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Abstract

Faithfulness is a broadly agreed-upon desideratum for explanations of machine
learning model predictions. While many different methods have been adopted
by the community, there is no agreed-upon definition of faithfulness. Here, we
propose three desiderata for faithfulness beyond the standard intuition of accurately
representing the reasoning process of the model, related to (1) enabling reverse-
engineering of specific behaviors, (2) capturing interventionist causal relations,
and (3) achieving an appropriate model decomposition. We argue that causal
abstraction satisfies these, and provides a framework for evaluating faithfulness
claims in the community.

1 Introduction

The field of explainable Al (XAI) aims to address the issue of making predictions from machine
learning (ML) models more transparent. One of the main issues in XAl is that we need to make sure
our explanations are faithful, broadly understood as “accurately representing the reasoning process of
the model” [1; 2]. Previous work has surveyed XAI methods with respect to their faithfulness [3|]
without specifying exactly what we mean by faithfulness beyond this standard intuition. Moreover,
Saphra and Wiegreffe [4] state that we need to “ground our empirical work in precise vocabulary”, the
lack of which creates “duplicated research efforts and limits shared knowledge”. In their recent paper,
Williams et al. [S] motivate the need for a philosophical grounding of mechanistic interpretability
concepts. We answer their call in two ways. We first show how faithfulness is related to various
desiderata of explanation, focusing on (1) enabling reverse-engineering, (2) capturing interventionist
causal relationships and (3) decomposing the model at an appropriate level of granularity. While
prior work has considered disambiguating such terms from faithfulness as “out of scope” [3], we
contribute to initial efforts [6] on disambiguating such terms and show how these desiderata relate
to faithfulness. We focus on these concepts because of their relevance in the context of model
improvement and debugging, the most common use cases for XAI methods [[7]. We also motivate an
existing mechanistic interpretability framework, causal abstraction [8]], as a method for measuring
faithfulness, by showing that it satisfies our desiderata.

2 Desiderata for faithfulness

2.1 Desideratum 1: Enables reverse-engineering of specific model behavior(s)

Reverse-engineering is a desideratum for faithfulness because a faithful explanation of how a model
produces an output should enable us to modify that behavior [9]. In particular, we are interested in
ensuring we can modify undesirable behaviors. If an explanation does not provide this capability,
then we lack the understanding for correcting undesirable behaviors. We note that by requiring
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explanations that enable reverse-engineering, this does not require that it be intuitively understandable
by humans. While human interpretability is important [35 [10; [11], it is distinct from faithfulness
since a human-like reasoning process does not necessarily capture the reasoning process of the model
[L; 12]. Nauta et al. [3]] illustrates this as follows: “When the machine learning model is trained
on flawed data, it learns nonsensical relations, which are in turn shown by the explanation. The
explanation might then be perceived as being wrong, although it is truthfully reflecting the model’s
reasoning”. Faithfulness requires accuracy about what the model actually does rather than conformity
to human expectations of what it should do.

2.2 Desideratum 2: Captures (interventionist) causal relations

Having established reverse-engineering as a desideratum for faithfulness, it follows that our ex-
planations must also support causal intervention. This is achieved via a causal explanation in the
interventionist sense [13|], as opposed to a causal explanation in the regularity-theorist sense [14[15]].
This strict demarcation is important, since what it means for an explanation to be causal is ambiguous
in the literature. Saphra and Wiegreffe [4] define a cause using a regularity-theorist conception:
“In a causal model, a causal mechanism is a function—governed by “lawlike regularities” (Little,
2004) — that transforms some subset of model variables (causes) into another subset (outcomes or
effects)”. Under this view, identifying stable correlations suffices for a causal explanation. In contrast,
an interventionist conception of a cause C requires that C causes E if and only if intervening on C
(ceteris paribus), produces a change in E [13]]. This definition is counterfactual, manipulability-based
and particularly suited for model improvement purposes, that is, in cases where we are interested in
bringing about a change in E by exploiting the causal relation. Since a regularity theorist concep-
tion can be satisfied without yielding an insight into the reasoning process of the model, a faithful
explanation should be a causal interventionist explanation.

2.3 Desideratum 3: Achieves appropriate decomposition

Achieving an appropriate level of decomposition of model parts is an important open problem for XAl
methods in mechanistic interpretability [S]. A complete account of all low-level details of the model
may be maximally faithful to the model’s behavior but does not necessarily constitute an interpretable
explanation of the model prediction. We define appropriate decomposition as a decomposition that
captures the model’s causal structure at a semantically meaningful level of abstraction. As Geiger
et al. [16] argue: “For explanations that can engage with these questions [“Is the model robust to
specific kinds of input”, “Does it treat all groups fairly?”, and “Is it safe to deploy?”’], we need
methods that are provably faithful to the low-level details but stated in higher-level conceptual terms”.
Therefore, a faithful explanation must go beyond equating the explanandum with the explanans.

Appropriate decomposition is also needed to capture the causal relations leveraged by the model. For
example, in SAEs, the dictionary size is a hyperparameter that influences the chosen granularity level
[17]. If the dictionary size is too small, then the SAE will project the features into an under-specified
subspace, preventing full disentanglement of model components. As a result, interventions on these
features will not cleanly map to interventions in the base model. If the dictionary size is too large, then
this can result in features that capture finer-grained details rather semantically meaningful concepts.

Empirical studies have shown that individual neurons are insufficient units for encoding disjunctive
concepts [18519; 205 215 225 (8} [23]]. Some XAI methods assume that features are linearly separable
from the activations via linear transformations [24} 25; 265 [27]. However, as Geiger et al. [§]]
emphasize, evaluating faithfulness should not depend on such structural assumptions about the
model’s internal reasoning process. Optimizing for an appropriate decomposition should therefore be
treated as integral to optimizing for the faithfulness of explanation.

3 Existing definitions of faithfulness and their limitations

We will review two prominent directions for measuring faithfulness: causal scrubbing [28]] and
Jacobian matching [29]], and highlight why these capture our desiderata insufficiently.

Jacobian matching. First, we consider Jacobian matching [29]], which measures the faithfulness of
transcoders: sparse autoencoders (SAEs) which take in a layer’s input and predict its output. The
main idea is to penalize differences between the Jacobian of the original model and the Jacobian of the



transcoder (||Jorig — JtmnscoderH%) [29] in order to force the transcoder to learn the actual mechanisms
the original model is using. The authors devise a toy setup where they train an MLP on data with
repeated examples, then train a transcoder to approximate the MLP. The transcoder is able to match
the MLP’s outputs with low error, but it achieves this through a different mechanism: it develops a
“memorization” feature which activates on the repeated example, even though the MLP does not have
such a feature. However, when they use Jacobian matching, this memorization feature disappears,
indicating that Jacobian matching is a useful tool for deterring the transcoder from some unfaithful
behavior, but it is still insufficient for ensuring faithful model mechanisms. This is because the
method is vulnerable to gradient masking where the transcoder can learn to manipulate its gradients
by creating features with large weights, and therefore large gradients, but with very small, negative
biases such that the overall feature is barely active. In addition, Jacobian matching does not satisfy our
three desiderata from Section 2] since encouraging matching gradients does not guarantee (i) correct
internal mechanisms are identified by the transcoder, or (ii) causal equivalence under interventions. It
also lacks appropriate decomposition, because aligning Jacobian matrices does not ensure the learned
features correspond to semantically meaningful concepts.

Causal Scrubbing. Causal scrubbing [28] is a method for testing weather a hypothesized mech-
anistic explanation, represented as a computational graph, i.e., a circuit, faithfully describes how
a model works. It is based on first identifying a potential circuit: which components are involved,
how information flows between them, and which information is causally relevant at each step. Then,
we systematically ablate parts of the model that are irrelevant to the circuit, while preserving infor-
mation the circuit deems causally important. If the irrelevant parts were indeed unnecessary, then
there should be no impact on the resulting prediction. The faithfulness of a circuit is defined as
how well the model preserves its original behavior on a dataset after ablating everything except
the hypothesized circuit. While causal scrubbing shares some similarities with causal abstraction,
there are some important differences. In particular, causal scrubbing tests circuits at a single level of
abstraction: it validates whether low-level components implement a proposed mechanism, but does
not enforce correspondence or similarity between high-level algorithmic descriptions and low-level
circuit implementations. Therefore, it is possible to have a circuit verified by causal scrubbing, which
does not align with higher-level interpretations of model behavior. However, causal scrubbing does
not satisfy our three desiderata from Section [2]because (i) it only supports reverse-engineering if the
hypothesized circuit is correct, (ii) it operates at a fixed level of abstraction and does not guarantee
causal equivalence across different levels.

4 Causal abstraction as a framework for evaluating faithfulness

In the previous section, we argued that reverse-engineering motivates our definition of faithfulness:
understanding a model’s behavior requires capturing its causal mechanisms via interventionist
analysis, which in turn requires a decomposition that reflects those causal relations at the appropriate
level of granularity. In this section, we argue that causal abstraction [8] provides a framework for
generating model explanations that satisfy the desiderata we have outlined.

According to Icard [30], evaluating explanations of model behavior involves three main steps:

1. Construct the low-level model £ as a causal system in a given language. L is the explanandum.

2. Create the candidate high-level model H obtained using one of our explainability methods captured
in the language. H is the explanation of the low-level model, and is referred to as an abstraction.

3. Specify the relation between them, and whether that relation has such characteristics that it can be
described as a causal consistency-preserving relation L — H. A relation is causal consistency-
preserving if and only if interventions in the low-level model £ commute with interventions in the
abstraction H (see Figure ).

In practice, the high-level model H can be obtained by either merging or marginalizing variables of
the low-level model [8]], or by applying linear transformations to disentagle polysemantic neurons
(for instance, using SAEs). The hypothesis for H can also be generated using various XAl methods.

A method satisfying the reverse-engineering desideratum allows us to pinpoint and debug undesirable
model behaviors. In causal abstraction, this is achieved by constructing a high-level model H that
is causally consistent with the low-level model £, thereby allowing us to identify which low-level
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Figure 1: The causal relations of the low-level model £; are captured by the high-level model H,, ;).
7 is the mapping of total configurations of the low-level system, and its correspondence in the
high-level system, given its nodes and relations. w is the mapping of interventions on the low-level
model to the high-level model. This is formalized as: 7 (Solve(L;)) = Solve () [311.

attributes correspond to which high-level concepts, effectively localizing the mechanisms responsible
for specific behaviors. This causal consistency-preserving mapping allows us to identify which
behaviors we want to understand from #, and understand how they are implemented in L.

According to causal abstraction, the faithfulness of a high-level explanation with respect to the low-
level model is measured by how well the explanation captures the causal mechanisms of the model,
measured by the degree to which interventions in the high-level model commute with interventions
in the low-level model [§]]. 1deally, intervening in the low-level model and then abstracting should
produce the same result as abstracting first and then intervening in the high-level model. This
definition respects the interventionist definition of causality and is formalized as:

6(7’) = sup HT(SO]VG(EJ) — SO]VG(Hw(i))

|, (1

where L is the low-level model, # is the high-level model, 7 is the abstraction map that transforms
the low-level model into a high-level model, i is an intervention applied to the low-level model,
and w(¢) is the corresponding intervention in the high-level model. Solve is the output behavior of
the low-level or high-level model under these interventions. || - || is a norm measuring the distance
between outcomes, and sup, denotes the supremum (maximum) over all valid interventions.

For example, consider an SAE which learns a set of sparse latent features that can be treated as
candidate high-level variables used to hypothesise a causal model . The aligned features in the
low-level network are then taken to be the neurons most strongly associated with that SAE latent
variable. If interventions on the variables in the high-level model H fail to commute with the variables
in the low-level model £ under interchange interventions, then the explanation is unfaithful.

Due to Geiger et al. [16], we show another example in Figure 2] Imagine we have the low-level model
L and hypothesize the higher-level model H. £ adds three numbers together, and we hypothesize
that it does so by first adding two number together, resulting in one sum, and adding the final number
to this sum. For each variable, we hypothesize a mapping 7: £ — H. Assume we want to test
whether the high-level variable 7, abstracts the low-level variable £, on the toy-data set consisting
of {[1,3,5],[4,5,6]}. We can repeat this process for all variables as specified by 7 . We first run the
high-level model on our data, and save the activations. We get H1 = 4 and output 9 for our input
[1,3,5], and H; = 9 and output 15 for our second input [4,5,6]. Imagine we patch #; (intervene on
variable #1), such that 7{; = 9. Given input [1,3,5], we get 14 as expected. We hypothesize that £
is captured by H1. We test this by first running the full low-level model on the two inputs, and get
the same output as the non-patched high-level model, 9 and 15. Then we patch the activation at £;
by the same value as the corresponding high-level variable, so £; = 9. If we get the same output as a
result of the patching (14), the we have a piece of evidence that the variables are performing the same
causal function. We do this for all variables, across all inputs, and achieve a final faithfulness score
measuring the extent to which the model # respects the causal structure of model £. We note that, in
principle, this allows for multiple explanation models whose interventions commute well with the
underlying model, but carve the model up in different ways. Causal abstraction does not claim that
there is one true explanation.
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Figure 2: Illustration of causal abstraction: a low-level model £ adding three numbers is mapped
to a hypothesized high-level model H that sums two numbers first, then adds the third. For each
variable, a mapping 7 is defined. Activations are recorded for toy inputs, and patching interventions
test whether high-level variables replicate the causal effects of their low-level counterparts. Matching
outputs after patching provides evidence of causal alignment, and repeating this for all variables
yields a faithfulness score for # relative to L.

5 Critiques of causal abstraction as a framework for faithfulness

Casual abstraction does not identify the one true model explanation. M¢éloux et al. [32] argue
that causal abstraction can be too permissive, as it permits multiple explanations for the same model
behavior. The authors pose that this is problematic, particularly because it permits two conflicting
explanations. Using the authors’ definition, two explanations can be deemed conflicting even though
they would be considered compatible according to the standard criteria in the philosophy of science
(see [33]]), where two theories can explain the same body of evidence, diverging only with respect to
epistemic virtues, such as parsimony. In Méloux et al.’s definition, these epistemic virtues are not
kept constant, so the explanations need not be conflicting. Therefore, we do not require the existence
of a single, unique explanation for a particular behavior.

Causal abstraction may be too permissive and not sufficient to measure faithfulness. Sutter
et al. [34] claim that without assumptions on how models encode information, causal abstraction
cannot reliably produce faithful explanations. Complex non-linear abstractions can overfit on a
dataset, achieving high scores while being overly complex. Geiger et al. [35] makes a practical
assumption that the mapping 7 is a linear combination of the activation of the underlying neurons.
This is not part of the causal abstraction framework [36]], but this assumption is important for adhering
to our desiderata. Without this assumption, causal abstraction can be indeed too permissive, resulting
in a non-linear representation dilemma where any neural network can be mapped to any algorithm.
We acknowledge this critique, and capture this concern by the desideratum that the explanation should
capture the underlying model at an appropriate decomposition.

Causal abstraction leads to “interpretability illusions”. Makelov et al. [37]] show that subspace
activation patching might lead to a causal effect in the output because it activates a dormant causal
pathway that contributes causally to the output. This is similar to the idea that the act of intervening
on a variable might also alter other variables. The claim is that this constitutes an “interpretability
illusion”. Since DAS leverages interchange interventions through activation patching, the concern is
that DAS gives rise to potential illusions. However, Wu et al. [38] responds to this critique, arguing
that what Makelov et al. call an illusion is not always an illusion.

6 Conclusion

We propose three desiderata for faithfulness: (1) enabling reverse-engineering of specific behaviors,
(2) capturing interventionist causal relations, and (3) achieving (1) and (2) at the appropriate level
of decomposition. We have argued that causal abstraction is an example of an XAI method that
adheres to these desiderata. The framework respects the reverse-engineering objective by integrating
the interventionist definition of causality in the faithfulness objective, and it is aimed at carving the
low-level model into an appropriate higher-level abstraction.
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