general videos as well. During training, we sample two views
Isrc, Itgt of a scene and jointly optimize the 3D auto-encoder and PoseNet using the objective in
Equation 3. To encourage geometrically plausible latent interpolations between views, we constrain
the interval between any two sampled views by a bound b, such that the number of skipped frames
are randomized but bounded.

4.2 IN-DOMAIN JOINT TRAINING OF 3D AND RL

After the pretraining phase, we use the learned representation as initialization for training an RL pol-
icy, while we continue to jointly optimize the 3D objective together with RL using in-domain data
collected by the RL agent. Specifically, we learn a policy network πθ : RC×H×W 7→ A that takes
feature maps Z = fθ(I) from the pretrained 2D encoder fθ as input (where I is an image observa-
tion) and outputs a continuous action. During this phase, we optimize fθ using gradients from both
the 3D objective and RL, but use a reduced learning rate to mitigate catastrophical forgetting. The
motivation for our joint finetuning phase is two-fold: (1) finetuning with the 3D objective improves
the 3D representation on in-domain data, and (2) finetuning with the RL objective improves feature
extraction relevant for the task at hand. Figure 3 provides an overview of our joint training. In the
following, we describe the training in more detail.

Optimizing 3D. Since our proposed 3D task requires at least two views of a scene, we design a
static camera and another dynamic camera which moves flexibly in a predefined manner. Let Isrc
denote the image from the static (source) view and Itgt denote the image from the dynamic (target)
view, respectively. The 3D task is then to reconstruct Itgt from Isrc. We move the dynamic camera
positioned with angle ϕd in a circular manner around the scene within an angle ϕ of the static camera,
thus ϕd ∈ [0, ϕ]. The concrete design is remained in supplementary materials.

Optimizing RL. We train the RL agent by online interaction with a simulation environment, and
store observed transitions in a replay buffer for joint optimization together with the 3D objective. To
mitigate catastrophical forgetting in the 3D representation due to changes in the data distribution,
we optimize the 3D network using a smaller learning rate than for RL. Formally, let λft denote the
finetuning scale, let lr3D denote the learning rate for the 3D task, and let lrRL denote the learning rate
for RL. We then have lr3D = λft × lrRL.
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Figure 4: Learning curves (Meta-World). Success rate of our method and baselines on five diverse
image-based Meta-World tasks. Mean of 5 seeds, shaded areas are 95% CIs. Our method achieves
non-trivial success rates faster than other methods. See supplementary material for samples.

5 EXPERIMENTS

We validate our method on a set of precision-based robotic manipulation tasks from visual inputs.
Our 3D method and baselines are trained entirely in simulation using dense rewards and randomized
robot poses, goals and object positions. Evaluation of trained policies is conducted both in simula-
tion and on a real robot setup. In our real-world evaluation, policies are transferred zero-shot, i.e.,
without finetuning nor access to real world data prior to deployment. We report success rates over a
set of pre-defined goal and object locations both in simulation and in the real world. Our code has
been released. We now describe our experimental setup and discuss our findings.

Robot setup. Our real robot setup is shown in Figure 1 (right). We use an xArm robot equipped with
a gripper in our real-world experiments, and observations are captured by a static third-person cam-
era. Simulated environments correspond only approximately to the real setup. The agent operates
from 84 × 84 RGB camera observations, as well as the robot state including end-effector position
and gripper aperture. We use position control for end-effector motion and torque control for the
gripper and do not calibrate the camera. Agents are trained by online RL in simulation using dense
rewards and are transferred zero-shot to the real setup, i.e., no finetuning nor access to real data.
To estimate the robustness of representations, we consider two variants of our real-world setup of
varying likeness to the simulation – we refer to these as perturbed and non-perturbed environments.

Baselines. We implement our method and all baselines using Soft Actor-Critic (SAC; (Haarnoja
et al., 2018)) as the backbone RL algorithm and use the same hyperparameters whenever applicable.
Concretely, we consider the following baselines: (i) training an image-based SAC with a 4-layer
ConvNet encoder from Scratch; (ii) replacing the encoder with a ResNet18 backbone pretrained by
ImageNet classification (Russakovsky et al., 2015); and (iii) a ResNet18 pretrained on ImageNet
using the self-supervised MoCo objective. All methods use ±4 random shift (Kostrikov et al., 2020)
and color jitter as data augmentation during RL.

Tasks. We experiment with 5 image-based tasks from Meta-World, as well as 4 manipulation tasks
both in simulation and on physical hardware. Visualization of all tasks are provided in Appendix
F. We consider the following tasks in our sim-to-real experiments: (1) reach (A ∈ R3), where the
agent needs to position the gripper at the red goal, (2) push (A ∈ R2), where the agent needs to
push a green cube to the red goal, (3) peg in box (A ∈ R3), where the agent needs to place a green
peg inside a red box, and (4) lift (A ∈ R4), where the agent needs to grasp and lift a green cube into
the air. A trial is considered successful only when the goal is reached (e.g., the peg is fully inside the
box) within a fixed time limit of 20s (50 decision steps). We conduct an extensive set of real-world
trials using 5 model seeds per method per task and evaluate each seed over 10 trials (5 for reach)
on a set of predefined configurations for a total of 1300 trials: 700 trials for the setup close to the
simulated environments and 600 trials for the perturbed real world setup; see Figure 1 (left) for the
two setups and supplementary material for videos and further details.

5.1 SAMPLE-EFFICIENCY

We train for 500k environment steps across all xArm tasks and train for 1m environment steps
across Meta-World tasks. Results for Meta-World tasks are shown in Figure 4 and results for xArm
manipulation tasks are shown in Figure 5, totalling 9 tasks. We summarize our findings as follows:

From scratch training of SAC is generally a strong baseline, but the gap between this baseline and
methods that use pretrained representations widens with increasing task difficulty. For example, the
success rate of from scratch is close to that of our method in coffee push (Meta-World), while it fails
to solve harder tasks like coffee pull.
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Figure 5: Learning curves (xArm). Success rate of our method and baselines on the four simulated
xArm manipulation tasks shown in Figure 1. Mean of 5 seeds, shaded areas are 95% CIs.

Table 1: Robotic manipulation results (xArm). Success rate (in %) of our method and baselines.
(left) results in simulation. (right) results when transferred zero-shot to physical hardware. We report
mean and std. err. across 5 model seeds for all evaluations. Initial configurations are randomized.

Sim Scratch ImageNet MoCo 3D (ours)

Reach 100±0 100±0 100±0 100±0

Push 65±16 74±15 74±14 80±14

Peg in Box 77±22 82±18 82±17 82±17

Grasp − − − −
Lift 20±34 40±40 51±40 64±32

Real Scratch ImageNet MoCo 3D (ours)

Reach 84±12 96±4 80±11 96±4

Push 2±2 22±10 22±7 48±9

Peg in Box 40±14 62±20 50±15 76±19

Grasp 44±14 20±10 38±10 62±14

Lift 30±15 2±2 20±5 46±19

MoCo vs. ImageNet pretraining. We find that MoCo generally leads to better downstream per-
formance than pretraining with ImageNet classification, which is consistent with observations made
in prior work (Parisi et al., 2022), while the performance gap is relatively small for most tasks. we
observe MoCo to be better on basketball (Meta-World) and lift (xArm) which both involve precise
object manipulation. This finding suggests that self-supervised pretraining might produce better
initializations for in-domain finetuning in precision-based control tasks.
3D vs. 2D representations. Our proposed method that uses a self-supervised 3D representation out-
performs both from scratch training and pretrained 2D representations across most tasks. Notably,
our method enjoys large performance gains on challenging tasks such as coffee pull (Meta-World),
hammer (Meta-World), and lift (xArm) that require spatial understanding.

5.2 SIM-TO-REAL TRANSFER

We evaluate policies trained in simulation on physical hardware following the previously outlined
evaluation procedure. For the lift task, we additionally report the grasping success rate in real.
Results are shown in Table 1. We observe a drop in success rates across the board when transferring
learned policies to the real world relative to their simulation performance. However, the gap between
simulation and real performances is generally lower for our 3D method than for baselines. For
example, our method achieves a 46% success rate on lift (vs. 64% in sim), whereas MoCo – the
second-best method in sim – achieves only 20% success rate (vs. 51% in sim). While baseline
performances differ in simulation, we do not find any single 2D method to consistently transfer
better than the others. We thus attribute the sizable difference in transfer results between our method
and the baselines to the learned 3D representation.

5.3 ROBUSTNESS

We provide a more challenging evaluation in both the simulation and the real world, by adding more
perturbation into the environment to make the observation much more out-of-distribution. The per-
turbation added to the simulation includes the camera position, the camera orientation, the lighting,
the texture of objects, and the texture of the robot arm, as visualized in Figure 14. The perturbation
added to the real world includes the camera position, the camera orientation, the lighting, and the
background, as visualized in Figure 1. The results are shown in Table 2. We observe a drop in
success rates across all methods due to the perturbation, while the perturbation effects are alleviated
in our method. For example, our method still achieves 95% success rate in perturbed simulation
and 60% success rate in perturbed real on reach whereas MoCo achieves only 86% in sim and 27%
in real respectively. We also find that for 2D baselines there is no single method that outperforms
others consistently. For example, ImageNet pretraining leads to better generalization on reach while
MoCo performs well on lift. The overall experiments demonstrate that our 3D visual representation
is more robust to distribution shift in the observation space and better in generalization.
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Table 2: Robotic manipulation results evaluated in perturbed environments (xArm). Success
rate (in %) of our method and baselines. (left) results in perturbed (P) simulation environments.
(right) results when transferred zero-shot to perturbed real environments. We report mean and std.
err. across 5 model seeds for all evaluations. Initial configurations are randomized.

Sim(P) Scratch ImageNet MoCo 3D (ours)

Reach 76±10 96±8 86±14 96±5

Push 12±7 12±10 14±14 24±21

Peg in Box 20±20 22±13 24±7 34±20

Grasp − − − −
Lift 0±0 10±15 10±10 16±8

Real(P) Scratch ImageNet MoCo 3D (ours)

Reach 26±12 48±12 27±12 60±12

Push 10±7 10±7 0±0 33±17

Peg in Box 18±11 28±14 20±6 52±14

Grasp 25±11 10±10 35±19 40±15

Lift 10±10 0±0 10±10 25±11

Table 3: Quantitative evaluation of novel view synthesis in sim (S) and real (R) on peg in box.
(left two) Different λft for ϕ = 30◦. (right two) Different dynamic camera angle ϕd when ϕ = 30◦

and λft = 0.01. Our method generalizes well to out-of-distribution camera angles.

λft (S) SSIM↑ PSNR↑
0.00 8.69 0.22
0.01 11.34 0.37
0.10 11.75 0.35
1.00 11.93 0.37

λft (R) SSIM↑ PSNR↑
0.00 8.28 0.28
0.01 10.49 0.31
0.10 11.20 0.34
1.00 11.29 0.38

ϕd (S) SSIM↑ PSNR↑
15 12.26 0.42
30 11.34 0.37
45 11.68 0.37
60 10.13 0.33

ϕd (R) SSIM↑ PSNR↑
15 11.78 0.36
30 10.49 0.31
45 9.94 0.24
60 8.72 0.20

5.4 ABLATIONS

Frozen 3D visual representation. We compare our frozen 3D visual representation with the fol-
lowing pretrain methods for motor control: (i) MVP (Xiao et al., 2022) which provides a pretrained
vision transformer using masked auto-encoder on a joint Human-Object Interaction dataset; (ii) PVR
(Parisi et al., 2022) which utilizes a ResNet50 pretrained with MoCo on ImageNet; and (iii) R3M
(Nair et al., 2022) which pretrains a ResNet50 with time contrastive learning and video-language
alignment on the Ego4D human video dataset. The results are shown in Figure 6.
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Figure 6: Success rate of different frozen visual representa-
tions. We compare our 3D visual representation with MVP (Xiao
et al., 2022), PVR (Parisi et al., 2022), and R3M (Nair et al., 2022)
on peg in box and lift.

We directly apply the public pre-
trained encoders provided by these
works and all the methods are
equipped with the same RL back-
bone. Our encoder uses fewer param-
eters (11.47m) than MVP (21.67m),
PVR (23.51m), and R3M (23.51m).
On peg in box our method could
achieve high success rates in 500k
steps and is comparable to MVP,
while another two baselines learn
much slower. On a more challenging
task lift, only our method achieves
meaningful accuracy and all other
three methods have not yet. Thus our
visual representation with much fewer parameters is very competitive to recent methods. In addi-
tion, we compare between the frozen 3D representation and the finetuned 3D representation and
find that unfreezing the representation could give a more promising result. It is not surprising, but
recent works (Xiao et al., 2022; Nair et al., 2022; Parisi et al., 2022) only focus on the frozen visual
representation, which might neglect the power of end-to-end policy learning (Levine et al., 2016).

Finetuning with the 3D objective. We then unfreeze the 3D visual representation and show the
necessity of finetuning the visual representation with in-domain data and our 3D objective, i.e., the
reconstruction loss. As shown in Figure 8 (left), we observe that our method without 3D finetuning
initially keeps the similar converge rate but converges to a lower accuracy in 500k steps. The fine-
tuning scale used for the 3D objective also matters as shown in Figure 8 (mid), where a smaller scale
could stable the learning process. In addition, we provide the quantitative and qualitative evaluation
on the view synthesis results with 3D finetuning in Table 3 and Appendix E.6. We could observe
that with 3D finetuning the view synthesis is more realistic and closer to the original images, and
the quantitative evaluation in Table 3 also shows that 3D finetuning leads to better reconstruction.
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Figure 7: Novel view synthesis in real. We use images in the real world to generate the deep voxel
and use the static view and the dynamic in the simulation to predict the transformation and then
reconstruct the novel view. We display the reconstruction results for ϕd = 15◦, 30◦ in two tasks.
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Figure 8: (left) Success rate of our 3D method with and without 3D finetuning on lift. (mid) Success
rate of different lrft on lift, where lrft is the finetuning scale for 3D auxiliary task such that the learning
rate would be lr × lrft. (right) Success rate of our 3D method with and without 3D pretraining.

3D Pretraining. We are also curious about whether 3D pretraining really helps if the visual repre-
sentation has been trained with the 3D objective and the RL objective jointly. As shown in Figure 8
(right), it is observed that without 3D pretraining the representation achieves much lower accuracy
on lift. Compared to Figure 8 (left), we could also find that the lack of 3D pretraining leads to more
degradation of the success rates, showing that 3D pretraining is a necessary component.

Novel view synthesis in sim and real. We evaluate the 3D representation learned by our method
by (i) qualitative novel view synthesis results from both simulated and real observations (shown
in Figure 7), and (ii) quantitative ablations that provide insight into the effect of important hyper-
parameters on reconstruction quality (shown in Table 3). We find that our method can synthesize
meaningful reconstructions when provided with real camera observations (and camera transfor-
mations predicted from simulated observations by Fpose), despite not having seen our real robot
setup before. For quantitative evaluation, we consider two standard metrics that measure the quality
of synthesized images: Structural Similarity (SSIM) and Peak Signal-to-Noise Ratio (PSNR), and
evaluate the impact of different finetuning rates λft and camera angles ϕd, for ϕ = 30◦. We observe
that (1) using a reduced learning rate does not hurt reconstruction, and (2) our method trained with
ϕ = 30◦ generalizes well to out-of-distribution angles, up to 60◦ (2× that of training).

6 CONCLUSION

Our proposed 3D framework for pretraining and joint learning improves sample efficiency of rein-
forcement learning (RL) in simulation and successfully transfers to a real robot setup. This is, to the
best of our knowledge, the first positive sim-to-real transfer result using pretrained 3D representa-
tions with RL. We find learning 3D representations leads to significant gain in real robot performance
and our representation is much more robust to the visual environment changes in the real world. We
also compare to settings on RL with frozen features and show frozen 3D representation consistently
outperforms state-of-the-art methods with frozen 2D representations. One limitation of our work is
that it is not easy to train the agent in real directly during the era that training in real is feasible,
which might be an interesting direction to explore in future.
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REPRODUCIBILITY

The main details of our 3D method have been stated in Section 4 and more details are remained
in Appendix A. More information about baseline methods is given in Appendix B. We also give
the used hyperparameters in Table 5 for reproducibility. We are committed to releasing our code,
environment, and the pretrained model.
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A IMPLEMENTATION OF OUR 3D METHOD

2D encoder. We use ResNet18 as the encoder.

3D encoder consists of two 3D transposed convolutions activated by Leaky ReLU function.

3D decoder first reshapes the deep voxel (C/D)×D×H ×W back to C ×H ×W , and consists
of one 2D 1× 1 convolution and three transposed convolutions to reconstruct the RGB images.

PoseNet concatenates two images as the input and reduces the dimension to 6 for predicting Euler
angles [α, β, γ]⊤ and the translation [x, y, z]⊤, by seven 2D convolutions.

3D transformation. We warp the grid such that the voxel at location p = [i, j, k]⊤ will be warped
to p̂, which is computed as

p̂ = Rp+ t (4)

where R, t is the 3 × 3 rotation matrix and translation vector corresponding to the camera pose.
In our implementation, the warp is performed inversely and the value at fractional grid location is
trilinearly sampled. In addition, since there exists misaligned voxels during the sampling procedure
caused by the coarse deep voxel representation, we apply two 3D convolutions to refine and correct
these mismatches.

3D pretraining. We randomly select 20 classes in CO3D and sample Isrc and Itgt with a bounded
interval b = 9. We train ∼ 250k iterations with batch size 32.

3D finetuning. In the finetuning phase, we apply a less frequent update when doing the 3D task,
i.e., performing λup 3D update every 1 RL update. In practice, we set λft = 10−2, lrRL = 10−3, and
λup = 0.5. In addition, we only apply the reconstruction loss.

B BASELINES

From scratch, also called vanilla SAC, does not use any pretrained model and utilizes a 2D encoder
with fourteen 2D convolutions activated by ReLU function. Our implementation generally follows
DrQ (Kostrikov et al., 2020). The actor consists of fully connected layers activated by Tanh function.
The critic applys fully connected layers activated by ReLU function and predicts double action value
funtions Q with a shared encoder and two different heads. We apply the same data augmentation as
in (Jangir et al., 2022) for better sim-to-real transferring, including random shift and color jitter.

ImageNet. We replace the 2D encoder in vanilla SAC with ResNet18 pretrained with supervised
learning on ImageNet, to gain a stronger 2D representation.

MoCo. We replace the 2D encoder in vanilla SAC with ResNet18 which is trained by MoCo (v2)
(Chen et al., 2020) on ImageNet under the setting where the batch size is 256, the number of epochs
is 100, and the initial learning rate is 0.03.

Remove ImageNet normalization for usage. Our baseline methods MoCo and ImageNet are both
pretrained with ImageNet and all input images are preprocessed with the normalization of Ima-
geNet, i.e, with the mean (0.485, 0.456, 0406) and the standard deviation (0.229, 0.224, 0.225). A
natural way to apply such pretrained networks in RL is using the same normalization to maintain the
representation ability of the pretrained networks. However, by empirical experiments we find that
normalizing the images directly into [0, 1]d achieves a much better performance, as shown in Figure
9a. Thus we adopt a stronger version as our baseline.

C DESIGN OF CAMERAS

Design of the static view. The static view is generally used for all baselines and our algorithm, for
both the training phase and the inference phase. Thus the inner requirement is that the static view
should contain the majority of useful information for the robotic task, to gain a strong baseline. In
practise we carefully select a unified static view for all tasks.

Design of the dynamic view. The dynamic camera that shots Itgt is essential, which largely decides
whether the image reconstruction could work. Based on the priori that our task is object-centric and
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the intuition that interaction between the robot and the object is our focus, we move the dynamic
view in a object-centric manner, i.e., moving along a circle around the center of the scene, starting
from the static view as a initial position. The center of the scene is designed to cover the necessary
objects and the main scene information. For example, in the peg in box task, where the robot is
required to move the peg into the box on the table, the box is essential to understand and solve this
task, and thus the box could be seen as the center of the scene.

Formally, let [xs, ys, zs]
⊤ denote the position of the static view, [xd, yd, zd]

⊤ denote the position
of the dynamic view, [xc, yc, zc]

⊤ denote the center of the scene, r denote the radius of the circle,
ϕs denote the rotation angle of the static view, and ϕd denote the rotation angle of the dynamic
view from the static view. We also introduce ϕ, which denotes the range of the rotation of the
dynamic view. Then the translation of the cameras is given in Equation 5 and 6. The rotation angle
is automatically computed by making the camera point to the center of the scene with the z-axis in
the plane perpendicular to the ground.

[xs, ys, zs]
⊤ = [xc, yc, zc]

⊤ + r · [sinϕs, cosϕs, 0]
⊤, where ϕs is predefined. (5)

[xd, yd, zd]
⊤ = [xc, yc, zc]

⊤ + r · [sin(ϕs + ϕd), cos(ϕs + ϕd), 0]
⊤, where ϕd ∈ [0, ϕ] . (6)

D NOVEL VIEW SYNTHESIS IN REAL

Videos consisting of synthesised views are displayed in our project website https://3d4rl.
github.io/. In this section we describe details of how we generate the synthesised views for
the real world.

Let Ireal denote the image shot in the real world from the same static view as in simulation.
The deep voxel representation is thus generated as gθ(fθ(Ireal))). Since we only have one static
camera in the real world (we could have other cameras in real, but it is not necessary for our
method), we use the simulation images Isrc, Itgt (the same notation as before) to predict the rel-
ative transformation by PoseNet and get transformation R, t. Then the reconstructed image is
Îrecon = hθ(TR,t(gθ(fθ(Ireal)))), which should be in the same view as Itgt, but different in the scene
content.

To generate videos, we do interpolation on the generated transformations and apply these new trans-
formations to get interpolated views,. The output of PoseNet is [α, β, γ, x, y, z]⊤, and let λ ∈ [0, 1]
denote the interpolation factor. Then the interpolated transformations are

(1− λ)[0, 0, 0, 0, 0, 0]⊤ + λ[α, β, γ, x, y, z]⊤ = [λα, λβ, λγ, λx, λy, λz]⊤ , (7)

from which we could trivially gain R, t.

E ADDITIONAL RESULTS

E.1 DYNAMIC CAMERA MOVING RANGE ϕ

The moving range of the dynamic camera affects the performance of our 3D algorithm. Specifically,
a larger ϕ may impede the learning process and hurt the performance. We use lift task as an example
to illustrate the effect of ϕ, as shown in Figure 9b. We find that with a relatively small range, i.e.,
30◦, 3D could be more stable.

E.2 IMAGENET NORMALIZATION IN BASELINES

When the visual representation is frozen, the ImageNet normalization is generally used across all
pretrain methods (Xiao et al., 2022; Nair et al., 2022; Parisi et al., 2022). However, we find that
when we could train the policy and the visual representation end-to-end, it would be better to not
apply the ImageNet normalization, as shown in Figure 9a. We thus adopt the stronger baseline.

E.3 POSE ESTIMATION

Our 3D method trains a PoseNet that could estimate the relative pose between two frames and we
evaluate our pose estimation results quantitatively in this section. For a whole trajectory generated
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Figure 9: (a) Compare baselines with and without ImageNet Normalization. (b) Success rate of our
method with different camera moving range ϕ on lift.

Table 4: Quality of pose estimation for peg in box task. Each table shows the root mean square
error (RMSE) and the maximal error (MaxE) of different dynamic camera angle ϕd given certain
finetuning scale λft. We only train with ϕd = 30◦. We could observe that the finetuning leads to
consistent smaller errors.

Pretrain

ϕd RMSE↓ MaxE↓
15 0.041 0.093
30 0.066 0.142
45 0.120 0.246
60 0.174 0.334
avg 0.100 0.204

λft = 0.01

ϕd RMSE↓ MaxE↓
15 0.041 0.089
30 0.059 0.122
45 0.064 0.150
60 0.130 0.393
avg 0.073 0.189

λft = 0.10

ϕd RMSE↓ MaxE↓
15 0.040 0.091
30 0.033 0.097
45 0.046 0.102
60 0.132 0.382
avg 0.063 0.168

λft = 1.00

ϕd RMSE↓ MaxE↓
15 0.046 0.126
30 0.041 0.124
45 0.044 0.120
60 0.133 0.365
avg 0.066 0.184

by the interaction between our agent and the environment, we estimate the relative pose between the
dynamic camera and the static camera for each timestep. Since the estimated transformation is in
the coordinate space of deep voxels, Umeyama alignment (Umeyama, 1991) is applied to align the
predicted trajectory with the ground truth trajectory provided by our simulation environment. We
set diverse dynamic camera angles to test both in-domain (15◦, 30◦) and out-of-domain (45◦, 60◦)
pose estimation under various finetuning scales. Results in Table 4 show that our method reduces
the pose estimation error compared to the network that is only pretrained with CO3D dataset. Our
method could also generalize to 45 degrees with a small error equal to 0.064, nearly half of the one
with only pretraining. In addition, we find that larger finetuing scales generally reduce the error, and
even finetuning with a very small scale could result in a gap compared to the pretrain model.

E.4 COMPARE WITH OTHER 3D PRETRAIN METHODS
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Figure 10: Success rate of different frozen visual represen-
tations. We compare our 3D visual representation with CSPN
(Cheng et al., 2018b) on peg in box and lift.

In our main sections we demon-
strate the advantage of our method
over 2D representations, and we
are now showing that our 3D self-
supervised representation is also bet-
ter than other straightforward pre-
train methods that contain 3D infor-
mation. Specifically, we consider the
ResNet50 model pretrained by the
depth estimation task using convo-
lutional spatial propagation network
(CSPN) (Cheng et al., 2018b). We
still freeze the visual representation
across methods. The results are
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Figure 11: Novel view synthesis in simulation. We display the reconstruction results for ϕd =
15◦, 30◦ in four tasks.

shown in Figure 10 under the same setting as Figure 6. We find that our 3D representation is consis-
tently better on peg in box and lift, while the CSPN model could also gain reasonable accuracy.

E.5 COMPUTATIONAL OVERHEAD

Although our 3D based algorithm is elegantly designed for better sample efficiency, the computa-
tional overhead of utilizing the auxiliary task for joint optimization is non-negligible. We measure
the computation time for one 3D update (0.038s) and one RL update (0.063s) averaged over 10
iterations on a NVIDIA GeForce RTX 3090. The large overhead is mainly because our method re-
constructs the image from the 3D scene latent, which is higher dimensional (O(n3)) than common
2D methods (O(n2)). How to make the utilization of 3D information more computational efficient
is interesting to explore in our future work.

E.6 NOVEL VIEW SYNTHESIS RESULTS IN SIM AND REAL

We provide qualitative results of our novel view synthesis both in simulation and in the real world. In
Figure 7 we show the synthesis using real world images and our model is only trained in simulation.
Figure 11 gives more results in simulation. We also compare the synthesis generated by the pre-
trained model and the finetuned model in Figure 12, where we find that the pretrained model could
grasp the main objects in the scene while the domain gap, e.g., color, could be clearly observed.

F VISUALIZATION OF OUR ENVIRONMENTS

We give more visualization of our environments, including four xArm environments: Lift, Push, Peg
in Box, and Reach, and four Meta-World environments: Basketball, Box Close, and Coffee Push, and
Hammer, shown in Figure 13. For one single xArm task, we are giving different initialization setting,
showing the randomization in our environments for generalization. For one single Meta-World task,
we show different views along the trajectory of the dynamic camera. We also visualize the perturbed
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Figure 12: The effect of 3D finetuning for novel view synthesis in simulation. GT represents
for ground truth and FT represents for finetuning. We display the reconstruction results for ϕd =
15◦, 30◦ in four tasks.

simulation environments as shown in Figure 14 and the examples of successful trajectories as shown
in Figure 15.

G HYPER-PARAMETERS

We provide all relevant hyper-parameters used in our experiments in Table 5, including both param-
eters that are discussed and not discussed in our paper.
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Figure 13: Visualizations. We visualize four xArm environments and selected four Meta-World
environments. Our xArm environments are shown across different initialization, where initial po-
sition of end-effector and objects are randomized. Meta-World environments are shown along the
trajectory of the dynamic camera.
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Figure 14: Visualizations of perturbed simulated environments. We visualize four xArm envi-
ronments. Our xArm environments are shown across different initialization, together with texture
randomization, lighting randomization, and camera perturbation.
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Figure 15: Visualizations of trajectories in simulated environments. We sample one successful
trajectory for each xArm environment.
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Table 5: Hyper-parameters.

Variable Description Value

b the bounded interval of sampling training frames 9

lrRL learning rate of the RL agent 10−3

λup frequency of 3D update 0.5
λft finetuning scale 0.01
ϕ dynamic camera angle range 30◦

– observation shape 84× 84× 3
– episode length of xArm tasks 50
– episode length of MetaWorld tasks 200
– replay buffer capacity 500k
– batch size of replay buffer sampling 128
– training steps (xArm) 500k
– training steps (Meta-World) 1m
– discount factor 0.99
– initial random steps 1000
– initial temperature 0.1
– frequency of RL update 1
– random shift padding 4
– brightness of color jitter 0.4
– saturation of color jitter 0.4
– contrast of color jitter 0.4
– hue of color jitter 0.5
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