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ABSTRACT

Image restoration, as a longstanding task, aims to recover the missing details and
remove degradations from a corrupted observation. Inspired by the success of
prompt learning in natural language processing, many prompt-based approaches
have been developed for various image restoration tasks. However, these algorithms
mostly operate in the spatial domain. As frequency learning plays an important role
in image restoration by reducing the spectra discrepancy between degraded/sharp
image pairs, this study explores the potential of frequency prompts for efficient
image restoration by proposing a plug-and-play mechanism, which mainly com-
prises a prompt generation module and a prompt integration module. Specifically,
the former encodes different frequency information by aggregating the pre-defined
learnable parameters under the guidance of implicitly decomposed spectra of input
features. Subsequently, to dynamically guide reconstruction, the learned prompts
are embedded into the spectra of features via dual-dimensional attention for ef-
fective frequency learning. To demonstrate the effectiveness of our mechanism,
we conduct experiments on general and all-in-one image restoration tasks. By
incorporating it into a CNN-based backbone, the model achieves state-of-the-art
performance on 15 benchmark datasets for five representative image restoration
tasks. Furthermore, equipped with our mechanism, a pure Transformer network
performs favorably against state-of-the-art algorithms under two all-in-one settings.

1 INTRODUCTION

Due to the physical limitations of low-end sensors or terrible weather, various degradations (haze,
noise, and blur) are often involved in acquired images (Su et al., 2022), which will degrade the
visibility and impact the performance of models for downstream tasks. As an ill-posed problem,
image restoration aims to remove those undesired degradations from observations and recover the
missing details. Early approaches attempted to deal with its ill-posedness by proposing various
assumptions and hand-crafted priors to reduce the solution space (Song et al., 2022; Zhang et al.,
2022). In recent years, the rapid development of deep learning has spawned a great number of
frameworks built on convolutional neural networks (CNNs), which can learn more robust priors from
large-scale data. By means of varied advanced modules, including residual connections (Liu et al.,
2019; Ruan et al., 2022), U-shaped architectures (Mao et al., 2021; Cho et al., 2021), and attention
mechanisms (Qin et al., 2020; Cui et al., 2023d; Zhang et al., 2018b), these methods have achieved
promising performance on multifarious image restoration tasks.

Subsequently, many general image restoration methods have been developed, which can perform
well on a range of tasks after separate training (Chen et al., 2022; 2021a; Cui et al., 2023a). For
example, MPRNet (Zamir et al., 2021) adopts a multi-stage CNN-based architecture to break down
the recovery process into several manageable steps. Transformers have also been introduced into this
track by performing self-attention within different scopes (Tsai et al., 2022; Liang et al., 2021; Wang
et al., 2022; Li et al., 2023a) and dimensions (Zamir et al., 2022a). However, these solutions need
individual training processes and copies when applied to different tasks, which is not practical for
resource-constrained scenarios. To alleviate these issues, the recent all-in-one topic has garnered
significant attention by training a unified model for a series of degradations (Lin et al., 2024; Zhang
et al., 2023; Yang et al., 2023). For instance, AirNet (Li et al., 2022) is one of the pioneering methods
to recover clean images in an all-in-one fashion. It works by contrastively learning the degradation
representations, which are then used to restore the sharp image.
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More recently, prompt learning originating from natural language processing (Zhou et al., 2022a;b)
has been incorporated into general and all-in-one image restoration and has advanced performance
by providing adaptive learning ability. These prompt-based methods encode the degradation priors
using the produced or pre-set prompts (Potlapalli et al., 2024; Yu et al., 2024; Li et al., 2023b; Luo
et al., 2021; Gao et al., 2023; Ai et al., 2023), which are then used to guide the restoration process.
For example, PromptIR (Potlapalli et al., 2024) addresses all-in-one image restoration using the
input-conditioned prompts that learn the knowledge of different degradation types. SelfPromer (Wang
et al., 2024a) formulates the prompts based on depth cues, requiring an expensive depth estimator for
supervision. However, these prompt-based methods mostly operate in the spatial domain without
investigating the significance of frequency learning in prompts, which is also beneficial for high-
fidelity image restoration.

In this paper, we present a plug-and-play prompt-based mechanism by formulating prompts from the
perspective of frequency. To this end, we first embed crucial information about different subbands
into learnable parameters with the guidance of different frequencies produced via a simple frequency
decomposition method. Then, the learned prompts interact with the input features in the frequency
domain via dual-dimensional attention weights. Overall, the resources for learning prompts and
the aggregation method of injecting prompts into features are both from the frequency perspectives,
resulting in consistency and effective frequency learning. Moreover, the dual-dimensional attention
weights facilitate the full use of frequency signals encoded in prompts. By doing these, our mechanism
enables the model to effectively recover clean images by dynamically refining frequency signals.

Our simple yet effective plug-and-play frequency prompt mechanism can be easily applied to CNN-
based and Transformer-based architectures. Specifically, combined with a CNN-based backbone,
our mechanism helps the model achieve state-of-the-art performance on 15 datasets for a range of
representative image restoration tasks, including image dehazing, desnowing, deraining, defocus
deblurring, and low-light image enhancement. Equipped with our mechanism, a pure Transformer
model performs favorably against state-of-the-art algorithms under two all-in-one settings.

2 RELATED WORK

2.1 IMAGE RESTORATION

Given a corrupted image, image restoration aims to recover a clean image by removing degradations
and reconstructing missing details. The development of deep learning has spawned a great number
of methods, which can be roughly divided into three classes in terms of task: task-specific (Qin
et al., 2020; Liu et al., 2019; Cho et al., 2021; Ruan et al., 2022), task-agnostic (or general) (Liang
et al., 2021; Wang et al., 2022; Zamir et al., 2022a; Cui et al., 2023a;c), and all-in-one (Yang et al.,
2023; Potlapalli et al., 2024; Yu et al., 2024; Li et al., 2023b; Luo et al., 2021). The task-specific
methods can only perform well on a specific task, while task-agnostic ones can be applied to several
tasks but need separate training on each dataset. These two categories have made great progress in
terms of performance, which can be attributed to advanced designs for CNN- and Transformer-based
frameworks. The all-in-one task has recently been a hot topic in image restoration because the
all-in-one models can deal with multiple degradation types by training a single model once, which is
suitable for resource-constrained scenarios. In this paper, we conduct experiments on both general
and all-in-one image restoration tasks to demonstrate the effectiveness of the proposed method.

2.2 PROMPT LEARNING

Prompt learning is originally used in natural language processing to finetune a trained model to
a downstream task by providing in-context and task-specific information. Inspired by this, this
technique has been adopted in image restoration algorithms to encode degradation information (Yu
et al., 2024; Li et al., 2023b; Wang et al., 2024b; Zhou et al., 2024). PromptRestorer (Wang et al.,
2023) uses raw degradation features to generate prompts for general tasks and incorporates prompts
from global and local perspectives via self-attention units. PromptCIR (Li et al., 2024) applies spatial
prompts (Potlapalli et al., 2024) for blind compressed image restoration. SelfPromer (Wang et al.,
2024a) formulates the prompt by considering the estimated depth cues for image dehazing. In the
context of the all-in-one setting, PromptIR (Potlapalli et al., 2024) introduces a drop-in prompt
block to dynamically adjust representations for high-fidelity image restoration. Subsequently, DA-
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CLIP (Luo et al., 2021) utilizes content embedding yielded by a large vision-language model to
aggregate prompts for universal image restoration. Nevertheless, these prompt-based approaches
primarily leverage prompts in the spatial domain without exploring the utility in the frequency domain.
In this study, to explore the potential of frequency prompts for image restoration, we use different
frequencies generated via an extremely lightweight frequency decomposition strategy to encode
frequency information into prompts, and then inject prompts into the input features in the frequency
domain via dual-dimensional attention, ensuring the domain consistency between the source of
producing prompts and injecting method. Furthermore, our dual-dimensional operation facilitates
full use of the acquired knowledge in prompts.

3 FREQUENCY PROMPT MECHANISM (FPM)
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Figure 1: Illustration of our frequency prompt
mechanism, containing a prompt generation mod-
ule (PGM) and a prompt integration module (PIM).

Prompt learning is derived from natural lan-
guage processing to achieve parameter-efficient
fine-tuning of pre-trained large models to a tar-
get task. In this study, we explore the potential
of this technique in the spectral domain to en-
code the different frequency signals for adap-
tive and high-fidelity image restoration. The
design principle of our frequency prompt mech-
anism (FPM) is to generate the prompts from
the frequency perspective and incorporate them
into the spectra of input features for effective
frequency learning. To achieve these goals,
we present a prompt generation module (PGM)
and a prompt integration module (PIM). Finally,
FPM is realized by successively using these two
modules, which can be formally expressed as:

X̂ = PIM
(
PGM(X,Pl,Ph),X

)
(1)

where X and X̂ ∈ RC×H×W denote the input features and output of FPM, respectively. C,H , and W

are the channel, height, and width of features. Pl and Ph ∈ RB×C×Ĥ×Ŵ are prompts encoding the
low- and high-frequency information. B specifies the number of prompts and Ĥ × Ŵ is resolution.

3.1 PROMPT GENERATION MODULE (PGM)

The PGM is responsible for encoding the informative information of different frequency subbands
into prompts. To this end, we first leverage a lightweight frequency decouple method and then use
the corresponding frequencies to aggregate the preset learnable parameters.

To be specific, as illustrated in Figure 1, assuming X is the input, a global average pooling (GAP)
layer is applied to yield the low-frequency signals, where GAP serves as a kind of low-pass filter by
computing the average value of the feature. Accordingly, the high-frequency component can be easily
produced by removing this resulting low-frequency subband from the input X. Subsequently, the
attention weights for aggregating the prompts are produced by 1× 1 convolution layers and softmax
functions. After adding the prompts that are expected to encode the frequency information, the output
of PGM is obtained via a 3× 3 convolution. Overall, the process of PGM is formally summarized as:

XPGM = Conv3×3

(
B∑

b=1

W l
bPl

b +

B∑
b=1

Wh
b Ph

b

)
, (2)

W l = Softmax
(
Convl1×1 (GAP(X))

)
, Wh = Softmax

(
Convh1×1 (X −GAP(X))

)
(3)

where XPGM ∈ RC×Ĥ×Ŵ is the output of PGM. GAP and Softmax are global average pooling and
Softmax operators, respectively. Conv1×1 denotes a 1× 1 convolution with the reduction rate of C

B
and Conv3×3 is a 3× 3 convolution layer for final refinement. Before being input into PIM, XPGM is
spatially interpolated to align with the original input for further integration.
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Figure 2: The CNN-based model for general image restoration. FPM is employed in a residual block.

3.2 PROMPT INTEGRATION MODULE (PIM)

The PIM is designed to integrate the combined frequency prompts into the original input features.
Different from existing prompt-based schemes (Potlapalli et al., 2024; Wang et al., 2023; Zhou et al.,
2024) that use cross-attention modules, we instead adopt a more natural solution, refining the spectra
of features.

Specifically, based on the output of PGM, XPGM, PIM first uses a couple of convolution layers
and GAP to generate spatial and channel attention weights, which are then utilized to modulate the
Fourier spectra of the input features. This process can be formally expressed by:

X̂ = F−1 (WcWs (F (Conv1×1(X)))) , (4)
Ws = Convs1×1(XPGM), Wc = Convc1×1(GAP(XPGM)) (5)

where F and F−1 denote the fast Fourier transform and the inverse operator, respectively. Wc ∈
RC×1×1 and Ws ∈ RC×H×W are the generated channel and spatial attention weights.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments in two cases, i.e., general and all-in-one
image restoration tasks, to demonstrate the effectiveness of our proposed mechanism. In each case,
we first delineate the adopted backbone and deployment method of our FPM. Next, we introduce the
implementation details and used datasets. Finally, the experimental results are presented.

4.1 GENERAL IMAGE RESTORATION

To purely verify the efficacy of our design, we integrate our design with a classic U-shaped CNN-based
backbone. As illustrated in Figure 2, the model consists of three scales. Each residual group (RG)
contains N + 1 residual blocks, and the last one accommodates our FPM between two convolutions.

The degraded input image is processed by a 3× 3 convolution layer to generate embedding features.
After going through the three-scale encoder and decoder networks, the restored image is produced by
another 3× 3 convolution layer and image-level residual connection.

4.1.1 IMPLEMENTATION DETAILS

For general image restoration, we conduct experiments by separately training models on different
datasets for five representative image restoration tasks. Specifically, for dehazing, we evaluate our
methods on synthetic daytime datasets (SOTS-Indoor (Li et al., 2018), SOTS-Outdoor (Li et al.,
2018), Haze4K (Liu et al., 2021)), nighttime datasets (GTA5 (Yan et al., 2020), NHR (Zhang et al.,
2020)), remote sensing datasets (SateHaze1k (Huang et al., 2020)-Thin, Moderate, Thick), and a
real-world dataset (DenseHaze (Ancuti et al., 2019)). Moreover, the models are tested on the widely
used CSD (Chen et al., 2021b), SRRS (Chen et al., 2020), and Snow100K (Liu et al., 2018) for image
desnowing, DPDD (Abuolaim & Brown, 2020) for defocus deblurring, LOL-v2-Synthetic (Yang
et al., 2021) for low-light image enhancement, and Test2800 (Fu et al., 2017) for deraining.

The model is trained using the Adam (Kingma & Ba, 2014) optimizer and dual-domain L1 loss
functions (Cho et al., 2021; Cui et al., 2023a). Random horizontal flips are used for data augmentation.
Following previous methods (Cui et al., 2023a; Zamir et al., 2021), we use different numbers of

4
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Table 1: Image dehazing comparisons on the synthetic daytime datasets (SOTS-Indoor (Li et al.,
2018), SOTS-Outdoor (Li et al., 2018)) and a real-world dataset (Dense-Haze (Ancuti et al., 2019)).

SOTS-Indoor SOTS-Outdoor Dense-Haze Average
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MSBDN (Dong et al., 2020a) 33.67 0.985 33.48 0.982 15.37 0.49 27.51 0.819
FFA-Net (Qin et al., 2020) 36.39 0.989 33.57 0.984 14.39 0.45 28.12 0.808
AECR-Net (Wu et al., 2021) 37.17 0.990 - - 15.80 0.47 - -
DeHamer (Guo et al., 2022) 36.63 0.988 35.18 0.986 16.62 0.56 29.48 0.845
PMNet (Ye et al., 2022) 38.41 0.990 34.74 0.985 16.79 0.51 29.98 0.828
MAXIM (Tu et al., 2022) 38.11 0.991 34.19 0.985 - - - -
FocalNet (Cui et al., 2023a) 40.82 0.996 37.71 0.995 17.07 0.63 31.87 0.874
DEA-Net (Chen et al., 2024) 40.20 0.993 36.03 0.989 - - - -
FSNet-S (Cui et al., 2023b) 40.47 0.996 37.24 0.994 17.00 0.65 31.57 0.880
MB-TaylorFormer-B (Qiu et al., 2023) 40.71 0.992 37.42 0.989 16.66 0.56 31.60 0.847

Ours 40.86 0.996 37.86 0.995 17.33 0.65 32.02 0.880

Table 2: Image dehazing comparisons on the remote sensing SateHaze1k (Huang et al., 2020) dataset.
The models are separately trained and tested on each subset.

Thin Moderate Thick Average
Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

AOD-Net (Li et al., 2017) 19.54 0.854 20.10 0.885 15.92 0.731 18.52 0.823
H2RL-Net (Chen et al., 2021c) 20.91 0.880 22.34 0.906 17.41 0.768 20.22 0.851
FCFT-Net (Li & Chen, 2020) 23.59 0.913 22.88 0.927 20.03 0.816 22.17 0.885
Uformer (Wang et al., 2022) 22.82 0.907 24.47 0.939 20.36 0.815 22.55 0.887
C2PNet (Zheng et al., 2023) 19.62 0.880 24.79 0.940 16.83 0.790 20.41 0.870
Restormer (Zamir et al., 2022a) 23.08 0.912 24.73 0.933 18.58 0.762 22.13 0.869
Trinity-Net (Chi et al., 2023) 21.55 0.884 23.35 0.895 20.97 0.823 21.96 0.867
FocalNet (Cui et al., 2023a) 24.16 0.916 25.99 0.947 21.69 0.847 23.95 0.903

Ours 24.27 0.976 26.42 0.978 22.81 0.955 24.50 0.970

Table 3: Image dehazing comparisons on the Haze4K (Liu et al., 2021) dataset.
Method DehazeNet AOD-Net GDN MSBDN FFA-Net PMNet FSNet Ours

PSNR 19.12 17.15 23.29 22.99 26.96 33.49 34.12 34.14
SSIM 0.84 0.83 0.93 0.85 0.95 0.98 0.99 0.99

Table 4: Image dehazing comparisons on the nighttime NHR (Zhang et al., 2020) dataset.
Method GS MRPF MRP OSFD HCD FSNet-S FocalNet Ours

PSNR 17.32 16.95 19.93 21.32 23.43 24.35 25.35 26.24
SSIM 0.629 0.667 0.777 0.804 0.953 0.965 0.969 0.972

Table 5: Image dehazing comparisons on the nighttime GTA5 (Yan et al., 2020) dataset.
Method GS MRP Ancuti et al. Yan et al. CycleGAN Jin et al. FocalNet Ours

PSNR 21.02 20.92 20.59 27.00 21.75 30.38 30.65 30.73
SSIM 0.639 0.646 0.623 0.850 0.696 0.904 0.909 0.911

residual blocks in each RG according to the complexity of tasks. The number of prompts B is set to
5. All experiments are performed on an NVIDIA Tesla A100 GPU. More details of the used datasets
and specific training configurations are provided in the Appendix.
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Table 6: Image desnowing comparisons on CSD (Chen et al., 2021b), SRRS (Chen et al., 2020), and
Snow100K (Liu et al., 2018).

CSD SRRS Snow100K Average
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DesnowNet (Liu et al., 2018) 20.13 0.81 20.38 0.84 30.50 0.94 23.67 0.86
All in One (Li et al., 2020) 26.31 0.87 24.98 0.88 26.07 0.88 25.79 0.88
JSTASR (Chen et al., 2020) 27.96 0.88 25.82 0.89 23.12 0.86 25.63 0.88
HDCW-Net (Chen et al., 2021b) 29.06 0.91 27.78 0.92 31.54 0.95 29.46 0.93
MSP-Former (Chen et al., 2023) 33.75 0.96 30.76 0.95 33.43 0.96 32.65 0.96
TransWeather (Valanarasu et al., 2022) 31.76 0.93 28.29 0.92 31.82 0.93 30.62 0.93
FSNet-S (Cui et al., 2023b) 35.33 0.98 31.39 0.98 33.36 0.95 33.36 0.97
FocalNet (Cui et al., 2023a) 37.18 0.99 31.34 0.98 33.53 0.95 34.02 0.97

Ours 37.31 0.99 31.78 0.98 33.61 0.95 34.23 0.97

Table 7: Image defocus deblurring comparisons on the DPDD (Abuolaim & Brown, 2020) dataset.
Indoor Scenes Outdoor Scenes Combined

Method PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR SSIM MAE LPIPS PSNR SSIM MAE LPIPS

EBDB (Karaali & Jung, 2017) 25.77 0.772 0.040 0.297 21.25 0.599 0.058 0.373 23.45 0.683 0.049 0.336
DMENet (Lee et al., 2019) 25.50 0.788 0.038 0.298 21.43 0.644 0.063 0.397 23.41 0.714 0.051 0.349
JNB (Shi et al., 2015) 26.73 0.828 0.031 0.273 21.10 0.608 0.064 0.355 23.84 0.715 0.048 0.315
DPDNet (Abuolaim & Brown, 2020) 26.54 0.816 0.031 0.239 22.25 0.682 0.056 0.313 24.34 0.747 0.044 0.277
KPAC (Son et al., 2021) 27.97 0.852 0.026 0.182 22.62 0.701 0.053 0.269 25.22 0.774 0.040 0.227
IFAN (Lee et al., 2021) 28.11 0.861 0.026 0.179 22.76 0.720 0.052 0.254 25.37 0.789 0.039 0.217
DRBNet (Ruan et al., 2022) - - 25.73 0.791 - 0.183
Restormer (Zamir et al., 2022a) 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178
FocalNet (Cui et al., 2023a) 29.10 0.876 0.024 0.173 23.41 0.743 0.049 0.246 26.18 0.808 0.037 0.210
Lin et al (Lin et al., 2024) 29.11 0.889 - - 23.35 0.748 - - 26.15 0.817 - -
FSNet (Cui et al., 2023b) 29.14 0.878 0.024 0.166 23.45 0.747 0.050 0.246 26.22 0.811 0.037 0.207

Ours 29.38 0.883 0.023 0.145 23.49 0.753 0.049 0.208 26.35 0.816 0.036 0.178

Table 8: Low-light image enhancement results on the LOL-v2 (Yang et al., 2021) dataset.
Method EnGAN RUAS FIDE DRBN KinD Restormer MIRNet SNR-Net Retinexformer Ours

PSNR 16.57 16.55 15.20 23.22 13.29 21.41 21.94 24.14 25.67 26.21
SSIM 0.734 0.652 0.612 0.927 0.578 0.830 0.876 0.928 0.930 0.958

Table 9: Image deraining comparisons on the Test2800 (Fu et al., 2017) dataset.
Method DerainNet UMRL RESCAN PreNet MSPFN MPRNet FSNet Our

PSNR 24.31 29.97 31.29 31.75 32.82 33.64 33.64 33.72
SSIM 0.861 0.905 0.904 0.916 0.930 0.938 0.936 0.937

19.18 dB 27.23 dB 24.82 dB 27.18 dB 32.90 dB ∞
Hazy Image FFA-Net MAXIM DeHamer Ours GT

Figure 3: Image dehazing comparisons on the SOTS-Outdoor (Li et al., 2018) dataset.

4.1.2 EXPERIMENTAL RESULTS

The quantitative results for image dehazing, desnowing, defocus deblurring, low-light image enhance-
ment, and deraining are presented in Table 1-5, Table 6, Table 7, Table 8, and Table 9, respectively.
The best scores in the tables are highlighted in bold. From the tables, we can see that our network
achieves the best performance on most metrics. It is worth mentioning that our results are obtained
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Table 10: Break-down ablations.
Method Baseline PGM PIM Full

PSNR 31.33 33.82 34.54 35.18
GFLOPs 15.44 19.06 16.26 19.89

Table 11: Different alternatives to PIM.
Spatial Cross PIM

Method Domain Attention w/o Channel Ours

PSNR 34.25 34.17 34.85 35.18

Table 12: Frequencies used to
aggregate prompts in PGM.

Net Frequency PSNR

(a) Baseline 31.33
(b) Low 33.24
(c) High 31.47

(d) None 32.34
(e) Low/Low 33.72
(f) High/High 33.16
(g) Ours 33.82

Hazy Image F (GT-Input) F (GT-Low) F (GT-High)

Figure 4: The spectra of differences between ground truth and hazy
image, low-frequency prompt and high-frequency prompt results.
The latter two images are produced using only the low-frequency
and high-frequency prompts, respectively, during the inference of
our dehazing model. F is the fast Fourier transform. Our frequency
prompts can recover the corresponding frequency signals.

by merging our proposed mechanism into a simple CNN-based backbone. Figure 3 shows that our
model generates a more favorable image than competitors by removing more haze degradations.
These results demonstrate that our novel design is beneficial for high-fidelity image restoration. Due
to the space limit, the qualitative comparisons for more tasks are presented in the Appendix.

4.1.3 ABLATION STUDIES

We perform the ablation results by training a dehazing model (N = 0) on RESIDE-Indoor (Li et al.,
2018) for 300 epochs and testing on SOTS-Indoor (Li et al., 2018). More ablation studies can be
found in the Appendix.

Effects of individual components. The baseline model is obtained by removing our FPM from the
dehazing model. Table 10 shows that the baseline model achieves 31.33 dB PSNR on the SOTS-
Indoor (Li et al., 2018) dataset. Next, equipped with PGM, the model achieves a gain of 2.49 dB
PSNR by directly adding the output of PGM to input features in the spatial domain. The PIM version,
taking the original input features as input and imposing the attention weights on input features in the
spectral domain, outperforms the baseline by 3.21 dB PSNR. Taken together, the full model obtains
the best performance, suggesting the effectiveness of frequency-inspired prompt design.

Design choices for integration method in PIM. We further explore the influence of the integration
method in PIM by performing experiments with several alternatives. Table 11 shows that applying
the attention weights produced by PIM to input features in the spatial domain results in a degradation
of 0.93 dB PSNR compared to our frequency version. The widely adopted cross-attention method in
existing prompt-based algorithms only achieves 34.17 dB PSNR. Using only the spatial attention
in PIM is superior to our bi-dimensional variant. The results reveal that, besides the generation of
prompts, the integration method also plays a significant role in exploring the potential of prompts.

Design choices for PGM. To verify the efficacy of our PGM design, we experiment using different
combinations of frequencies to aggregate prompts. Table 12 shows that the model using the low-
frequency or high-frequency prompts both outperforms the baseline model, demonstrating the
effectiveness of prompt learning for image restoration. The input-conditioned prompts (Table 12
e,f) are superior to the counterpart, None (Table 12 d), where the preset learnable parameters are
directly injected into the input features without the guidance of frequency-based attention weights.
Our design, employing different frequencies for guidance, attains the best performance.

Visual results of our mechanism. To understand the mechanisms of our frequency prompt design
more intuitively, we compute the Fourier spectra of differences between ground truth and the input
image, low-frequency and high-frequency prompt results. For example, the low-frequency result
is obtained by removing the high-frequency prompts during the inference of our dehazing model.
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Figure 5: The Transformer model used for all-in-one image restoration. FPM is deployed in the
decoder stage following (Potlapalli et al., 2024). The architecture of the Transformer Block (TB) is
consistent with (Zamir et al., 2022a).

Table 13: The datasets for three-task and five-task settings. Entries with † are exclusively used for the
five-task setting. The noisy images are yielded by adding Gaussian noise of level σ ∈ {15, 25, 50}.

Task Denoising Deraining Dehazing Deblurring† Low-light†

Train BSD400, WED Rain100L RESIDE-β GoPro LOL-v1
Test BSD68,Urban100,Kodak24† Rain100L SOTS-Outdoor GoPro LOL-v1

Table 14: Comparisons under the three-task setting. A unified model is trained on compound datasets.
Denoising on BSD68 Deraining on Dehazing

σ = 15 σ = 25 σ = 50 Rain100L on SOTS Average
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BRDNet (Tian et al., 2020) 32.26 0.898 29.76 0.836 26.34 0.693 27.42 0.895 23.23 0.895 27.80 0.843
LPNet (Gao et al., 2019) 26.47 0.778 24.77 0.748 21.26 0.552 24.88 0.784 20.84 0.828 23.64 0.738
FDGAN (Dong et al., 2020b) 30.25 0.910 28.81 0.868 26.43 0.776 29.89 0.933 24.71 0.929 28.02 0.883
MPRNet (Zamir et al., 2021) 33.54 0.927 30.89 0.880 27.56 0.779 33.57 0.954 25.28 0.955 30.17 0.899
DL (Fan et al., 2019) 33.05 0.914 30.41 0.861 26.90 0.740 32.62 0.931 26.92 0.931 29.98 0.876
AirNet (Li et al., 2022) 33.92 0.933 31.26 0.888 28.00 0.797 34.90 0.968 27.94 0.962 31.20 0.910
PromptIR (Potlapalli et al., 2024) 33.98 0.933 31.31 0.888 28.06 0.799 36.37 0.972 30.58 0.974 32.06 0.913
Lin et al (Lin et al., 2024) 34.01 0.933 31.39 0.890 28.18 0.802 37.58 0.979 31.63 0.980 32.56 0.916

Ours 34.11 0.935 31.45 0.891 28.19 0.802 38.58 0.982 30.85 0.979 32.64 0.918

Figure 4 shows that frequency prompts effectively recover the corresponding frequency information.
For example, the difference in the high-frequency segments is reduced by our high-frequency prompts.

4.2 ALL-IN-ONE IMAGE RESTORATION

We further integrate our FPM into a plain Transformer-based backbone (Zamir et al., 2022a) to
demonstrate the effectiveness of our method in all-in-one image restoration, which also suggests
the adaptability of our FPM to different architectures. Figure 5 showcases the encoder-decoder
architecture of the used Transformer block, where FPM is employed only in the decoder stage,
following (Potlapalli et al., 2024).

4.2.1 IMPLEMENTATION DETAILS

We evaluate the established model in the three-task setting (Li et al., 2024) (denoising, deraining,
dehazing) and five-task setting (Zhang et al., 2023), where motion deblurring and low-light image
enhancement are additionally adopted. To train a single model under the three-task or five-task setting,
we combine the datasets of those tasks for training (see Table 13). The model is then evaluated using
the corresponding test sets of each task. Following (Li et al., 2024), we also experiment under a
single-task setting, where the model is individually trained and evaluated for each task.

The all-in-one model is trained using Adam (Kingma & Ba, 2014) with a batch size of 32 for 150
epochs. The learning rate is 2e−4 and the patch size is 3×128×128. Random horizontal and vertical
flips are adopted for data augmentation. L1 to L5 in the model are set to 4, 6, 6, 8, and 8, respectively.
Regarding the single-task setting, training setups remain unchanged except for the batch size, which
is set to 8.
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Table 15: Image deraining comparisons on Rain100L (Yang et al., 2019) for the single-task setting.

Method UMR SIRR MSPFN LPNet AirNet Restormer PromptIR Ours

PSNR 32.39 32.37 33.50 33.61 34.90 36.74 37.04 39.03
SSIM 0.921 0.926 0.948 0.958 0.977 0.978 0.979 0.985

Table 16: Image dehazing comparisons in the single-task setting on SOTS-Outdoor (Li et al., 2018).
Method DehazeNet AODNet EPDN FDGAN AirNet Restormer PromptIR Ours

PSNR 22.46 20.29 22.57 23.15 23.18 30.87 31.31 31.66
SSIM 0.851 0.877 0.863 0.921 0.900 0.969 0.973 0.981

Table 17: Denoising scores (PSNR/SSIM) for Urban100 (Huang et al., 2015) and BSD68 (Martin
et al., 2001) in single-task setting.

Urban100 BSD68
Method σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 Average

CBM3D (Dabov et al., 2007) 33.93/0.941 31.36/0.909 27.93/0.840 33.50/0.922 30.69/0.868 27.36/0.763 30.80/0.874
DnCNN (Zhang et al., 2017a) 32.98/0.931 30.81/0.902 27.59/0.833 33.89/0.930 31.23/0.883 27.92/0.789 30.74/0.878
IRCNN (Zhang et al., 2017b) 27.59/0.833 31.20/0.909 27.70/0.840 33.87/0.929 31.18/0.882 27.88/0.790 29.90/0.864
FFDNet (Zhang et al., 2018a) 33.83/0.942 31.40/0.912 28.05/0.848 33.87/0.929 31.21/0.882 27.96/0.789 31.05/0.884
BRDNet (Tian et al., 2020) 34.42/0.946 31.99/0.919 28.56/0.858 34.10/0.929 31.43/0.885 28.16/0.794 31.44/0.889
AirNet (Li et al., 2022) 34.40/0.949 32.10/0.924 28.88/0.871 34.14/0.936 31.48/0.893 28.23/0.806 31.54/0.897
PromptIR (Potlapalli et al., 2024) 34.77/0.952 32.49/0.929 29.39/0.881 34.34/0.938 31.71/0.897 28.49/0.813 31.87/0.902

Ours 34.91/0.952 32.74/0.931 29.72/0.886 34.35/0.938 31.71/0.897 28.50/0.814 31.99/0.903

Table 18: Results (PSNR/SSIM) for the five-task setting. Denoising scores are computed with σ = 25.
The first and second super-lists include the generate and all-in-one restoration methods, respectively.

Dehazing Deraining Denoising Deblurring Low-Light
Method on SOTS on Rain100L on BSD68 on GoPro on LOL Average

NAFNet (Chen et al., 2022) 25.23/0.939 35.56/0.967 31.02/0.883 26.53/0.808 20.49/0.809 27.76/0.881
HINet (Chen et al., 2021a) 24.74/0.937 35.67/0.969 31.00/0.881 26.12/0.788 19.47/0.800 27.40/0.875
MPRNet (Zamir et al., 2021) 24.27/0.937 38.16/0.981 31.35/0.889 26.87/0.823 20.84/0.824 28.27/0.890
DGUNet (Mou et al., 2022) 24.78/0.940 36.62/0.971 31.10/0.883 27.25/0.837 21.87/0.823 28.32/0.891
MIRNetV2 (Zamir et al., 2022b) 24.03/0.927 33.89/0.954 30.97/0.881 26.30/0.799 21.52/0.815 27.34/0.875
SwinIR (Liang et al., 2021) 21.50/0.891 30.78/0.923 30.59/0.868 24.52/0.773 17.81/0.723 25.04/0.835
Restormer (Zamir et al., 2022a) 24.09/0.927 34.81/0.962 31.49/0.884 27.22/0.829 20.41/0.806 27.60/0.881

DL (Fan et al., 2019) 20.54/0.826 21.96/0.762 23.09/0.745 19.86/0.672 19.83/0.712 21.05/0.743
Transweather (Valanarasu et al., 2022) 21.32/0.885 29.43/0.905 29.00/0.841 25.12/0.757 21.21/0.792 25.22/0.836
TAPE (Liu et al., 2022) 22.16/0.861 29.67/0.904 30.18/0.855 24.47/0.763 18.97/0.621 25.09/0.801
AirNet (Li et al., 2022) 21.04/0.884 32.98/0.951 30.91/0.882 24.35/0.781 18.18/0.735 25.49/0.846
IDR (Zhang et al., 2023) 25.24/0.943 35.63/0.965 31.60/0.887 27.87/0.846 21.34/0.826 28.34/0.893

Ours 30.90/0.980 37.99/0.981 31.34/0.888 28.32/0.862 23.21/0.846 30.35/0.911

4.2.2 EXPERIMENTAL RESULTS

The quantitative results for the three-task setting are presented in Table 14. Our model performs well
on most datasets and metrics. Particularly on the Rain100L (Yang et al., 2019) dataset for image
deraining, the performance gain can be as significant as 1 dB PSNR compared to the second-best
method (Lin et al., 2024). Moreover, following previous schemes (Li et al., 2022; 2024), we evaluate
our model under the single-task setting by training models individually for each task. The results
for image deraining, dehazing, and denoising are reported in Table 15, Table 16, and Table 17,
respectively. Our model achieves 2.99 dB, 0.35 dB, and 0.12 dB performance gains over the recent
state-of-the-art PromptIR (Li et al., 2024) algorithm, which employs spatial prompts. These results
demonstrate the superiority of our design.

In addition, we provide the comparisons under the five-task setting in Table 18. Our method is
superior to competitors on most tasks. Specifically, our method achieves an average performance
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Table 19: Image denoising results (PSNR) on Urban100 (Huang et al., 2015) and Kodak24 (Franzen,
1999). The scores are obtained by directly using the model trained under the five-task setting.

Urban100 Kodak24
Method σ = 15 σ = 25 σ = 50 σ = 15 σ = 25 σ = 50 Average

DL (Fan et al., 2019) 21.10 21.28 20.42 22.63 22.66 21.95 21.67
Transweather (Valanarasu et al., 2022) 29.64 27.97 26.08 31.67 29.64 26.74 28.62
TAPE (Liu et al., 2022) 32.19 29.65 25.87 33.24 30.70 27.19 29.81
AirNet (Li et al., 2022) 33.16 30.83 27.45 34.14 31.74 28.59 30.99
IDR (Zhang et al., 2023) 33.82 31.29 28.07 34.78 32.42 29.13 31.59

Ours 34.08 31.67 28.29 34.89 32.39 29.22 31.76

Table 20: Ablation studies under the all-in-one setting.
Dehazing Deraining on Denoising on BSD68
on SOTS Rain100L σ = 15 σ = 25 σ = 50 Average

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Baseline 28.37 0.956 35.28 0.964 33.82 0.930 31.16 0.884 27.84 0.785 31.29 0.904
PGM 30.17 0.974 36.67 0.973 33.82 0.931 31.16 0.884 27.88 0.788 31.94 0.910
PIM 30.15 0.977 37.13 0.977 33.85 0.931 31.18 0.885 27.91 0.791 32.04 0.912
Full (FPM) 30.97 0.978 37.16 0.978 33.88 0.932 31.21 0.887 27.94 0.792 32.23 0.913

gain of 2.01 dB PSNR over IDR (Zhang et al., 2023). Especially for dehazing on SOTS (Li et al.,
2018), the advantage can reach 5.66 dB PSNR. These results indicate the effectiveness of our method.
We provide visualizations for all-in-one settings in the Appendix.

Furthermore, we directly apply the model trained under the five-task setting to two out-of-distribution
denoising datasets. Table 19 shows that our model has a stronger generalization ability than
IDR (Zhang et al., 2023) by producing an average gain of 0.17 dB PSNR. Especially on the Ur-
ban100 (Huang et al., 2015) dataset, the advantage can be as large as 0.38 dB PSNR for σ = 25.

4.2.3 ABLATION STUDIES

We perform ablation studies by training the model for 30 epochs under the three-task setting to
demonstrate the effectiveness of our FPM in all-in-one settings. Table 20 shows the Transformer
baseline model achieves an average PSNR of 31.29 dB. Our PIM improves performance on all
degradation types and levels, resulting in an average gain of 0.75 dB in PSNR. The complete model,
incorporating PIM and PGM, further boosts the performance on all datasets, suggesting the efficacy
of our design.

5 CONCLUSION

This paper presents a frequency prompt mechanism (FPM) for image restoration, which is designed by
using the implicitly decomposed frequency signals to guide the aggregation of predefined learnable
parameters and injecting the learned prompts into the spectra of original input features. More
concretely, the prompt generation module leverages the global average pooling to decouple features
into different frequency segments for guidance to make prompts encode informative low- and
high-frequency information. The obtained prompts are then incorporated with input features via
bi-dimensional attention in the spectral domain. FPM can be employed in different architectures.
Built on it, the CNN-based network achieves state-of-the-art performance on 15 datasets for five
representative image restoration tasks, including image dehazing, defocus deblurring, desnowing,
deraining, and low-light image enhancement. Furthermore, equipped with FPM, the Transformer
backbone performs favorably against state-of-the-art algorithms in all-in-one restoration settings.
These results demonstrate that our design is a valuable contribution to the realm of image restoration.
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APPENDIX

This appendix provides specific training configurations for general image restoration, more ablation
studies, computational comparisons, and visual comparisons.

A DATASETS AND TRAINING CONFIGURATIONS

In this section, we provide more details of the used datasets and specific training configurations for
different general image restoration tasks. According to the complexity of different tasks, we set
N to 3 for tasks of dehazing, desnowing, and low-light image enhancement and 15 for deblurring
and deraining. Unless specified otherwise, the patch size and batch size adopted for training are
3× 256× 256 and 8, respectively. The initial learning rate is set to 2e−4, which is reduced to 1e−6

with the cosine annealing strategy.

Image Dehazing. We evaluate our method on four kinds of datasets: synthetic daytime datasets, a
real-world dataset, nighttime datasets, and remote sensing datasets. For daytime scenes, we use the
widely adopted RESIDE-Indoor (Li et al., 2018) and RESIDE-Outdoor (Li et al., 2018) datasets for
training and evaluation. Specifically, the model is trained on these two datasets for 1000 epochs and
30 epochs, respectively, and then tested on the corresponding test sets: SOTS-Indoor (Li et al., 2018)
and SOTS-Outdoor (Li et al., 2018). The initial learning rate for RESIDE-Outdoor is set to 1e−4.
Moreover, our method is trained and evaluated on a more realistic synthetic dataset, Haze4K (Liu
et al., 2021). The model is trained for 1000 epochs with a batch size of 4 and a learning rate of 1e−4.
Furthermore, our model is trained and tested on the Dense-Haze (Ancuti et al., 2019) datasets to
evaluate its robustness in real-world scenarios. The model is trained for 5000 epochs with a batch
size of 2 and patch size of 800× 1200, following (Cui et al., 2023a; Guo et al., 2022).

In addition to daytime scenes, our model is further evaluated in nighttime scenes. Two commonly
used datasets are adopted, i.e., GTA5 (Yan et al., 2020) and NHR (Zhang et al., 2020). Given
nighttime hazy images, the ground truth images of these two datasets are nighttime clean images and
daytime clean images. The models are trained for 300 epochs on the two datasets with a learning rate
of 1e−4.

Since image dehazing plays an essential role in remote sensing, we evaluate our model on a remote
sensing dataset, SateHaze1k (Huang et al., 2020), which consists of three sub-sets with different
levels of haze degradations: thin, moderate, and thick. The model is separately trained for three
datasets for 1000 epochs with a batch size of 32 and a learning rate of 8e−4.

Image Defocus Deblurring. Consistent with recent algorithms (Ruan et al., 2022; Cui et al., 2023a;
Zamir et al., 2022a), we use the DPDD (Abuolaim & Brown, 2020) datasets for evaluation. This
dataset comprises 350, 74, and 76 scenes for training, validation, and testing. There are four images
in each scene, named center view, left view, right view, and an all-in-focus ground truth. Our model is
trained under the single-image setting by taking the center-view images as input and computing loss
values between the output and ground truth. Our training strategy is identical to that of algorithms (Cui
et al., 2023a; Ruan et al., 2022).

Image Desnowing. For this task, we use three widely-adopted datasets for training and testing,
i.e., CSD (Chen et al., 2021b), SRRS (Chen et al., 2020), and Snow100K (Liu et al., 2018). The
preprocessing for these datasets remains identical to previous methods (Chen et al., 2020; Cui et al.,
2023a) for fair comparisons. The models are trained for 2000 epochs.

Image Deraining. For image deraining, the model is trained on a compound dataset that is mixed
based on (Fu et al., 2017; Yang et al., 2017; Zhang et al., 2019; Li et al., 2016), following (Zamir
et al., 2022a; Cui et al., 2023b), and tested on the Test2800 (Fu et al., 2017) dataset. The PSNR/SSIM
scores are measured using the Y channel in the YCbCr color space, which is consistent with existing
methods (Zamir et al., 2022a; Cui et al., 2023b). The model is trained for 300 epochs with a batch
size of 4 and a learning rate of 1e−4.

Low-Light Image Enhancement. For this task, the model is evaluated on LOL-v2-synthetic (Yang
et al., 2021), which consists of 900 and 100 paired images for training and testing, respectively. The
model is trained for 2200 epochs on 3× 128× 128 patches.
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B MORE ABLATION STUDIES

In this section, more ablation results on general image restoration are provided. We first investigate the
influence of the number of prompts in general image restoration. Table 21 shows that the performance
improves as we increase the number of paired prompts from 1 to 5. However, more prompts lead to
degraded performance, which is probably because of overfitting. As a consequence, we finally chose
five paired prompts for better results.

Table 21: Ablation studies for the number of paired prompts.
Number 1 3 5 7 11

PSNR 34.01 35.10 35.18 35.03 34.93

Equipped with our mechanism, CNN-based and Transformer-based backbones achieve state-of-the-art
performance on two kinds of image restoration tasks. It is necessary to compare our backbone, i.e.,
without using prompting modules, to previous state-of-the-art algorithms. To this end, we conduct
experiments on multiple datasets for different tasks using our baseline models and keep the training
configurations identical to the final models. From Table 22 to Table 25, we can see that the baseline
model is inferior to previous algorithms. When employing our proposed method, they achieve the
state-of-the-art performance, demonstrating the effectiveness of our design.

Table 22: Ablation studies on the SOTS (Li et al., 2018) dataset for image dehazing.
SOTS-Indoor SOTS-Outdoor

Method PSNR SSIM PSNR SSIM

Baseline 39.07 0.995 34.98 0.993
FocalNet 40.82 0.996 37.71 0.995
DEA-Net 40.20 0.993 36.03 0.989
FSNet-S 40.47 0.996 37.24 0.994
MB-TaylorFormer-B 40.71 0.992 37.42 0.989

Ours 40.86 0.996 37.86 0.995

Table 23: Ablation studies on the Test2800 (Fu et al., 2017) dataset for image deraining.
Method Baseline MPRNet FSNet Ours
PSNR 33.57 33.64 33.64 33.72
SSIM 0.936 0.938 0.936 0.937

Table 24: Ablation studies on SRRS (Chen et al., 2020) and Snow100K (Liu et al., 2018) for image
desnowing.

SRRS Snow100K
Method PSNR SSIM PSNR SSIM

Baseline 30.16 0.98 33.13 0.95
MSP-Former 30.76 0.95 33.43 0.96
FSNet-S 31.39 0.98 33.36 0.95
FocalNet 31.34 0.98 33.53 0.95

Ours 31.78 0.98 33.61 0.95

C COMPLEXITY COMPARISONS

We compare our method with state-of-the-art algorithms on image dehazing and all-in-one im-
age restoration. Figure 6 shows that our model outperforms the recent Transformer-based MB-

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 25: Ablation studies on the DPDD (Abuolaim & Brown, 2020) dataset for image defocus
deblurring.

Indoor Scenes Outdoor Scenes Combined
Method PSNR↑ SSIM↑ MAE↓ LPIPS↓ PSNR SSIM MAE LPIPS PSNR SSIM MAE LPIPS

Baseline 28.72 0.878 0.025 0.147 23.21 0.750 0.503 0.209 25.89 0.812 0.039 0.178
Restormer 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178
FocalNet 29.10 0.876 0.024 0.173 23.41 0.743 0.049 0.246 26.18 0.808 0.037 0.210
Lin et al. 29.11 0.889 - - 23.35 0.748 - - 26.15 0.817 - -
FSNet 29.14 0.878 0.024 0.166 23.45 0.747 0.050 0.246 26.22 0.811 0.037 0.207

Ours 29.38 0.883 0.023 0.145 23.49 0.753 0.049 0.208 26.35 0.816 0.036 0.178

TaylorFormer-B (Qiu et al., 2023) with comparable complexity. Furthermore, as illustrated in
Figure 7, our network achieves a significant performance gain over the PromptIR (Li et al., 2024)
method in the all-in-one setting, consuming lower complexity. The results demonstrate the efficiency
of our design.

50 100 150 200 250 300
FLOPs/G

33

34

35

36

37

38

PS
NR

/d
B

DeHamer
CVPR22

PMNet
ECCV22

FFA-Net
AAAI20

MB-TaylorFormer-B
ICCV23

DEA-Net
TIP24

Ours

Figure 6: FLOPs vs. PSNR on the SOTS-
Outdoor (Li et al., 2018) dataset for image
dehazing.
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Figure 7: FLOPs vs. PSNR for all-in-one
models under the three-task setting.

D VISUAL COMPARISONS

In this section, we provide visual comparisons for general and all-in-one image restoration tasks.
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Figure 8: Image deraining comparisons on the Rain100L (Yang et al., 2019) dataset under the
single-task setting.
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Figure 9: Image denoising comparisons on BSD68 (Martin et al., 2001) with σ = 50 under the
single-task setting.
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Figure 10: Image dehazing comparisons on the SOTS-Outdoor (Li et al., 2018) dataset under the
single-task setting.
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Figure 11: Image denoising comparisons on BSD68 (Martin et al., 2001) with σ = 50 under the
three-task setting.
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Image Input AirNet PromptIR Ours Reference

Figure 12: Image deraining comparisons on Rain100L (Yang et al., 2019) under the three-task setting.
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Hazy 11.68 dB 20.19 dB 27.45 dB 32.38 dB PSNR

Hazy 10.57 dB 24.54 dB 24.73 dB 26.81 dB PSNR
Image Input AirNet PromptIR Ours Reference

Figure 13: Image dehazing comparisons on SOTS-Outdoor (Li et al., 2018) under the three-task
setting.

Blurry 19.96 dB 20.17 dB 20.35 dB 20.32 dB
Image Input IFAN KPAC DeepRFT

21.12 dB 21.29 dB 21.37 dB 21.50 dB ∞
DRBNet Restormer FocalNet Ours GT

Figure 14: Image defocus deblurring results on the DPDD (Abuolaim & Brown, 2020) dataset.
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13.25 dB 13.72 dB 17.80 dB 31.55 dB
Snowy Image DesnowNet JSTASR HDCW-Net

39.71 dB 40.06 dB 40.28 dB ∞
ChaIR-T FocalNet Ours GT

Figure 15: Image desnowing comparisons on the CSD (Chen et al., 2021b) dataset.

12.24 12.02 dB 14.86 dB 16.15 dB ∞
Input DeHamer FocalNet Ours GT

Figure 16: Image dehazing comparisons on the real-world Dense-Haze (Ancuti et al., 2019) dataset.

15.26 dB 25.76 dB 29.45 dB 33.20 dB ∞
Input PMNet FSNet Ours GT

Figure 17: Image dehazing comparisons on the Haze4K (Liu et al., 2021) dataset.

10.62 dB 18.41 dB 21.63 dB 36.22 dB ∞
Low-Light SNR-Net Retinexformer Ours GT

Figure 18: Low-light image enhancement comparisons on the LOL-v2 (Yang et al., 2021) dataset.
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21.14 dB 28.76 dB
Input Jin et al.

30.29 dB ∞
Ours GT

Figure 19: Image dehazing comparisons on the GTA5 (Yan et al., 2020) dataset.

7.52 dB 9.10 dB 11.15 dB 22.88 dB 26.94 dB ∞
Input OSFD MRPF FoalNet Ours GT

Figure 20: Image dehazing comparisons on the NHR (Zhang et al., 2020) dataset.
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