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Abstract

Faithfulness is a broadly agreed-upon desideratum for explanations of machine1

learning (ML) model predictions. While many different methods have been adopted2

by the community, there is no agreed-upon definition of faithfulness [1]. Here, we3

propose desiderata for faithfulness beyond the standard intuition of “accurately4

representing the reasoning process of the model” [2; 3]. We highlight a recently5

introduced mechanistic interpretability (MI) framework, referred to as Causal6

Abstraction (CA), and argue that CA provides a framework capable of aligning7

faithfulness claims in the community.8

1 Introduction9

The field of explainable AI (XAI) tries to address the issue of making predictions from machine10

learning (ML) models more transparent. One of the main issues in XAI is that we need to make11

sure our explanations are faithful, broadly understood as “accurately representing the reasoning12

process of the model” [2; 3]. Previous work has surveyed XAI methods with respect to their13

faithfulness [4] without having specified exactly what we mean by faithfulness beyond the standard14

intuition positioned by Jacovi and Goldberg [2]. The need for this work is motivated by Saphra and15

Wiegreffe [5] stating that we need to “ground our empirical work in precise vocabulary”, the lack of16

which creates “duplicated research efforts and limits shared knowledge”.17

In their recent paper, Williams et al. [6] motivate the need for a philosophical grounding of mechanistic18

interpretability (MI) concepts. We answer their call in two ways. We first show how faithfulness is19

related to various desiderata of explanation, focusing on reverse-engineering, causality and aptness20

of decomposition. While prior work has considered disambiguating such terms from faithfulness21

as “out of scope" [4], we contribute to initial efforts [7] on disambiguating such terms and show22

how these desiderata relate to faithfulness. Next, we show how a common MI framework, Causal23

Abstraction (CA), can be used as principled basis for comparing the extent to which different XAI24

methods generate faithful explanations. We motivate this framework with reference to our desiderata.25

2 Desiderata for faithfulness26

2.1 Plausibility versus faithfulness for reverse-engineering27

A central reason why we want a faithful explanation is to equip us to reverse-engineer undesirable28

model behaviors. We do not require that it be plausible to humans.29

This is non-trivial: According to the survey by Nauta et al. [4], an explanation should be understand-30

able to humans (see also [8; 9]). However, integrating the plausibility desideratum into the definition31

of explanation is unhelpful, because a human-like reasoning process does not always capture the32
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reasoning process of the model (See Jacovi and Goldberg [2] and [10]). Nauta et al. [4] illustrates33

this as follows: “When the machine learning model is trained on flawed data, it learns nonsensical34

relations, which are in turn shown by the explanation. The explanation might then be perceived35

as being wrong, although it is truthfully reflecting the model’s reasoning”. The orthogonality of36

plausibility and faithfulness is supported empirically [11]. Here, we operate under a definition of37

explanation that defines explanation as being a causal claim, due to [12]. Whether it is explainable to38

humans is not necessary nor sufficient for faithfulness.39

2.2 Interventionist causality40

There are two main tenets in the causality literature: a regularity-theorist conception [13; 14] and41

an interventionist conception [15]. According to Saphra and Wiegreffe [5], cause is defined by a42

regularity-theorist conception: “In a causal model, a causal mechanism is a function—governed by43

“lawlike regularities” (Little, 2004) — that transforms some subset of model variables (causes) into44

another subset (outcomes or effects)”. However, on an interventionist account, C causes E if and only45

if intervening on C (ceteris paribus), produces a change in E [15]. This definition is counterfactual,46

manipulability-based and particularly suited for engineering purposes, that is, in cases where we are47

interested in bringing about a change in E by exploiting the causal relation. Since we have motivated48

faithfulness by reverse-engineering aims, we therefore settle on the interventionist definition as being49

required for faithfulness, rather than the regularity theorist definition.50

The elimination of the regularity theorist conception is independently motivated by the fact that a51

regularity theorist conception can be satisfied without yielding an insight into the reasoning process of52

the model. Anders et al. [16] support this by showing that an explanation can match outputs without53

reflecting the model’s internal reasoning. An unbiased model can be trained to deceptively generate54

the same outputs as an underlying biased model, without this being detectable when using different55

attribution methods, such as Integrated Gradients or SHAP. For instance, an arbitrary unbiased feature56

(football club) can act as a proxy in the biased model, encoding the bias (woman), which the model is57

trained on.58

However, the implementation of the interventionist conception is susceptible to error, as in the case of59

feature ablation. Modifying C through perturbation or zeroing out may produce a change in the effect60

E. However, this effect need not be attributable to the cause C, but to the fact that the perturbation61

produced an out-of-distribution sentence [17]. Hence, interventions on the model should be preceded62

by an apt decomposition of model features.63

2.3 Decomposition64

Williams et al. [6] argue that achieving the right decomposition of model parts is a key open problem65

for XAI methods in mechanistic interpretability. In our case, achieving an apt decomposition is66

required for (1) reverse-engineering and (2) effectively capturing the causal relations of the model.67

To see why it is required for reverse-engineering, we need to acknowledge that, trivially, any68

explication of all low-level details of the model decisions (e.g. the model parameters/activations as a69

whole) might be maximally faithful to the model, yet does not constitute an interpretable explanation70

of the model decision. As stated by Geiger et al. [18]: “For explanations that can engage with71

these questions [“Is the model robust to specific kinds of input”, “Does it treat all groups fairly?”,72

and “Is it safe to deploy?”], we need methods that are provably faithful to the low-level details but73

stated in higher-level conceptual terms”. Therefore, a faithful explanation must do more than just74

equate the explanandum with the explanans; otherwise, our definition of faithfulness fails to enable75

reverse-engineering.76

To illustrate why aptness of decomposition is needed to capture the causal relations leveraged by77

the model, we can consider SAEs. Here, dictionary size is a hyperparameter that influences the78

chosen level of grain [19]. If the dictionary size is too small, then the SAE will project the features79

into a small subspace, possibly not ensuring full disentanglement of the components leveraged by80

a transformer model. In turn, interventions on these features will not cleanly map to interventions81

in the base model, undercutting faithfulness. On the other hand, if the grain chosen is too fine, then82

features will track finer-grained details, and not meaningful semantic concepts. According to Yablo83

[20], the decomposition should carve up the model in a relevant way, not preserving such irrelevances.84

This example shows that a failure to achieve an apt decomposition also leads to a failure of capturing85
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the causal relations of the underlying model. Since we have argued that capturing the causal relation86

of the model is key for faithfulness, then aptness of decomposition is required for faithfulness.87

To decompose the model internals, some methods assume that features are linearly separable from88

the activations via linear transformations [21; 22; 23; 24]. In addition, it has been documented89

in various studies that individual neurons are insufficient units for encoding disjunctive concepts90

[25; 26; 27; 28; 29; 30; 31]. However, as rightly remarked by Geiger et al. [30], for evaluating91

faithfulness, we ideally do not bake such assumptions into our method for analyzing the reasoning92

process of the model. Hence, optimizing for the right decomposition should be integral to the93

objective of optimizing for the faithfulness of explanation.94

3 Causal abstraction95

In the previous section, we argued that reverse-engineering is a key reason why we desire faithfulness96

of explanation. We argued that in order to effectively reverse-engineer behaviors in a model, we need97

to understand its causal mechanisms in the interventionist sense. In order to achieve this, we need to98

decompose the model internals in such a way as to capture those causal relations. We suggest that one99

avenue of research is particularly apt for the purpose of measuring faithfulness in the interventionist100

sense we have defined: mechanistic interpretability, and within it, causal abstraction. We outline why101

this is the case, and what still needs uncovering to empirically validate this promise.102

3.1 Mechanistic interpretability as a tool for faithfulness103

As identified by Saphra and Wiegreffe [5], there are various ways in which mechanistic interpretability104

has been employed. The definition we will be employing here is narrow and causal. As argued by105

Geiger et al. [30], “the crucial question is, under what conditions a transparent algorithm constitutes106

a faithful interpretation of the known, but opaque, low-level details of a black box model [...]107

The question takes on particular significance for mechanistic interpretability, which, in contrast to108

behavioral interpretability [input-output alignment], is precisely aimed at reverse engineering the109

internals of a black box model in terms of a transparent algorithm”. Within MI, we highlight Causal110

Abstraction [32; 30], and argue that it can provide a framework for evaluating explanation faithfulness111

by capturing the desiderata we have motivated.112

3.2 Causal Abstraction: Using XAI methods for hypothesis testing113

Due to [33], when comparing different methods for generating an explanation of model behavior,114

one undergoes three steps: (1) Construct the low-level model L as a causal system in a given115

language. L is the explanans: the thing we want to explain. (2) Construe the candidate high-level116

model H obtained using one of our explainability methods captured in the language. H is the117

explanation of the low-level model, and is referred to as an abstraction. (3) Specify the relation118

between them, and whether that relation has such characteristics that it can be described as a causal119

consistency-preserving relation L→H. We will specify the notion of causal consistency in the next120

section.121

In practice, the high-level model H is obtained by either merging variables of the low-level model,122

merging output values, or marginalizing (that is, removing variables) [30] (see Figure 1 in Appendix).123

Alternatively, we can obtain H by applying a rotation matrix to the input vectors to disentangle124

polysemantic neurons, (for instance, using Sparse Auto-Encoders). The key insight is that the125

hypothesis for the high-level model is generated using various different existing XAI methods.126

3.3 Causal consistency and interventionist causality127

According to the Causal Abstraction framework, faithfulness of an explanation (higher-level model)128

is measured by how well the explanation captures the causal mechanisms of the model, which in turn129

is captured by the commutation of their interventions. This means that intervening in the low-level130

model and then abstracting should produce the same result as abstracting first and then intervening in131

the high-level model (see Figure 2 in Appendix). Hence, this definition respects the interventionist132

definition of causality.133
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Geiger et al. [30] formalize the degree to which the abstraction respects the causal structure of the134

target model under interventions by the following formula:135

ϵ(α) = sup
ι

∥α (doL(ι)(ML))− doH(ι) (α(ML))∥ .

Where ML is the low-level causal model, α is the abstraction map that transforms the low-level model136

into a high-level model, ι is an intervention applied at the low level, doL(ι)(ML) is the low-level137

model’s behavior under intervention, doH(ι)(α(ML)) is the high-level model’s behavior under the138

corresponding intervention, ∥ · ∥ is a norm measuring the distance between outcomes, and supι139

denotes the supremum (maximum) over all valid interventions. Under this definition, if ϵ = 0, the140

abstraction (explanation) is exactly faithful. If ϵ is small, the abstraction is approximately faithful141

(the high-level and low-level models approximately commute, see Figure 2 in Appendix).142

For example, consider again Sparse Autoencoders (SAEs). An SAE learns a set of sparse latent143

features that can be treated as candidate high-level variables used to hypothesize a causal model H.144

The aligned features ΠX in the low-level network are then taken to be the neurons most strongly145

associated with that SAE latent variable. If the high-level model H fails to match L under interchange146

interventions, then the method is unfaithful.147

Future research: To make sure the high-level model captures the causal relations of the low-level148

model, we would ideally exhaust all possible interventions. However, this is not feasible in practice:149

as the model scales, we will have more possible hypotheses (high-level models), and for each one we150

would have to test all possible interventions. Still, we are able to capture a notion of faithfulness by151

using a sample of interventions, thereby capturing the intuition by Barez et al. [34] that faithfulness152

requires “partial alignment with the model’s reasoning”. It remains an open empirical question153

whether causal consistency in this partial sense and benchmarks measuring faithfulness via ground154

truth explanations [35] are compatible.155

3.4 Decomposition156

We argued previously that faithfulness requires more than just equating the explanandum with157

the explanans. Instead, it requires aptness of decomposition. Due to Geiger et al. [30], what is158

desired is “a constructive causal abstraction”, which is “a ‘lossy’ exact transformation that merges159

microvariables into macrovariables, while maintaining a precise and accurate description of the160

original model mechanisms”. Thus, the art is to capture into macrovariables an approximation that161

captures the mechanisms of the model sufficiently well.162

Future research: However, generating hypotheses is expensive: For current deep learning models,163

the number of abstractions to test can be very large [32]. One solution to this problem is to train164

the model to be more like the hypothesized higher-level causal model. The idea is that we can use165

the higher-level model to generate counterfactual examples and use this as ground truths against166

which we optimize our low-level model [36]. Due to Mueller et al. [37], this method (Distributed167

Alignment Search) ranked highest on the faithfulness metric based on Causal Abstraction, and is168

therefore promising for overcoming this problem.169

4 Conclusion170

We have motivated three desiderata for faithfulness: (1) Reverse-engineering: A definition of171

faithfulness should enable reverse-engineering. (2) Interventions (not regularities): A faithful ex-172

planation should capture the causal relations in the interventionist sense such that reverse-engineering173

can be effectively achieved. (3) Decomposition: An explanation that captures the causal relations174

and aims for reverse-engineering of the model is carved up at the apt level of grain.175

Furthermore, we have positioned a framework that allows us to compare already existing XAI methods176

in terms of their faithfulness. The framework respects the reverse-engineering objective by integrating177

the interventionist definition of causality in the faithfulness objective, and it is aimed at carving the178

low-level model into an apt higher-order abstraction. However, open empirical problems remain,179

including how to sample for interventions when exhausting the entire set of possible interventions180

might be intractable, and how to effectively generate hypotheses for high-level models.181
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i ω(i)

Solve(Li) Solve(Hω(i))

ω

τ

Figure 2: This commutative diagram captures causal consistency: the causal relations of the low-level
model Li are captured by the high-level model Hω(i). We can characterize this relation in terms of
the submappings τ and ω, where τ is defined as the mapping of total configurations of the low-level
system, and its correspondence in the high-level system, given its nodes and relations, and ω is the
mapping of interventions on the low-level model to the high-level model. This is formalized as:
τ
(
Solve(Li)

)
= Solve

(
Hω(i)

)
[38].
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