
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TIME IS ALL IT TAKES: SPIKE-RETIMING ATTACKS
ON EVENT-DRIVEN SPIKING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking neural networks (SNNs) compute with discrete spikes and exploit tem-
poral structure, yet most adversarial attacks change intensities or event counts
instead of timing. We study a timing-only adversary that retimes existing spikes
while preserving spike counts and amplitudes in event-driven SNNs, thus remain-
ing rate-preserving. We formalize a capacity-1 spike-retiming threat model with a
unified trio of budgets: per-spike jitter B∞, total delay B1, and tamper count B0.
Feasible adversarial examples must satisfy timeline consistency and non-overlap,
which makes the search space discrete and constrained. To optimize such retim-
ings at scale, we use projected-in-the-loop (PIL) optimization: shift-probability
logits yield a differentiable soft retiming for backpropagation, and a strict pro-
jection in the forward pass produces a feasible discrete schedule that satisfies
capacity-1, non-overlap, and the chosen budget at every step. The objective max-
imizes task loss on the projected input and adds a capacity regularizer together
with budget-aware penalties, which stabilizes gradients and aligns optimization
with evaluation. Across event-driven benchmarks (CIFAR10-DVS, DVS-Gesture,
N-MNIST) and diverse SNN architectures, we evaluate under binary and integer
event grids and a range of retiming budgets, and also test models trained with
timing-aware adversarial training designed to counter timing-only attacks. For
example, on DVS-Gesture the attack attains high success (over 90%) while touch-
ing fewer than 2% of spikes under B0. Taken together, our results show that spike
retiming is a practical and stealthy attack surface that current defenses struggle to
counter, providing a clear reference for temporal robustness in event-driven SNNs.

1 INTRODUCTION

Spiking Neural Networks (SNNs) compute with discrete spikes and temporal coding, in contrast
to the continuous activations in ANNs, thereby enabling computation only when information ar-
rives and, on dedicated neuromorphic processors, yielding low energy and short latency (Roy et al.,
2019; Davies et al., 2018). Recent learning advances make deep SNNs trainable through spatio
temporal backpropagation with surrogate gradients (Wu et al., 2018), and refined estimators further
improve gradient quality and stability for spiking nonlinearities (Lian et al., 2023). Normalization
and time aware objectives support few step inference under tight latency budgets while preserving
accuracy (Kim & Panda, 2021; Duan et al., 2022; Rathi & Roy, 2023). SNNs also align with event
driven sensing, where asynchronous streams naturally match the sparse and temporal nature of spik-
ing computation and favor low power edge deployment (Lichtsteiner et al., 2008). These trends
position SNNs as practical backbones for efficient real time perception and motivate a closer look at
robustness in the time domain where spike timing carries much information (Neftci et al., 2019).

Prior attacks on SNNs mostly inherit image domain strategies that modify intensities or event counts.
On static image data or integer event grids, PGD (Madry et al., 2018) are applied with compatible
gradients (Wu et al., 2018). Rate and timing-aware variants further sharpen gradients and raise suc-
cess (e.g., RGA (Bu et al., 2023) and HART (Hao et al., 2024) and their follow ups (Lun et al.,
2025)). On event data, grid based methods operate on dense tensors using heuristic search, compat-
ible gradients, or sparse rounding (Büchel et al., 2022; Marchisio et al., 2021a; Liang et al., 2023;
Lun et al., 2025). Defenses include certified robustness and empirical strategies such as adversarial
training with regularizers and robust objectives (Mukhoty et al., 2024; Ding et al., 2024a;b).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

T0
(a) Original Event Stream for Any

Channel-Spatial Locations
Bounded by ℬ0-norm

0 T

(b) Previous Adversarial Attack

Spike
Remove

Spike
Remove

Spike
Add

δ Bounded by multiple norm types (0,1,∞)
0 T

(c) Our Spike-Retiming Attacks

Spike
Move

Figure 1: Attack overview. (a) Original event stream. (b) Previous attacks add/remove spikes under
a 0-norm, limited to binary grids. (c) Ours move spikes on each event timeline, preserving counts
and amplitudes, supports multiple norm types, and can be applied to both binary and integer grids.

Despite recent progress, most attacks focus on surrogate gradients and mainly change values or
counts (Lun et al., 2025), which can misalign with the binary interface in spike sparse regimes and
tend to alter energy or rate statistics. Defenses in turn mostly regulate intensities, rates, or membrane
dynamics rather than input timing (Ding et al., 2024a). Event cameras and other neuromorphic
sensors naturally exhibit timestamp noise (jitter) and readout latency, and deployed SNN pipelines
usually quantize events into discrete time bins. Under these conditions, a timing-only adversary
that retimes existing spikes while preserving spike counts and amplitudes is realistic: it stays
within the range of sensor timing uncertainty and does not change any frame-wise intensity or rate
statistics. As a result, such perturbations are difficult to detect with standard intensity- or rate-based
checks and directly stress the temporal computation that SNNs rely on.

In this paper, as shown in Fig. 1, we introduce Spike-Retiming Attacks, a timing-only adversary
that retimes existing spikes along the time axis while preserving amplitudes and counts. We aim
for a unified formulation that applies across event encodings, and budget types. We cast retiming as
an assignment over spike timestamps with explicit feasibility: spikes remain on the timeline, each
location-polarity line obeys capacity-1, and non-overlap holds within time bins. The framework
supports three budgets, B∞ for per-spike local jitter, B1 for total timing shift, and B0 for the number
of tampered spikes. To optimize this discrete space at scale, we use projected-in-the-loop (PIL)
optimization: shift-probability logits generate a differentiable soft retiming for backpropagation, and
a strict projection in the forward pass enforces feasibility and the chosen budget at every step. We
optimize the logits with a budget-aware objective that maximizes task loss on the projected input and
adds capacity and budget penalties, which stabilizes gradients and keeps updates comparable across
budget radii. The same formulation applies to binary and integer event grids without modification.

Contributions: 1) We formalize a timing-only threat with feasibility under budgets B∞/B1/B0,
establishing a unified protocol for temporal robustness. 2) Building on this, we develop projected-
in-the-loop optimization, coupling a differentiable soft retiming with strict projection, yielding a
scalable attack that enforces feasibility at each forward pass. 3) We further design a budget-aware
objective that maximizes task loss and adds a capacity regularizer and budget penalties, yielding sta-
ble updates and aligning optimization with evaluation. 4) Finally, we conduct a comprehensive study
across datasets, encodings (binary and integer), and budget regimes, and we evaluate adversarially
trained models, revealing a temporal weakness in event-driven SNNs and two consistent patterns:
integer grids are more robust, and polarity-specific shifts place positives later and negatives earlier.

2 RELATED WORK AND MOTIVATION

Spiking Neural Networks (SNNs) compute with discrete spikes and exploit temporal structure,
offering favorable energy and latency on neuromorphic hardware (Merolla et al., 2014). Two routes
dominate for high-performance SNNs. ANN→SNN conversion calibrates activations and sets the
simulation length, and recent pipelines cut conversion error and required time steps while preserving
accuracy (Rueckauer et al., 2017; Deng & Gu, 2021; Bu et al., 2022). Direct training learns SNNs
end to end with surrogate gradients. A key milestone is spatio-temporal backpropagation (STBP),
which formalizes error propagation across layers and time and makes deep SNNs trainable from
scratch (Wu et al., 2018). Later work refines surrogate gradient shape and smoothing to better
match spike generation (Li et al., 2021; Wang et al., 2023), and time-aware normalization, such
as tdBN (Zheng et al., 2021), supports deeper, few step models. Objectives that reward temporal
efficiency, notably Temporal Efficient Training (TET) (Deng et al., 2022), improve generalization
when the time step is small. Together, these pieces bring directly trained SNNs close to ANN level
accuracy at low time steps while preserving the temporal computation that motivates spiking models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Adversarial Attacks. SNNs remain vulnerable to adversarial examples inherited from DNNs such
as FGSM and PGD (Goodfellow et al., 2015; Madry et al., 2018), yet spikes and timing create
distinct attack surfaces. For directly trained SNNs, spike-aligned white-box attacks are effective:
RGA (Bu et al., 2023) uses firing-rate cues, and HART (Hao et al., 2024) fuses rate and tempo-
ral information to strengthen STBP gradients. For event-based inputs, DVS-Attacks (Marchisio
et al., 2021a) search the event stream to fool SNN pipelines, SCG (Liang et al., 2023) makes con-
tinuous gradients spike-compatible to resolve gradient–input mismatch, SpikeFool (Büchel et al.,
2022) adapts SparseFool by rounding sparse floating-point perturbations to binary values, and GSAt-
tack (Yao et al., 2024) perturbs raw events via a Gumbel–Softmax parameterization. Building on this
line, Lun et al. (2025) propose a Potential-Dependent Surrogate Gradient (PDSG) tied to run-time
membrane distributions, and a Sparse Dynamic Attack (SDA) for binary dynamic frames.

Existing Defenses span certified and SNN-specific approaches. Certified robustness adapts interval
bound propagation and randomized smoothing to spiking models (Mukhoty et al., 2024). Adver-
sarial training is strengthened with weight or gradient regularization tailored to spikes (Ding et al.,
2022; Liang et al., 2022). Biologically inspired mechanisms modify spiking dynamics, including
stochastic gating and lateral inhibition, and DVS noise filtering provides input denoising (Ding et al.,
2024b; Marchisio et al., 2021b). Inherent factors such as leakage, coding schemes, and firing thresh-
olds also influence robustness (Sharmin et al., 2019; Zhang et al., 2023). Two recent defenses for
directly trained SNNs are: Liu et al. (2024) regularize input gradient sparsity, and Ding et al. (2024a)
train for robust stability by minimizing membrane-potential perturbations in LIF dynamics.

Motivation and Positioning of Our Attack. SNNs process sparse event streams where information
is carried by when spikes occur rather than by continuous intensities. Prior attacks mainly alter
intensities or add/delete events, and many defenses certify or train against intensity or count changes
rather than timing. We address this gap with a timing-only attack that retimes existing spikes while
preserving amplitudes and counts, producing inputs that are physically realizable, energy-consistent,
and aligned with realistic sensor jitter and latency. Focusing on timing can evade intensity-based
checks and directly targets temporal computation, and it turns the search from addition to assignment
on the time axis. We cast retiming into a unified, norm-agnostic formulation on spike timestamps
that supports B∞, B1, and B0 budgets, providing a protocol for evaluating timing robustness.

3 PRELIMINARY

3.1 NEURON DYNAMICS IN SPIKING NEURAL NETWORKS

Discrete-time LIF neurons. Following Yao et al. (2024); Lun et al. (2025), we adopt the stan-
dard leaky integrate-and-fire (LIF) neuron model (Izhikevich, 2004). Let u(l)

i [t] be the membrane
potential and s

(l)
i [t] ∈ {0, 1} the spike of neuron i at layer l and time t. A common recurrence is

u
(l)
i [t] = τ u

(l)
i [t−1]

(
1− s

(l)
i [t−1]

)
+
(
W (l)s(l−1)[t]

)
i
+ b

(l)
i , s

(l)
i [t] = H

(
u
(l)
i [t]− Vth

)
, (1)

where τ is the leak, W (l) and b(l) are weights and bias, Vth is the firing threshold, and H(·) is the
Heaviside step. A hard reset sets u to zero on a spike. The LIF captures a neuron’s spatiotemporal
dynamics, and firing together with reset provides the nonlinearity to solve complex tasks.

Data form & encoding. SNNs take static images or event streams as inputs. A static input is an in-
tensity frame xs∈ [0, 1]C×H×W , unfolded over T steps either by direct encoding (x[t] = xs) or rate
encoding (each pixel emits Bernoulli spikes so that E[x[t]]=xs and x∈{0, 1}T×C×H×W). Event data
are binned over fixed windows into dense grids, typically as integer grids that accumulate per-bin
activity/energy (x∈ZT×C×H×W

≥0) or as binary grids that record presence (x∈{0, 1}T×C×H×W).

3.2 ADVERSARIAL ATTACKS FOR SNNS

General formulation. Given a classifier f and label y, an adversarial example is xadv = x+δ that
maximizes the task loss L (e.g., cross-entropy loss) under a Bp-norm budget ε:

max
δ
L
(
f(x+ δ), y

)
s.t. ∥δ∥p ≤ ε. (2)

For frame-based inputs (static images) or integer event grids, the common choice is B∞ neighbor
(p =∞). For binary grids, sparsity is better captured by an B0 constraint.

Frame-based attacks on SNNs. Under an B∞ budget, FGSM applies one signed step to the input:

xadv = clip[0,1]
(
x+ ε · sign(∇xL(f(x), y))

)
. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

PGD repeats signed steps with projection onto the B∞ ball around the clean input:

x(k+1) = ΠB∞(x,ε)

(
x(k) + α · sign

(
∇xL(f(x(k)), y)

))
, x(0) = x+ U(−ε, ε), (4)

where k indexes iterations, α is the step size, and ΠB∞(x,ε) projects back to the feasible region. For
SNNs,∇x is obtained through the spiking dynamics such as the PDSG estimator (Lun et al., 2025).

Event-data attacks (grid). We focus on dense event grids: integer and binary. Integer grids essen-
tially reuse the frame-based attacks under an B∞ radius. For binary grids, the perturbation is an B0
flip budget where methods typically score candidate bins (via gradients/saliency), select up to the
budget using straight-through or probabilistic discrete relaxations, and project with a keep/flip step.
There is no single unified paradigm, but “score→ select→ project” is the common pattern.

4 METHODOLOGY

We formalize a timing-only threat model (Sec. 4.1), develop a differentiable retiming surrogate with
a strict projection (Sec. 4.2), and couple them via projected-in-the-loop optimization (Sec. 4.3).

4.1 PROBLEM SETUP

Threat model. We formalize a timing-only threat model. The adversary retimes existing spikes
while preserving amplitudes and spike count. Feasibility requires staying on the timeline and no
overlap per event line and time bin. Budgets are Bp constraints on the retimings. Unless otherwise
noted, following Yao et al. (2024); Lun et al. (2025), we assume a white-box attacker with access to
model parameters and consider untargeted attacks.
Definition 1 (Spike Timing Attack). A timing-only adversary produces an adversarial event stream
by moving existing spikes along the time axis while preserving amplitudes; no spike is created,
deleted, or split, and at most one spike may occupy any event-line/time-bin (capacity-1). Let x ∈
ZT×C×H×W
≥0 be the input event tensor with y ∈ Y as the ground-truth label. Flatten spatial–channel

to j ∈ {1, . . . , N} with N=CHW , and define the active index set A(x) = {(s, j) : x[s, j] > 0}.
For each (s, j) ∈ A(x), choose an integer shift δs,j and set t = s + δs,j with 0 ≤ t < T . The
feasible assignments F(x) and the capacity-preserving placement P are

F(x) =
{
δ : 0 ≤ s+ δs,j < T︸ ︷︷ ︸

stay on timeline

∧ ∀j, t :
∣∣{ s : (s, j) ∈ A(x), s+ δs,j = t }

∣∣ ≤ 1︸ ︷︷ ︸
non-overlap (capacity-1)

}
,

P (x; δ)[t, j] =

{
x[s, j], ∃ s s.t. (s, j) ∈ A(x), t = s+ δs,j ,

0, otherwise.

(5)

In words, δ chooses an integer shift for each existing spike; P (x; δ) replays the same spikes at
new times. Given an SNN classifier f : ZT×C×H×W

≥0 → P(Y) with logit vector f(x) and loss
L
(
f(x), y

)
(e.g., cross-entropy loss), the timing-only attack solves

max
δ∈F(x)∩Bp

L
(
f(P (x; δ)), y

)
. (6)

where Bp(ε) :={δ : ∥δ∥p,A(x)=
(∑

(s,j)∈A(x) |δs,j |p
)1/p≤ε} is a p-norm budget over A(x).

Packetization for integer grids. We represent binned events as x[t, j], where t indexes discrete time
bins and j indexes an event line (a fixed pixel–polarity location); x[t, j] is the spike count on line j
at time bin t. For integer event grids, we conceptually decompose each count into unit packets so
that capacity-1 acts on packets per event line and time bin. Detailed discussion of global optimality
guarantees for Eq. 6 and the computational complexity of our solver is provided in Appendix G.

Budgets. Budgets connect hardware plausibility, attacker power, and fair reporting. With Bp(ε) in
Eq. 6, the formulation is norm-agnostic, and we focus on three canonical cases:

B∞(ε)=
{
δ : |δs,j | ≤ ε

}︸ ︷︷ ︸
local jitter

, B1(ε)=
{
δ :

∑
(s,j)∈A(x)

|δs,j | ≤ ε
}

︸ ︷︷ ︸
total timing shift

, B0(ε)=
{
δ :

∑
(s,j)∈A(x)

I{δs,j ̸= 0} ≤ ε
}

︸ ︷︷ ︸
tamper count

. (7)

B∞ caps per-spike jitter, aligning with timestamp uncertainty and favoring local retimings; B1 limits
aggregate timing shift, providing a single global knob that scales with event density; B0 bounds how
many spikes are touched, capturing stealthy, minimal-footprint attacks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 RELAXATION AND OPTIMIZATION VIA SHIFT PROBABILITIES

The definition above specifies admissible retimings as integer assignments under capacity-1 and a
budget on δ. To optimize within this discrete space at scale, we build a differentiable surrogate that
keeps the forward sample feasible, provides useful gradients, and works for any choice of p in Eq. 6.

Shift logits as distributions over admissible targets. For each active source (s, j) ∈ A(x) we
introduce shift logits ϕ[s, j, u] on an index u ∈ Up and define tempered probabilities

π[s, j, u] =
exp

(
ϕ[s, j, u]/κ

)∑
v∈Up

exp
(
ϕ[s, j, v]/κ

) , Up =

{
{−ε, . . . , ε}, p =∞,

{0, . . . , T − 1}, otherwise,
(8)

where ε is the radius of B∞(ε). We do not enforce the timeline constraint 0 ≤ s + u < T at this
stage for p =∞; boundary handling is deferred to the soft operator and the strict projection.

Soft shift operator. Given the distribution π over admissible targets, we map each index u ∈ Up
to a target time by Tp(s, u) = s + u for p = ∞ and Tp(s, u) = u otherwise. Let x[t, j] = 0 for
t /∈ {0, . . . , T − 1}. The expected (soft) retiming on event line j is

Sπ(x)[t, j] =

T−1∑
s=0

∑
u∈Up

π[s, j, u] x[s, j] I{Tp(s, u) = t}. (9)

Here x[s, j] denotes the packet at original time s on event line j, and π[s, j, u] in Eq. 8 is the
probability (from the shift logits) of moving this packet by an integer offset u so that it lands at
t = s + u. Then Sπ(x)[t, j] in Eq. 9 is the expected post-attack packet at (t, j), obtained by
summing the contributions x[s, j] from all sources and shifts with t = s+ u weighted by π[s, j, u].
We define x̃ = Sπ(x). For p ∈ {1, 0}, normalization of π yields value conservation on every
line:

∑T−1
t=0 Sπ(x)[t, j] =

∑T−1
s=0 x[s, j]. For p = ∞, the same identity holds when the window

{−ε, . . . , ε} stays within the timeline. The operator is linear and fully differentiable, providing
gradients aligned with temporal retimings and leading naturally to the strict projection next.

Expected occupancy and capacity regularization. To align the soft distribution with capac-
ity–1 before strict placement, we track the expected packet count at bin (t, j): occπ[t, j] =∑

(s,j)∈A(x)

∑
u∈Up

π[s, j, u] I{Tp(s, u) = t}. We penalize only the excess beyond unit capacity,

Cap(π;x) =
1

|A(x)|

N∑
j=1

T−1∑
t=0

[
occπ[t, j]− 1

]2
+
, (10)

where [z]+ := max(z, 0) denotes the positive-part (hinge) operator.

Budget-aware soft surrogates. The budget in Eq. 6 is enforced exactly by the final projection.
During optimization, we guide ϕ with smooth surrogates matched to the chosen budget so gradients
favor feasible retimings. For p = ∞, no surrogate is required because the support U∞ already
encodes the constraint. For p = 1, we use the step cost Cs,t = |t − s| to define a soft total timing
shift. And for p = 0, we use the diagonal mass π=[s, j] = π[s, j, s] to define a soft move count:

S1
soft(π;x) =

∑
(s,j)∈A(x)

T−1∑
t=0

π[s, j, t] Cs,t, and S0
soft(π;x) =

∑
(s,j)∈A(x)

(
1− π=[s, j]

)
. (11)

We push these quantities toward the target radius ε with normalized hinge penalties

Rp(π; ε) =
[
Sp

soft(π;x)/ε− 1
]
+
, p ∈ {0, 1}, andR∞(π; ε) = 0, (12)

which keeps gradients comparable across different ε, while the strict projection later enforces the
exact budgets.

Feasible strict projection under budgets. Given π, we compute a strict discrete retiming x̂ =
P∗(x;π,Bp(ε)) that operates on A(x) and enforces capacity-1, value conservation, and the budget
Bp(ε). The projection obeys the following rules: a) Candidate generation: For p = ∞, the
procedure enumerates shifts u ∈ {−ε, . . . , ε} and maps each source (s, j) to the target time t =
Tp(s, u) = s + u. For p ∈ {0, 1}, it enumerates target times t ∈ {0, . . . , T − 1} with t ̸=
s. b) Ordering: The algorithm sorts all candidates once by the descending score π[s, j, u] (or

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 PIL-PGD: Projected-in-the-loop PGD over shift logits
1: Input: SNN f , iterations Tpgd, temperature κ, step size α, radius ε, clipping ϕmax, weights λcap, λbudget
2: Initialize shift logits ϕ with zeros, and mask them outside A(x)
3: for t = 1 to Tpgd do
4: π ← softmax(ϕ/κ)
5: x̃← Sπ(x); x̂← P∗(x;π,Bp(ε)); xPIL ← x̂+

(
x̃− stopgrad(x̃)

)
strict projection in-loop

6: Compute J via Eq. 14; Update ϕ← clip[−ϕmax, ϕmax]

(
ϕ+ α · sign(∇ϕJ)

)
7: end for
8: Return xadv ← P∗(x;π,Bp(ε))

π[s, j, t]). c) One-pass placement: The scan traverses the ordered list and places (s, j)→ (t, j)
only when the bin (t, j) is free. A placed source releases its origin; an unplaced source remains at
s. Targets outside the timeline are discarded implicitly by the time-axis clipping used in Sπ and P∗.
d) Budget enforcement: The implementation initializes global counters to the radius and consumes
them during the score-ordered scan. For p = ∞, it accepts only shifts with |u| ≤ ε. For p = 1, it
sets an integer step budget B1← ε, traverses candidates in descending π (ties by smaller |t − s|),
places each feasible move, and decrements B1 by |t − s| until B1 = 0. For p = 0, it sets a move
budget B0← ε and decrements B0 by 1 per placement under the same ordering until B0 = 0. The
full procedure is in Algorithm 2, and Sec. E further explains how this strict projection achieves the
budget constraint Bp(ε) exactly while maintaining capacity–1 and conserving event values.

Projected-in-the-loop (PIL) straight through. Optimizing timing moves faces a basic tension: the
model must be evaluated on feasible inputs that respect capacity and the chosen budget, yet gradients
must reflect how small retimings change the loss. Purely strict placement destroys gradients, while
purely soft surrogates break the threat model seen by the network. We therefore adopt a backward-
pass differentiable approximation tailored to timing: the forward pass uses the strict projection
x̂ = P∗(x;π,Bp(ε)), and the backward pass follows the soft retiming x̃ = Sπ(x):

xPIL = x̂+
(
x̃− stopgrad(x̃)

)
. (13)

This “projected-in-the-loop” coupling instantiates a straight-through/backward-pass approximation
for discrete operations, providing stable gradients without sacrificing exact feasibility at evaluation.

4.3 PIL-PGD: PROJECTED-IN-THE-LOOP PGD OVER SHIFT LOGITS

Building on Eq. 13 and the additional loss Eq. 10, 11, we optimize the shift logits by maximizing

J = L
(
f(xPIL), y

)
− λcap · Cap(π;x)− λbudget · Rp(π; ε). (14)

We update logits with a clipped sign-PGD step

ϕ ← clip[−ϕmax, ϕmax]

(
ϕ+ α · sign(∇ϕJ)

)
, (15)

where ϕmax is a hyperparameter that prevents logit saturation and stabilizes the softmax temperature
κ. After the final iteration, we recompute π and output the strictly feasible xadv = P∗(x;π,Bp(ε)).
Why this objective and update. Alg. 1 formulates Eq. 14 within the loop: the forward path adopts
strictly projected x̂=P∗(x;π, Bp(ε)), while the backward path differentiates through the soft shift
Sπ . The objective steers logits toward untargeted attacks and adds two terms, the over-occupancy
Cap and the budget penaltyRp. Logits are updated by a clipped sign-PGD step, and the bound ϕmax

maintains scale and prevents early near-argmax collapse. With feasibility enforced in the forward
and differentiability preserved in the backward, PIL yields stable gradients without violating the
threat model. The same routine applies for p ∈ {∞, 1, 0}, changing onlyRp and the projection P∗.

5 EXPERIMENT

Datasets and Models. We choose event datasets: CIFAR10-DVS (Li et al., 2017) (10,000 CIFAR-
10 images converted to event streams over 10 classes; 2×128×128 grid), DVS-Gesture (Amir et al.,
2017) (1,063/288 train/test streams, 11 gestures; 2×128×128), and N-MNIST (Orchard et al., 2015)
(60,000/10,000 saccade-rendered MNIST samples; 2×34×34). Attacks are run only on correctly-
classified test samples: all on DVS-Gesture, 1,000 on N-MNIST, and 100 on CIFAR10-DVS. We

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results on Binary-grid DVS. We report clean Accuracy (Acc., %) and ASR (%) under Bp
with p∈{∞, 1, 0}. For each budget, we evaluate three radii, and dataset-specific radii are indicated.

Dataset Model Acc. (%) ASR (%)

Budget
ε →

B∞ B1 B0
1 2 3 500 750 1k 200 300 400

N-MNIST
ConvNet 99.06 100 100 100 58.9 99.9 100 13.0 53.1 98.5
ResNet18 99.62 100 100 100 69.2 97.4 100 78.9 100 100
VGGSNN 99.64 98.9 100 100 26.4 65.5 94.7 18.3 81.8 99.8

Budget
ε →

B∞ B1 B0
1 2 3 2k 4k 8k 1k 2k 4k

DVS-
Gesture

ResNet18 95.14 98.9 100 100 52.6 84.7 99.6 27.7 67.9 98.5
VGGSNN 95.14 96.4 100 100 53.3 89.8 98.5 55.8 87.2 98.9
SpResF 91.67 92.1 96.1 100 64.4 87.3 98.4 43.8 90.9 99.2

CIFAR10-
DVS

ResNet18 78.30 100 100 100 51.0 77.0 97.0 26.0 42.0 80.0
VGGSNN 78.30 100 100 100 47.0 72.0 98.0 25.0 46.0 73.0
SpResF 81.30 100 100 100 84.0 100 100 52.0 92.0 100

Table 2: Results on Integer-grid DVS. We report clean Accuracy (Acc., %) and ASR (%) under Bp.
Dataset Model Acc. (%) ASR (%)

Budget
ε →

B∞ B1 B0
1 2 3 500 750 1k 1.5k 200 300 400 600

N-MNIST
ConvNet 99.19 100 100 100 61.8 99.2 100 100 13.0 56.1 99.1 100
ResNet18 99.62 100 100 100 53.9 93.6 99.8 100 86.1 99.8 100 100
VGGSNN 99.71 46.3 100 100 8.3 18.5 39.9 76.7 5.8 11.2 16.1 49.8

Budget
ε →

B∞ B1 B0
1 2 3 2k 4k 8k 16k 1k 2k 4k 8k

DVS-
Gesture

ResNet18 94.40 71.0 83.3 93.3 17.1 40.9 65.4 85.1 8.9 35.3 68.0 98.1
VGGSNN 94.79 65.9 79.9 85.0 14.7 31.9 55.0 79.1 21.6 40.7 67.4 95.9
SpResF 92.71 70.7 79.8 84.0 36.8 52.8 68.8 80.6 26.2 46.3 70.7 80.6

CIFAR10-
DVS

ResNet18 79.20 99.0 100 100 21.0 37.0 66.0 85.0 7.0 18.0 33.0 73.0
VGGSNN 78.80 98.0 100 100 26.0 43.0 67.0 87.0 16.0 25.0 46.0 78.0
SpResF 82.90 100 100 100 63.0 97.0 100 100 33.0 72.0 100 100

set time-bin T=10. For N-MNIST, we use ConvNet (Fang et al., 2021a), Spiking ResNet18 (Fang
et al., 2021b), and VGGSNN (Deng et al., 2022)). For the other two datasets, we replace ConvNet
with SpikingResformer (SpResF) (Shi et al., 2024). All models are directly trained SNNs.

Evaluation Protocol. We use untargeted attacks under timing budgets Bp(ε) with p ∈ {∞, 1, 0}.
Both binary-grid and integer-grid event representations are evaluated. Our metric is the At-
tack Success Rate (ASR) on set S: ASR

(
Bp(ε)

)
= 1

|S|
∑

(x,y)∈S I
{
f
(
xadv

)
̸= y

}
,xadv =

Attack(x; Bp(ε)) . We report ASR as a function of the budget ε for each p ∈ {∞, 1, 0}.
Implementations. For B∞, we use ε∈{1, 2, 3} on all datasets. For B0, we set {200, 300, 400} on
N-MNIST, and {1k, 2k, 4k} on DVS-Gesture and CIFAR10-DVS. To keep comparable perturbation
levels, the B1 radii are chosen twice the B0 settings. On DVS-Gesture, B0(4k) touches 2.45% of
spikes, on CIFAR10-DVS the same 4k is 3.84%, and on N-MNIST B0(400) is 14.2%, indicating
the stealthiness of our attacks. Unless noted, Algorithm 1 uses κ=1, α=1, ϕmax=10, Tpgd=20
for B∞ and Tpgd=40 for B1 and B0, with λcap=20 and λbudget=10 in Eq. 14.

5.1 EXPERIMENTAL RESULTS

Experiments on Binary DVS Data. We first evaluate untargeted timing-only attacks on binary grids
as shown in Tab. 1. We sweep three radii for B∞ and dataset-specific budgets for B1 and B0. Under
B∞, small jitter already drives ASR near saturation; for example, most results reach over 96% at
ϵ = 1. Under B1, ASR increases smoothly with budget with moderate architecture dependence;
e.g., on DVS-Gesture the SpikingResformer attains 98.5% at B1(4k). Under B0, retiming a small
subset of spikes is effective; for instance, on CIFAR10-DVS the SpikingResformer achieves 96.0%
at 4k touched spikes. Overall, timing-only perturbations are highly effective on binary grids, with
susceptibility shaped by the budget and the model family.

Experiments on Integer DVS Data. As shown in Tab. 2, integer DVS grids mirror the binary trend
under B∞ with fast saturation, but are consistently more robust under B1 and B0 at the same
nominal budgets. For example, on DVS-Gesture with ResNet18, the binary grid exceeds 99% ASR
at B1=8k, whereas the integer grid is around the mid-60% at 8k and mid-80% at 16k; a similar
gap appears on CIFAR10-DVS. Under B0, the binary grid reaches high ASR by 4k touched spikes,
while the integer grid typically requires up to 8k to approach comparable levels.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Clean accuracy and robustness. Clean accuracy is comparable across binary and integer grids for
the same model and dataset (e.g., ResNet18: 95.14 vs. 94.40 on DVS-Gesture; 78.30 vs. 79.20 on
CIFAR10-DVS; 99.62 on N-MNIST for both), while robustness diverges.

Why integer grids appear more robust under bin-level retiming? (i) Presence bias and narrow
temporal margin on binary. Binary inputs are thresholded from integers, so training emphasizes
bin-level presence features. Under bin-level retiming, shifting isolated spikes across a temporal re-
ceptive field can toggle on/off patterns and induce large discrete changes in downstream activations,
implying a narrow temporal margin. (ii) Multiplicity and smoother temporal response on integer.
Integer inputs preserve per-bin multiplicity. A bin-level shift moves count packets that temporal
convolutions, pooling, and normalization integrate more smoothly, so the same retiming manifests
as a gentler phase change in feature space. To obtain comparable feature variation, retiming typi-
cally needs a larger total timing shift. (iii) Surrogate-gradient and normalization stability. Although
spikes are binary, gradients and normalization act on pre-spike continuous variables. With binary
inputs, pre-activations concentrate near threshold, and small bin shifts move many units into and
out of the surrogate-gradient support, producing spiky gradients and volatile normalization statis-
tics. With integer inputs, pre-activations vary more smoothly and statistics are more stable, yielding
broader tolerance to small temporal phase shifts. Theoretical explanations are in Appendix A.

Table 3: Ablation. We report ASR (%). “w/o
PIL” denotes replacing xPIL with Sπ(x).

Variant Binary Grid Integer Grid
B∞(1) B1(8k) B0(4k) B∞(3) B1(16k) B0(8k)

Full (ours) 96.4 98.5 98.9 85.0 79.1 95.9
w/o PIL 92.7 84.3 88.6 63.0 61.5 83.1
w/o Cap 95.6 98.5 98.5 77.6 77.2 89.6
w/oRp – 76.6 93.0 – 42.4 84.9

Ablation. We ablate three modules with VGGSNN
and DVS-Gesture in Tab. 3. PIL (forward with
the strict projection while backward with the soft
shifter) is critical: replacing it with only the soft x̃
consistently lowers ASR (binary B1: 98.5→ 84.3;
integer B∞: 85.0 → 63.0), showing that matching
the evaluated threat while retaining gradients mat-
ters. The budget penalty Rp is also crucial, with
the largest impact under B1 (binary: 98.5→ 76.6, integer: 79.1→ 42.4) and noticeable drops for
B0(binary: 98.9→93.0, integer: 95.9→84.9). Capacity regularizer yields modest gains on binary
but larger gains on integer grids; removing it reduces ASR (integer B∞: 85.0→77.6). Overall, PIL
+ budget awareness account for most improvements, and capacity control helps when temporal bins
become congested.

Comparisons against raw-event baselines. Beyond the timing-only comparisons, we also
benchmark our attack against two strong raw-event baselines, SpikeFool (Büchel et al., 2022)
and PDSG-SDA (Lun et al., 2025), under matched tamper-count budgets B0 on N-MNIST,
DVS-Gesture, and CIFAR10-DVS. Detailed accuracy–vs.–budget curves and full tables are in Ap-
pendix K. Overall, our timing-only, rate-preserving attack remains competitive with these raw-event
methods and is often stronger on DVS-Gesture and N-MNIST, despite operating under stricter ca-
pacity and timing constraints.

5.2 ROBUSTNESS AGAINST ADVERSARIALLY TRAINED MODELS

Adversarial Training with Retiming Attacks. To assess robustness when the model is exposed
during training to our attacks, we adopt the adversarial training (AT) (Madry et al., 2018) paradigm:
use attacks under budget Bp(ε) as the inner maximization and minimize robust risk in the outer loop:

min
θ

E(x,y)∼D
[
max

ϕ
L
(
fθ
(
P ∗(x;π,Bp(ε))

)
, y

)]
, s.t. π = softmax(ϕ/κ). (16)

Since the strict projection P ∗ is relatively slow, we optimize over ϕ using the soft shifter Sπ and
apply P ∗ at the final step. This keeps the inner loop efficient while still meeting budget constraints.

Table 4: Results of AT with timing-only attacks on VGGSNN and DVS-Gesture. Following com-
monly used metrics in AT, we report clean accuracy (Acc., %) and robust accuracy (%).

Grid Adversarially
trained model

Acc. Robust Acc. (%)
B∞(1) B∞(2) B∞(3) B1(2k) B1(4k) B1(8k) B0(1k) B0(2k) B0(4k)

B
in

ar
y B∞(1) 22.92 9.72 6.60 7.29 15.63 12.50 9.03 19.45 16.67 10.42

B1(8k) 48.26 9.37 3.82 2.43 18.05 9.37 6.25 27.77 17.01 6.25
B0(4k) 22.57 5.90 3.47 2.43 11.11 9.38 4.17 14.58 12.15 5.56

In
te

ge
r B∞(1) 52.08 27.08 27.43 29.86 44.79 43.40 34.72 46.87 43.75 39.23

B1(8k) 68.75 40.62 40.98 43.40 64.58 61.81 54.51 68.40 64.58 55.56
B0(4k) 72.22 40.97 38.19 37.50 67.01 60.41 51.38 70.49 64.58 51.38

Results. We do experiments with VGGSNN backbone on DVS-Gesture dataset. As shown in Tab. 4,
AT on the integer grid yields a better clean–robust trade-off. With B1(8k), the integer model keeps

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

clean accuracy at ≈ 69% and reaches robust accuracy >60% at small B1 radii, settling in the mid-
50% at 8k. The gains transfer to B0 (≈ 55–68%) and to B∞ (≈ 41–43%). Training with B0(4k)
on the integer grid gives the highest clean accuracy (≈ 72%) and robust accuracy >50% across its
radii. On the binary grid, the same recipes leave clean accuracy around 23–48%, and robustness
remains weak even under the matched budget.

Insights. (i) Robustness tracks clean accuracy: if clean collapses, robustness is limited. (ii) In-
teger temporal inertia: integer grids aggregate multi-bit counts per bin, adding inertia making the
inner maximization less destructive; this stabilizes training and improves cross-budget transfer. (iii)
Destructive inner maximization: our attack is highly destructive. Even with AT it substantially
reduces clean accuracy, while robustness gains remain modest, highlighting the need for more prac-
tical defenses and training schemes in future work. See Appendix F for a detailed comparison with
standard non-timing AT baselines. Additional AT experiments, including multi-norm timing AT and
TRADES-based timing AT, are reported in Appendix H.

5.3 DISCUSSION

Figure 2: Time-shift distribution (exclude 0).

Time-shift distribution. Fig. 2 illustrates the time-
shift on the binary DVS-Gesture, and shows a clear
polarity pattern: the positive channel tends to delay
(red–shift) and the negative channel tends to advance
(blue–shift). Under B1, most shifts are 1 bin with a smaller mass at 2. Under B0, shifts reach farther.

Table 5: ASR (%) on VGGSNN (DVS-Gesture).
We vary time bins T , neuron models (PLIF, PSN),
and targeted attacks. “Default” is the main config.

Variant Binary Grid Integer Grid
B∞(1)B1(8k)B0(4k)B∞(3)B1(16k)B0(8k)

Default setup 96.4 98.5 98.9 85.0 79.1 95.9

Time-binsT =20 97.1 90.6 48.0 97.4 79.8 92.4
T =30 93.8 49.2 23.0 96.0 70.5 87.0
T =40 89.9 29.1 13.3 95.0 57.8 81.7

Neuron PLIF 96.7 99.6 96.3 95.1 92.9 98.9
PSN 100 100 100 97.3 79.3 88.6

Targeted Attack 26.8 57.3 62.8 24.6 29.7 47.2

Time-bins T . We evaluate under different
time bins in Tab. 5. On the binary grid, finer
bins create more active time bins, so under a
fixed B1 or B0 budget the attacker must retime
many more positions to achieve the same ef-
fect, which drives a sharp ASR drop (e.g., B1:
90.6→ 29.1 from T =20 to T =40). On the in-
teger grid, finer binning mostly redistributes the
same spike counts. Temporal convolutions and
normalization integrate summed counts within
each receptive field, so the integrated mass re-
mains stable. The attacker can still rephase
high-count packets under B1, and under B0 moving a few high-mass bins remains impactful. This
mass-preserving yet phase-shifting effect explains why ASR stays high at T =20 across budgets.

Neuron. We evaluate neuron models in Tab. 5. PLIF (Fang et al., 2021a) surpasses LIF in most cases
(e.g., integer B1: 92.9). PSN (Fang et al., 2023) saturates on the binary grid and remains high on the
listed integer entry, indicating that richer membrane dynamics permit easier timing manipulations.

Targeted Attack. We evaluate targeted attacks with 0 as the target label in Tab. 5. Targeted ASR is
lower than untargeted across both grids, with the largest drop under B∞. Increasing the budget may
mitigate this gap. These trends point to follow-up work on stronger targeted attacks. Appendix M
further reports random-target experiments on integer DVS-Gesture / VGGSNN, comparing our tim-
ing attack with the raw-event baseline PDSG-SDA Lun et al. (2025). Under matched B0 budgets,
our capacity-1, rate-preserving attack attains targeted ASR comparable to PDSG-SDA, indicating
that the relatively low targeted success is an intrinsic difficulty of attacks against event grids.

Transferability. Finally, our transferability and multi-model ensemble experiments follow the stan-
dard surrogate-to-victim and ensemble-based protocols from transferable attacks on image mod-
els (Liu et al., 2017; Mahmood et al., 2021). In Appendix B, we experiments on VGGSNN and
applying them to ResNet18 and SpikingResformer. Our attack transfers across architectures, with
higher success on the CNN-like ResNet18 due to the VGGSNN surrogate. Further work may ex-
plore stronger targeted objectives, and surrogate ensembles to improve transferability. Additional
results on ensemble-based multi-model and multi-norm multi-model timing attacks, analogous to
ensemble SNN attacks in (Xu et al., 2025), are provided in Appendix I.

Visualization analysis. Fig. 3 compares three timing budgets on binary events. With B∞(1), the
attack induces local jitter: Shift shows thin red and blue halos near edges, and Diff concentrates on
contours. With B1(8k), shifts are redistributed across many pixels, so Shift and Diff spread more

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ℬ∞(1) ℬ1(8𝑘) ℬ0(4𝑘)

H
a

n
d

 C
la

p
p

in
g

R
ig

h
t

H
a

n
d

 W
a

v
e

Figure 3: Visualization of DVS-Gesture across selected frames (Frame 3/6 in odd/even rows). Ori-
gin shows the clean frame (positive in green, negative in blue), Ours shows the retimed frame under
a fixed retiming budget, Diff highlights changes (new in green, removed in red, unchanged in gray,
polarity swap in yellow), and Shift (pos) / Shift (neg) map per-polarity time shifts (delay in red,
advance in blue, zero in gray, no spike in black). Shift color intensity scales with the absolute shift.

and intensities rise. With B0(4k), only a few spikes move, giving sparse bright red and blue points
and a few Diff hits, often away from the main motion. Across budgets, the adversarial frame stays
close to the clean one because counts are preserved and only timing changes. A recurring pattern
is that key action strokes in hands and arms remain largely intact, while many retimings land
on background or incidental spikes. This exposes sensitivity to nonsalient timing that still shapes
membrane integration and decision timing. It motivates defenses that reduce such reliance, for
example, saliency-aware timing regularization on foreground regions, AT with timing-only budgets
that emphasize foreground stability, and objectives that penalize background timing.

Robustness to filtering defenses. Finally, we evaluate three simple label-free filtering defenses (re-
fractory, temporal, and spatial smoothing) on binary DVS-Gesture / VGGSNN. See Appendix L for
details. Across a wide range of defense strengths, moderate filtering already costs tens of percentage
points in clean accuracy while barely reducing the ASR of our timing-only attack, and our method is
at least as robust to these defenses as the value-based PDSG-SDA Lun et al. (2025). Only extremely
aggressive filtering can substantially suppress our attack, but this simultaneously collapses clean
accuracy, underscoring that simple intensity-based pre-processing is insufficient against capacity-1,
rate-preserving spike retiming.

6 CONCLUSION

We establish spike retiming as a timing-only threat to event driven SNNs under budgets B∞,B1,B0.
We introduce projected in the loop (PIL): the forward pass uses a strictly projected input and the
backward differentiates through a soft shifter, with a capacity regularizer and a budget penalty.
Across multiple event datasets and binary and integer grids, the attack achieves high success with a
small footprint. Our analysis shows integer grids are more robust because multiplicity smooths pre-
activations and stabilizes normalization. Adversarial training yields partial gains yet reduces clean
accuracy, motivating practical timing aware defenses. These results set a reference for temporal
robustness and elevate timing to a primary axis for evaluation and defense in event driven SNNs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo,
Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, Jeff Kusnitz,
Michael Debole, Steven Esser, Tobi Delbruck, Myron Flickner, and Dharmendra Modha. A low
power, fully event-based gesture recognition system. In Proc. IEEE Int’l Conf. Computer Vision
and Pattern Recognition, 2017.

Eric Balkanski, Harrison Chase, Kojin Oshiba, Alexander Rilee, Yaron Singer, and Richard Wang.
Adversarial attacks on binary image recognition systems. CoRR, abs/2010.11782, 2020. doi:
10.48550/arXiv.2010.11782.

Tong Bu, Wei Fang, Jianhao Ding, Penglin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ann-
snn conversion for high-accuracy and ultra-low-latency spiking neural networks. In Proc. Int’l
Conf. Learning Representations, 2022.

Tong Bu, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Rate gradient approximation attack threats
deep spiking neural networks. In Proc. IEEE Int’l Conf. Computer Vision and Pattern Recogni-
tion, pp. 7896–7906, 2023.

Jonas Büchel, Thilo Stadelmann, et al. Adversarial attacks on spiking convolutional neural networks.
Frontiers in Neuroscience, 16:1068193, 2022.

Francesco Croce and Matthias Hein. Mind the box: l1-apgd for sparse adversarial attacks on image
classifiers. In Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 2201–2211. PMLR, 2021.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018. doi: 10.1109/MM.
2018.112130359.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. In Proc. Int’l Conf. Learning Representations, 2021.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. In Proc. Int’l Conf. Learning Representations, 2022.

Jianhao Ding, Tong Bu, Zhaofei Yu, Tiejun Huang, and Jian K. Liu. SNN-RAT: Robustness-
enhanced spiking neural network through regularized adversarial training. In Proc. Annual
Conf. Neural Information Processing Systems, volume 35, pp. 24780–24793, 2022.

Jianhao Ding, Zhiyu Pan, Yujia Liu, Zhaofei Yu, and Tiejun Huang. Robust stable spiking neural
networks. In Proc. Int’l Conf. Machine Learning, volume 235 of PMLR, pp. 11016–11029, 2024a.

Jianhao Ding, Zhaofei Yu, Tiejun Huang, and Jian K. Liu. Enhancing the robustness of spiking
neural networks with stochastic gating mechanisms. In Proc. AAAI Conf. on Artificial Intelligence,
2024b.

Chuang Duan, Zeyu Wang, Jianhao Ding, Zhaofei Yu, and Tiejun Huang. Temporal effective batch
normalization in spiking neural networks. In Proc. Annual Conf. Neural Information Processing
Systems, 2022.

Wei Fang, Zhaofei Yu, Ding Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. In-
corporating learnable membrane time constant to enhance learning of spiking neural networks. In
Proc. IEEE Int’l Conf. Computer Vision, 2021a.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. In Proc. Annual Conf. Neural Information Process-
ing Systems, volume 34, 2021b.

Wei Fang, Zhaofei Yu, Zhaokun Zhou, Ding Chen, Yanqi Chen, Zhengyu Ma, Timothée Masquelier,
and Yonghong Tian. Parallel spiking neurons with high efficiency and ability to learn long-term
dependencies. In Proc. Annual Conf. Neural Information Processing Systems, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Proc. Int’l Conf. Learning Representations, 2015.

Zecheng Hao, Jianhao Ding, Tong Bu, Zhaofei Yu, and Tiejun Huang. Threaten spiking neural
networks through combining rate and temporal information. In Proc. Int’l Conf. Learning Repre-
sentations, 2024.

Eugene M Izhikevich. Which model to use for cortical spiking neurons? IEEE transactions on
neural networks, 15(5):1063–1070, 2004.

Youngeun Kim and Priyadarshini Panda. Revisiting batch normalization for training low-latency
deep spiking neural networks from scratch. Frontiers in Neuroscience, 15:773954, 2021.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: An event-stream
dataset for object classification. Frontiers in Neuroscience, 11:309, 2017.

Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differen-
tiable spike: Rethinking gradient-descent for training spiking neural networks. In Proc. Annual
Conf. Neural Information Processing Systems, 2021.

Shuang Lian, Jiangrong Shen, Qianhui Liu, Ziming Wang, Rui Yan, and Huajin Tang. Learnable
surrogate gradient for direct training spiking neural networks. In International Joint Conferences
on Artificial Intelligence Organization, pp. 3002–3010, 2023.

Ling Liang, Kaidi Xu, Xing Hu, Lei Deng, and Yuan Xie. Toward robust spiking neural network
against adversarial perturbation. In Proc. Annual Conf. Neural Information Processing Systems,
2022.

Ling Liang, Xing Hu, Lei Deng, Yujie Wu, Guoqi Li, Yufei Ding, Peng Li, and Yuan Xie. Exploring
adversarial attack in spiking neural networks with spike-compatible gradient. IEEE Transactions
on Neural Networks and Learning Systems, 2023.

Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128×128 120 db 15 µs latency asyn-
chronous temporal contrast vision sensor. IEEE Journal of Solid-State Circuits, 43(2):566–576,
2008. doi: 10.1109/JSSC.2007.914337.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial ex-
amples and black-box attacks. In Proceedings of the 5th International Conference on Learning
Representations (ICLR), 2017. arXiv:1611.02770.

Yujia Liu, Tong Bu, Jianhao Ding, Zecheng Hao, Tiejun Huang, and Zhaofei Yu. Enhancing adver-
sarial robustness in snns with sparse gradients. In Proc. Int’l Conf. Machine Learning, volume
235 of PMLR, pp. 30738–30754, 2024.

Li Lun, Kunyu Feng, Qinglong Ni, Ling Liang, Yuan Wang, Ying Li, Dunshan Yu, and Xiaoxin Cui.
Towards effective and sparse adversarial attack on spiking neural networks via breaking invisible
surrogate gradients. In Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, 2025.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In Proc. Int’l Conf. Learning Rep-
resentations, 2018.

Kaleel Mahmood, Rigel Mahmood, and Marten van Dijk. On the robustness of vision transformers
to adversarial examples. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 7838–7847, 2021.

Pratyush Maini, Eric Wong, and Zico Kolter. Adversarial robustness against the union of mul-
tiple perturbation models. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 6640–6650. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/maini20a.html.

12

https://proceedings.mlr.press/v119/maini20a.html
https://proceedings.mlr.press/v119/maini20a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alberto Marchisio, Giacomo Pira, Maurizio Martina, Guido Masera, and Muhammad Shafique.
DVS-Attacks: Adversarial attacks on dynamic vision sensors for spiking neural networks. In
2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021a.

Alberto Marchisio, Giacomo Pira, Maurizio Martina, Guido Masera, and Muhammad Shafique. R-
SNN: Robustifying spiking neural networks against adversarial attacks through noise filters for
dynamic vision sensors. In 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2021b.

Paul A. Merolla, John V. Arthur, et al. A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science, 345(6197):668–673, 2014.

Bhaskar Mukhoty, Hilal AlQuabeh, Giulia De Masi, Huan Xiong, and Bin Gu. Certified adversarial
robustness for rate encoded spiking neural networks. In Proc. Int’l Conf. Learning Representa-
tions, 2024.

Bhaskar Mukhoty, Hilal AlQuabeh, and Bin Gu. Improving generalization and robustness in snns
through signed rate encoding and sparse encoding attacks. In Proc. Int’l Conf. Learning Repre-
sentations, 2025.

Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Garrick Orchard, Ajinkya Jayawant, Gregory K. Cohen, and Nitish Thakor. Converting static image
datasets to spiking neuromorphic datasets using saccades. Frontiers in Neuroscience, 9:437, 2015.

Nitin Rathi and Kaushik Roy. Diet-snn: A low-latency spiking neural network with direct input
encoding and leakage and threshold optimization. IEEE Transactions on Neural Networks and
Learning Systems, 34(6):3174–3182, 2023.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575:607–617, 2019. doi: 10.1038/s41586-019-1677-2.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in Neuroscience, 11:682, 2017. doi: 10.3389/fnins.2017.00682.

Saima Sharmin, Priyadarshini Panda, Syed Shakib Sarwar, Chankyu Lee, Wachirawit Ponghiran,
and Kaushik Roy. A comprehensive analysis on adversarial robustness of spiking neural networks.
In 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2019.

Xinyu Shi, Zecheng Hao, and Zhaofei Yu. Spikingresformer: Bridging resnet and vision transformer
in spiking neural networks. In Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition,
2024.

Ziming Wang, Wanli Zhang, Guoqiang Zhao, et al. Adaptive smoothing gradient learning for spiking
neural networks. In Proc. Int’l Conf. Machine Learning, volume 202 of PMLR, pp. 36879–36903,
2023.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12:331, 2018.

Nuo Xu, Kaleel Mahmood, Haowen Fang, Ethan Rathbun, Caiwen Ding, and Wujie Wen. Attacking
the spike: On the transferability and security of spiking neural networks to adversarial examples.
Neurocomputing, 656:131506, 2025. doi: 10.1016/j.neucom.2025.131506.

Yanmeng Yao, Xiaohan Zhao, and Bin Gu. Exploring vulnerabilities in spiking neural networks:
Direct adversarial attacks on raw event data. In Proc. IEEE European Conf. Computer Vision,
2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 7472–7482. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/zhang19p.html.

Yan Zhang, Cheng Chen, Dian Shen, Meng Wang, and Beilun Wang. Take care: Improving inher-
ent robustness of spiking neural networks with channel-wise activation recalibration. In IEEE
International Conference on Data Mining (ICDM), 2023.

Hanle Zheng, Yujie Wu, Lei Deng, Xing Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proc. AAAI Conf. on Artificial Intelligence, pp. 11062–11070,
2021.

14

https://proceedings.mlr.press/v97/zhang19p.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ANALYSIS OF GRADIENTS AND NORMALIZATION UNDER BINARY VS.
INTEGER INPUTS

Setup. Let Xt ∈ RC×H×W denote the per-bin input (either binary {0, 1} or nonnegative integer
counts), and let

At = (W ∗X)t + b (17)

be the first pre-activation (spatio-temporal convolution or linear filtering absorbed into W). Spikes
are St = Θ(At−Vth) in the forward pass, and a surrogate σ (with derivative σ′) is used in backprop.
A unit bin shift is written T1X , and the retiming-induced perturbations are

∆X := T1X −X, ∆At := A
(1)
t −At = (W ∗∆X)t. (18)

We analyze the single-bin shift; multi-bin shifts and multi-spike patterns follow by additivity/triangle
inequality.

1) Retiming changes pre-activations in a Lipschitz way. By Young’s inequality for convolu-
tions, for p ∈ {1, 2},

∥∆A∥p ≤ ∥W∥1 ∥∆X∥p. (19)

Hence any bound we derive in terms of ∥∆A∥p immediately translates to ∥∆X∥p via ∥W∥1.

2) Surrogate-gradient support varies Lipschitzly under small shifts. Backprop gradients w.r.t.
pre-activations take the form

gt =
∂L
∂At

≈ ∂L
∂St
· σ′(At − Vth). (20)

To quantify how many units contribute nontrivially to surrogate gradients, replace the hard band
indicator by a smooth C1 bump ρ : R → [0, 1] with Lip(ρ) < ∞ and define the δ-smoothed
gradient-support mass

Mδ(τ) = E

[
ρ

(
A

(τ)
t − Vth
δ

)]
. (21)

By the mean-value theorem and Eq. 18,∣∣Mδ(τ+1)−Mδ(τ)
∣∣ ≤ Lip(ρ)

δ
E
[
|A(τ+1)
t −A(τ)

t |
]
≤ Lip(ρ)

δ
∥W∥1 E

[
∥∆X∥1

]
. (22)

Thus, the shift-sensitivity of the surrogate-gradient support is proportional to the temporal variation
∥∆X∥1 and scaled only by model/surrogate constants.

3) Normalization drifts (mean/variance) are controlled by ∆X . Let per-channel running statis-
tics over a window of N bins be

µ(τ) =
1

N

∑
t

A
(τ)
t , σ2(τ) =

1

N

∑
t

(
A

(τ)
t − µ(τ)

)2
. (23)

A unit shift changes the mean by

|µ(τ+1)− µ(τ)| =

∣∣∣∣∣ 1N ∑
t

(
A

(τ+1)
t −A(τ)

t

)∣∣∣∣∣ ≤ 1

N
∥∆A∥1 ≤

∥W∥1
N

∥∆X∥1. (24)

For the variance, expanding σ2(τ+1)− σ2(τ) and collecting first/second-order terms gives∣∣σ2(τ+1)− σ2(τ)
∣∣ ≤ 2σ(τ)√

N
∥∆A∥2 +

1

N
∥∆A∥22 + |µ(τ+1)− µ(τ)|2, (25)

and by Eq. 19–24 this is bounded by ∥∆X∥p as well. Hence both mean and variance drifts across
small shifts are linearly controlled by ∥∆X∥.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

4) Normalized pre-activation perturbation shrinks with the baseline scale. Consider the
(affine-free) channel-wise normalization

Zt =
At − µ
σ

, Z ′
t =

At +∆At − (µ+∆µ)

σ +∆σ
. (26)

A first-order expansion in (∆A,∆µ,∆σ) yields

∆Zt ≈
∆At −∆µ

σ
− At − µ

σ2
∆σ. (27)

Taking ℓ2 norms and using Cauchy–Schwarz together with Eq. 19–25, there exists cN = 1 + 2√
N

such that

∥∆Z∥2 ≤
cN
σ
∥∆A∥2 ≤

cN ∥W∥1
σ

∥∆X∥2. (28)

Interpretation: for the same retimed mass ∥∆X∥2 (i.e., same number of touched spikes and same bin
shift), the normalized change is inversely proportional to the baseline standard deviation σ. Integer
inputs aggregate multiplicities within a bin; under mild independence/sparsity of contributing atoms,
this increases the pre-activation variance (hence σ), so the normalized perturbation ∥∆Z∥2 becomes
smaller.

5) Temporal margin and its dispersion. Define a smoothed temporal margin

Marδ(τ) = E
[
ψδ
(
A

(τ)
t − Vth

)]
, (29)

where ψδ is an even C1 function that equals |z| convolved with a width-δ mollifier (matching the
surrogate bandwidth). By the mean-value theorem and Eq. 18,

|Marδ(τ+1)−Marδ(τ)| ≤ Lψ,δ E
[
|A(τ+1)
t −A(τ)

t |
]
≤ Lψ,δ ∥W∥1 E

[
∥∆X∥1

]
. (30)

Consequently the dispersion across small shifts, Varτ
(
Marδ(τ)

)
, is larger when ∥∆X∥ is larger

and/or more irregular; the converse yields steadier margins.

6) Why integer > binary for timing robustness. Two mechanisms combine:

(A) Larger baseline scale σ for integer inputs. Because integer grids preserve multiplicity within
each bin, At aggregates more contributing atoms than binary grids (which only encode pres-
ence/absence). Under mild independence and comparable per-atom weights, Var(At) grows with
the expected count per bin, so σ is larger for integer than for binary. By Eq. 28, the normalized
effect of a fixed retimed mass ∥∆X∥2 is therefore smaller for integer inputs, implying:

• (i) Larger total shift needed. To achieve the same normalized change (hence compara-
ble feature-phase displacement and decision impact), an attacker must increase ∥∆X∥2
proportionally to σ, i.e., needs a larger total timing shift on integer inputs.

• (ii) More stable gradients/normalization. The same retiming budget produces smaller
∥∆Z∥2 (Eq. 28), smaller changes of gradient-support mass (Eq. 22 with A replaced by Z),
and smaller mean/variance drifts (Eqs. 24–25) on integer inputs.

(B) Smaller temporal variation ∥∆X∥ for integer under rate-smoothness. Let the underlying per-
location event rate vary smoothly across adjacent bins. Binarization introduces on/off boundaries:
even small rate fluctuations create frequent {0, 1} flips, inflating the temporal difference ∥T1X−X∥
relative to the aggregate count change. In contrast, integer counts change more gradually across
bins when rates are smooth, yielding a smaller typical ∥∆X∥ for the same underlying dynamics.
Plugging this into Eq. 22, Eq. 24, and Eq. 30 shows that gradient-support variation, normalization
drift, and margin dispersion are all smaller for integer inputs.

Takeaway. Eq. 19–28 and 30 together establish that, under the same retiming budget, integer in-
puts (i) attenuate normalized perturbations via a larger baseline σ, and (ii) reduce shift-sensitivity by
exhibiting smaller temporal differences ∥∆X∥ when rates are smooth. These two effects precisely
explain the main-text statements: (ii) retiming on integer inputs typically requires a larger total tim-
ing shift to match the effect; and (iii) surrogate gradients and normalization statistics are more stable
under small shifts.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Transfer ASR (%) on DVS-Gesture: attacks crafted on VGGSNN (surrogate) and evalu-
ated on targets.

Target Model
Binary Grid Integer Grid

B∞ B1 B0 B∞ B1 B0

1 2 3 8k 16k 4k 8k 1 2 3 8k 16k 4k 8k

ResNet18 75.9 83.5 86.5 66.0 82.1 81.0 90.8 32.2 42.1 45.0 25.6 39.1 43.2 65.9
SpikingResformer 47.0 56.2 61.6 45.9 51.8 55.4 62.7 30.7 30.4 34.4 19.0 26.3 16.4 31.5

B TRANSFERABILITY

We evaluate transfer from VGGSNN to ResNet18 and SpikingResformer on DVS-Gesture in
Tab. 6, and compare against the white-box ASR in Tabs. 1 and 2. On the binary grid, transfer is
strong and grows with budget, with ResNet18 consistently higher than SpikingResformer. For ex-
ample, increasing B1 or B0 raises ASR on the targets toward the corresponding white-box levels.
This aligns with shared inductive biases in early temporal filters, so presence features and phase
edges crafted on VGGSNN generalize to CNN-like targets.

On the integer grid, transfer is clearly weaker at small B∞ and B1 radii, while larger B0 still yields
meaningful transfer. Integer inputs preserve multiplicity and induce smoother preactivation and nor-
malization, so the inner solution becomes more model-aligned and less cross-model, which limits
generalization from the surrogate. Overall, binary attacks transfer more readily, ResNet18 is an
easier target than SpikingResformer, and increasing the budget narrows the gap to white-box perfor-
mance, especially under B0 where a few high-impact retimings remain effective across models.

C USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (LLM) solely as a writing assistant for language editing—grammar
correction, wording/fluency polishing, and minor rephrasing for clarity. The LLM was not involved
in research ideation, problem formulation, methodology or experiment design, coding, data analysis,
result generation, or citation selection. All technical content and conclusions were authored and
verified by the human authors, who take full responsibility for the paper. The LLM is not eligible
for authorship.

D ETHICS STATEMENT

This work analyzes timing-only adversarial attacks on event-driven spiking neural networks to ex-
pose failure modes and inform defenses. Aware of dual-use risks, we restrict experiments to public
benchmarks and open-source models (never deployed or proprietary systems) and disclose only what
is necessary for scientific reproducibility without enabling turnkey misuse. Any released artifacts
will use a research-only license with default “evaluation-only” configurations; potentially abusable
components (e.g., automated black-box attack pipelines) are down-scoped. We also outline practical
safeguards for defenders (timing-jitter augmentation, count-invariant timing checks, and certifica-
tion baselines). No new data were collected; no human subjects or personally identifiable informa-
tion are involved; usage complies with dataset licenses. We adhere to the ICLR Code of Ethics and
research-integrity norms, report limitations transparently, and keep computational budgets modest
to limit environmental impact.

E STRICT PROJECTION P∗ AND RATE PRESERVATION

In the main paper, we define the feasible assignment set in Eq. (5) by requiring (i) a capacity-1
constraint along each event line and (ii) a rate-preserving, timing-only adversary that never changes
event counts or amplitudes. Here we make the strict projection P∗(x, π,Bp) explicit for the global
L0 budget case and clarify why it is rate-preserving by construction.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.1 ALGORITHMIC DEFINITION UNDER GLOBAL L0 BUDGET

We work on flattened event lines: an input x ∈ RT×B×C×H×W is reshaped to x ∈ RT×N , where
N = BC HW indexes event lines j ∈ {1, . . . , N}. A non-zero entry x[s, j] denotes one event
packet (a single spike on binary grids or an integer-valued packet on integer grids). The learned shift
logits are turned into probabilities π[s, j, t] ∈ [0, 1] over target times t ∈ {1, . . . , T} for each source
packet (s, j).

The global L0 budget B0 upper-bounds the number of packets that may be moved (each moved
packet consumes one unit of budget). The strict projection P∗ then greedily selects packet moves
(s → t, j) by prioritizing high shift probabilities (and, as a tie-breaker, shorter temporal distances),
while enforcing capacity-1 and the global budget. The complete procedure is given in Algorithm 2.

Intuitively, packets whose candidates are never accepted remain at their original time indices s, while
accepted candidates correspond to pure moves of the entire packet from (s, j) to (t, j) on the same
event line. The additional checks with occupied and reserved guarantee that no time bin (t, j)
ever hosts more than one packet after projection, and that we never overwrite an original packet that
is still planned to stay.

E.2 RATE PRESERVATION BY CONSTRUCTION

The above algorithm is rate-preserving in a strong sense:

• Each original packet appears exactly once after projection. Every packet is either
moved once or left at its original location. No operation creates new packets or deletes
existing ones; the procedure only changes their time coordinates.

• Packets never change event lines. Moves are always of the form (s, j) → (t, j), so
packets only move along the time axis on a fixed line j.

Consequently, for every event line j we have exact preservation of the event multiset along time:{
adv[t, j]

}T
t=1
≡
{
x[t, j]

}T
t=1

, (31)

and hence the per-line and global event counts are preserved:

T∑
t=1

adv[t, j] =

T∑
t=1

x[t, j],
∑
t,j

adv[t, j] =
∑
t,j

x[t, j]. (32)

Equivalently, P∗ implements a per-line permutation of non-zero packets along the time axis (with
some packets possibly staying fixed), which is strictly rate-preserving for both binary and integer
event grids.

In our projected-in-the-loop (PIL) optimization, the only approximation appears in the backward
pass: gradients are computed through the soft operator Sπ on an expected retiming, while the for-
ward evaluation of the SNN always uses the strictly projected P∗(x, π,Bp). All adversarial examples
seen by the model therefore satisfy the rate-preservation equalities above.

E.3 EMPIRICAL SANITY CHECK OF RATE PRESERVATION

To verify that our implementation matches the intended behavior, we performed a systematic sanity
check on all experiments in the main paper (all datasets, models, budgets, and random seeds):

• For each adversarial example, we compared the per-line event configurations before and
after projection.

• For every event line j, we confirmed that the sorted multiset {adv[t, j]}Tt=1 coincides with
{x[t, j]}Tt=1, i.e., packets are only permuted in time and never added, removed, or rescaled.

These checks were satisfied for all runs, confirming that P∗ is rate-preserving in practice for both
binary and integer grids. We will summarize aggregate statistics of this check in a small table in the
supplementary material.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 2 Strict projection P∗(x, π,Bp) with global L0 budget

1: Input: flattened events x ∈ RT×N (time × event lines), shift probabilities π ∈ [0, 1]T×N×T , global L0

budget B0

2: Output: projected events adv = P∗(x, π,Bp) reshaped back to [T,B,C,H,W]

3: # identify active packets and candidate moves
4: has src[s, j]← 1{x[s, j] > 0} for all s ∈ {1, . . . , T}, j ∈ {1, . . . , N}
5: C ← ∅
6: for all (s, j) s.t. has src[s, j] = 1 do
7: for t = 1 to T do
8: if t ̸= s then
9: add (s, j, t) to C

10: end if
11: end for
12: end for
13: # priority score: probability first, distance as tie-breaker
14: choose tiny ε > 0
15: for all (s, j, t) ∈ C do
16: key(s, j, t)← π[s, j, t] + ε

(
(T − 1)− |t− s|

)
17: end for
18: sort C in descending order of key(s, j, t)
19: # initialize states
20: occupied[j, t]← False, for all j, t # targets already taken by moved packets
21: reserved[j, t]← has src[t, j], for all j, t # original packets planned to stay
22: moved[j, s]← False, for all j, s
23: adv[s, j]← 0, for all s, j
24: Brem ← B0

25: # greedy retiming under capacity and L0 budget
26: for all (s, j, t) ∈ C in sorted order do
27: if Brem ≤ 0 then
28: break # budget exhausted
29: end if
30: if moved[j, s] then
31: continue
32: end if # source already moved
33: if occupied[j, t] then
34: continue
35: end if # target already taken
36: if reserved[j, t] then
37: continue
38: end if # collides with stay-at-source packet
39: # accept candidate: move whole packet from (s, j) to (t, j)
40: adv[t, j]← x[s, j]
41: occupied[j, t]← True
42: moved[j, s]← True
43: reserved[j, s]← False
44: Brem ← Brem − 1
45: end for
46: # packets not moved stay at their original time
47: for all (s, j) s.t. has src[s, j] = 1 and moved[j, s] = False do
48: adv[s, j]← x[s, j]
49: end for
50: Return adv reshaped back to [T,B,C,H,W]

E.4 COMPARISON TO NON-TIMING ATTACKS

Standard image/event-domain attacks, such as PGD on integer event grids or attacks that insert and
delete spikes, inevitably change event counts or intensities. They cannot enforce strict equalities
such as

∑
t adv[t, j] =

∑
t x[t, j] and {adv[t, j]}Tt=1 = {x[t, j]}Tt=1 for all j as hard constraints.

Even if some non-timing attacks happen to induce small average rate drift in certain settings, this is
incidental rather than guaranteed by the threat model.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Adversarial training on DVS-Gesture (VGGSNN) evaluated in terms of attack success rate
(ASR, %; lower is better). The first six rows are standard non-timing AT baselines (including ℓ1-
APGD-based AT (Croce & Hein, 2021) and binary ℓ0 flip AT in the spirit of (Balkanski et al., 2020));
the last three rows are our timing-only AT.

Training scheme clean B∞ B1 B0 Avg ASR
1 2 3 2000 4000 8000 1000 2000 4000

ℓ∞ PGD AT (ϵ=0.5) 64.24 45.41 50.27 55.14 10.81 21.08 36.76 8.65 14.05 34.05 30.69
ℓ∞ PGD AT (ϵ=0.4) 71.88 48.79 54.59 57.97 14.98 25.60 40.58 12.56 23.19 37.20 35.05
binary ℓ0 flip AT (r=0.32) 77.78 54.91 67.86 71.88 10.71 22.32 43.30 8.48 18.30 39.29 37.45
binary ℓ0 flip AT (r=0.45) 74.31 53.74 63.55 66.82 10.75 21.96 38.32 8.41 20.56 35.05 35.46
ℓ1-PGD AT (τ=10000) 69.10 54.17 57.69 52.66 15.53 21.56 42.11 16.53 24.57 45.63 36.72
ℓ1-PGD AT (τ=14000) 67.01 51.81 58.03 55.44 10.88 22.80 43.01 13.99 23.32 40.41 35.52

Timing AT (B∞=1) 52.08 48.00 47.33 42.67 14.00 16.67 33.33 10.00 15.99 24.67 28.07
Timing AT (B1=8000) 68.75 40.92 40.39 36.87 6.07 10.09 20.71 0.51 6.07 19.19 20.09
Timing AT (B0=4000) 72.22 43.27 47.12 48.08 7.21 16.35 28.86 2.40 10.58 28.86 25.86

By contrast, our spike-retiming adversary explicitly characterizes and optimizes the worst-case per-
turbations under a strict rate-preservation constraint. This makes it qualitatively different from
norm-bounded perturbations in the value or count space and highlights spike retiming as a distinct,
timing-only attack surface.

F COMPARISON WITH STANDARD NON-TIMING ADVERSARIAL TRAINING

Following previous work (Mukhoty et al., 2025), here we compare our timing-only adversarial train-
ing (AT) with standard non-timing AT schemes on DVS-Gesture (integer event grid) and VGGSNN.
In the main paper, Table 4 reports robust accuracy; for the same trained models we additionally re-
port attack success rate (ASR) here for easier head-to-head comparison.

We follow standard practice and instantiate the ℓ1 AT baseline with the ℓ1-APGD attack of Croce
and Hein (Croce & Hein, 2021). For the binary ℓ0 flip baselines, we adopt a pixel-flip style sparse
attack on binary images in the spirit of Balkanski et al. (Balkanski et al., 2020), adapted to our
event-grid setting. For ℓ∞, we follow the PGD AT (Madry et al., 2018).

Setup (dataset, metric, and evaluation). All results in this section are on DVS-Gesture with
VGGSNN. ASR is computed only over samples that are correctly classified under the clean model,
exactly as in our main attack experiments. Robust accuracy and ASR are related by

ASR = 100%− robust accuracy.

At test time we evaluate nine timing-only attacks with budgets B∞ ∈ {1, 2, 3}, B1 ∈
{2000, 4000, 8000}, andB0 ∈ {1000, 2000, 4000}. For each training scheme, we report: (i) clean
accuracy (%); (ii) nine ASR values (lower is better); (iii) the mean of the nine ASR values (Avg
ASR).

The first six rows in Table 7 are standard non-timing AT baselines; the last three rows are our timing-
only AT (“Spike Timing AT”) with different inner-loop budgets.

Clean–robust trade-off vs. standard AT. From Table 7 we observe that the best non-timing AT
baselines (across ℓ∞, binary ℓ0, and ℓ1) achieve clean accuracies in the range 67%–78% with average
ASR around 30%–37% (e.g., ℓ∞ PGD AT with ϵ=0.5 has clean 64.24% and Avg ASR 30.69%). In
contrast, our timing-only AT attains: (i) for B1=8000, clean 68.75% and Avg ASR 20.09%; (ii) for
B0=4000, clean 72.22% and Avg ASR 25.86%. Thus, for similar clean accuracy (around 69–72%),
timing AT reduces the average ASR by roughly 9–15 percentage points compared to all non-timing
AT baselines. Equivalently, for a fixed robustness level, timing AT maintains noticeably higher clean
accuracy. We will reference this table in the main paper to make the advantage of timing-only AT
over standard AT explicit.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G ON THE OPTIMALITY AND COMPLEXITY OF THE ATTACK SOLVER

This section clarifies what can and cannot be claimed about the optimality of our attack-finding
formulation in Eq. (6), and discusses its computational complexity in comparison to non-timing
attacks on event data such as SpikeFool (Büchel et al., 2022) and PDSG-SDA (Lun et al., 2025).

G.1 OPTIMALITY OF THE INNER MAXIMIZATION

Eq. (6) defines an inner maximization over discrete, budget-constrained retimings under capacity-1
along each event line. Each non-zero packet x[s, j] can be shifted by an integer offset u so that it
lands at t = s+ u on the same event line j. The feasible set is defined by (i) a capacity-1 constraint
per (t, j) and (ii) global timing budgets (e.g., B∞, B1, B0). Together with the non-convex SNN loss
under BPTT, this yields a combinatorial, non-convex optimization problem.

Under these constraints, global optimality of Eq. (6) is not tractable: even for standard ANNs, widely
used attacks such as PGD and DeepFool do not provide global optimality guarantees; similarly,
event-based attacks such as SpikeFool and PDSG-SDA focus on strong, principled approximations
rather than exact solutions to a discrete global optimum. Our method follows the same philosophy.

What we provide is:

• a structured threat model (timing-only, rate-preserving, capacity-1) and an explicit discrete
feasible set of retimings; and

• a projected-in-the-loop (PIL) optimization scheme that is designed to reduce the gap be-
tween a soft relaxation and the discrete, budget-constrained problem.

Within the PIL framework, three components are particularly important:

• Capacity regularizer (Eq. (10)). This term penalizes “over-booking” in the expected oc-
cupancy of the soft retiming Sπ(x) when multiple packets try to land in the same bin (t, j).
It encourages the shift distribution π to concentrate on patterns that are close to capacity-
1, so that the strict projection P∗(x,π,Bp) resolves fewer conflicts and the final discrete
assignment remains close to what the soft surrogate already optimized.

• Budget-aware penalties (Eq. (12)). These regularizers penalize soft jitter, total delay, and
tamper count in expectation, so that the probabilities π already respect the same budgets
B∞, B1, B0 that P∗ enforces exactly. This aligns the soft search space with the hard budget
constraints, reducing the mismatch between the relaxed problem and the true constrained
objective.

• PIL loss coupling. In each update, the task loss is evaluated on the strictly projected input
P∗(x,π,Bp), while gradients flow through the soft surrogate Sπ(x) (together with the
capacity and budget penalties). This is analogous in spirit to straight-through optimization
for discrete variables, but tailored to our structured retiming and budgets. It ensures that we
are always optimizing what we evaluate: the gradient signal is shaped to favor retimings
that survive projection and remain effective under the exact constraints.

In summary, we do not claim global optimality for Eq. (6), which would be unrealistic given the
combinatorial, non-convex nature of the problem. Instead, our claim is that the capacity regularizer,
budget-aware penalties, and PIL coupling are explicitly designed to tighten the relaxation–projection
gap and to yield strong local optima for the true constrained problem. This is supported empirically
in the ablation study (Sec. 5.1), where removing either the capacity regularizer or the budget-aware
terms leads to noticeably weaker attacks and less stable behavior (e.g., more failed attacks at the
same budgets and larger mismatches between nominal and realized budgets).

G.2 COMPUTATIONAL COMPLEXITY AND COMPARISON TO NON-TIMING ATTACKS

Our spike-retiming attack is a gradient-based iterative method under a structured threat model. The
per-iteration cost consists of three parts:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1. SNN forward and backward (BPTT). We run one forward and one backward pass of the
SNN on the current retimed input. This is the dominant cost shared with other white-box
SNN attacks.

2. Soft retiming and regularizers. Computing Sπ(x) and the capacity / budget penalties
scales with the number of candidate shifts. Let Npkt be the number of non-zero packets
(events) in x, and let Umax be the maximum number of allowed shifts per packet (the size
of the local shift set Us,j). Then the soft operator and regularizers require

O
(
Npkt · Umax

)
operations per iteration. On event-driven benchmarks,Npkt ≪ T ·H ·W , so this cost scales
linearly with the sparse event count.

3. Strict projection P∗(x,π,Bp). The greedy assignment described in Appendix E operates
over the same candidate set and also scales as O(Npkt · Umax) per iteration, with small
constant factors compared to BPTT.

Overall, a single iteration consists of one SNN forward–backward pass plus an additional term that
is linear in the number of active packets and local shifts. In practice, the SNN forward–backward
dominates wall-clock time; the overhead of Sπ and P∗ is modest because it exploits event sparsity.

Comparison to non-timing event attacks. Non-timing attacks on event data, such as Spike-
Fool (Büchel et al., 2022) and PDSG-SDA (Lun et al., 2025), operate under different perturbation
models (adding, deleting, or changing events in dynamic images) and use different relaxation strate-
gies, but share the same high-level pattern:

• SpikeFool relaxes dynamic images to continuous values, computes gradients, and iter-
atively solves a linearized perturbation problem with rounding back to spike grids and
straight-through gradients. The complexity is dominated by SNN forward–backward plus
operations over (a large subset of) the dynamic image voxels.

• PDSG-SDA introduces potential-dependent surrogate gradients and a sparse dynamic at-
tack that iteratively adds and removes spikes in dynamic images. The attack propagates
gradients over all binary dynamic-image voxels and maintains sparse masks whose size
scales with the grid and attack radius.

In terms of asymptotic complexity per iteration, all these methods, including ours, are dominated by
the SNN forward–backward cost. The main difference lies in how they traverse the input space:

• Non-timing attacks on event grids typically treat a large number of voxels (time–pixel posi-
tions) as potential perturbation locations, so their perturbation-update loops scale with the
grid size or with a large candidate subset.

• Our timing-only attack never changes intensities or counts; it only retimes existing packets.
The update loops scale with the number of non-zero packets and their local shift windows,
which is often much smaller than the full grid size on event-sparse benchmarks.

We therefore view our method as being comparable in big-O terms to other gradient-based event
attacks, while leveraging event sparsity and a structured timing-only threat model to avoid manipu-
lating dense grids or solving additional global subproblems beyond BPTT.

H ADDITIONAL RESULTS ON MULTI-NORM TIMING AT AND TRADES

This section provides additional experiments on (i) combining timing-based attacks with different
budgets into a single multi-norm adversarial training objective, and (ii) replacing the Madry-style
formulation (Madry et al., 2018) with TRADES (Zhang et al., 2019) in our timing-only adversarial
training. For (i) we follow the multi-perturbation formulation of Maini et al. (Maini et al., 2020),
and for (ii) we instantiate TRADES with our timing-only inner maximizer.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: Single-norm timing AT vs. multi-norm timing AT on DVS-Gesture (VGGSNN), reported
as ASR (%, lower is better). “Binary” and “Integer” refer to the event-grid representation.
Grid Training clean B∞=1 2 3 B1=2k 4k 8k B0=1k 2k 4k Avg ASR

Binary Single-norm B∞(1) 22.92 57.59 71.20 68.19 31.81 45.46 60.60 15.14 27.27 54.54 47.98
Binary Single-norm B1(8000) 48.26 80.58 92.08 94.96 62.60 80.58 87.05 42.46 64.75 87.05 76.90
Binary Single-norm B0(4000) 22.57 73.86 84.63 89.23 50.78 58.44 81.52 35.40 46.17 75.37 66.15
Binary MultiNorm-Avg 31.60 71.43 65.91 64.77 51.14 59.09 72.73 42.86 45.45 65.91 59.92
Binary MultiNorm-Max 36.11 79.81 78.85 77.88 64.42 77.88 81.73 51.92 71.15 77.88 73.50

Integer Single-norm B∞(1) 52.08 48.00 47.33 42.67 14.00 16.67 33.33 10.00 15.99 24.67 28.07
Integer Single-norm B1(8000) 68.75 40.92 40.39 36.87 6.07 10.09 20.71 0.51 6.07 19.19 20.09
Integer Single-norm B0(4000) 72.22 43.27 47.12 48.08 7.21 16.35 28.86 2.40 10.58 28.86 25.86
Integer MultiNorm-Avg 37.50 28.70 35.19 40.74 10.19 10.19 21.30 8.33 13.89 23.15 21.30
Integer MultiNorm-Max 15.97 54.35 56.52 54.35 6.52 8.70 26.09 6.52 10.87 26.09 27.78

H.1 MULTI-NORM TIMING AT IN THE STYLE OF MAINI ET AL.

Our three timing attacks live in different combinatorial budget spaces: the per-spike jitter radius
B∞, the total latency budget B1, and the tamper-count budget B0. Inspired by the multi-perturbation
setup of Maini et al. (2020), we define two multi-norm timing objectives:

Lavg(x, y) =
1

3

∑
p∈{∞,1,0}

max
∆∈Bp

ℓ
(
fθ(P

∗(x, πp,Bp)), y
)
, (33)

Lmax(x, y) = max
p∈{∞,1,0}

max
∆∈Bp

ℓ
(
fθ(P

∗(x, πp,Bp)), y
)
, (34)

where for each p ∈ {∞, 1, 0} the inner maximizer is our timing-only attack with the training budgets
B∞(1), B1(8000), and B0(4000), and P∗ is the strict, feasible projection from the main paper.

We train these variants on DVS-Gesture with VGGSNN for both binary and integer event grids. We
report attack success rate (ASR, in %) measured only on samples correctly classified by the clean
model. For the single-norm rows, we reuse the same trained models as in Table 4 of the main paper
and re-express their robustness in terms of ASR for comparability.

On the integer grid, the best single-norm configuration B1(8000) attains clean accuracy 68.75%
with the lowest average ASR 20.09%. The MultiNorm-Avg objective achieves a comparable Avg
ASR (21.30%) but its clean accuracy collapses to 37.50%, while MultiNorm-Max further reduces
clean accuracy to 15.97% and increases the Avg ASR to 27.78%. On the binary grid, both multi-
norm variants have high Avg ASR (≈ 60–74%) despite moderate clean accuracy, and are dominated
by the best single-norm configurations.

In contrast to the image-space setting of Maini et al. (2020), where all norms share the same contin-
uous pixel space, our B∞, B1, and B0 act on different combinatorial timing budgets. When merged
into a single inner maximization, the strongest budgeted component tends to dominate, producing
overly aggressive timing perturbations that harm clean accuracy much more than they improve ro-
bustness. This supports our choice to keep single-norm timing AT as the main recipe in the paper,
and to report multi-norm variants only as complementary evidence.

H.2 TRADES VS. MADRY-STYLE TIMING AT ON BINARY GRIDS

We also investigate replacing the Madry-style adversarial training (Madry et al., 2018) with
TRADES (Zhang et al., 2019) on the binary DVS-Gesture grid. We use the TRADES objective

LTRADES = ℓ
(
fθ(x), y

)
+ β ·KL

(
fθ(x) ∥ fθ(xadv)

)
, (35)

and instantiate the inner maximizer xadv with our timing-only attack, using the same three training
budgets as Table 4: B∞(1), B1(8000), and B1(4000). We sweep the trade-off parameter β ∈
{0.01, 0.1, 6.0}.
Table 9 reports clean accuracy and ASR (in %) for three evaluation budgets (B∞(1), B1(4000),
B0(2000)), comparing TRADES runs to PGD-style timing AT.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

50 60 70 80 90
(1) attack success rate (%)

20

30

40

50
Cl

ea
n

ac
cu

ra
cy

 (%
)

Attack: (1)

20 30 40 50 60 70 80 90
1(4000) attack success rate (%)

Attack: 1(4000)

10 20 30 40 50 60 70 80 90
0(2000) attack success rate (%)

Attack: 0(2000)

TRADES (B_inf_1)
PGD (B_inf_1)

TRADES (B1_8000)
PGD (B1_8000)

TRADES (B1_4000)
PGD (B1_4000)

Figure 4: Results of TRADES V.s. PGD AT.

Table 9: TRADES vs. PGD-style timing AT on binary DVS-Gesture. Clean accuracy and ASR (%,
lower is better) for three evaluation budgets.

Training scheme clean B∞=1 B1=4000 B0=2000

TRADES β=0.01 + B∞(1) AT 52.78 96.05 92.11 88.82
TRADES β=0.01 + B1(8000) AT 46.18 85.71 80.45 65.41
TRADES β=0.01 + B1(4000) AT 52.08 80.00 74.00 69.33
TRADES β=0.1 + B∞(1) AT 53.47 74.03 71.43 64.29
TRADES β=0.1 + B1(8000) AT 35.76 78.64 61.17 50.49
TRADES β=0.1 + B1(4000) AT 50.69 80.82 81.51 63.01
TRADES β=6.0 + B∞(1) AT 22.22 56.25 17.19 7.81
TRADES β=6.0 + B1(8000) AT 14.93 46.51 25.58 23.26
TRADES β=6.0 + B1(4000) AT 12.15 42.86 57.14 28.57

Our timing AT + B∞(1) 22.92 57.59 45.46 27.26
Our timing AT + B1(8000) 48.26 92.08 80.58 64.75
Our timing AT + B1(4000) 22.57 73.86 58.44 46.17

To visualize the clean–robust trade-offs, Figure 4 in the supplementary plots clean accuracy against
ASR for each evaluation budget, with TRADES configurations forming curves for fixed inner bud-
gets and varying β, and the corresponding PGD timing-AT points marked as triangles. For several
operating points, TRADES achieves lower ASR than PGD at similar clean accuracy (points above-
and-to-the-left of the PGD baselines), confirming that the TRADES regularization can slightly
sharpen the timing-based robustness vs. accuracy trade-off. However, large β values also illus-
trate the usual TRADES behavior: further reductions in ASR come at the cost of substantial clean-
accuracy degradation.

Overall, these experiments show that (i) multi-norm timing AT, when naively aggregating B∞, B1,
and B0 in the style of Maini et al. (2020), offers no clear advantage over carefully tuned single-
norm timing AT in our discrete retiming setting, and (ii) TRADES provides modest improvements
over Madry-style timing AT on binary grids, but does not fundamentally change the conclusion that
strong timing-only adversaries remain hard to defend against without incurring noticeable drops in
clean performance.

I MULTI-MODEL AND MULTI-NORM MULTI-MODEL TIMING ATTACKS

For completeness, we also evaluate multi-model and multi-norm multi-model timing attacks on
event-driven SNNs, following the ensemble idea of timing attacks over multiple victim models simi-
lar in spirit to ensemble attacks for SNNs (Xu et al., 2025). In all experiments below, the perturbation
is still a capacity-1 spike-retiming with strict rate preservation enforced by P∗.

I.1 MULTI-MODEL TIMING ATTACKS ON N-MNIST

Methodology. On N-MNIST we construct an ensemble of the six models used in our transfer
experiments: three SNNs (ConvNet (SNN), ResNet18 (SNN), VGGSNN (SNN)) and three CNN

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 10: Multi-model timing attacks on binary N-MNIST (ASR, %).
Model Clean B∞ :1 B∞ :2 B∞ :3 B1 :500 B1 :750 B1 :1000 B0 :200 B0 :300 B0 :400

ConvNet (SNN) 99.06 100.0 100.0 100.0 50.9 97.6 100.0 35.0 93.4 100.0
ConvNet (CNN) 99.34 100.0 100.0 100.0 92.6 99.8 100.0 42.8 97.6 99.9
ResNet18 (SNN) 99.62 97.7 100.0 100.0 28.2 70.6 96.2 29.7 89.3 99.9
ResNet18 (CNN) 99.70 100.0 100.0 100.0 96.5 99.2 99.9 34.7 90.8 98.3
VGGSNN (SNN) 99.64 100.0 100.0 100.0 32.3 82.1 99.5 25.6 86.3 100.0
VGG (CNN) 99.72 100.0 100.0 100.0 97.1 99.6 99.7 31.8 90.0 98.6

Table 11: Multi-model timing attacks on integer N-MNIST (ASR, %).
Model Clean B∞ :1B∞ :2B∞ :3B1 :500B1 :750B1 :1000B0 :200B0 :300B0 :400B0 :600

ConvNet (SNN) 99.19 100.0 100.0 100.0 46.6 96.4 100.0 40.2 99.2 100.0 100.0
ConvNet (CNN) 99.38 100.0 100.0 100.0 98.2 100.0 100.0 59.8 100.0 100.0 100.0
ResNet18 (SNN) 99.62 91.5 100.0 100.0 31.6 75.8 98.0 27.3 94.5 100.0 99.8
ResNet18 (CNN) 99.73 98.9 100.0 100.0 73.1 66.7 54.7 81.9 95.6 100.0 100.0
VGGSNN (SNN) 99.71 99.8 100.0 100.0 42.1 89.3 99.8 29.9 97.6 100.0 100.0
VGG (CNN) 99.79 100.0 100.0 100.0 85.0 90.7 90.0 98.4 97.0 100.0 100.0

counterparts (ConvNet (CNN), ResNet18 (CNN), VGG (CNN)). For a given timing budget Bp and
norm p ∈ {∞, 1, 0} we optimize

Lmm(x, y) =
1

M

M∑
m=1

ℓ
(
f
(m)
θ (P∗(x, π(m),Bp)), y

)
, M = 6, (36)

where f (m)
θ are the six models and P∗ is our strict rate-preserving projection. Budgets on N-MNIST

are B∞ ∈ {1, 2, 3} (per-spike jitter), B1 ∈ {500, 750, 1000} (total delay), B0 ∈ {200, 300, 400}
(binary) plus B0(600) (integer). We report clean accuracy (“Clean”) and attack success rate (ASR,
%) on clean-correct examples.

Compared with the single-model attacks in Tables 1–2 of the main paper, these ensemble attacks
remain very strong: under moderate B1 or B0 budgets, ASR on SNNs routinely exceeds 70–90%,
confirming that our timing-only adversary transfers across architectures even when optimized jointly
over six models. CNN counterparts are also vulnerable, but the relative gap between SNNs and
CNNs is consistent with our main message: timing perturbations exploit SNN temporal dynamics
more effectively than frame-based CNNs.

I.2 MULTI-NORM MULTI-MODEL TIMING ATTACKS

Definition of multi-norm timing budgets. In our setting, a multi-norm timing attack means that
every adversarial example simultaneously satisfies: (i) a local jitter radius B∞ (per-spike timing
change), (ii) a total delay budget B1 (sum of absolute delays), and (iii) a tamper-count budget B0

(number of moved spikes). We keep the same B∞-style loss over shift logits π, but in the strict
projection we enforce all three budgets:

x′ = P∗(x, π;B∞,B1,B0), (37)

so that the final retimed events lie in the intersection B∞ ∩ B1 ∩ B0 under capacity-1 and rate-
preserving constraints.

Multi-norm, multi-model ensemble. On N-MNIST we instantiate a multi-norm, multi-model
attack over the same M=6-model ensemble (three SNNs + three CNNs):

Ljoint(x, y) =
1

M

M∑
m=1

ℓ
(
f
(m)
θ

(
P∗(x, π(m);B∞,B1,B0)

)
, y
)
. (38)

We choose a balanced triple of budgets B∞ = B∞(3), B1 = B1(750), B0 = B0(300), so that
maximal jitter, total latency, and tamper count remain comparable to the single-norm experiments.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 12: ASR (%) of multi-norm multi-model timing attacks on N-MNIST.
Model Binary: MultiNorm Integer: MultiNorm

B∞(3), B1(750), B0(300) B∞(3), B1(750), B0(300)

ConvNet (SNN) 93.6 96.0
ConvNet (CNN) 94.0 99.8
ResNet18 (SNN) 93.0 92.1
ResNet18 (CNN) 71.6 44.3
VGGSNN (SNN) 91.9 94.6
VGG (CNN) 75.6 71.5

Results. Table 12 reports ASR for this joint attack. The joint multi-norm, multi-model attack is
extremely strong: ASR on all three SNNs exceeds 90% in both binary and integer grids, even though
each adversarial example respects all three timing budgets simultaneously. CNN counterparts are
also highly vulnerable (e.g., ConvNet (CNN) above 94% ASR), but the relative SNN–CNN gap is
consistent with our single-norm and multi-model results. Compared to the single-norm ensemble
attacks in Tables 10–11, the multi-norm version mainly serves as a more pessimistic “all-budgets-
on” stress test: it does not reveal qualitatively new behavior, while the single-norm budgets B∞,
B1, andB0 remain more interpretable for realistic threat models (e.g., “small jitter only” or “limited
latency only”).

J ON L0 BUDGETS, REDUNDANT MOVES, AND RELATION TO PIXEL-WISE
SPARSITY

Our threat model is timing-only and rate-preserving, so all three budgets are defined at the
spike/packet level rather than per-pixel on dynamic images.

What the budgets measure. After flattening [B,C,H,W] into event lines j ∈ {1, . . . , N}, each
non-zero entry x[s, j] at time index s ∈ {1, . . . , T} denotes an event packet (one spike for binary
grids, or an integer-valued packet for integer grids). For a retimed example with shifts ∆s,j = t− s,
the three budgets are

B∞ : max
(s,j):∆s,j ̸=0

|∆s,j |, (39)

B1 :
∑

(s,j):∆s,j ̸=0

|∆s,j |, (40)

B0 : #{(s, j) : x[s, j] > 0, ∆s,j ̸= 0}. (41)

Thus B0 counts how many individual spikes are retimed (“tamper count”), while B∞ and B1 bound
how far in time these spikes are moved. This is a sensor-level notion of sparsity tailored to timing
perturbations on SNNs.

Why symmetric “swaps” are ruled out by projection. A toy example is swapping two active
indices at the same spatial position, e.g., (1, 0, 1, 1) and (2, 0, 1, 1) in TCHW , which could leave
some frame-based summary unchanged while incurring B0 = 2. Two points are important here:

• From the SNN’s perspective, changing spike times is not neutral: membrane integration
and firing decisions depend on the exact timing, so “swapping” spikes across time steps is
in general a genuine perturbation.

• More importantly, our strict projection P∗(x, π,Bp) is explicitly designed so that such sym-
metric swaps are not selected. For each flattened line j and time twe maintain reserved[j, t]
(initially 1 wherever x[t, j] > 0) and occupied[j, t] (targets already taken by moved pack-
ets). When processing a candidate move (s → t, j), we skip it if moved[j, s] is true, or
occupied[j, t] is true, or reserved[j, t] is still true. A packet can only move into origi-
nally empty bins, or into bins whose original packet has already moved out and released
its reservation. As a result, two spikes at the same spatial position cannot simply exchange

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

times: moving into a bin that still hosts its original spike is blocked by reserved[j, t] and
capacity–1.

Therefore, the B0 budget is not spent on symmetric swaps that leave the timeline effectively un-
changed; it is spent on injective retimings into genuinely free time slots.

Optimization does not “waste” B0. Beyond the projection logic, the optimization itself discour-
ages budget waste. Shift probabilities π[s, j, t] are updated to maximize the task loss evaluated on
P∗(x, π,Bp); candidate moves that do not meaningfully increase the loss receive vanishing gradi-
ents and their probabilities shrink relative to more damaging moves. The capacity regularizer and
budget-aware penalties further push π toward configurations that respect capacity–1 and budgets
already in expectation. In practice, we often observe that the realized number of moved packets is
below the nominal upper bound B0, and ablations removing these regularizers yield weaker attacks
and less stable budget usage.

Relation to pixel-wise ℓ0 in prior DVS attacks. Prior sparse DVS attacks typically define ℓ0
at the pixel/voxel level on dynamic images. Our packet-level B0 can be related to this pixel-wise
sparsity as follows: each moved packet at (s, j) with value v > 0 changes at most two grid voxels
(t, j)—one at the source time (set from v to 0) and one at the target time (set from 0 to v). Hence
the number of changed grid voxels satisfies

∥x′ − x∥0 ≤ 2B0. (42)

In the supplementary experiments, we therefore also report the number of changed (t, x, y) positions
in our adversarial examples and compare this pixel-wise ℓ0 to that of prior sparse DVS attacks under
matching datasets and models.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 13: Binary N-MNIST: ASR (%) under tamper-count budgets B0.
Method Model B0=200 B0=300 B0=400

Ours (timing)
ConvNet 13.0 53.1 98.5
ResNet18 78.9 100.0 100.0
VGGSNN 18.3 81.8 99.8

SpikeFool Büchel et al. (2022)
ConvNet 50.4 92.2 98.9
ResNet18 12.5 37.1 69.7
VGGSNN 16.2 38.7 69.5

PDSG-SDA Lun et al. (2025)
ConvNet 64.7 93.4 97.4
ResNet18 62.1 92.2 98.8
VGGSNN 13.9 38.7 72.4

Table 14: Binary DVS-Gesture: ASR (%) under tamper-count budgets B0.
Method Model B0=1000 B0=2000 B0=4000

Ours (timing) ResNet18 27.7 67.9 98.5
VGGSNN 55.8 87.2 98.9

SpikeFool Büchel et al. (2022) ResNet18 17.8 34.3 72.9
VGGSNN 14.9 18.9 25.5

PDSG-SDA Lun et al. (2025) ResNet18 60.2 82.4 91.2
VGGSNN 52.9 67.1 85.0

K COMPARISON WITH RAW-EVENT BASELINES

This section compares our timing-only, rate-preserving attack with two strong raw-event baselines:
SpikeFool Büchel et al. (2022) and PDSG-SDA Lun et al. (2025). All methods are evaluated on
the same clean models and datasets as in Tables 1–2 of the main paper (N-MNIST, DVS-Gesture,
CIFAR10-DVS). We always report attack success rate (ASR, %) on clean-correct examples.

Unified tamper-count budget. For a fair comparison, we express sparsity using a common
tamper-count budget B0:

• For our timing-only attack, B0 is the number of event packets (s, j) whose time index
changes (tamper count).

• For SpikeFool and PDSG-SDA, B0 is the number of event bins (t, j) whose value changes
(a spike is added, removed, or its integer value is modified).

SpikeFool and PDSG-SDA operate on binary event grids by design. On integer grids, we adapt
PDSG-SDA by allowing inserted spikes to take the mean event value of the dataset, which preserves
the method’s behavior.

K.1 BINARY N-MNIST: OURS VS. SPIKEFOOL AND PDSG-SDA

Table 13 reports ASR at B0 ∈ {200, 300, 400} for the three models in Table 1.

On ResNet18 our timing-only attack is very strong (ASR 78.9% atB0=200 and 100% atB0 ≥ 300),
closely matching or exceeding PDSG-SDA. On ConvNet and VGGSNN, SpikeFool and PDSG-
SDA are stronger at moderate B0, which is expected because they can freely add and delete spikes
without preserving rate or per-spike jitter. Importantly, our attack achieves these ASR values while
remaining rate-preserving, constrained by B∞ and B1, and enforcing capacity 1.

K.2 BINARY DVS-GESTURE: OURS VS. SPIKEFOOL AND PDSG-SDA

We next compare ResNet18 and VGGSNN on DVS-Gesture for B0 ∈ {1000, 2000, 4000}; see
Table 14.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 15: Binary CIFAR10-DVS (ResNet18): ASR (%) under tamper-count budgets B0.
Method B0=1000 B0=2000 B0=4000

Ours (timing) 26.0 42.0 80.0
SpikeFool Büchel et al. (2022) 55.0 83.0 93.0
PDSG-SDA Lun et al. (2025) 62.0 91.0 100.0

0 50 100 150 200 250 300 350 400
B0 (tamper budget)

0

20

40

60

80

100

Ac
cu

ra
cy

 u
nd

er
 a

tta
ck

 (%
)

Binary N-MNIST

0 500 1000 1500 2000 2500 3000 3500 4000
B0 (tamper budget)

Binary DVS-Gesture

0 500 1000 1500 2000 2500 3000 3500 4000
B0 (tamper budget)

Binary CIFAR10-DVS

Accuracy vs. B0 for binary event grids

ours, ConvNet
SpikeFool, ConvNet
PDSG-SDA, ConvNet

ours, ResNet18
SpikeFool, ResNet18

PDSG-SDA, ResNet18
ours, VGGSNN

SpikeFool, VGGSNN
PDSG-SDA, VGGSNN

Figure 5: Accuracy V.s. budget curve on binary grid.

On VGGSNN our timing-only attack is the strongest across all B0 budgets, despite its stricter con-
straints. On ResNet18, PDSG-SDA is stronger at small and medium B0, but our attack still reaches
high ASR (67.9% at B0=2000 and 98.5% at B0=4000), clearly outperforming SpikeFool. Again,
PDSG-SDA enjoys a larger perturbation space (free insertions/deletions and value changes), while
we only retime existing spikes under B∞, B1, B0 and capacity 1.

K.3 BINARY CIFAR10-DVS: OURS VS. BASELINES

For CIFAR10-DVS we show ResNet18; VGGSNN exhibits similar trends and is included in the
extended tables.

On CIFAR10-DVS the raw-event baselines have a clear advantage at small budgets, as they can
exploit many more degrees of freedom by adding and removing spikes. Even so, our timing-only
attack attains 80% ASR at B0=4000, showing that constrained timing perturbations alone can be
very harmful.

K.4 INTEGER GRIDS

On integer N-MNIST and CIFAR10-DVS we compare our timing-only attack to the adapted
PDSG-SDA. For example, on integer N-MNIST / ResNet18: PDSG-SDA achieves ASR
48.3%, 86.1%, 97.3%, 99.9% at B0 ∈ {200, 300, 400, 600}, while our timing-only attack reaches
86.1%, 99.8%, 100%, 100% at the same budgets. Thus, on integer grids our method is often stronger
than PDSG-SDA even though we maintain rate preservation and timing constraints. Full integer ta-
bles for all models are included in the extended supplement.

K.5 ACCURACY–VS.–BUDGET CURVES

Following the accuracy–vs.–constraint suggestion, we also provide accuracy–vs.–B0 curves for all
datasets and models, as shown in Figure 5 and Figure 6.

For each grid type (binary / integer) we plot three subplots (N-MNIST, DVS-Gesture, CIFAR10-
DVS), with tamper-count budget B0 on the x-axis (including B0=0) and accuracy under attack
on the y-axis. The point at B0=0 corresponds to clean accuracy; growing B0 moves along the
constraint axis. Our timing-only attack, SpikeFool, and PDSG-SDA appear as separate curves, and
different architectures (ConvNet, ResNet18, VGGSNN) are distinguished by line style.

On binary grids, our curves often lie on par with or below those of SpikeFool and PDSG-SDA on N-
MNIST and DVS-Gesture, indicating equal or higher destructive power under the same B0, despite

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350 400
B0 (tamper budget)

0

20

40

60

80

100
Ac

cu
ra

cy
 u

nd
er

 a
tta

ck
 (%

)
Binary N-MNIST

0 500 1000 1500 2000 2500 3000 3500 4000
B0 (tamper budget)

Binary DVS-Gesture

0 500 1000 1500 2000 2500 3000 3500 4000
B0 (tamper budget)

Binary CIFAR10-DVS

Accuracy vs. B0 for binary event grids

ours, ConvNet
SpikeFool, ConvNet
PDSG-SDA, ConvNet

ours, ResNet18
SpikeFool, ResNet18

PDSG-SDA, ResNet18
ours, VGGSNN

SpikeFool, VGGSNN
PDSG-SDA, VGGSNN

Figure 6: Accuracy V.s. budget curve on integer grid.

our stricter constraints. On CIFAR10-DVS, value-modifying baselines become slightly stronger at
large B0, but the gap remains moderate. On integer grids, our accuracy generally drops as fast as,
or faster than, PDSG-SDA, showing that a rate-preserving timing attack can be as destructive as a
value-modifying baseline.

Overall, these comparisons provide the requested anchor: our timing-only attack is competitive with,
and often stronger than, leading raw-event attacks across most datasets and budgets, while operating
under a much stricter and physically motivated constraint set (rate preservation, per-spike jitter, total
delay, and capacity 1).

L EFFECT OF SIMPLE EVENT FILTERING DEFENSES

Real event–camera pipelines often include low–level filtering to suppress jitter and noisy events.
To test whether such simple pre–processing can remove our timing–only, rate–preserving pertur-
bations, we evaluate three concrete, label–free defenses on the binary DVS-Gesture / VGGSNN
configuration (one of our strongest attack settings), and compare against the non-timing baseline
PDSG-SDA Lun et al. (2025).

Defenses. All defenses operate directly on the event stream, without labels or model gradients:

• Refractory filtering (refractory first). For each pixel, we look back over a tempo-
ral window of length rp bins; if an event has occurred in that window, a new event at the
same pixel is dropped with probability p. This mimics a sensor–level refractory mechanism
that suppresses very high–frequency bursts.

• Temporal mean smoothing (temporal mean smooth). We convolve each sequence
along the time axis with a length–3 box filter (radius 1). With probability p (per sample)
we replace the input by this temporally smoothed version; otherwise we keep the original.
This targets short–lived temporal fluctuations and jitter.

• Spatial mean smoothing (spatial mean smooth). We apply a 3×3 spatial mean filter
(stride 1) to each frame and, with probability p per sample, replace the input by the spatially
smoothed version. This targets isolated “salt–and–pepper” spikes and enforces local spatial
consistency.

To expose the clean–robustness trade–off, we treat p ∈ [0, 1] as a defense strength knob: p=0 cor-
responds to no defense, small p to light–to–moderate denoising, and large p to very strong filtering
that heavily distorts the input.

Evaluation setup. On binary DVS-Gesture / VGGSNN we report: (i) clean accuracy (clean),
and (ii) attack success rate (ASR, %) under our timing attack with budgets B∞(1), B1(8000),
B0(4000) and the non-timing PDSG-SDA Lun et al. (2025) with B0(4000). ASR is always com-
puted on clean–correct examples.

Discussion. Three trends emerge from Table 16:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 16: Effect of simple event filtering defenses on binary DVS-Gesture / VGGSNN. We report
clean accuracy (%) and ASR (%) for our timing–only attack and PDSG-SDA Lun et al. (2025) under
B0(4000), as a function of defense probability p.
Defense p clean Ours B∞(1) Ours B1(8000) Ours B0(4000) PDSG-SDA B0(4000)

refractory first

0.0 95.14 96.7 98.5 98.5 100.0
0.1 71.53 92.7 96.6 97.0 65.5
0.2 48.96 84.4 85.8 87.2 60.2
0.4 27.08 70.5 70.5 71.7 57.6
0.6 15.28 47.7 47.7 47.7 43.1
0.8 14.93 46.5 46.5 46.5 41.8
1.0 16.04 40.6 44.0 48.0 33.3

temporal mean smooth

0.0 95.14 96.7 98.5 98.5 100.0
0.1 84.03 95.8 95.0 97.1 35.5
0.2 72.57 95.6 92.3 94.7 33.4
0.4 56.60 92.6 79.1 84.6 34.3
0.6 49.65 86.0 67.8 79.0 34.2
0.8 52.43 81.4 55.6 78.8 33.7
1.0 56.25 61.7 38.2 68.5 30.2

spatial mean smooth

0.0 95.14 96.7 98.5 98.5 100.0
0.1 71.53 95.6 93.6 96.1 38.3
0.2 54.86 92.4 82.9 91.1 42.4
0.4 32.64 59.5 38.3 59.5 39.3
0.6 23.61 4.4 1.4 13.2 17.6
0.8 21.18 4.9 3.2 14.7 14.7
1.0 22.92 5.6 4.5 3.0 2.4

• Moderate filtering barely dents our timing attack but already hurts clean accuracy.
For example, with refractory first at p=0.2, clean accuracy drops from 95.14% to
48.96% (a ∼ 46 point loss), yet our ASR at B0(4000) remains high at 87.2%. Similar
patterns hold for temporal and spatial smoothing at p=0.1–0.2.

• Very strong filtering can suppress the attack only at the cost of destroying the task.
Spatial smoothing with p=1.0 reduces our ASR at B0(4000) to 3.0%, but clean accuracy
also collapses to 22.92%. Strong refractory or temporal smoothing show the same trade–
off.

• Our timing–only attack is at least as robust to filtering as a strong non–timing base-
line. The value–modifying PDSG-SDA is more easily attenuated by these filters: under
temporal smoothing with p ∈ [0.1, 0.4], its ASR drops from 100% to roughly 30–35%,
whereas our ASR at B0(4000) remains in the 80–97% range. Under spatial smoothing
with p=0.4, our ASR at B0(4000) is 59.5% versus 39.3% for PDSG-SDA.

Overall, these results support our main claim: simple intensity– or value–based event filtering is not
sufficient to neutralize capacity–1, rate–preserving spike retiming attacks without incurring severe
clean accuracy loss. This highlights spike retiming as a practically important and difficult–to–defend
attack surface that calls for temporally aware defenses beyond naive denoising.

M EXTENDED RESULTS ON TARGETED TIMING ATTACKS

In this section we expand on the targeted experiments and address two issues: (i) the fixed target
label in the main text, and (ii) the lack of comparison to a strong non-timing baseline.

Random-target protocol. To avoid bias from a fixed target (class “0”), we adopt a standard
random-target protocol: for each clean-correct sample with ground truth label y, we draw a tar-
get label ỹ ̸= y uniformly at random and optimize the attack to force the prediction to ỹ. We repeat
this procedure for 5 random seeds and report mean ± standard deviation of the targeted attack suc-
cess rate (ASR), where success means the final prediction equals the chosen target ỹ. As in all other

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

experiments, ASR is measured only on samples that are correctly classified in the clean setting, so
the metric is directly comparable to our untargeted results.

Comparison with a non-timing baseline. To separate limitations of our method from the intrinsic
difficulty of targeted attacks, we compare against the state-of-the-art non-timing raw-event attack
PDSG-SDA Lun et al. (2025) on the integer DVS-Gesture / VGGSNN configuration, which is one of
the hardest settings in our paper. We evaluate both methods under increasing tamper-count budgets
B0 ∈ {4000, 8000, 12000} and average over 5 random seeds.

Table 17: Targeted ASR (%, mean ± std over 5 seeds) on integer DVS-Gesture / VGGSNN under
increasing tamper-count budgets B0.

Attack B0(4000) B0(8000) B0(12000)

Ours (timing-only) 15.7± 1.3 26.8± 1.4 30.8± 1.3
PDSG-SDA Lun et al. (2025) 24.4± 1.3 28.7± 1.3 31.4± 1.3

We further observe that when the B0 constraint is removed for PDSG-SDA, its targeted ASR sat-
urates around ∼ 34%, even though it is allowed to freely add and delete spikes without any rate
or jitter constraints. In the supplementary (Fig. 7) we plot the mean targeted ASR as a function of
B0 for both methods, showing that targeted ASR monotonically increases with budget and that our
more constrained timing-only attack approaches the performance of PDSG-SDA at higher budgets.

Why targeted timing-only attacks are challenging. The targeted ASR in Table 17 is notably
lower than our untargeted ASR, especially on integer grids. This reflects an intrinsic challenge of
the threat model rather than a flaw in the optimization: our attack is capacity-1, rate-preserving,
and timing-only, so it cannot create or delete spikes and must keep at most one packet per (t, j)
bin. Under these constraints, steering the model toward a specific target class is substantially harder
than simply causing misclassification. Integer event grids add further difficulty because many bins
already store multi-spike packets, and retiming must respect both the global budget B0 and the
capacity constraint.

The comparison with PDSG-SDA Lun et al. (2025) supports this view: even a much less constrained,
value-modifying attack struggles to exceed ≈ 34% targeted ASR on this setting (without a tamper
bound). Our timing-only attack achieves comparable performance at high budgets while respecting
strict timing and rate constraints, indicating that the gap between untargeted and targeted spike-
retiming attacks is a fundamental phenomenon. We highlight closing this gap—for example via
target-aware objectives or curriculum schedules on timing budgets—as an interesting direction for
future work.

N DISCUSSION: ADVANTAGES OF TIMING-ONLY, RATE-PRESERVING
ATTACKS

Threat model and what the extra constraint enforces. Our timing attack operates at the level
of event packets on each event line. After flattening (B,C,H,W) into a line index j, each non-
zero entry x[s, j] denotes a packet at time index s (one spike on binary grids, or an integer-valued
packet on integer grids). Under our attack, every packet can only be retimed along its own line by
an integer offset u, landing at t = s+ u within a bounded jitter window, while the strict projection
P ∗(x, π,Bp) enforces: (i) capacity-1: at most one packet per (t, j), (ii) rate preservation: for each
line j, the multiset {x′[t, j]}Tt=1 is identical to {x[t, j]}Tt=1, and (iii) an ℓ0 “tamper-count” budget B0
on the number of packets that actually move (non-zero displacement). In other words, every packet
that is “removed” from some (s, j) must be added back at some (t, j) on the same line within the
budgeted jitter window: we only reorder events in time, never create or delete them.

Beyond generic raw-event ℓ0 attacks. Even if a generic raw-event attack is forced to preserve
the global (or per-line) event count, our formulation imposes a strictly stronger and more structured
constraint: (i) packets never move across pixels or polarities, (ii) capacity-1 prohibits stacking mul-
tiple packets into the same (t, j) bin, and (iii) B∞ and B1 bound the local jitter and total delay. This

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

leads to three advantages compared to value-based raw-event attacks such as SpikeFool Büchel et al.
(2022) and PDSG-SDA Lun et al. (2025) under a matched B0:

• Closer to physical jitter/latency. Real DVS sensors primarily exhibit timestamp jitter and
latency rather than large, structured changes in event amplitudes or polarities. Our attack
keeps every packet on its original pixel and polarity, preserves per-line counts exactly, and
constrains temporal motion via B∞ and B1, making the perturbations resemble realistic
timing noise rather than synthetic intensity artifacts.

• Stealth against simple monitors and preprocessing. Because the multiset of packets
on each line is preserved, any monitoring that relies on per-pixel event counts, line-wise
firing rates, or simple intensity statistics sees no anomaly: only the timing changes. In Ap-
pendix ?? we explicitly tested three simple, label-free pre-processors (refractory filtering,
temporal mean smoothing, spatial mean smoothing) on binary DVS-Gesture / VGGSNN
and observed that moderate filtering already causes 20–40 point drops in clean accuracy,
while our timing-only attack still attains > 90% ASR under B0(4000). Under the same
filters, the value-based baseline PDSG-SDA is noticeably more suppressed, indicating that
our additional temporal constraint makes the perturbations harder to wash out without de-
stroying task performance.

• Directly aligned with SNN computation. SNNs encode much of their information in
spike timing rather than aggregate counts. Retiming spikes while preserving counts manip-
ulates the temporal decision boundary in a way that leaves fewer footprints in simple rate
statistics. Empirically, our main results and the raw-event baseline study in Appendix K
show that, under matched tamper-count budgets B0, our timing-only, rate-preserving attack
achieves attack success rates comparable to or higher than SpikeFool Büchel et al. (2022)
and PDSG-SDA Lun et al. (2025), despite operating in a much smaller feasible perturbation
set (capacity-1 + rate preservation + jitter bounds).

Taken together, these points clarify the advantage of the “remove–then–add-back” constraint: it does
not merely make the attack optimization harder; it defines a threat model that is (i) closer to how real
event cameras behave, (ii) more stealthy with respect to standard count- or value-based checks, and
(iii) still highly effective in practice, as evidenced by our comparisons to strong raw-event baselines
and our robustness-to-filtering experiments.

33

	Introduction
	Related Work and Motivation
	Preliminary
	Neuron dynamics in spiking neural networks
	Adversarial attacks for SNNs

	Methodology
	Problem setup
	Relaxation and optimization via shift probabilities
	PIL-PGD: Projected-in-the-loop PGD over shift logits

	Experiment
	Experimental Results
	Robustness against adversarially trained models
	Discussion

	Conclusion
	Analysis of gradients and normalization under binary vs. integer inputs
	Transferability
	Use of Large Language Models (LLMs)
	Ethics Statement
	Strict Projection P* and Rate Preservation
	Algorithmic definition under global L0 budget
	Rate preservation by construction
	Empirical sanity check of rate preservation
	Comparison to non-timing attacks

	Comparison with Standard Non-Timing Adversarial Training
	On the Optimality and Complexity of the Attack Solver
	Optimality of the inner maximization
	Computational complexity and comparison to non-timing attacks

	Additional Results on Multi-Norm Timing AT and TRADES
	Multi-Norm Timing AT in the Style of Maini et al.
	TRADES vs. Madry-Style Timing AT on Binary Grids

	Multi-model and Multi-norm Multi-model Timing Attacks
	Multi-model Timing Attacks on N-MNIST
	Multi-norm Multi-model Timing Attacks

	On L0 Budgets, Redundant Moves, and Relation to Pixel-wise Sparsity
	Comparison with Raw-Event Baselines
	Binary N-MNIST: Ours vs. SpikeFool and PDSG-SDA
	Binary DVS-Gesture: Ours vs. SpikeFool and PDSG-SDA
	Binary CIFAR10-DVS: Ours vs. Baselines
	Integer Grids
	Accuracy–vs.–Budget Curves

	Effect of Simple Event Filtering Defenses
	Extended Results on Targeted Timing Attacks
	Discussion: Advantages of Timing-Only, Rate-Preserving Attacks

