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ABSTRACT

Image restoration, as a longstanding task, aims to recover the missing details and
remove degradations from a corrupted observation. Inspired by the success of
prompt learning in natural language processing, many prompt-based approaches
have been developed for various image restoration tasks. However, these algorithms
mostly operate in the spatial domain. As frequency learning plays an important role
in image restoration by reducing the spectra discrepancy between degraded/sharp
image pairs, this study explores the potential of frequency prompts for efficient
image restoration by proposing a plug-and-play mechanism, which mainly com-
prises a prompt generation module and a prompt integration module. Specifically,
the former encodes different frequency information by aggregating the pre-defined
learnable parameters under the guidance of implicitly decomposed spectra of input
features. Subsequently, to dynamically guide reconstruction, the learned prompts
are embedded into the spectra of features via dual-dimensional attention for ef-
fective frequency learning. To demonstrate the effectiveness of our mechanism,
we conduct experiments on general and all-in-one image restoration tasks. By
incorporating it into a CNN-based backbone, the model achieves state-of-the-art
performance on 15 benchmark datasets for five representative image restoration
tasks. Furthermore, equipped with our mechanism, a pure Transformer network
performs favorably against state-of-the-art algorithms under two all-in-one settings.

1 INTRODUCTION

Due to the physical limitations of low-end sensors or terrible weather, various degradations (haze,
noise, and blur) are often involved in acquired images (Su et al., [2022), which will degrade the
visibility and impact the performance of models for downstream tasks. As an ill-posed problem,
image restoration aims to remove those undesired degradations from observations and recover the
missing details. Early approaches attempted to deal with its ill-posedness by proposing various
assumptions and hand-crafted priors to reduce the solution space (Song et al., [2022; [Zhang et al.,
2022). In recent years, the rapid development of deep learning has spawned a great number of
frameworks built on convolutional neural networks (CNNs), which can learn more robust priors from
large-scale data. By means of varied advanced modules, including residual connections (Liu et al.,
2019; [Ruan et al., 2022)), U-shaped architectures (Mao et al.,|2021}; |Cho et al.,|2021)), and attention
mechanisms (Qin et al.}[2020; |Cui et al., |2023d;|Zhang et al.,|2018b), these methods have achieved
promising performance on multifarious image restoration tasks.

Subsequently, many general image restoration methods have been developed, which can perform
well on a range of tasks after separate training (Chen et al., 2022; 2021a; [Cui et al. [2023a)). For
example, MPRNet (Zamir et al.,|2021)) adopts a multi-stage CNN-based architecture to break down
the recovery process into several manageable steps. Transformers have also been introduced into this
track by performing self-attention within different scopes (Tsai et al.,[2022} [Liang et al.,2021; Wang
et al., 2022; L1 et al., [2023a) and dimensions (Zamir et al., 2022a)). However, these solutions need
individual training processes and copies when applied to different tasks, which is not practical for
resource-constrained scenarios. To alleviate these issues, the recent all-in-one topic has garnered
significant attention by training a unified model for a series of degradations (Lin et al.| 2024; Zhang
et al.,2023; Yang et al.,|2023)). For instance, AirNet (L1 et al.l|2022) is one of the pioneering methods
to recover clean images in an all-in-one fashion. It works by contrastively learning the degradation
representations, which are then used to restore the sharp image.
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More recently, prompt learning originating from natural language processing (Zhou et al., 2022ajb)
has been incorporated into general and all-in-one image restoration and has advanced performance
by providing adaptive learning ability. These prompt-based methods encode the degradation priors
using the produced or pre-set prompts (Potlapalli et al., 2024;[Yu et al.,[2024; [Li et al., 2023b; [Luo
et al.,|2021;|Gao et al.} 2023} |Ai et al.| 2023)), which are then used to guide the restoration process.
For example, PromptIR (Potlapalli et al.| [2024)) addresses all-in-one image restoration using the
input-conditioned prompts that learn the knowledge of different degradation types. SelfPromer (Wang
et al.| 2024a)) formulates the prompts based on depth cues, requiring an expensive depth estimator for
supervision. However, these prompt-based methods mostly operate in the spatial domain without
investigating the significance of frequency learning in prompts, which is also beneficial for high-
fidelity image restoration.

In this paper, we present a plug-and-play prompt-based mechanism by formulating prompts from the
perspective of frequency. To this end, we first embed crucial information about different subbands
into learnable parameters with the guidance of different frequencies produced via a simple frequency
decomposition method. Then, the learned prompts interact with the input features in the frequency
domain via dual-dimensional attention weights. Overall, the resources for learning prompts and
the aggregation method of injecting prompts into features are both from the frequency perspectives,
resulting in consistency and effective frequency learning. Moreover, the dual-dimensional attention
weights facilitate the full use of frequency signals encoded in prompts. By doing these, our mechanism
enables the model to effectively recover clean images by dynamically refining frequency signals.

Our simple yet effective plug-and-play frequency prompt mechanism can be easily applied to CNN-
based and Transformer-based architectures. Specifically, combined with a CNN-based backbone,
our mechanism helps the model achieve state-of-the-art performance on 15 datasets for a range of
representative image restoration tasks, including image dehazing, desnowing, deraining, defocus
deblurring, and low-light image enhancement. Equipped with our mechanism, a pure Transformer
model performs favorably against state-of-the-art algorithms under two all-in-one settings.

2 RELATED WORK

2.1 IMAGE RESTORATION

Given a corrupted image, image restoration aims to recover a clean image by removing degradations
and reconstructing missing details. The development of deep learning has spawned a great number
of methods, which can be roughly divided into three classes in terms of task: task-specific (Qin
et al.}2020; |Liu et al.,[2019;|Cho et al., 2021; Ruan et al., [2022)), task-agnostic (or general) (Liang
et al.,|2021; Wang et al.| 2022} Zamir et al., [2022a; |Cui et al.,|2023alic), and all-in-one (Yang et al.,
2023} [Potlapalli et al., [2024; |Yu et al., 2024} |Li et al., 2023b; [Luo et al., |2021). The task-specific
methods can only perform well on a specific task, while task-agnostic ones can be applied to several
tasks but need separate training on each dataset. These two categories have made great progress in
terms of performance, which can be attributed to advanced designs for CNN- and Transformer-based
frameworks. The all-in-one task has recently been a hot topic in image restoration because the
all-in-one models can deal with multiple degradation types by training a single model once, which is
suitable for resource-constrained scenarios. In this paper, we conduct experiments on both general
and all-in-one image restoration tasks to demonstrate the effectiveness of the proposed method.

2.2 PROMPT LEARNING

Prompt learning is originally used in natural language processing to finetune a trained model to
a downstream task by providing in-context and task-specific information. Inspired by this, this
technique has been adopted in image restoration algorithms to encode degradation information (Yu
et al., 2024 |Li et al., 2023bj [Wang et al., [2024b; |Zhou et al., [2024)). PromptRestorer (Wang et al.,
2023)) uses raw degradation features to generate prompts for general tasks and incorporates prompts
from global and local perspectives via self-attention units. PromptCIR (Li et al.} 2024) applies spatial
prompts (Potlapalli et al., 2024])) for blind compressed image restoration. SelfPromer (Wang et al.,
2024a) formulates the prompt by considering the estimated depth cues for image dehazing. In the
context of the all-in-one setting, PromptIR (Potlapalli et al.| 2024) introduces a drop-in prompt
block to dynamically adjust representations for high-fidelity image restoration. Subsequently, DA-
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CLIP (Luo et al [2021)) utilizes content embedding yielded by a large vision-language model to
aggregate prompts for universal image restoration. Nevertheless, these prompt-based approaches
primarily leverage prompts in the spatial domain without exploring the utility in the frequency domain.
In this study, to explore the potential of frequency prompts for image restoration, we use different
frequencies generated via an extremely lightweight frequency decomposition strategy to encode
frequency information into prompts, and then inject prompts into the input features in the frequency
domain via dual-dimensional attention, ensuring the domain consistency between the source of
producing prompts and injecting method. Furthermore, our dual-dimensional operation facilitates
full use of the acquired knowledge in prompts.

3  FREQUENCY PROMPT MECHANISM (FPM)

Prompt learning is derived from natural lan-
guage processing to achieve parameter-efficient 55y
fine-tuning of pre-trained large models to a tar-
get task. In this study, we explore the potential
of this technique in the spectral domain to en-
code the different frequency signals for adap-
tive and high-fidelity image restoration. The
design principle of our frequency prompt mech-
anism (FPM) is to generate the prompts from
the frequency perspective and incorporate them
into the spectra Of input features fOI' effective Q@@ Elem.ent»wisesublracl\on/muVadd @ Linear combination  ( Softmax
frequency learnine. To achieve these goals F~1 Inverse fourier transform Global average pooling Convolution

q y g goals,
we present a prompt generation module (PGM)
and a prompt integration module (PIM). Finally, Figure 1: Illustration of our frequency prompt
FPM is realized by successively using these two mechanism, containing a prompt generation mod-
modules, which can be formally expressed as: ~ ule (PGM) and a prompt integration module (PIM).

Prompts P!

X = PIM (PGM(X,PZ,P}’),X) (0

where X and X € ROXH*W denote the input features and output of FPM, respectively. C, H, and W
are the channel, height, and width of features. P! and P* € RBXC*H*W are prompts encoding the
low- and high-frequency information. B specifies the number of prompts and H x W is resolution.

3.1 PROMPT GENERATION MODULE (PGM)

The PGM is responsible for encoding the informative information of different frequency subbands
into prompts. To this end, we first leverage a lightweight frequency decouple method and then use
the corresponding frequencies to aggregate the preset learnable parameters.

To be specific, as illustrated in Figure[I] assuming X is the input, a global average pooling (GAP)
layer is applied to yield the low-frequency signals, where GAP serves as a kind of low-pass filter by
computing the average value of the feature. Accordingly, the high-frequency component can be easily
produced by removing this resulting low-frequency subband from the input X. Subsequently, the
attention weights for aggregating the prompts are produced by 1 x 1 convolution layers and softmax
functions. After adding the prompts that are expected to encode the frequency information, the output
of PGM is obtained via a 3 x 3 convolution. Overall, the process of PGM is formally summarized as:

B B
Xpan = Conviys (Z WP, + > W,,’lP{;) 7 2)

b=1 b=1
W' = Softmax (Convl1X1 (GAP(X))) , W" = Softmax (Conv}fXl (X - GAP(X))) 3)

where Xpay € RO *W ig the output of PGM. GAP and Softmax are global average pooling and
Softmax operators, respectively. Convy 1 denotes a 1 x 1 convolution with the reduction rate of %
and Convs s is a 3 X 3 convolution layer for final refinement. Before being input into PIM, Xpgayr is
spatially interpolated to align with the original input for further integration.
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Figure 2: The CNN-based model for general image restoration. FPM is employed in a residual block.

3.2 PROMPT INTEGRATION MODULE (PIM)

The PIM is designed to integrate the combined frequency prompts into the original input features.

Different from existing prompt-based schemes (Potlapalli et all, 2024; [Wang et al.} 2023} [Zhou et al.,

[2024) that use cross-attention modules, we instead adopt a more natural solution, refining the spectra
of features.

Specifically, based on the output of PGM, Xpgn, PIM first uses a couple of convolution layers
and GAP to generate spatial and channel attention weights, which are then utilized to modulate the
Fourier spectra of the input features. This process can be formally expressed by:

X = F‘i1 (WCWS (F (Conlel(x)))) ) (4)
W, = Convi,;(Xpam), We = Convi, (GAP(Xpcm)) ©)

where I and F~! denote the fast Fourier transform and the inverse operator, respectively. W, €
REX1x1 and W, € RE*HXW are the generated channel and spatial attention weights.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments in two cases, i.e., general and all-in-one
image restoration tasks, to demonstrate the effectiveness of our proposed mechanism. In each case,
we first delineate the adopted backbone and deployment method of our FPM. Next, we introduce the
implementation details and used datasets. Finally, the experimental results are presented.

4.1 GENERAL IMAGE RESTORATION

To purely verify the efficacy of our design, we integrate our design with a classic U-shaped CNN-based
backbone. As illustrated in Figure [2] the model consists of three scales. Each residual group (RG)
contains NV + 1 residual blocks, and the last one accommodates our FPM between two convolutions.

The degraded input image is processed by a 3 x 3 convolution layer to generate embedding features.
After going through the three-scale encoder and decoder networks, the restored image is produced by
another 3 X 3 convolution layer and image-level residual connection.

4.1.1 IMPLEMENTATION DETAILS

For general image restoration, we conduct experiments by separately training models on different
datasets for five representative image restoration tasks. Specifically, for dehazing, we evaluate our
methods on synthetic daytime datasets (SOTS-Indoor 2018), SOTS-Outdoor (Li et al.
2018), Haze4dK 2021)), nighttime datasets (GTA5 2020), NHR (Zhang et al.
2020)), remote sensing datasets (SateHazelk (Huang et all, 2020)-Thin, Moderate, Thick), and a
real-world dataset (DenseHaze 2019)). Moreover, the models are tested on the widely
used CSD (Chen et al., 2021b), SRRS (Chen et al.,[2020), and Snow100K for image
desnowing, DPDD (Abuolaim & Brown, 2020) for defocus deblurring, LOL-v2-Synthetic

2021])) for low-light image enhancement, and Test2800 (Fu et al.l[2017) for deraining.
The model is trained using the Adam (Kingma & Bal [2014) optimizer and dual-domain L; loss

functions (Cho et al,[2021}[Cui et al,[2023a)). Random horizontal flips are used for data augmentation.
Following previous methods (Cui et al., [2023a} [Zamir et al [2021), we use different numbers of
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Table 1: Image dehazing comparisons on the synthetic daytime datasets (SOTS-Indoor (Li et al.,
2018)), SOTS-Outdoor (Li et al.} 2018))) and a real-world dataset (Dense-Haze (Ancuti et al., 2019)).

SOTS-Indoor | SOTS-Outdoor | Dense-Haze Average
Method PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM
MSBDN (Dong et al.|[2020a) 33.67 0985|3348 0982 | 1537 0.49 | 27.51 0.819
FFA-Net (Qin et al.|[2020) 36.39 0.989 | 33.57 0.984 | 1439 045 | 28.12 0.808
AECR-Net (Wu et al.[[2021) 37.17 0.990 - - 15.80 0.47 - -
DeHamer (Guo et al.[[2022) 36.63 0.988 | 35.18 0.986 | 16.62 0.56 | 29.48 0.845
PMNet (Ye et al./[2022) 3841 0990 | 3474 0985 | 16.79 0.51 | 2998 0.828
MAXIM (Tu et al.|[2022) 38.11 0.991 | 34.19 0.985 - - - -
FocalNet (Cui et al.|[2023a) 40.82 0.996 | 37.71 0.995 | 17.07 0.63 | 31.87 0.874
DEA-Net (Chen et al.|[2024) 40.20 0.993 | 36.03 0.989 - - - -
FSNet-S (Cui et al.|2023b) 4047 0.996 | 37.24 0994 | 17.00 0.65 | 31.57 0.880
MB-TaylorFormer-B (Qiu et al.|[2023) | 40.71 0.992 | 37.42 0.989 | 16.66 0.56 | 31.60 0.847

Ours

40.86 0.996 | 37.86 0.995 | 17.33  0.65 | 32.02 0.880

Table 2: Image dehazing comparisons on the remote sensing SateHazelk (Huang et al.,|2020) dataset.
The models are separately trained and tested on each subset.

\ Thin | Moderate | Thick | Average
Methods | PSNR SSIM | PSNR SSIM | PSNR SSIM | PSNR SSIM
AOD-Net (Li et al.|2017) 19.54 0.854 20.10 0.885 15.92 0.731 18.52 0.823
H2RL-Net (Chen et al.![2021c) 20.91 0.880 22.34 0.906 17.41 0.768 20.22 0.851
FCFT-Net (Li & Chen/2020) 23.59 0913 22.88 0.927 20.03 0.816 22.17 0.885
Uformer (Wang et al.![2022) 22.82 0.907 24.47 0.939 20.36 0.815 22.55 0.887
C?PNet (Zheng et al.|[2023) 19.62 0.880 24.79 0.940 16.83 0.790 20.41 0.870
Restormer (Zamir et al.[[2022a) 23.08 0.912 24.73 0.933 18.58 0.762 22.13 0.869
Trinity-Net (Chi et al.[|2023) 21.55 0.884 23.35 0.895 20.97 0.823 21.96 0.867
FocalNet (Cui et al.||2023a) 24.16 0916 25.99 0.947 21.69 0.847 23.95 0.903
Ours \ 24.27 0.976 \ 26.42 0.978 \ 22.81 0.955 \ 24.50 0.970

Table 3: Image dehazing comparisons on the Haze4K (Liu et al.,|[2021) dataset.
Method ‘ DehazeNet AOD-Net GDN MSBDN FFA-Net PMNet FSNet ‘ Ours

PSNR 19.12 17.15 23.29 22.99 26.96 33.49 34.12 34.14
SSIM 0.84 0.83 0.93 0.85 0.95 0.98 0.99 0.99

Table 4: Image dehazing comparisons on the nighttime NHR (Zhang et al.,|2020) dataset.

Method | GS MRPF MRP OSFD HCD FSNet-S FocalNet | Ours
PSNR 17.32 16.95 19.93 21.32 23.43 24.35 25.35 26.24
SSIM 0.629 0.667 0.777 0.804 0.953 0.965 0.969 0.972

Table 5: Image dehazing comparisons on the nighttime GTAS (Yan et al.,[2020) dataset.
Method | GS MRP  Ancutietral.  Yanetal. CycleGAN  Jinetal.  FocalNet | Ours

PSNR 21.02 2092 20.59 27.00 21.75 30.38 30.65 30.73
SSIM 0.639  0.646 0.623 0.850 0.696 0.904 0.909 0.911

residual blocks in each RG according to the complexity of tasks. The number of prompts B is set to
5. All experiments are performed on an NVIDIA Tesla A100 GPU. More details of the used datasets
and specific training configurations are provided in the Appendix.
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Table 6: Image desnowing comparisons on CSD (Chen et al.| 2021b), SRRS 2020), and
Snow 100K (Liu et al.l 2018).
CSD SRRS ‘ Snow 100K ‘ Average

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
2018
All'in One (Li et al.| 2030
JSTASR (Chen et al.|[2020)

Chen et al.[20

MSP-Former ) . . . . . .

TransWeather . 2022| 31.76 0.93 28.29 0.92 31.82 0.93 30.62 0.93
FSNet-S (Cui et al.[[2023b 35.33 0.98 31.39 0.98 33.36 0.95 33.36 0.97
FocalNet (Cui et al. a 37.18 0.99 31.34 0.98 33.53 0.95 34.02 0.97
Ours \ 37.31 0.99 \ 31.78 0.98 \ 33.61 0.95 \ 34.23 0.97

Table 7: Image defocus deblurring comparisons on the DPDD (Abuolaim & Brown| [2020) dataset.

Indoor Scenes Outdoor Scenes Combined
Method PSNR?T SSIMtT MAE] LPIPS||PSNR SSIM MAE LPIPS |PSNR SSIM MAE LPIPS
EBDB (Karaali & Jung![2017 2577 0.772 0.040 0.297 |21.25 0.599 0.058 0.373 | 23.45 0.683 0.049 0.336
DMENet 1|m 25.50 0.788 0.038 0.298 |21.43 0.644 0.063 0.397 | 23.41 0.714 0.051 0.349
INB 1m!|m]_[-j 26.73 0.828 0.031 0.273 |21.10 0.608 0.064 0.355 | 23.84 0.715 0.048 0.315

DPDNet | 2020)| 26.54 0.816 0.031 0.239 |22.25 0.682 0.056 0.313 | 24.34 0.747 0.044 0.277
a 0

KPAC 2797 0852 0026 0.182 |22.62 0.701 0.053 0.269 | 2522 0.774 0.040 0227
IFAN (Cee et al.||2021] 28.11 0.861 0.026 0.179 |22.76 0.720 0.052 0.254 | 2537 0.789 0.039 0.217
DRBNet (Ruan et al.] - - 2573 0791 - 0.183
Restormer T1720. 28.87 0.882 0.025 0.145 |23.24 0.743 0.050 0.209 | 2598 0.811 0.038 0.178
FocalNet 100 29.10 0876 0.024 0.173 | 2341 0.743 0.049 0.246 | 26.18 0.808 0.037 0.210
Lin et al (Cin et al.| 2024 2911 0889 - - |2335 0748 - - 2615 0817 - -

FSNet (Cui et al| 29.14 0878 0.024 0.166 | 2345 0.747 0.050 0.246 | 2622 0.811 0.037 0.207

=)
=
=
v
N
>
X}
®

0.883  0.023 0.145 |23.49 0.753 0.049 0.208 | 26.35 0.816 0.036 0.178

Table 8: Low-light image enhancement results on the LOL-v2 (Yang et al.,[202T)) dataset.
Method | EnGAN RUAS FIDE DRBN KinD Restormer MIRNet SNR-Net Retinexformer | Ours

PSNR 16.57 1655 1520 2322 13.29 2141 21.94 24.14 25.67 26.21
SSIM 0.734  0.652 0.612 0927 0.578 0.830 0.876 0.928 0.930 0.958

Table 9: Image deraining comparisons on the Test2800 (Fu et al., 2017) dataset.
Method ‘ DerainNet UMRL RESCAN PreNet MSPFN MPRNet FSNet ‘ Our

PSNR ‘ 2431 29.97 31.29 31.75 32.82 33.64 33.64 ‘ 33.72

SSIM 0.861 0.905 0.904 0.916 0.930 0.938 0.936 0.937

19.18 dB 27.23 dB 24.82 dB 27.18 dB 3290 dB
Hazy Image FFA-Net MAXIM DeHamer Ours

Figure 3: Image dehazing comparisons on the SOTS-Outdoor (Li et al.| [2018)) dataset.

4.1.2 EXPERIMENTAL RESULTS

The quantitative results for image dehazing, desnowing, defocus deblurring, low-light image enhance-
ment, and deraining are presented in Table[T}{5] Table[6] Table[7] Table[8] and Table[9] respectively.
The best scores in the tables are highlighted in bold. From the tables, we can see that our network
achieves the best performance on most metrics. It is worth mentioning that our results are obtained
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Table 10: Break-down ablations. Table 11: Different alternatives to PIM.

Method | Baseline PGM PIM | Full Spatial Cross PIM
PSNR 3133 3382 3454 ‘ 35.18 Method Domain Attention w/o Channel Ours

GFLOPs | 1544  19.06 1626 | 19.89 PSNR | 3425 34.17 34.85 | 35.18

i
Table 12: Frequencies used to |
aggregate prompts in PGM. \
Net | PSNR R_ / £

Frequenc
a Y Hazy Image F(GT-Input) F(GT-Low) F(GT-High)

(a) Baseline 31.33

(b) Low 33.24 " Figure 4: The spectra of differences between ground truth and hazy
© High 3147 image, low-frequency prompt and high-frequency prompt results.
(d) None 32.34 The latter two images are produced using only the low-frequency
(e) Low/Low 33.72 and high-frequency prompts, respectively, during the inference of
(® High/High 33.16 our dehazing model. F is the fast Fourier transform. Our frequency
(® Ours 33.82  prompts can recover the corresponding frequency signals.

by merging our proposed mechanism into a simple CNN-based backbone. Figure 3] shows that our
model generates a more favorable image than competitors by removing more haze degradations.
These results demonstrate that our novel design is beneficial for high-fidelity image restoration. Due
to the space limit, the qualitative comparisons for more tasks are presented in the Appendix.

4.1.3 ABLATION STUDIES

We perform the ablation results by training a dehazing model (/N = 0) on RESIDE-Indoor (Li et al.,
2018)) for 300 epochs and testing on SOTS-Indoor (Li et al., 2018)). More ablation studies can be
found in the Appendix.

Effects of individual components. The baseline model is obtained by removing our FPM from the
dehazing model. Table [I0]shows that the baseline model achieves 31.33 dB PSNR on the SOTS-
Indoor (Li et al.,[2018]) dataset. Next, equipped with PGM, the model achieves a gain of 2.49 dB
PSNR by directly adding the output of PGM to input features in the spatial domain. The PIM version,
taking the original input features as input and imposing the attention weights on input features in the
spectral domain, outperforms the baseline by 3.21 dB PSNR. Taken together, the full model obtains
the best performance, suggesting the effectiveness of frequency-inspired prompt design.

Design choices for integration method in PIM. We further explore the influence of the integration
method in PIM by performing experiments with several alternatives. Table[TT]shows that applying
the attention weights produced by PIM to input features in the spatial domain results in a degradation
of 0.93 dB PSNR compared to our frequency version. The widely adopted cross-attention method in
existing prompt-based algorithms only achieves 34.17 dB PSNR. Using only the spatial attention
in PIM is superior to our bi-dimensional variant. The results reveal that, besides the generation of
prompts, the integration method also plays a significant role in exploring the potential of prompts.

Design choices for PGM. To verify the efficacy of our PGM design, we experiment using different
combinations of frequencies to aggregate prompts. Table [I2]shows that the model using the low-
frequency or high-frequency prompts both outperforms the baseline model, demonstrating the
effectiveness of prompt learning for image restoration. The input-conditioned prompts (Table[T2]
e,f) are superior to the counterpart, None (Table[12]d), where the preset learnable parameters are
directly injected into the input features without the guidance of frequency-based attention weights.
Our design, employing different frequencies for guidance, attains the best performance.

Visual results of our mechanism. To understand the mechanisms of our frequency prompt design
more intuitively, we compute the Fourier spectra of differences between ground truth and the input
image, low-frequency and high-frequency prompt results. For example, the low-frequency result
is obtained by removing the high-frequency prompts during the inference of our dehazing model.
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Figure 5: The Transformer model used for all-in-one image restoration. FPM is deployed in the
decoder stage following (Potlapalli et al.,[2024). The architecture of the Transformer Block (TB) is
consistent with (Zamir et al., [2022a)).

Table 13: The datasets for three-task and five-task settings. Entries with { are exclusively used for the
five-task setting. The noisy images are yielded by adding Gaussian noise of level o € {15,25,50}.

Task ‘ Denoising ‘ Deraining ‘ Dehazing ‘ Deblurring® ‘ Low-light'

Train BSD400, WED Rain100L RESIDE-38 GoPro LOL-v1
Test BSD68,Urbanl1 00,K0dak24T Rain100L SOTS-Outdoor GoPro LOL-v1

Table 14: Comparisons under the three-task setting. A unified model is trained on compound datasets.

Denoising on BSD68 Deraining on | Dehazing
o=15 oc=25 o =50 Rain100L on SOTS Average
Method PSNR SSIM|PSNR SSIM |PSNR SSIM |PSNR SSIM |PSNR SSIM |[PSNR SSIM
BRDNet (Tian et al.,[2020) 3226 0.898|29.76 0.836|26.34 0.693 | 27.42 0.895|23.23 0.895|27.80 0.843
LPNet (Gao et al.[[2019) 26.47 0.778|24.77 0.748|21.26 0.552|24.88 0.784|20.84 0.828 | 23.64 0.738

FDGAN (Dong et al.![2020b) 30.25 0.910|28.81 0.868|26.43 0.776 | 29.89 0.933 | 24.71 0.929 | 28.02 0.883
MPRNet (Zamir et al.|2021) 33.54 0.927|30.89 0.880|27.56 0.779|33.57 0.954|25.28 0.955|30.17 0.899

DL (Fan et al.[|2019) 33.05 0914|3041 0.861|26.90 0.740|32.62 0.93126.92 0.931|29.98 0.876
AirNet (Li et al.|[2022) 3392 0.933|31.26 0.888|28.00 0.797 | 3490 0.968 | 27.94 0.962 | 31.20 0.910
PromptIR (Potlapalli et al.|2024) | 33.98 0.933 | 31.31 0.888|28.06 0.799 | 36.37 0.972| 30.58 0.974|32.06 0.913
Lin et al (Lin et al.}[2024) 34.01 0.933|31.39 0.890|28.18 0.802|37.58 0.979 | 31.63 0.980 | 32.56 0.916
Ours | 3411 0.935| 31.45 0.891|28.19 0.802]| 38.58 0.982|30.85 0.979|32.64 0.918

Figure [ shows that frequency prompts effectively recover the corresponding frequency information.
For example, the difference in the high-frequency segments is reduced by our high-frequency prompts.

4.2 ALL-IN-ONE IMAGE RESTORATION

We further integrate our FPM into a plain Transformer-based backbone (Zamir et al., 2022a) to
demonstrate the effectiveness of our method in all-in-one image restoration, which also suggests
the adaptability of our FPM to different architectures. Figure [5] showcases the encoder-decoder
architecture of the used Transformer block, where FPM is employed only in the decoder stage,
following (Potlapalli et al.| 2024).

4.2.1 IMPLEMENTATION DETAILS

We evaluate the established model in the three-task setting (Li et al., [2024) (denoising, deraining,
dehazing) and five-task setting (Zhang et al., [2023)), where motion deblurring and low-light image
enhancement are additionally adopted. To train a single model under the three-task or five-task setting,
we combine the datasets of those tasks for training (see Table[T3). The model is then evaluated using
the corresponding test sets of each task. Following (Li et al., 2024}, we also experiment under a
single-task setting, where the model is individually trained and evaluated for each task.

The all-in-one model is trained using Adam (Kingma & Bal 2014) with a batch size of 32 for 150
epochs. The learning rate is 2¢~* and the patch size is 3 x 128 x 128. Random horizontal and vertical
flips are adopted for data augmentation. L to Ls in the model are set to 4, 6, 6, 8, and 8, respectively.
Regarding the single-task setting, training setups remain unchanged except for the batch size, which
is set to 8.
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Table 15: Image deraining comparisons on Rain100L (Yang et al.,[2019)) for the single-task setting.
Method \ UMR SIRR MSPFN LPNet AirNet Restormer PromptIR Ours

PSNR 32.39 32.37 33.50 33.61 34.90 36.74 37.04 39.03
SSIM 0.921 0.926 0.948 0.958 0.977 0.978 0.979 0.985

Table 16: Image dehazing comparisons in the single-task setting on SOTS-Outdoor (Li et al., 2018)).
Method ‘ DehazeNet AODNet EPDN  FDGAN  AirNet Restormer PromptIR  Ours

PSNR 22.46 20.29 22.57 23.15 23.18 30.87 31.31 31.66
SSIM 0.851 0.877 0.863 0.921 0.900 0.969 0.973 0.981

Table 17: Denoising scores (PSNR/SSIM) for Urban100 (Huang et al.l 2015) and BSD68 (Martin
et al.| 2001) in single-task setting.

Urban100 BSD68
Method o=15 | 6=25 | o0=50 o=15 | 0=25 | 0=50 Average
CBM3D (Dabov et al.||2007) 33.93/0.941 | 31.36/0.909 | 27.93/0.840 | 33.50/0.922 | 30.69/0.868 | 27.36/0.763 | 30.80/0.874

DnCNN (Zhang et al.[[2017a) 32.98/0.931 | 30.81/0.902 | 27.59/0.833 | 33.89/0.930 | 31.23/0.883 | 27.92/0.789 | 30.74/0.878
IRCNN (Zhang et al.!|2017b) 27.59/0.833 | 31.20/0.909 | 27.70/0.840 | 33.87/0.929 | 31.18/0.882 | 27.88/0.790 | 29.90/0.864
FFDNet (Zhang et al.|/[2018a) 33.83/0.942 | 31.40/0.912 | 28.05/0.848 | 33.87/0.929 | 31.21/0.882 | 27.96/0.789 | 31.05/0.884

BRDNet (Tian et al.|[2020) 34.42/0.946 | 31.99/0.919 | 28.56/0.858 | 34.10/0.929 | 31.43/0.885 | 28.16/0.794 | 31.44/0.889
AirNet (L1 et al.[2022) 34.40/0.949 | 32.10/0.924 | 28.88/0.871 | 34.14/0.936 | 31.48/0.893 | 28.23/0.806 | 31.54/0.897
PromptIR (Potlapalli et al.|[2024) | 34.77/0.952 | 32.49/0.929 | 29.39/0.881 | 34.34/0.938 | 31.71/0.897 | 28.49/0.813 | 31.87/0.902
Ours | 34.91/0.952 | 32.74/0.931 | 29.72/0.886 | 34.35/0.938 | 31.71/0.897 | 28.50/0.814 | 31.99/0.903

Table 18: Results (PSNR/SSIM) for the five-task setting. Denoising scores are computed with o = 25.
The first and second super-lists include the generate and all-in-one restoration methods, respectively.

Dehazing | Deraining | Denoising | Deblurring | Low-Light
Method on SOTS |on RainlOOL | on BSD68 | on GoPro on LOL Average
NAFNet (Chen et al.|[2022) 25.23/0.939 | 35.56/0.967 | 31.02/0.883|26.53/0.808 | 20.49/0.809 | 27.76/0.881
HINet (Chen et al.[[2021a) 24.74/0.937 | 35.67/0.969 | 31.00/0.881 | 26.12/0.788 | 19.47/0.800 | 27.40/0.875
MPRNet (Zamir et al.[[2021) 24.27/0.937 | 38.16/0.981 |31.35/0.889|26.87/0.823 | 20.84/0.824 | 28.27/0.890
DGUNet (Mou et al.|[[2022) 24.78/0.940 | 36.62/0.971 | 31.10/0.883 | 27.25/0.837 | 21.87/0.823 | 28.32/0.891
MIRNetV2 (Zamir et al.[[2022b) 24.03/0.927 | 33.89/0.954 |30.97/0.881 | 26.30/0.799 | 21.52/0.815 | 27.34/0.875
SwinlR (Liang et al.|2021) 21.50/0.891 | 30.78/0.923 | 30.59/0.868 | 24.52/0.773 | 17.81/0.723 | 25.04/0.835
Restormer (Zamir et al.;[2022a) 24.09/0.927 | 34.81/0.962 | 31.49/0.884 | 27.22/0.829 | 20.41/0.806 | 27.60/0.881
DL (Fan et al.|[2019) 20.54/0.826 | 21.96/0.762 |23.09/0.745 | 19.86/0.672 | 19.83/0.712 | 21.05/0.743
Transweather (Valanarasu et al.|[2022) | 21.32/0.885 | 29.43/0.905 |29.00/0.841 | 25.12/0.757 | 21.21/0.792 | 25.22/0.836
TAPE (Liu et al.|[|2022) 22.16/0.861 | 29.67/0.904 | 30.18/0.855|24.47/0.763 | 18.97/0.621 | 25.09/0.801
AirNet (Li et al.[[2022) 21.04/0.884 | 32.98/0.951 |30.91/0.882|24.35/0.781 | 18.18/0.735 | 25.49/0.846
IDR (Zhang et al.|[2023) 25.24/0.943 | 35.63/0.965 | 31.60/0.887 | 27.87/0.846 | 21.34/0.826 | 28.34/0.893
Ours [ 30.90/0.980 | 37.99/0.981 | 31.34/0.888 | 28.32/0.862 | 23.21/0.846 | 30.35/0.911

4.2.2 EXPERIMENTAL RESULTS

The quantitative results for the three-task setting are presented in Table[T4] Our model performs well
on most datasets and metrics. Particularly on the Rain100L (Yang et al.l [2019) dataset for image
deraining, the performance gain can be as significant as 1 dB PSNR compared to the second-best
method (Lin et al.;[2024). Moreover, following previous schemes (Li et al.| [2022} [2024)), we evaluate
our model under the single-task setting by training models individually for each task. The results
for image deraining, dehazing, and denoising are reported in Table [I5] Table [I6] and Table [I7]
respectively. Our model achieves 2.99 dB, 0.35 dB, and 0.12 dB performance gains over the recent
state-of-the-art PromptIR (L1 et al.,|2024)) algorithm, which employs spatial prompts. These results
demonstrate the superiority of our design.

In addition, we provide the comparisons under the five-task setting in Table [I8] Our method is
superior to competitors on most tasks. Specifically, our method achieves an average performance
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Table 19: Image denoising results (PSNR) on Urban100 (Huang et al.| |2015)) and Kodak24 (Franzen|
1999)). The scores are obtained by directly using the model trained under the five-task setting.

Urban100 Kodak24
Method oc=150=25 0=250|c =15 0 =25 o = 50| Average
DL (Fan et al.,[2019) 21.10 21.28 20.42 | 22.63 22.66 2195 | 21.67
Transweather (Valanarasu et al., 2022)| 29.64 27.97 26.08 | 31.67 29.64 26.74 | 28.62
TAPE (Liu et al.,|2022) 32.19 29.65 25.87 | 33.24 30.70 27.19 | 29.81
AirNet (Li et al., 2022) 33.16 30.83 27.45 | 34.14 31.74 28.59 | 30.99
IDR (Zhang et al.| 2023) 33.82 31.29 28.07 | 3478 32.42 29.13 | 31.59
Ours | 34.08 31.67 28.29 | 34.89 3239 29.22 | 31.76
Table 20: Ablation studies under the all-in-one setting.

Dehazing | Deraining on Denoising on BSD68

on SOTS Rain100L oc=15 o=25 o =150 Average
Method PSNR SSIM |PSNR SSIM |PSNR SSIM |PSNR SSIM |PSNR SSIM |PSNR SSIM
Baseline | 28.37 0.956|35.28 0.964 | 33.82 0.930|31.16 0.884|27.84 0.785]31.29 0.904
PGM 30.17 0.974|36.67 0.973|33.82 0.931|31.16 0.884|27.88 0.788|31.94 0.910
PIM 30.15 0.977|37.13 0.977|33.85 0.931|31.18 0.885|27.91 0.791|32.04 0.912
Full (FPM) | 30.97 0.978 | 37.16 0.978|33.88 0.932|31.21 0.887|27.94 0.792]32.23 0913

gain of 2.01 dB PSNR over IDR (Zhang et al., [2023)). Especially for dehazing on SOTS (Li et al.,
2018)), the advantage can reach 5.66 dB PSNR. These results indicate the effectiveness of our method.
We provide visualizations for all-in-one settings in the Appendix.

Furthermore, we directly apply the model trained under the five-task setting to two out-of-distribution
denoising datasets. Table [T9] shows that our model has a stronger generalization ability than
IDR (Zhang et al., 2023) by producing an average gain of 0.17 dB PSNR. Especially on the Ur-
ban100 (Huang et al.l 2015)) dataset, the advantage can be as large as 0.38 dB PSNR for o = 25.

4.2.3 ABLATION STUDIES

We perform ablation studies by training the model for 30 epochs under the three-task setting to
demonstrate the effectiveness of our FPM in all-in-one settings. Table [20|shows the Transformer
baseline model achieves an average PSNR of 31.29 dB. Our PIM improves performance on all
degradation types and levels, resulting in an average gain of 0.75 dB in PSNR. The complete model,
incorporating PIM and PGM, further boosts the performance on all datasets, suggesting the efficacy
of our design.

5 CONCLUSION

This paper presents a frequency prompt mechanism (FPM) for image restoration, which is designed by
using the implicitly decomposed frequency signals to guide the aggregation of predefined learnable
parameters and injecting the learned prompts into the spectra of original input features. More
concretely, the prompt generation module leverages the global average pooling to decouple features
into different frequency segments for guidance to make prompts encode informative low- and
high-frequency information. The obtained prompts are then incorporated with input features via
bi-dimensional attention in the spectral domain. FPM can be employed in different architectures.
Built on it, the CNN-based network achieves state-of-the-art performance on 15 datasets for five
representative image restoration tasks, including image dehazing, defocus deblurring, desnowing,
deraining, and low-light image enhancement. Furthermore, equipped with FPM, the Transformer
backbone performs favorably against state-of-the-art algorithms in all-in-one restoration settings.
These results demonstrate that our design is a valuable contribution to the realm of image restoration.

10
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APPENDIX

This appendix provides specific training configurations for general image restoration, more ablation
studies, computational comparisons, and visual comparisons.

A  DATASETS AND TRAINING CONFIGURATIONS

In this section, we provide more details of the used datasets and specific training configurations for
different general image restoration tasks. According to the complexity of different tasks, we set
N to 3 for tasks of dehazing, desnowing, and low-light image enhancement and 15 for deblurring
and deraining. Unless specified otherwise, the patch size and batch size adopted for training are
3 x 256 x 256 and 8, respectively. The initial learning rate is set to 2¢~*, which is reduced to 1e~¢
with the cosine annealing strategy.

Image Dehazing. We evaluate our method on four kinds of datasets: synthetic daytime datasets, a
real-world dataset, nighttime datasets, and remote sensing datasets. For daytime scenes, we use the
widely adopted RESIDE-Indoor (Li et al., [2018)) and RESIDE-Outdoor (Li et al.,[2018]) datasets for
training and evaluation. Specifically, the model is trained on these two datasets for 1000 epochs and
30 epochs, respectively, and then tested on the corresponding test sets: SOTS-Indoor (Li et al., [2018)
and SOTS-Outdoor (Li et al.,2018). The initial learning rate for RESIDE-Outdoor is set to 1le=*.
Moreover, our method is trained and evaluated on a more realistic synthetic dataset, Haze4K (Liu
et al.,[2021). The model is trained for 1000 epochs with a batch size of 4 and a learning rate of le™%.
Furthermore, our model is trained and tested on the Dense-Haze (Ancuti et al., 2019) datasets to
evaluate its robustness in real-world scenarios. The model is trained for 5000 epochs with a batch
size of 2 and patch size of 800 x 1200, following (Cui et al.l 2023a; |Guo et al.| 2022).

In addition to daytime scenes, our model is further evaluated in nighttime scenes. Two commonly
used datasets are adopted, i.e., GTAS (Yan et al., 2020) and NHR (Zhang et al.| 2020). Given
nighttime hazy images, the ground truth images of these two datasets are nighttime clean images and
daytimg clean images. The models are trained for 300 epochs on the two datasets with a learning rate
of le™*.

Since image dehazing plays an essential role in remote sensing, we evaluate our model on a remote
sensing dataset, SateHazelk (Huang et al.l [2020), which consists of three sub-sets with different
levels of haze degradations: thin, moderate, and thick. The model is separately trained for three
datasets for 1000 epochs with a batch size of 32 and a learning rate of 8¢ 4.

Image Defocus Deblurring. Consistent with recent algorithms (Ruan et al.| 2022; |Cui et al.| [2023a;}
Zamir et al.| [2022a)), we use the DPDD (Abuolaim & Brown, [2020) datasets for evaluation. This
dataset comprises 350, 74, and 76 scenes for training, validation, and testing. There are four images
in each scene, named center view, left view, right view, and an all-in-focus ground truth. Our model is
trained under the single-image setting by taking the center-view images as input and computing loss
values between the output and ground truth. Our training strategy is identical to that of algorithms (Cui
et al., 2023a; |Ruan et al., [2022).

Image Desnowing. For this task, we use three widely-adopted datasets for training and testing,
i.e., CSD (Chen et al., 2021b)), SRRS (Chen et al., 2020), and Snow100K (Liu et al., 2018)). The
preprocessing for these datasets remains identical to previous methods (Chen et al., 2020; |Cui et al.}
2023al) for fair comparisons. The models are trained for 2000 epochs.

Image Deraining. For image deraining, the model is trained on a compound dataset that is mixed
based on (Fu et al.| 2017; Yang et al.| 2017; Zhang et al.,[2019; L1 et al., |2016)), following (Zamir
et al.,[2022a; (Cui et al., [2023Db), and tested on the Test2800 (Fu et al.,|2017) dataset. The PSNR/SSIM
scores are measured using the Y channel in the YCbCr color space, which is consistent with existing
methods (Zamir et al.,[2022a; |Cui et al.,|2023b). The model is trained for 300 epochs with a batch

size of 4 and a learning rate of 1e~2.

Low-Light Image Enhancement. For this task, the model is evaluated on LOL-v2-synthetic (Yang
et al.| [2021)), which consists of 900 and 100 paired images for training and testing, respectively. The
model is trained for 2200 epochs on 3 x 128 x 128 patches.
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B MORE ABLATION STUDIES

In this section, more ablation results on general image restoration are provided. We first investigate the
influence of the number of prompts in general image restoration. Table[21|shows that the performance
improves as we increase the number of paired prompts from 1 to 5. However, more prompts lead to
degraded performance, which is probably because of overfitting. As a consequence, we finally chose
five paired prompts for better results.

Table 21: Ablation studies for the number of paired prompts.
Number | 1 3 5 7 11

PSNR | 3401 35.10 35.18 35.03 34.93

Equipped with our mechanism, CNN-based and Transformer-based backbones achieve state-of-the-art
performance on two kinds of image restoration tasks. It is necessary to compare our backbone, i.e.,
without using prompting modules, to previous state-of-the-art algorithms. To this end, we conduct
experiments on multiple datasets for different tasks using our baseline models and keep the training
configurations identical to the final models. From Table 22]to Table we can see that the baseline
model is inferior to previous algorithms. When employing our proposed method, they achieve the
state-of-the-art performance, demonstrating the effectiveness of our design.

Table 22: Ablation studies on the SOTS (Li et al.} 2018])) dataset for image dehazing.

SOTS-Indoor | SOTS-Outdoor
Method PSNR SSIM | PSNR SSIM
Baseline 39.07 0.995 | 3498 0.993
FocalNet 40.82 0996 | 37.71 0.995
DEA-Net 40.20 0993 | 36.03 0.989
FSNet-S 4047 0996 | 37.24 0.994
MB-TaylorFormer-B | 40.71 0.992 | 37.42 0.989
Ours | 40.86 0.996 | 37.86  0.995

Table 23: Ablation studies on the Test2800 (Fu et al.,[2017) dataset for image deraining.
Method \ Baseline MPRNet FSNet Ours

PSNR ‘ 33.57 33.64 33.64 33.72

SSIM 0.936 0.938 0.936  0.937

Table 24: Ablation studies on SRRS (Chen et al., 2020) and Snow 100K (Liu et al.,[2018)) for image
desnowing.

SRRS Snow 100K
Method PSNR SSIM | PSNR SSIM
Baseline 30.16 098 | 33.13 0095
MSP-Former | 30.76  0.95 3343  0.96
FSNet-S 31.39 098 | 3336 0095
FocalNet 31.34 0.98 33.53 0.95
Ours \ 31.78 0.98 \ 33.61 0.95

C COMPLEXITY COMPARISONS

We compare our method with state-of-the-art algorithms on image dehazing and all-in-one im-
age restoration. Figure [6] shows that our model outperforms the recent Transformer-based MB-
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Table 25: Ablation studies on the DPDD (Abuolaim & Brown, 2020) dataset for image defocus
deblurring.

Indoor Scenes Outdoor Scenes Combined
Method PSNRT SSIMT MAE] LPIPS||PSNR SSIM MAE LPIPS |PSNR SSIM MAE LPIPS

Baseline | 28.72 0.878 0.025 0.147 | 23.21 0.750 0.503 0.209 | 25.89 0.812 0.039 0.178
Restormer | 28.87 0.882 0.025 0.145 | 23.24 0.743 0.050 0.209 | 25.98 0.811 0.038 0.178
FocalNet | 29.10 0.876 0.024 0.173 | 23.41 0.743 0.049 0.246 | 26.18 0.808 0.037 0.210
Linetal. | 29.11 0.889 - - 2335 0.748 - - 26.15 0.817 - -

FSNet 29.14 0.878 0.024 0.166 |23.45 0.747 0.050 0.246 | 26.22 0.811 0.037 0.207

Ours | 29.38 0.883 0.023 0.145 |23.49 0.753 0.049 0.208 | 26.35 0.816 0.036 0.178

TaylorFormer-B (Qiu et al.l [2023) with comparable complexity. Furthermore, as illustrated in
Figure |/l our network achieves a significant performance gain over the PromptIR (Li et al., [2024)
method in the all-in-one setting, consuming lower complexity. The results demonstrate the efficiency
of our design.

38—%Ours 328
* MB-TaylorFormer-B 326 ¥ Ours
37 ICCVv23 :
32.4
DEA-Net 32.2
936 * 724 @ PromptIR
< DeHamer 332.0 NeurlPS23
0, H* CVPR22 e
PMNet g318
ECCV22 316
34
FFA-Net , 34 )
AAAI20 31.2 AirNet *
33 CVPR22
50 100 150 200 250 300 310
FLOPs/G V7150 175 200 225 250 275 300
FLOPs/G

Figure 6: FLOPs vs. PSNR on the SOTS-
Outdoor (Li et al., 2018) dataset for image
dehazing.

Figure 7: FLOPs vs. PSNR for all-in-one
models under the three-task setting.

D VisuAL COMPARISONS

In this section, we provide visual comparisons for general and all-in-one image restoration tasks.
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26.29 dB 35.39dB 42.47 dB PSNR

19.98 dB 18.85 dB 31.93dB PSNR
Input AirNet (Li et al.} 2022) Ours Reference

Figure 8: Image deraining comparisons on the Rain100L (Yang et all, 2019) dataset under the
single-task setting.
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Figure 9: Image denoising comparisons on BSD68 (Martin et al, 2001) with o = 50 under the
single-task setting.
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Figure 10: Image dehazing comparisons on the SOTS-Outdoor (Li et al.,[2018) dataset under the
single-task setting.
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Figure 11: Image denoising comparisons on BSD68 (Martin et al., 2001) with ¢ = 50 under the

three-task setting.
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Figure 12: Image deraining comparisons on Rain100L under the three-task setting.
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Figure 13: Image dehazing comparisons on SOTS-Outdoor 2018)) under the three-task
setting.
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Figure 14: Image defocus deblurring results on the DPDD (Abuolaim & Brown} [2020) dataset.
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Figure 15: Image desnowing comparisons on the CSD (Chen et al,[2021b)) dataset.

12.24 12.02 dB 1486dB 16.15 dB 0
Input DeHamer FocalNet Ours GT
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Figure 17: Image dehazing comparisons on the Haze4K (Liu et al,2021) dataset.

10.62 dB 18.41 dB 21.63 dB 36.22dB 00
Low-Light SNR-Net Retinexformer Ours GT

Figure 18: Low-light image enhancement comparisons on the LOL-v2 2021) dataset.
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Figure 19: Image dehazing comparisons on the GTAS 2020) dataset.

7.52dB 9.10dB 11.15dB 22.88 dB 26.94 dB
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Figure 20: Image dehazing comparisons on the NHR (Zhang et al} [2020) dataset.

27



	Introduction
	Related Work
	Image Restoration
	Prompt Learning

	Frequency Prompt Mechanism (FPM)
	Prompt Generation Module (PGM)
	Prompt Integration Module (PIM)

	Experiments
	General Image Restoration
	Implementation Details
	Experimental Results
	Ablation Studies

	All-in-One Image Restoration
	Implementation Details
	Experimental Results
	Ablation Studies


	Conclusion
	Datasets and Training Configurations
	More Ablation Studies
	Complexity Comparisons
	Visual Comparisons

