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Abstract001

In acute ischemic stroke, reduced blood flow de-002

creases cerebral perfusion. This lowers tissue oxy-003

genation and triggers cell death that can result in se-004

vere neurological impairment. Finite element meth-005

ods (FEM) are used to study cerebral perfusion and006

simulate blood flow patterns in stroke, but their007

long computation times limit clinical use. We pro-008

pose a physics-informed neural surrogate based on009

a sinusoidal representation network (SIREN) that010

reproduces Laplacian perfusion physics. The SIREN011

uses a lightweight encoder that embeds mesh geome-012

try and estimates the normalized harmonic distance013

from the ventricles to the cortex and the correspond-014

ing blood flow directions. In held-out patients, it015

achieved FEM-level accuracy (MAE 0.034 on a 0–1016

scale, 9.5◦ mean angular deviation) while achieving017

a 500 times reduction in computation time from 19 s018

to 0.036 s.019

1 Introduction020

Every minute is critical in acute ischemic stroke021

care, where treatment delays can have irreversible022

consequences for patient outcomes [1]. Digital twins023

have emerged as a promising tool to support clinical024

decision-making by enabling patient-specific simula-025

tion of treatment strategies. The Horizon Europe026

GEMINI consortium [2] develops multi-scale digital027

twins for ischemic and hemorrhagic stroke by inte-028

grating data-driven and mechanistic models, includ-029

ing finite element method (FEM)-based perfusion030

modeling [3, 4]. These twins simulate stroke patho-031

physiology, treatments, and outcomes. A key com-032

ponent is perfusion modeling, which estimates tissue033

blood distribution to identify at-risk regions and034

predict treatment outcomes. FEM solvers compute035

these perfusion fields by solving partial differential036

equations (PDEs), but their runtime limits clinical037

applicability. In the GEMINI stroke digital twin,038

the full FEM simulation is computationally inten-039

sive, with the perfusion model alone taking about040

five minutes [3]. To overcome this computational041

bottleneck, we propose a physics-informed neural042
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surrogate based on sinusoidal representation net- 043

works (SIREN) [5]. The surrogate replaces the first 044

PDE of the FEM perfusion model. This PDE com- 045

putes the normalized harmonic distance from the 046

ventricles to the cortex (p) and its negative gradient 047

eloc to define the local blood flow directions that 048

guide downstream perfusion and transport compu- 049

tations. 050

2 Methods 051

Data. The SIREN model, which serves as a surro- 052

gate for the first PDE of the FEM perfusion model, 053

was trained on subject-specific tetrahedral meshes 054

of the brain derived from MRI imaging of 75 healthy 055

older adults in the EPAD cohort [4, 6]. Gray mat- 056

ter, white matter, and ventricles were segmented 057

in T1–weighted MRI images. A tetrahedral brain 058

template from the IXI555 Montreal Neurological 059

Institute atlas [7] was affine-registered to each sub- 060

ject using FLIRT [8] to obtain a subject-specific 061

mesh. Each mesh contains 299,585 vertices and 062

1,427,274 tetrahedra. Data were split patient-wise 063

into 60/10/5 train/validation/test sets. 064

Baseline FEM Perfusion Solver. The FEM 065

perfusion solver numerically models blood and oxy- 066

gen transport through brain tissue by solving seven 067

PDEs for perfusion and flow [3, 4]. We targeted the 068

first PDE that models arterial inflow and venous out- 069

flow through porous brain tissue. In this stage, the 070

solver computes the normalized harmonic distance 071

field p by solving the Laplace equation ∇2p = 0 on 072

the patient mesh with Dirichlet conditions p=1 on 073

the cortex and p=0 on the ventricles. This field rep- 074

resents the normalized distance from the ventricles 075

and provides a smooth gradient that defines the lo- 076

cal blood flow directions as eloc = −∇p/∥∇p∥. We 077

quantified intrinsic accuracy limits (error floors) of 078

the FEM solution. For p, a residual-jump estimate 079

was used, and for the flow direction eloc, we evalu- 080

ated one-level mesh refinement and recomputation. 081

Models. Our pipeline consists of a geometric 082

encoder module and a physics-informed SIREN. It 083

estimates p and eloc from a patient-specific brain 084

mesh in two stages. In the first stage, the encoder 085

captures local mesh structure and global spatial 086
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context. In the second stage, the SIREN estimates087

p from this geometric representation.088

Geometry encoding. We computed 16 per-vertex089

features that describe spatial location, local shape,090

and mesh context. An encoder [9] learned a 60d091

latent from supervision on (p, eloc).092

SIREN surrogate. A physics-informed SIREN [5]093

estimated p̂ from per-vertex inputs: normalized co-094

ordinates (x, y, z), boundary one-hot labels, the 16095

features, and the 60d latent. Training minimized a096

weighted sum of four losses: data loss w.r.t. FEM-097

derived p, Dirichlet penalties for cortex = 1 and098

ventricles = 0, a Laplacian residual loss ∆p̂ → 0,099

and a cosine loss aligning−∇p̂ with FEM eloc. Direc-100

tional alignment was prioritized due to downstream101

reliance on eloc.102

Training setup & Evaluation. We trained the103

model in PyTorch using mixed precision on a single104

V100 GPU. Hyperparameters (width 512, depth 9,105

frequency ω0=2, and learning rate 10−3) were cho-106

sen based on validation performance. We evaluated107

the SIREN surrogate on held-out patients (N=5)108

and report normalized-distance error, flow-direction109

alignment, and trajectory consistency with the FEM110

reference, which assesses whether blood flow paths111

follow the same routes from the cortex to the ven-112

tricles. Trajectory consistency was measured by113

tracing 2000 paths per patient along the estimated114

eloc field and comparing their endpoints and path115

lengths to FEM-derived trajectories. We also report116

inference time relative to the FEM baseline.117

3 Results & Discussion118

Results. Error floors were found at 0.0135 on a119

0–1 scale for p and at 9.1◦ for eloc. Table 1 reports120

error metrics for p and eloc. Figure 1(a) shows121

the error distribution of p and Figure 1(b) shows122

the angular deviation of eloc. Table 1 also reports123

blood flow trajectory metrics with respect to the124

FEM-solver. The SIREN reduced the harmonic125

normalized-distance computation time from 19.36 s126

to 0.036 s (×533) and the end-to-end computation127

to eloc from 66.74 s to 35.29 s (×1.89).128

Discussion. The physics-informed surrogate ac-129

curately reproduced the FEM field p while respecting130

Laplacian and Dirichlet constraints. The p errors131

were slightly above the FEM p-error floor, yet re-132

mained relatively small. Errors were concentrated133

in regions where the distance between the ventricles134

and cortical surface was smallest, such as in the135

posterior occipital horns, where steep gradients in p136

are expected. In these areas, eloc remained closely137

aligned with the FEM reference, as training priori-138

tized correct gradient orientation over exact p values.139

Larger angular deviations occurred near the septum140

pellucidum, since multiple attractors make the direc-141

tion ambiguous. As this region contributes little to142

Table 1. Held-out test results (N=5). Metrics cover
field accuracy and flow-trajectory agreement.

Metric Value

Field accuracy
p (MAE / R2) 0.034 / 0.964
eloc (angle / cosine) 9.5◦ / 0.979
Boundary MAE (cortex / ventricles) 0.026 / 0.003
Physics residual (mean (∆p̂)2) ∼ 10−12

Flow trajectory agreement with FEM
Endpoint ∆ (hops: med / mean) 1 / 2.39
Overlapping path proportion (len frac) 0.53
∆ number of steps (med / mean) 0 / 0.46

(a)

(b)

Figure 1. Error analyses. (a) p error maps on repre-
sentative axial, sagittal, and coronal slices. (b) Angular
error for eloc with respect to the FEM direction field.

perfusion estimation, the effect on downstream com- 143

putations is negligible. Trajectory analysis indicated 144

that global transport behavior was preserved. End- 145

points, path lengths, and routes were consistent with 146

the FEM reference. Inspecting the runtimes, most 147

time was spent on geometric feature preprocessing. 148

This step is performed once per patient mesh and 149

reused across modules, limiting its overall impact 150

and indicating potential for major speedups once the 151

entire FEM perfusion solver is surrogated. Future 152

work will therefore focus on developing surrogates 153

for the six remaining PDEs in the FEM perfusion 154

solver to achieve a fully accelerated pipeline fit for 155

clinical applications. In conclusion, the surrogate 156

reproduced the FEM distance and flow estimates 157

with high fidelity while achieving significant runtime 158

reductions. It preserved physiologically consistent 159

flow patterns and marks a key step toward a fully 160

surrogate-based GEMINI pipeline enabling real-time 161

what-if treatment exploration for clinical decision 162

support. 163
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