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Abstract

In acute ischemic stroke, reduced blood flow de-
creases cerebral perfusion. This lowers tissue oxy-
genation and triggers cell death that can result in se-
vere neurological impairment. Finite element meth-
ods (FEM) are used to study cerebral perfusion and
simulate blood flow patterns in stroke, but their
long computation times limit clinical use. We pro-
pose a physics-informed neural surrogate based on
a sinusoidal representation network (SIREN) that
reproduces Laplacian perfusion physics. The SIREN
uses a lightweight encoder that embeds mesh geome-
try and estimates the normalized harmonic distance
from the ventricles to the cortex and the correspond-
ing blood flow directions. In held-out patients, it
achieved FEM-level accuracy (MAE 0.034 on a 0-1
scale, 9.5° mean angular deviation) while achieving
a 500 times reduction in computation time from 19 s
to 0.036 s.

1 Introduction

Every minute is critical in acute ischemic stroke
care, where treatment delays can have irreversible
consequences for patient outcomes [1]. Digital twins
have emerged as a promising tool to support clinical
decision-making by enabling patient-specific simula-
tion of treatment strategies. The Horizon Europe
GEMINTI consortium [2] develops multi-scale digital
twins for ischemic and hemorrhagic stroke by inte-
grating data-driven and mechanistic models, includ-
ing finite element method (FEM)-based perfusion
modeling [3, 4]. These twins simulate stroke patho-
physiology, treatments, and outcomes. A key com-
ponent is perfusion modeling, which estimates tissue
blood distribution to identify at-risk regions and
predict treatment outcomes. FEM solvers compute
these perfusion fields by solving partial differential
equations (PDEs), but their runtime limits clinical
applicability. In the GEMINI stroke digital twin,
the full FEM simulation is computationally inten-
sive, with the perfusion model alone taking about
five minutes [3]. To overcome this computational
bottleneck, we propose a physics-informed neural
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surrogate based on sinusoidal representation net-
works (SIREN) [5]. The surrogate replaces the first
PDE of the FEM perfusion model. This PDE com-
putes the normalized harmonic distance from the
ventricles to the cortex (p) and its negative gradient
eloc to define the local blood flow directions that
guide downstream perfusion and transport compu-
tations.

2 Methods

Data. The SIREN model, which serves as a surro-
gate for the first PDE of the FEM perfusion model,
was trained on subject-specific tetrahedral meshes
of the brain derived from MRI imaging of 75 healthy
older adults in the EPAD cohort [4, 6]. Gray mat-
ter, white matter, and ventricles were segmented
in Tl-weighted MRI images. A tetrahedral brain
template from the IXI555 Montreal Neurological
Institute atlas [7] was affine-registered to each sub-
ject using FLIRT [8] to obtain a subject-specific
mesh. Each mesh contains 299,585 vertices and
1,427,274 tetrahedra. Data were split patient-wise
into 60/10/5 train/validation/test sets.
Baseline FEM Perfusion Solver. The FEM
perfusion solver numerically models blood and oxy-
gen transport through brain tissue by solving seven
PDEs for perfusion and flow [3, 4]. We targeted the
first PDE that models arterial inflow and venous out-
flow through porous brain tissue. In this stage, the
solver computes the normalized harmonic distance
field p by solving the Laplace equation V2?p = 0 on
the patient mesh with Dirichlet conditions p=1 on
the cortex and p=0 on the ventricles. This field rep-
resents the normalized distance from the ventricles
and provides a smooth gradient that defines the lo-
cal blood flow directions as ejo,c = —Vp/||Vp|. We
quantified intrinsic accuracy limits (error floors) of
the FEM solution. For p, a residual-jump estimate
was used, and for the flow direction ey, we evalu-
ated one-level mesh refinement and recomputation.
Models. Our pipeline consists of a geometric
encoder module and a physics-informed SIREN. It
estimates p and e, from a patient-specific brain
mesh in two stages. In the first stage, the encoder
captures local mesh structure and global spatial
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context. In the second stage, the SIREN estimates
p from this geometric representation.

Geometry encoding. We computed 16 per-vertex
features that describe spatial location, local shape,
and mesh context. An encoder [9] learned a 60D
latent from supervision on (p, €joc).

SIREN surrogate. A physics-informed SIREN [5]
estimated p from per-vertex inputs: normalized co-
ordinates (z,y, z), boundary one-hot labels, the 16
features, and the 60D latent. Training minimized a
weighted sum of four losses: data loss w.r.t. FEM-
derived p, Dirichlet penalties for cortex = 1 and
ventricles = 0, a Laplacian residual loss Ap — 0,
and a cosine loss aligning —Vp with FEM ejo.. Direc-
tional alignment was prioritized due to downstream
reliance on ejqc.

Training setup € FEvaluation. We trained the
model in PyTorch using mixed precision on a single
V100 GPU. Hyperparameters (width 512, depth 9,
frequency wo=2, and learning rate 10~2) were cho-
sen based on validation performance. We evaluated
the SIREN surrogate on held-out patients (N=5)
and report normalized-distance error, flow-direction
alignment, and trajectory consistency with the FEM
reference, which assesses whether blood flow paths
follow the same routes from the cortex to the ven-
tricles. Trajectory consistency was measured by
tracing 2000 paths per patient along the estimated
€loc field and comparing their endpoints and path
lengths to FEM-derived trajectories. We also report
inference time relative to the FEM baseline.

3 Results & Discussion

Results. Error floors were found at 0.0135 on a
0-1 scale for p and at 9.1° for e),.. Table 1 reports
error metrics for p and ej,.. Figure 1(a) shows
the error distribution of p and Figure 1(b) shows
the angular deviation of ej,.. Table 1 also reports
blood flow trajectory metrics with respect to the
FEM-solver. The SIREN reduced the harmonic
normalized-distance computation time from 19.36s
t0 0.036s (x533) and the end-to-end computation
t0 €joc from 66.74s to 35.29s (x1.89).
Discussion. The physics-informed surrogate ac-
curately reproduced the FEM field p while respecting
Laplacian and Dirichlet constraints. The p errors
were slightly above the FEM p-error floor, yet re-
mained relatively small. Errors were concentrated
in regions where the distance between the ventricles
and cortical surface was smallest, such as in the
posterior occipital horns, where steep gradients in p
are expected. In these areas, ej,. remained closely
aligned with the FEM reference, as training priori-
tized correct gradient orientation over exact p values.
Larger angular deviations occurred near the septum
pellucidum, since multiple attractors make the direc-
tion ambiguous. As this region contributes little to
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Table 1. Held-out test results (N=5). Metrics cover
field accuracy and flow-trajectory agreement.

Metric Value
Field accuracy

p (MAE / R?) 0.034 / 0.964
eloc (angle / cosine) 9.5° / 0.979
Boundary MAE (cortex / ventricles) 0.026 / 0.003
Physics residual (mean (Ap)?) ~ 10712
Flow trajectory agreement with FEM

Endpoint A (hops: med / mean) 1/ 239
Overlapping path proportion (len frac) 0.53

A number of steps (med / mean) 0 / 046
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Figure 1. Error analyses. (a) p error maps on repre-
sentative axial, sagittal, and coronal slices. (b) Angular
error for ejoc with respect to the FEM direction field.

perfusion estimation, the effect on downstream com-
putations is negligible. Trajectory analysis indicated
that global transport behavior was preserved. End-
points, path lengths, and routes were consistent with
the FEM reference. Inspecting the runtimes, most
time was spent on geometric feature preprocessing.
This step is performed once per patient mesh and
reused across modules, limiting its overall impact
and indicating potential for major speedups once the
entire FEM perfusion solver is surrogated. Future
work will therefore focus on developing surrogates
for the six remaining PDEs in the FEM perfusion
solver to achieve a fully accelerated pipeline fit for
clinical applications. In conclusion, the surrogate
reproduced the FEM distance and flow estimates
with high fidelity while achieving significant runtime
reductions. It preserved physiologically consistent
flow patterns and marks a key step toward a fully
surrogate-based GEMINI pipeline enabling real-time
what-if treatment exploration for clinical decision
support.
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