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Abstract
Noise in data significantly influences decision-making in the data science process.
In fact, it has been shown that noise in data generation processes leads practi-
tioners to find simpler models. However, an open question still remains: what
is the degree of model simplification we can expect under different noise levels?
In this work, we address this question by investigating the relationship between
the amount of noise and model simplicity across various hypothesis spaces, fo-
cusing on decision trees and linear models. We formally show that noise acts
as an implicit regularizer for several different noise models. Furthermore, we
prove that Rashomon sets (sets of near-optimal models) constructed with noisy
data tend to contain simpler models than corresponding Rashomon sets with non-
noisy data. Additionally, we show that noise expands the set of “good” features
and consequently enlarges the set of models that use at least one good feature.
Our work offers theoretical guarantees and practical insights for practitioners and
policymakers on whether simple-yet-accurate machine learning models are likely
to exist, based on knowledge of noise levels in the data generation process.

1 Introduction
Machine learning (ML) is being used more and more for high-stakes decisions, and there is a need
for clear policy guidance. Simple models have advantages: they are much easier to troubleshoot and
use. However, there is a concern that they are not as accurate as more complex black box models,
which makes it challenging to provide guidance for policy makers to recommend simple models.

We believe we have barely scratched the surface of understanding simplicity in machine learning.
Recent work suggests we consider the Rashomon Effect [Breiman, 2001], which is the phenomenon
that datasets often admit many different good models. Semenova et al. [2022] shows that when there
are a lot of good models, some of them are probably simple, meaning that there is no accuracy-
simplicity trade-off. But we do not know in advance how simple these models can get. For some
applications, very sparse additive models or decision trees perform as well as the best black box
models; these datasets do not benefit from complex models at all. When does that happen? How
extreme on the simplicity scale do we expect these models to go?

A key insight into this question comes from Semenova et al. [2023], who showed that the simplicity
we can expect seems to be related to the amount of outcome noise in the data generation process,
which we denote informally as “ρ.” When ρ is larger, we can get simpler models with performance
comparable to the best models. However, while Semenova et al. [2023] showed that noise levels are
important, they did not provide a quantitative relationship between noise and simplicity.

In this work, we ask a question that allows us to better understand the connections among noise
in the data generation processes, model simplicity, and the Rashomon Effect. The question is as
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follows: Given the noise level ρ, how much simpler can our ML models get as compared to the
non-noisy case while still maintaining similar generalization performance? Semenova et al. [2023]
proves only that the hypothesis space could be simplified in the presence of noise, but does not
discuss how much.

To answer this question, we formally prove for two common hypothesis spaces that noise is an im-
plicit regularizer, thus leading to simpler models. We quantify how much regularization is added to
models as a precise function of the amount of noise, ρ, for several types of noise and regularization.
Table 1 summarizes the main results of this paper. For various combinations of hypothesis spaces,
losses, and types of noise, we show that if we have regularization λ and noise ρ, the optimization
problem on noisy data is equivalent to optimizing over the cleaner data with stronger regularization
(described in the rightmost column). This means that if we have noisy data, we get a simpler model
than if the data were cleaner and we had performed the same optimization.

Since the Rashomon Effect seems to be an important mechanism to understand simplicity, we also
study how noise affects it. The Rashomon set is the set of models that have comparable performance
to the best models within a class. In this work, we show that, in the presence of noise, the Rashomon
set tends to consist of simpler models than in the non-noisy setting. This means that if a user is look-
ing for a model in the Rashomon set that obeys specific constraints (e.g., fairness or monotonicity),
these models will be simpler (and this task is likely to be easier) in the presence of noise.

We also study how noise changes the relationship between features and outcomes in an unregularized
setting. Specifically, we show that, for decision trees, the number of “good features” (having high
AUC relative to other features) increases with noise, and the set of models that use at least one
good feature grows larger. Since most models in the Rashomon set use at least one good feature,
the Rashomon set of the unregularized hypothesis space might also increase in size with increased
noise. This attempts to shed more light on the results that previous work [Semenova et al., 2023]
only observed empirically.

We confirm our results empirically and provide practical guidance for the datasets from domains of
criminal justice and lending, where we expect outcome noise due to the random nature of the data
generation process. We hope that our results are the initial steps that will help machine learning
practitioners, and possibly policymakers, to reason about the simplicity of models they can expect
to encounter for many high-stakes decision domains.

Table 1: Summary of paper contributions and answers to the key question.

Complex hypothesis space/model Loss Noise, ρ Effective regularization
1 Any model optimized on regular-

ized 0-1 loss (e.g. sparse deci-
sion trees with leaf penalty, rule
lists with length penalty, scoring
systems with sparsity penalty) with
regularization penalty λ

Misclassifi-
cation error

Random
label
noise

Model optimized with regulariza-
tion penalty λ

1−2ρ

2 Linear models Exponential
loss

Additive
attribute
noise

Linear models that minimize log-
arithm of exponential loss with ℓ2
regularization, where 1

2
ρ2 is the

regularization parameter

2 Related Work
There are several bodies of related literature.

Rashomon sets. The Rashomon set – the set of all near-optimal models – has been studied primar-
ily in the context of its usefulness for solving downstream problems. Examples include developing
stable measures of variable importance [Donnelly et al., 2023, Dong and Rudin, 2020, Fisher et al.,
2019, Smith et al., 2020], quantifying predictive multiplicity [Marx et al., 2020, Hsu and Calmon,
2022, Watson-Daniels et al., 2023], and understanding fairness [Aı̈vodji et al., 2021, Coston et al.,
2021, Shamsabadi et al., 2022]. There are also algorithms for computing complete or approximate
Rashomon sets for a variety of hypothesis spaces [Mata et al., 2022, Xin et al., 2022, Zhong et al.,
2023]. The most related prior work to this paper is the work of Semenova et al. [2022] and Semen-
ova et al. [2023], which together demonstrate the existence of large Rashomon sets, and therefore
simple models, when there is a significant amount of randomness in the data generation process. In

2



comparison to prior work, ours is the first to provide a quantitative relationship between noise levels
and quantities related to simplicity such as regularization and the contents of the Rashomon set.

Policy and interpretable ML. With new regulations including “right to explanation,” users can
request an explanation if an automated decision has been made about them. However, such explana-
tions are often post-hoc and may be misleading [Rudin et al., 2022, Rudin, 2019, Han et al., 2022,
Adebayo et al., 2018], contradictory [Krishna et al., 2022], incomplete [Rudin, 2019], or failing in
adversarial contexts [Bordt et al., 2022]. Interpretable models do not have these problems, and em-
pirically, interpretable models in high-stakes decision domains tend to be as accurate as black-box
models; this has been shown in lending [e.g., Chen et al., 2022], criminal justice [e.g., Angelino
et al., 2017], and healthcare [e.g., Zhu et al., 2023]. However, policy makers still permit black boxes
for high-stakes domains, possibly based on accuracy-simplicity trade-off concerns. Thus, more evi-
dence about when this trade-off does and does not exist will be helpful.

Noise and regularization. The influence of noise on regularization has been studied for the hy-
pothesis space of neural networks, though no prior work is directly relevant to our aims. Bishop
[1995] showed that injecting a small amount of random attribute noise into the training data for a
neural network was equivalent in the infinite data limit to a form of Tikhonov regularization on the
magnitude of weights. Dhifallah and Lu [2021] extended these results to arbitrary noise for random
feature models, which are a restricted class of neural networks. These papers supplement work de-
signing loss functions robust to noisy data for training neural networks [Wang et al., 2019, Ma et al.,
2020, Jin et al., 2021, Zhou et al., 2023] and greedily-grown decision trees [Wilton and Ye, 2024].
Here, we study the effect of noise on the regularization of sparse models based on 0-1 loss, such as
sparse decision trees [Lin et al., 2020], and on linear models trained under exponential loss.

Noise and SGD. There has also been recent work focused on analyzing the behavior of the stochastic
gradient descent (SGD) algorithm in the presence of artificially injected noise during the training
process. More specifically, HaoChen et al. [2021] found that applying label noise at each step of
SGD allows the ground truth function of a data distribution to be approximated arbitrarily well,
while Gaussian parameter noise may instead lead to poor generalization. Blanc et al. [2020] showed
that SGD with label noise acts as an implicit regularizer for models with training error. Damian
et al. [2021] and Vivien et al. [2022] generalize this result by showing that SGD implicitly optimizes
a regularized objective function under various regimes. Our work instead focuses on noisy data
generation processes, independent of the algorithm used to optimize the objective.

3 Definitions and Notation
Consider a dataset S = {zi = (xi, yi)}ni=1, where each zi ∈ Z = X × Y is drawn i.i.d. from
an unknown true distribution D. Here, X ∈ Rn×p is the input space, and Y ∈ {−1, 1}n is the
output space. Let F be a hypothesis space, where f ∈ F is a model mapping inputs to outputs,
f : X → Y . Define ϕ : Y × Y → R+ as a loss function. For the misclassification error or
0-1 loss, we have ϕ(f(x), y) = 1[f(x)̸=y]. The true risk LD(f) is the expected loss over the true
distribution D, given by LD(f) = Ez∼D[ϕ(f(x), y)], and the empirical risk L̂S(f) is the average
loss on the dataset S drawn from D, calculated as L̂S(f) = 1

n

∑n
i=1 ϕ(f(xi), yi). We denote by

R(f) an arbitrary regularization term with regularization parameter λ ∈ R+. Regularization induces
simplicity in this work; for example, R(·) can represent the number of leaves in a decision tree, the
length of a rule list, or ℓ0, ℓ1, or ℓ2 norms. We are interested in learning a model f∗

D that minimizes
the true objective ObjD(f) that combines risk and regularization:

ObjD(f) = LD(f) + λR(f), (1)

where f∗
D ∈ argminf∈F ObjD(f). Since this model depends on an unknown distribution D, we

estimate it using the empirical risk minimizer f̂S , defined as: f̂S ∈ argminf∈F ÔbjS(f), where
ÔbjS(f) = L̂S(f) + λR(f).

Following Fisher et al. [2019], Semenova et al. [2022, 2023], Xin et al. [2022], we define the true
Rashomon set RsetD (F , θ) to be

RsetD (F , θ) := {f ∈ F : ObjD(f) ≤ ObjD(f
∗
D) + θ}, (2)

that is, if LD(f) + λR(f) ≤ LD(f
∗
D) + λR(f∗

D) + θ, the model f is included in the Rashomon
set. θ ≥ 0 is the additive Rashomon parameter defined by the user. Similarly, the empirical
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Rashomon set R̂setS (F , θ), contains models within θ of the regularized empirical risk minimizer:
R̂setS (F , θ) := {f ∈ F : ÔbjS(f) ≤ ÔbjS(f̂S) + θ}. Past work has shown that the true and em-
pirical Rashomon sets may be similar [Semenova et al., 2022, Donnelly et al., 2023]. We will omit
“true” or “empirical” and use only “Rashomon set” when it is not significant over which distribution
the set is computed.

We will model noise in the labels of data with a uniform label noise model, where each label is
flipped independently with the fixed probability ρ ∈

(
0, 1

2

)
. To sample data with random label noise

from the distribution D, we sample z = (x, y) ∼ D, then with probability ρ we change the label of
y. We denote the noisy version of this data distribution as Dρ. By this definition, for x, y ∼ D, with
probability of y = 1|x denoted as py , when sampling from Dρ, we have py(1− 2ρ) + ρ [Semenova
et al., 2023]. For a finite dataset, we denote Sρ to be a dataset sampled according to distribution
Dρ. Let Dn

ρ be the distribution of datasets Sρ under this noise model. As shorthand notation, define
ESρ to mean ESρ∼Dn

ρ
. We assume that in practice we receive noisy data Sρ and not cleaner data S.

(Here, S does not have the uniform random label noise, but it is not necessarily clean in other ways.)

In this work, we measure how noise impacts the simplicity of the best model in the hypothesis space
as well as the models in the Rashomon set. First, in Section 4, we consider random label noise and
0-1 loss, and then examine additive attribute noise for the exponential loss in Section 6. For both of
these cases, we show that with more noise, we can expect simpler models.

4 Random Label Noise and Regularized 0-1 Loss
Noisy labels are common in real-world datasets, especially in high-stakes decision domains. There
are many sources of this noise, including subjective judgments, typographical and clerical errors,
and systematic biases. Next, we show that when there is noise in the labels, the regularization of the
optimal model is implicitly stronger.

4.1 Noise Increases Regularization
We study the effect of random label noise on the optimal models for 0-1 misclassification loss. We
first show that optimizing over the noisy data distribution is equivalent to optimizing over the cleaner
data distribution with stronger regularization. Formally:

Theorem 1 (Regularized 0-1 loss under random label noise). Consider true data distribution D,
and uniform label noise with noise parameter ρ ∈ (0, 1/2). Let Dρ denote the noisy version of D.
Consider 0-1 loss L and let R : F → R be a regularization function with λ ∈ R+ a regularization
parameter. Formally,

argmin
f∈F

LDρ
(f) + λR(f) = argmin

f∈F
LD(f) +

λ

1− 2ρ
R(f).

Similarly, given a dataset S sampled according to D, and Sρ the noisy version of S,
argminf∈F ESρ L̂Sρ(f) + λR(f) = argminf∈F L̂S(f) +

λ
1−2ρR(f).

Theorem 1 applies to any model class and any regularization function over the models in the model
class. This includes model classes such as sparse decision trees, which regularize the number of
leaves [Lin et al., 2020], rule lists, which regularize the number of rules [Angelino et al., 2017], and
scoring systems, which regularize the ℓ0-norm of the parameter vector [Ustun and Rudin, 2016].
We prove Theorem 1 in Appendix A. This result proves the first row of Table 1, as each of these
hypothesis spaces optimize 0-1 loss with a hypothesis-space-specific regularization function.

A consequence of Theorem 1, intuitively, is that the optimal model with a higher regularization
penalty should be simpler and fit the original data less precisely. Formally,

Theorem 2 (Optimal model simplifies under random label noise). Under the same assumptions as
in Theorem 1, let f∗

D be the optimal model in F over distribution D and let f∗
Dρ

be the optimal model
in F over Dρ. Then either R(f∗

Dρ
) = R(f∗

D) and LD(f
∗
Dρ

) = LD(f
∗
D) (same complexity model) or

R(f∗
Dρ

) < R(f∗
D) and LD(f

∗
Dρ

) > LD(f
∗
D) (strictly simpler model).

An identical result applies for finite data when f∗
Sρ

is optimized over the loss function ESρ L̂Sρ(f).

A proof of Theorem 2 is in Appendix B. Corollary 10 in Appendix B gives a bound for how much
simpler the noisy optimal model will be, based on its performance on the cleaner training data.
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4.2 Noise Simplifies the Rashomon Set
In the previous section, we considered optimizing for one model, namely the best-performing model
in the class. However, the Rashomon set of models provides a lot of benefits, including deeper
insights into the data, flexibility in model selection by choosing a more fair, robust model or model
that obeys better domain constraints, and quantification of prediction uncertainty over this set of
well-performing models [Rudin et al., 2024]. Therefore, we further study how label noise influences
the complexity of the models in the true Rashomon set. More specifically, we show that the models
in the true Rashomon set arising from a noisy distribution cannot be more complex than those in the
Rashomon set for the corresponding cleaner distribution.

Consider two true Rashomon sets RsetD (F , θ) and RsetDρ
(F , θ) over cleaner data distribution D

and noisier data distribution Dρ. We may partition these two sets of models into three disjoint sets:
Fboth = {f ∈ F : f ∈ RsetD (F , θ) ∩ RsetDρ

(F , θ)} (the set of models in both the cleaner and
noisier Rashomon sets), Fout = {f ∈ F : f ∈ RsetD (F , θ)\RsetDρ

(F , θ)} (the set of models in the
Rashomon set over the cleaner data distribution, but not the noisy one), and F in = {f ∈ F : f ∈
RsetDρ

(F , θ) \RsetD (F , θ)} (the set of models in the Rashomon set over the noisy data distribution,
but not the cleaner one).

We are interested in studying the relationship between the complexity of models in Rashomon sets
over cleaner and noisy data. In this direction, we show that under mild assumptions, any models
that are in the Rashomon set over the noisier data distribution, but not the cleaner one (F in), will
be simpler than the optimal model over the cleaner data. Since models in Fboth have the same
complexity in both Rashomon sets, and models in Fout tend to be complex (see Theorem 11 in
Appendix C), this result shows that the Rashomon set over noisy data will tend to contain lower
complexity models than the Rashomon set over cleaner data. Formally,

Theorem 3 (Models that enter the noisier true Rashomon set are simple). Consider true data dis-
tribution D, 0-1 loss function, regularization R(·) and regularization parameter λ. Consider also
uniform label noise, where each label is flipped independently with probability ρ ∈ (0, 1

2 ). Let Dρ

be the noisier data distribution. If ObjDρ
(f∗

D) > ObjDρ
(f∗

Dρ
) + 2ρθ, i.e., the optimal model over

the cleaner data distribution D is not in the Rashomon set of the noisy distribution with Rashomon
parameter 2ρθ, then every model from F in in the noisier true Rashomon set RsetDρ

(F , θ) is simpler
than f∗

D:

∀f̃ ∈ F in : R(f̃) < R(f∗
D).

More specifically, R(f̃) < R(f∗
D)− 1

λ

(
∆
2ρ − θ

)
, where ∆ = ObjDρ

(f∗
D)−ObjDρ

(f∗
Dρ

). Note that
∆
2ρ − θ > 0. An identical result applies for finite data when models are optimized over ESρ

L̂Sρ
(f).

The proof of Theorem 3 is in Appendix C. Note that we showed in the previous section that an
optimal model over the noisier data distribution tends to be simpler than an optimal model of the
cleaner data distribution, R(f∗

Dρ
) < R(f∗

D). Therefore, we believe the assumption that f∗
D is not

in the noisier true Rashomon set with the Rashomon parameter 2ρθ is plausible in practical noisy
settings. For smaller amounts of noise, the cleaner and noisier Rashomon sets may be similar enough
to violate the assumption in Theorem 3; in this case, we expect the two Rashomon sets to overlap a
lot, leading to larger Fboth and similar model complexity between the Rashomon sets.

When the data is noisy, practitioners can expect to find simple-and-accurate models within the
Rashomon sets for regularized 0-1 loss. We experimentally support our results in Sections 4.1 and
4.2 for empirical datasets and the expected empirical Rashomon set in Section 7 and Appendix I.

5 Unregularized Decision Trees and the Set of Grounded Models
The Rashomon ratio measures the size of the Rashomon set relative to the size of the hypothesis
space [Semenova et al., 2022, 2023, Rudin et al., 2022]. For regularized 0-1 loss, we demonstrated
that random label noise is equivalent to an increase in the regularization parameter. A larger regular-
ization parameter penalizes more complicated models and effectively shrinks the hypothesis space,
which tends to increase the Rashomon ratio [Semenova et al., 2023]. In turn, larger Rashomon ratios
correspond to a higher probability of obtaining a desired (e.g., interpretable or simpler) model and
correlate with the existence of simpler-yet-accurate models [Semenova et al., 2022].
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However, what happens if there is no regularization in the first place and the hypothesis space does
not change in size (for example, consider fully-grown decision trees without penalties on the number
of leaves)? In this scenario, in the presence of noise, we show that practitioners can still expect
to find simple models within the Rashomon set. However, the reason is not due to noise affecting
regularization, but rather because noise makes the Rashomon set increase in size. We give theoretical
evidence for this claim in Section 5.2, where we show that the set of grounded models (as defined in
Section 5.2) grows with noise. This set usually contains the Rashomon set (see Appendix I.3). We
begin with an observation about features in our dataset: noise distorts signal in high-quality features
faster than in lower-quality features. This leads to an increase in the size of the set of (relatively)
good features, which we define formally next.

5.1 The Set of Good Features Increases under Noise
For a dataset S = X × Y , let G = {gj}pj=1 denote the set of features, where each gj = {x.,j}
is the jth column of the feature matrix X . Note that X can be continuous or binary. For every
feature g, we can evaluate its quality based on how close it is to the label vector Y according to
a similarity function MS(g) = M(g, Y ). Different metrics can be used as M(·), including area
under the receiver operating characteristic (ROC) curve (AUC), normalized Hamming similarity
(one minus the normalized Hamming distance, which is the normalized count of different element
values between two binary vectors) if gj are binary (gj ∈ {−1, 1}), and correlation if both the labels
and the feature are continuous. Given MS(g), we define a set of good features as follows:

Definition 4 (Set of good features). Assume we are given a dataset S = X × Y , set of fea-
tures G = {gj}pj=1 = {x.,j}pj=1, a feature quality metric MS(g) and a parameter γ. Let
ĝ := argmaxg∈G MS(g). Then we define the set of good features GMS

(G, γ) to be

GMS
(G, γ) := {g ∈ G : MS(g) ≥ MS(ĝ)− γ}.

We can think of the set of good features similarly to the Rashomon set, where the former contains
all relatively good features based on the quality metric, and the Rashomon set contains all relatively
good models (combinations of features) with respect to risk.

Intuitively, we expect that datasets originating from less noisy data generation processes will have
higher quality features. For example, if there exists a feature with a very high AUC, then the accu-
racy of learned models utilizing this feature will also be high. In the presence of label noise, we can
precisely calculate how the quality of each feature changes for specific cases, including unnormal-
ized AUC (as demonstrated in Theorem 5 below, proven in Appendix D) and normalized Hamming
similarity with binary features (direct consequence of proof in Theorem 1). For a balanced dataset
S, where the number of positive and negative samples are the same and equal to n/2, we define the
unnormalized AUC as AUCS(g) =

n2

4 AUCS(g) (AUC between g and the label on S).

Theorem 5 (Unnormalized AUC for continuous features increases with label noise). Consider a
balanced dataset S = X × Y , i.e. Pr(y = 1) = Pr(y = −1). Let g = x.,j be a continuous feature
with distinct values g1 < . . . < gn. Let AUCS(g) denote the unnormalized AUC value of g on the
labels Y . Consider uniform label noise, where each label is flipped independently with probability
ρ < 1

2 . Let Sρ be a noisier dataset. Then for every feature g ∈ G:

ESρ [AUCSρ(g)] = (1− 2ρ)AUCS(g) + C(ρ, n),

where C(ρ, n) = ρ
(
n
2

) (
n
2 + ρ− 1

)
is constant for a given ρ and n.

An important corollary directly follows from Theorem 5, which states that under noise, good features
with higher AUC lose signal faster than features with lower AUC.

Corollary 6. Under the same amount of uniform random label noise ρ, the expected unnormalized
AUC of features with higher initial value decreases faster than the expected unnormalized AUC of
features with lower initial value. For two features g1, g2, if AUCS(g1) < AUCS(g2), then

AUCS(g1)− ESρ
AUCSρ

(g1) < AUCS(g2)− ESρ
AUCSρ

(g2).

The different rate of change of features with different values of AUC also means that under noise,
the set of good features increases. Since the quality metric MESρ1

(g) decreases with noise for a
given feature g, this implies that in the noisier dataset there are more features with equivalently
weak signals as compared to a cleaner dataset.
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Corollary 7. Consider a dataset S = X × Y . Let {AUCS(gj)}pj=1 be in decreasing order and
spaced by distances at most δ, meaning that 0 ≤ AUCS(gj) − AUCS(gj+1) ≤ δ for each j =
1, . . . , p − 1. Assume that we apply uniform label noise with flip probabilities ρ1 and ρ2 to S to
obtain Sρ1 and Sρ2 , and that |GESρ1

AUCSρ1

(G, γ)| < p. If ρ2 ≥ ν(ρ1) := 1
2

(
1− γ(1−2ρ1)

γ+δ(1−2ρ1)

)
noting that ν(ρ1) > ρ1, then the size of the set of features which are good in expectation is strictly
larger with more noise,

|GESρ1
AUCSρ1

(G, γ)| < |GESρ2
AUCSρ2

(G, γ)|.

The proof of Corollary 7 is in Appendix E and more experimental results are in Appendix I.3. Note
that Corollaries 6 and 7 apply as well to the case of normalized Hamming similarity.

Interestingly, Corollary 7 provides one possible explanation for the existence of large Rashomon
sets. If there are more features that can explain the labels approximately-equally-well, then multiple
good models could be composed of these features, as we will discuss next.

5.2 The Fraction of Grounded Models Increases for Unregularized Decision Trees
Consider a dataset with binary features and a hypothesis space Fd of fully grown decision trees
of depth d. For example, a fully grown tree of depth 2 has three (internal) nodes (root and two
child nodes) and four leaves (two leaves for each child node). Let the set of grounded models (set
of models that use good features), HsetS (Fd), consist of models that (1) use at least one feature
from the set of good features GsetS (G, γ), (2) use labels determined by a majority vote of data in
the leaves. Let HratioS (Fd) be the fraction of such models in the hypothesis space, meaning that,
similar to the Rashomon ratio, HratioS (Fd) =

|HsetS
(Fd)|

| Fd | . Often, the set of grounded models
contains most of the Rashomon set, because the trees in the Rashomon set usually rely on at least
one feature with a strong relationship with the label (measured by AUC; see Appendix I.3).

Next, we formally show that the fraction of grounded models increases with more random label
noise. We again use the set of good features discussed above, with features ordered by AUC values.

Theorem 8 (Fraction of grounded models increases when the set of good features increases). For a
dataset S = X × Y with binary feature matrix X ∈ {−1, 1}n×p, consider a hypothesis space
Fd of fully grown trees of depth d. Consider uniform random label noise with noise parame-
ter ρ. Let HsetESρ

(Fd) denote the set of grounded models, based on the set of good features
GESρ AUCSρ

(G, γ). Under the assumptions of Corollary 7 on the set of good features, the fraction
of grounded models increases with uniform random label noise. More formally, for ρ2 ≥ ν(ρ1),∣∣∣HsetESρ1

(Fd)
∣∣∣ < ∣∣∣HsetESρ2

(Fd)
∣∣∣ and HratioESρ1

(Fd) < HratioESρ2

(Fd).

The proof of Theorem 8 is in Appendix F. The key observation made in our proof of Theorem 8
is that the set of grounded models increases in size as the set of good features grows. Since the
set of grounded models typically contains the Rashomon set, this tends to increase the Rashomon
ratio in unregularized hypothesis spaces. As a reminder, larger Rashomon ratios are associated with
the existence of simpler-yet-accurate models. We expect the results of this section to hold for other
hypothesis spaces as well, e.g., tree ensembles. So far we have considered 0-1 loss with random
label noise. Unsurprisingly, we can expect simpler, more regularized, models for other losses and
noise models as well. In particular, we next demonstrate that additive attribute noise acts as an
implicit regularizer for the hypothesis space of linear models optimized for exponential loss.

6 Additive Attribute Noise and the Exponential Loss
It has been known since the 1990s that additive attribute noise to a dataset in the setting of ridge
regression acts as an implicit regularizer [Bishop, 1995, Semenova et al., 2023]. More specifically,
adding noise ϵi ∼ N (0̄, σ2I), where 0̄ is a zero vector and I is identity matrix, to every sample
xi (and thus creating a new sample x′

i = xi + ϵ) implicitly increases the ℓ2 regularization pa-
rameter from C to C + σ2. Semenova et al. [2023] have also shown that using additive attribute
noise increases the Rashomon ratio for ridge regression. However, this work does not address other
continuous losses for classification. In this section, we prove that for exponential loss and binary
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classification, additive attribute noise similarly functions as implicit ℓ2 regularization on the loga-
rithm of the loss for an otherwise unregularized setting. We give an explicit characterization of the
regularization parameter based on the variance of the noise added.

Theorem 9 (Exponential loss under additive attribute noise). Consider the dataset S and a hypoth-
esis space F of linear models, F = {f = ωTx, ω ∈ Rp}. For a given model f ∈ F , consider the
exponential loss LS(f) =

1
n

∑n
i=1 e

−yiω
T xi . Let ϵi, such that ϵi ∼ N (0̄, σ2I) (σ > 0, I is identity

matrix), be i.i.d. noise vectors added to every sample: x′
i = xi + ϵi. If Eϵ LSε(σ)

(f) is the expected
exponential loss under additive Gaussian noise, then

Eϵ LSε(σ)
(f) = LS(f) · e

σ2

2 ∥ω∥2
2 ,

where for simplicity we denote Eϵ1,...,ϵn∼N (0̄,σ2I) as Eϵ.

A proof of Theorem 9 is in Appendix G. Immediately from Theorem 9, we have that

argminf∈F Eε LSσ (f) = argminf∈F

(
logLS(f) +

σ2

2
∥ω∥22

)
.

In other words, additive noise introduces ℓ2 regularization on the logarithm of the exponential loss.
Furthermore, the ℓ2 regularization parameter is explicitly given as σ2

2 . This shows that additive
attribute noise encourages linear models to become simpler when there is more noise present.

7 Experimental Results
We now present experimental results supporting the results in Section 4 for uniform label noise and
0-1 loss and Section 6 for additive attribute noise and exponential loss. We give evidence for our
finding that noise acts as an implicit regularizer and that the optimal model optimized over data with
injected noise is simpler than the optimal model without additional noise. We focus our experiments
in this section on criminal recidivism and financial datasets to emphasize the applicability of our
work to high-stakes domains with human data. Please see Appendix I for additional experiments.

7.1 Sparse Decision Trees, 0-1 Loss, Random Label Noise.
We used the GOSDT-guesses algorithm by McTavish et al. [2022] to optimize sparse decision trees
over varying amounts of label noise (between 0.0 and 0.3). In order to correctly simulate the results
in Theorem 1, the experiment estimates the size of a model optimized over the expectation over
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Figure 1: (a), (b): For the hypothesis space of sparse decision trees and 0-1 loss, the number of leaves
in optimal models for several datasets decreases with increased label noise. The solid lines depict
the observed number of leaves in an optimal model over noisy data. The dashed lines depict the
number of leaves of the optimal model over the cleaner data with regularization λ

1−2ρ (see Theorem
1). (c): For the hypothesis space of linear models and exponential loss, the sum of the squares of the
weights corresponding to the continuous features decreases as additive noise with standard deviation
σ is applied to the dataset.
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Figure 2: Experimental results for Section 4 on recidivism datasets. In accuracy plots (left), blue
is accuracy on cleaner test data, orange is accuracy on cleaner train data, and green is accuracy on
noisy train data. In complexity plots, blue corresponds to leaves in optimal model over noisy data,
orange to optimal model over cleaner data with higher regularization as in Figure 1. Green is the
leaf upper bound from Corollary 10. Lambda is regularization parameter optimized via 5-fold CV.

noise draws of the loss (i.e., R(f∗
Sρ
), where f∗

Sρ
∈ argminf∈F ESρ L̂Sρ + λR(f)). This is different

from taking the expectation of the size of models optimized over data with only a single noise draw
(ESρ

R(f∗), where f∗ ∈ argminf∈F L̂Sρ
(f) + λR(f)). To approximate optimization over ex-

pected noise draws, we concatenated 250 noise draws into a single dataset upon which to optimize a
decision tree. The full experimental design is presented in Appendix I. The results of this experiment
are shown in Figure 1(a)-(b). These results demonstrate simplification in accordance with Theorem
2 and the alignment between models trained on cleaner data with varying regularization and models
trained on noisy data with consistent regularization (Theorem 1).

An interesting observation from these experiments is that as we increase the label noise parameter,
the generalization gap between the accuracy on the cleaner train and test set tends to shrink and the
test accuracy remains very stable (see Figures 2, 6, 7). This is what we would expect given Theorems
1 and 2, since optimizing over the expectation of noise increases the effective regularization in the
cleaner problem.

7.2 Linear Models, Exponential Loss, Additive Attribute Noise
To show that additive attribute noise has a regularizing effect on linear models under the exponential
loss, we computed the optimal models on datasets under different noise levels and compared their
complexities, measured by the norm of the weights. For each dataset, we sampled 100 independent
noise draws for 10 different noise levels with σ ∈ [0.05, 0.5]. For each noise draw, we computed
the optimal linear model on the noisy dataset using gradient descent. In Figure 1(c), we observe
that, as the noise level σ increases, the complexity of the optimal model rapidly decreases. This
corroborates the regularizing effect of noise demonstrated in Theorem 9.

7.3 Empirical Evidence that Rashomon Sets Over Noisier Data Contain Simpler Models
In Figure 3, we show empirical evidence that the complexity of the Rashomon set of sparse decision
trees tends to decrease with the injection of label noise. Moreover, the more noise added to the
dataset, the simpler the models in the Rashomon set become. We provide detailed descriptions of
the experiments in this section in Appendix I.

8 Limitations and Future Work
One limitation of our work is that the theoretical results in Section 4 apply to models optimized
over the expected loss over the distribution of possible noise draws with label-flip probability ρ. For
larger sample sizes, we expect optimizing over the expectation of noise draws to behave similarly to
optimizing over a single noise draw. However, for smaller sample sizes, the optimal model optimized
over a single noise draw may deviate from the optimal model over the expectation of noise draws.
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Figure 3: A visual demonstration of the simplifying effect of noise on Rashomon sets. This shows
a bar chart of the discrete probability distribution of the number of leaves among models in the
Rashomon set. Results are shown aggregated in (a) for 23 real-world and synthetic datasets, and in
(b), just real-world data, for 9 recidivism and finance datasets.

One possible future direction is to bound the expected complexity of a model optimized over a single
noise draw in terms of sample size and the probability of flipping labels.

A natural extension of our work is to adapt our results to other losses, like hinge loss and logistic loss.
These results are not immediate, because in loss functions more complicated than 0-1 loss, the error
considers distances to the decision boundary. Focusing on specific hypothesis spaces rather than on
particular choices of loss function (e.g., rule lists optimized on logistic loss, or GAMs optimized on
exponential loss) can also help to produce more specific and possibly tighter results similar to those
as in Section 6.

We can also try to generalize to other noise models (i.e. random flipping noise in the inputs, or
constrained non-uniform noise in the outputs). Dropping the assumption of uniform random label
noise needs other techniques as opposed to those that are used in Theorem 1, as the optimization
problems are no longer equivalent. If there is non-uniform noise at least ρ, it can be decomposed
into the non-uniform distribution plus ρ uniform label noise, and our results in Theorem 1 can be
applied. However, such decomposition is not always realistic as, for example, it is very likely that
some features are not noisy.

9 Practical Guidance for High-Stakes Decision Domains

The fallacy of the premise of the movie Minority Report is that it is possible to predict with perfect
accuracy whether someone will commit a crime in the future. In reality, predictions of recidivism
are made ∼2 or 3 years in advance, giving time for a multitude of random interactions in the world
to take place. This unpredictability leads, as we showed in this paper, to inherent regularization,
and provably simpler models than if noise were not present. Rather than assuming that increased
algorithmic sophistication in the future can potentially lead to improved accuracy using the same
types of data, it is more realistic to assume that the distributions of data in the future are generally
similar to those in the present, and that our best ML methods already reach an approximate per-
formance maximum for these types of data. This latter view clears the way for policy-makers to
regulate the use of simpler models. Already the use of black box models has led to individuals being
denied freedom based on typographical errors [Wexler, 2017a,b, Rudin et al., 2020] and patients
being deceived about the value of expensive medical treatment options [Afnan et al., 2021].

Our findings underscore the critical importance of using simpler models for datasets affected by
noise, thereby prioritizing model interpretability and transparency. We believe that this understand-
ing can empower policymakers to advocate for the use of simple, interpretable models, ensuring the
trustworthy, accessible, and equitable deployment of AI systems in high-stakes decision domains.
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A Proof of Theorem 1
Theorem 1 (Regularized 0-1 Loss under Random Label Noise). Consider true data distribution D,
and uniform label noise with noise parameter ρ ∈ (0, 1/2). Let Dρ denote the noisy version of D.
Consider 0-1 loss L and let R : F → R be a regularization function with λ ∈ R+ a regularization
parameter. Formally,

argmin
f∈F

LDρ
(f) + λR(f) = argmin

f∈F
LD(f) +

λ

1− 2ρ
R(f).

Similarly, given a dataset S sampled according to D, and Sρ the noisy version of S,
argminf∈F ESρ

L̂Sρ
(f) + λR(f) = argminf∈F L̂S(f) +

λ
1−2ρR(f).

Proof. Recall that the true risk for 0-1 loss LD(f) = Ez=(x,y)∼D[l(f, z)] = E(x,y)∼D[1[f(x) ̸=y]].
Semenova et al. [2023] show that LDρ(f) = (1− 2ρ)LD(f)+ ρ. This is independent of regulariza-
tion, so we have

LDρ
(f) + λR(f) = (1− 2ρ)LD(f) + λR(f) + ρ.

Since the minimization procedure is invariant to shifts and scales by constants, we conclude

argmin
f∈F

LDρ
(f) + λR(f) = argmin

f∈F
(1− 2ρ)LD(f) + λR(f) + ρ

= argmin
f∈F

(1− 2ρ)LD(f) + λR(f)

= argmin
f∈F

LD(f) +
λ

1− 2ρ
R(f).

An identical argument applies to the finite data case, where we use the remark in the proof of
Theorem 2 of [Semenova et al., 2023].

B Proof of Theorem 2
Theorem 2 (Optimal model simplifies under random label noise). Under the same assumptions as
in Theorem 1, let f∗

D be the optimal model in F over distribution D and let f∗
Dρ

be the optimal model
in F over Dρ. Then either R(f∗

Dρ
) = R(f∗

D) and LD(f
∗
Dρ

) = LD(f
∗
D) (same complexity model) or

R(f∗
Dρ

) < R(f∗
D) and LD(f

∗
Dρ

) > LD(f
∗
D) (strictly simpler model).

An identical result applies for finite data when f∗
Sρ

is optimized over the loss function ESρ
L̂Sρ

(f).

Proof. Consider optimal models

f∗
D ∈ argmin

f∈F
LD(f) + λR(f)

f∗
Dρ

∈ argmin
f∈F

LD(f) +
λ

1− 2ρ
R(f). (by Theorem 1)

Then, by definition,

LD(f
∗
D) + λR(f∗

D) ≤ LD(f
∗
Dρ

) + λR(f∗
Dρ

)

and

LD(f
∗
Dρ

) +
λ

1− 2ρ
R(f∗

Dρ
) ≤ LD(f

∗
D) +

λ

1− 2ρ
R(f∗

D).

This gives

λ
(
R(f∗

D)−R(f∗
Dρ

)
)
≤ LD(f

∗
Dρ

)− LD(f
∗
D) ≤

λ

1− 2ρ

(
R(f∗

D)−R(f∗
Dρ

)
)
. (3)
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Assume for contradiction that R(f∗
Dρ

) > R(f∗
D) ⇐⇒ R(f∗

D)−R(f∗
Dρ

) < 0. Then

LD(f
∗
Dρ

)− LD(f
∗
D) ≥ λ

(
R(f∗

D)−R(f∗
Dρ

)
)

⇐⇒
LD(f

∗
Dρ

)− LD(f
∗
D)

R(f∗
D)−R(f∗

Dρ
)

≤ λ

and

LD(f
∗
Dρ

)− LD(f
∗
D) ≤

λ

1− 2ρ

(
R(f∗

D)−R(f∗
Dρ

)
)

⇐⇒
LD(f

∗
Dρ

)− LD(f
∗
D)

R(f∗
D)−R(f∗

Dρ
)

≥ λ

1− 2ρ
.

Since λ
1−2ρ > λ for 0 < ρ < 1

2 , this is a contradiction. Thus, R(f∗
Dρ

) ≤ R(f∗
D) which immediately

gives LD(f
∗
Dρ

) ≥ LD(f
∗
D). The two cases in the lemma follow from (3). An identical argument

holds for the finite data case.

We now highlight an intermediate step in the proof of Theorem 2, which gives us an upper bound
on the complexity of an optimal model over a noisy data distribution.

Corollary 10. Under the same assumptions as in Theorem 2,

R(f∗
Dρ

) ≤ R(f∗
D)−

1− 2ρ

λ

(
LD(f

∗
Dρ

)− LD(f
∗
D)
)
.

This follows immediately from (3). As we expect, the same result holds for finite sample S and Sρ

sampled from distributions D and Dρ.

Note that, for a fixed amount of label noise, this bound depends only on the complexity of the
optimal model over cleaner data, and the difference in loss over the cleaner distribution between
optimal models optimized over noisy and cleaner data. The amount of implicit simplification due
to noise depends on the degradation of generalization performance caused by noise. We plot this
bound in Figures 2, 6, and 7, noting that the bound loosens as ρ increases and the generalization
difference remains constant.

C Proof of Theorem 3
Theorem 3 (Models that enter the noisier true Rashomon set are simple). Consider true data dis-
tribution D, 0-1 loss function, regularization R(·) and regularization parameter λ. Consider also
uniform label noise, where each label is flipped independently with probability ρ ∈ (0, 1

2 ). Let Dρ

be the noisier data distribution. If ObjDρ
(f∗

D) > ObjDρ
(f∗

Dρ
) + 2ρθ, i.e., the optimal model over

the cleaner data distribution D is not in the Rashomon set of the noisy distribution with Rashomon
parameter 2ρθ, then every model from F in in the noisier true Rashomon set RsetDρ

(F , θ) is simpler
than f∗

D:
∀f̃ ∈ F in : R(f̃) < R(f∗

D).

More specifically, R(f̃) < R(f∗
D)− 1

λ

(
∆
2ρ − θ

)
, where ∆ = ObjDρ

(f∗
D)−ObjDρ

(f∗
Dρ

). Note that
∆
2ρ − θ > 0. An identical result applies for finite data when models are optimized over ESρ L̂Sρ(f).

Proof. Consider f̃ ∈ F in. Then we have that f̃ ̸∈ RsetD (F , θ), f̃ ∈ RsetDρ
(F , θ), and therefore:

LD(f̃) + λR(f̃) > LD(f
∗
D) + λR(f∗

D) + θ, (4)

LDρ
(f̃) + λR(f̃) ≤ LDρ

(f∗
Dρ

) + λR(f∗
Dρ

) + θ. (5)

Additionally, from Semenova et al. [2023], we have:

LDρ
(f̃) = (1− 2ρ)LD(f̃) + ρ. (6)
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Thus we have:

ObjDρ
(f∗

Dρ
) + θ =LDρ

(f∗
Dρ

) + λR(f∗
Dρ

) + θ

(5)
≥LDρ

(f̃) + λR(f̃)

(6)
=(1− 2ρ)LD(f̃) + ρ+ λR(f̃)

(4)
>(1− 2ρ)

(
LD(f

∗
D) + λR(f∗

D) + θ − λR(f̃)
)
+ ρ+ λR(f̃)

=(1− 2ρ)ObjD(f
∗
D) + (1− 2ρ)θ + ρ+ 2ρλR(f̃).

Therefore, we get that

R(f̃) <
1

2ρλ

(
2ρθ − ρ+

(
ObjDρ

(f∗
Dρ

)− (1− 2ρ)ObjD(f
∗
D)
))

. (7)

Let’s focus on the difference between two objectives:

ObjDρ(f
∗
Dρ

)− (1− 2ρ)ObjD(f
∗
D) = ObjDρ(f

∗
Dρ

)− (1− 2ρ)LD(f
∗
D)− (1− 2ρ)λR(f∗

D)

= ObjDρ
(f∗

Dρ
)− (1− 2ρ)LD(f

∗
D)− ρ− (1− 2ρ)λR(f∗

D) + ρ

(6)
= ObjDρ

(f∗
Dρ

)− LDρ
(f∗

D)− λR(f∗
D) + 2ρλR(f∗

D) + ρ

= ObjDρ
(f∗

Dρ
)−ObjDρ

(f∗
D) + 2ρλR(f∗

D) + ρ

= 2ρλR(f∗
D) + ρ−∆,

where ∆ = ObjDρ
(f∗

D)−ObjDρ
(f∗

Dρ
). Since by assumption f∗

D ̸∈ RsetDρ
(F , 2ρθ), then ∆ > 2ρθ

and ∆
2ρ − θ > 0. Therefore in (7) we have:

R(f̃) <
1

2ρλ

(
2ρθ − ρ+

(
ObjDρ

(f∗
Dρ

)− (1− 2ρ)ObjD(f
∗
D)
))

=
1

2ρλ
(2ρθ − ρ+ 2ρλR(f∗

D) + ρ−∆)

= R(f∗
D)−

1

λ

(
∆

2ρ
− θ

)
< R(f∗

D).

An identical proof applies to the finite dataset S, where the model f is in the noisier ex-
pected Rashomon set if ESρ L̂Sρ

(f) + R(f) ≤ ESρ
L̂Sρ

(f∗
ESρ

) + R(f∗
ESρ

), where f∗
ESρ

∈
argminf∈F ESρ L̂Sρ(f) +R(f).

Models in Fout are complex. As the theorem above states, models in Fin in the noisy Rashomon
set tend to be simpler. Now, we will show that the models in Fout in the cleaner Rashomon set
are complex models that potentially will overfit the noisier data. We illustrated this empirically in
Section 7.3 and now prove it more formally in the next theorem.

Theorem 11 (Models that exit the cleaner true Rashomon set are complex). Consider true data
distribution D, 0-1 loss function, regularization R(·) and regularization parameter λ. Consider
also uniform label noise, where each label is flipped independently with probability ρ < 1

2 . Let Dρ

be the noisier data distribution. If ObjD(f∗
Dρ

) > ObjD(f∗
D) + 2ρθ, i.e., the optimal model over

noisy data distribution Dρ is not in the cleaner true Rashomon set with Rashomon parameter 2ρθ
(note that this is a symmetric assumption to the assumption in Theorem 3), then every model from
Fout in the cleaner true Rashomon set RsetD (F , θ) is more complex than f∗

Dρ
:

∀f ∈ Fout : R(f) > R(f∗
Dρ

) + 2(1− ρ)
θ

λ
.

Proof. Let f ∈ Fout. By the definition of Fout, we have

ObjDρ
(f) > ObjDρ

(f∗
Dρ

) + θ, (8)
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and
ObjD(f) ≤ ObjD(f

∗
D) + θ. (9)

From (8), (6) and by the definition of the objective, we have that,

(1− 2ρ)LD(f) + λR(f) > (1− 2ρ)LD(f
∗
Dρ

) + λR(f∗
Dρ

) + θ,

and
(1− 2ρ)ObjD(f) + 2ρλR(f) > (1− 2ρ)ObjD(f

∗
Dρ

) + 2ρλR(f∗
Dρ

) + θ.

We use Equation (9) to substitute in ObjD(f
∗
D) + θ for ObjD(f) and obtain

(1− 2ρ)(ObjD(f
∗
D) + θ) + 2ρλR(f) > (1− 2ρ)ObjD(f

∗
Dρ

) + 2ρλR(f∗
Dρ

) + θ.

We can rearrange this inequality to solve for the regularization R(f) of the models that exit the
cleaner true Rashomon set:

R(f) > R(f∗
Dρ

) +
θ

λ
+

1− 2ρ

2ρλ
(ObjD(f

∗
Dρ

)−ObjD(f
∗
D)).

By assumption, ObjD(f
∗
Dρ

) > ObjD(f
∗
D) + 2ρθ and, therefore we get that

R(f) > R(f∗
Dρ

) +
θ

λ
+

1− 2ρ

2ρλ
2ρθ = R(f∗

Dρ
) +

2(1− ρ)θ

λ
.

D Proof of Theorem 5
For a given continuous feature g with values g1 ≤ . . . ≤ gT and a set of binary labels Y for each
sample, the AUC of g is defined as the area under the ROC curve of g, where the ROC curve is
plotted against the false positive rate (FPR) and true positive rate (TPR) of a decision stump on g.
We can choose instead to plot the absolute number of negatively and positively classified camples,
forming the unnormalized ROC curve of g. The resulting unnormalized AUC of g is defined as the
area under the unnormalized ROC curve of g, which can be written as

AUCS(g) = n+n−AUCS(g),

where n+ and n− are the number of positively and negatively labelled samples respectively. For
more explicit notation in this section, we will use AUC(g, Y ) to denote unnormalized AUC, where
AUC(g, Y ) = AUCS(g). If g has T distinct values, then the unnormalized AUC has a closed-form:

AUC(g, Y ) =

T∑
i=1

T∑
j=i+1

1yi=1∧yj=−1. (10)

Intuitively, equation 10 counts the number of unit squares below the unnormalized ROC curve. We
now recall and prove Theorem 5.

Theorem 5. Consider a balanced dataset S = X × Y , i.e. Pr(y = 1) = Pr(y = −1). Let
g = x.,j be a continuous feature with distinct values g1 < . . . < gn. Let AUCS(g) denote the
unnormalized AUC value of g on the labels Y . Consider uniform label noise, where each label is
flipped independently with probability ρ < 1

2 . Let Sρ be a noisier dataset. Then for every feature
g ∈ G:

ESρ
[AUCSρ

(g)] = (1− 2ρ)AUCS(g) + C(ρ, n),

where C(ρ, n) = ρ
(
n
2

) (
n
2 + ρ− 1

)
is constant for a given ρ and n.
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Proof. Under the noise model, each label is flipped independently with probability ρ, where 1 − ρ
is then the probability that the label was not flipped. Using equation 10, we can write

EỸ [AUC(g, Ỹ )] = EỸ

∑
i<j

1ỹi=1∧ỹj=−1


=
∑
i<j

EỸ

[
1ỹi=1∧ỹj=−1

]
=
∑
i<j

Pr(ỹi = 1, ỹj = −1)

=
∑
i<j

[1yi=−1,yj=−1 Pr(yi ̸= ỹi, yj = ỹj)

+ 1yi=1,yj=−1 Pr(yi = ỹi, yj = ỹj)

+ 1yi=−1,yj=1 Pr(yi ̸= ỹi, yj ̸= ỹj)

+ 1yi=1,yj=1 Pr(yi = ỹi, yj ̸= ỹj)]

=
∑
i<j

[ρ(1− ρ)1yi=−1,yj=−1 + (1− ρ)21yi=1,yj=−1

+ ρ21yi=−1,yj=1 + ρ(1− ρ)1yi=1,yj=1].

Consider each of the terms separately. We have that∑
i<j

1yi=−1,yj=−1 =
∑
i<j

1yi=1,yj=1 =

(
n/2

2

)
,

since there are n
2 positive and negative samples, so there are

(
n/2
2

)
unordered pairs of each. We also

have by definition that ∑
i<j

1yi=1,yj=−1 = AUC(g, Y ),

and since there are (n2 )
2 unordered pairs of exactly one positive and one negative value, we lastly

have that ∑
i<j

1yi=−1,yj=1 =
(n
2

)2
−AUC(g, Y ).

Thus, putting it all together, we obtain the following for the unnormalized AUC:

EỸ [AUC(g, Ỹ )] = (1− ρ)2AUC(g, Y ) + ρ2
((n

2

)2
−AUC(g, Y )

)
+ 2ρ(1− ρ)

(n
2

2

)
= (1− 2ρ)AUC(g, Y ) + ρ2

(n
2

)2
+ ρ(1− ρ)

(n
2

)(n
2
− 1
)

= (1− 2ρ)AUC(g, Y ) + ρ
(n
2

)(n
2
+ ρ− 1

)
.

If the dataset is not balanced, then we can use an identical proof to show that

EỸ AUC(g, Ỹ ) = (1− 2ρ)AUC(g, Y ) + C(ρ, n+, n−),

where C(ρ, n+, n−) = −ρ(1− 2ρ)n+n− + ρ(1− ρ)
(
n++n−

2

)
.
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E Proof of Corollary 7
Corollary 7. Consider a dataset S = X × Y . Let {AUCS(gj)}pj=1 be in decreasing order and
spaced by distances at most δ, meaning that 0 ≤ AUCS(gj) − AUCS(gj+1) ≤ δ for each j =
1, . . . , p − 1. Assume that we apply uniform label noise with flip probabilities ρ1 and ρ2 to S to
obtain Sρ1 and Sρ2 , and that |GESρ1

AUCSρ1

(G, γ)| < p. If ρ2 ≥ ν(ρ1) := 1
2

(
1− γ(1−2ρ1)

γ+δ(1−2ρ1)

)
noting that ν(ρ1) > ρ1, then the size of the set of features which are good in expectation is strictly
larger with more noise,

|GESρ1
AUCSρ1

(G, γ)| < |GESρ2
AUCSρ2

(G, γ)|.

Proof. Note that the features g1, . . . gp are in decreasing order by their unnormalized AUC, since by
the corollary statement, 0 ≤ AUCS(gj)−AUCS(gj+1) ≤ δ. From Theorem 5, we know that

ESρ
AUCSρ

(g) = (1− 2ρ)AUCS(g) + C(ρ, n),

where C(ρ, n) = ρ
(
n
2

) (
n
2 + ρ− 1

)
is a constant that depends only on ρ and n. Given that (1 −

2ρ)x + C(ρ, n) is nondecreasing with respect to x ∈ R when 0 ≤ ρ < 0.5 is held constant, g1
remains the best feature under noise (i.e. has the highest unnormalized AUC value), and the feature
ranking is maintained. Thus, the set of good features is the set of features gj , where each gj satisfies
the following:

ESρ
AUCSρ

(g1)− ESρ
AUCSρ

(gj) ≤ γ.
This is equivalent to

(1− 2ρ)AUCS(g1) + C(ρ, n)− (1− 2ρ)AUCS(gj)− C(ρ, n) ≤ γ,

and
(1− 2ρ)(AUCS(g1)−AUCS(gj)) ≤ γ. (11)

For ease of notation let, aj = AUCS(g1)−AUCS(gj). Let k be the size of the set of good features
under noise level ρ1, so that |GESρ1

AUCSρ1

(G, γ)| = k. Then, from (11) and the feature ranking,
we have that:

(1− 2ρ1)a1 ≤ · · · ≤ (1− 2ρ1)ak ≤ γ < (1− 2ρ1)ak+1 ≤ · · · ≤ (1− 2ρ1)ap. (12)

To show that |GESρ2
AUCSρ2

(G, γ)| ≥ k + 1, it suffices to show that gk+1 is in the set of good
features under noise level ρ2, which is equivalent to the statement

(1− 2ρ2)ak+1 ≤ γ.

Note that by the assumption of the corollary, for each j = 1, . . . , p− 1, we have that
aj+1 − aj = AUCS(gj)−AUCS(gj+1) ≤ δ.

Then, from (11) and (12) we get
(1− 2ρ1)ak+1 = (1− 2ρ1)ak + (1− 2ρ1)(ak+1 − ak) ≤ γ + (1− 2ρ1)δ,

which means that
ak+1 ≤ γ

1− 2ρ1
+ δ.

If ρ2 ≥ ν(ρ1), then we have

(1− 2ρ2)ak+1 ≤ (1− 2ρ2)

(
γ

1− 2ρ1
+ δ

)
≤ (1− 2ν(ρ1))

(
γ

1− 2ρ1
+ δ

)
≤
(
1−

(
1− γ(1− 2ρ1)

γ + δ(1− 2ρ1)

))(
γ

1− 2ρ1
+ δ

)
=

γ(1− 2ρ1)

γ + δ(1− 2ρ1)
·
(

γ

1− 2ρ1
+ δ

)
=

γ(1− 2ρ1)

γ + δ(1− 2ρ1)
· γ + δ(1− 2ρ1)

1− 2ρ1

= γ.

(13)
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Therefore, we proved that (1 − 2ρ2)ak+1 ≤ γ, which means that |GESρ2
AUCSρ2

(G, γ)| ≥ k + 1

and consequently |GESρ1
AUCSρ1

(G, γ)| < |GESρ2
AUCSρ2

(G, γ)| as claimed.

F Proof of Theorem 8
Theorem 8 (Empirical Rashomon ratio increases when the set of good features increases). For a
dataset S = X × Y with binary feature matrix X ∈ {−1, 1}n×p, consider a hypothesis space
Fd of fully grown trees of depth d. Consider uniform random label noise with noise parame-
ter ρ. Let HsetESρ

(Fd) denote the set of grounded models, based on the set of good features
GESρ AUCSρ

(G, γ). Under the assumptions of Corollary 7 on the set of good features, the fraction
of grounded models increases with uniform random label noise. More formally, for ρ2 ≥ ν(ρ1),∣∣∣HsetESρ1

(Fd)
∣∣∣ < ∣∣∣HsetESρ2

(Fd)
∣∣∣ and HratioESρ1

(Fd) < HratioESρ2

(Fd).

Proof. As in Proposition 6 of Semenova et al. [2023], the hypothesis space of fully-grown trees of
depth d contains

| Fd | = 22
d

d∏
k=1

(p− k + 1)2
k−1

trees, where symmetric trees are not included, meaning that split = 0 is on the left and 1 is on the
right.

The trees in the set of grounded models must have at least one good feature. Moreover, the labels in
the set of grounded models are assigned to the trees based on the data, meaning that it contains

|HsetESρ
| =

d∏
k=1

(p− k + 1)2
k−1

−
d∏

k=1

(|pbadESρ
| − k + 1)2

k−1

trees, where |pbadESρ
| = p− |GESρ AUCSρ

(G, γ)|. Therefore the fraction of grounded models is:

HratioESρ
(Fp

d) =
|HsetESρ

(Fp
d)|

| Fp
d |

=

∏d
k=1(p− k + 1)2

k−1 −
∏d

k=1(|pbadESρ
| − k + 1)2

k−1

22d
∏d

k=1(p− k + 1)2k−1

=
1

22d

1−

∏d
k=1(|pbadESρ

| − k + 1)2
k−1∏d

k=1(p− k + 1)2k−1


=

1

22d

1−
d∏

k=1

(
|pbadESρ

| − k + 1

p− k + 1

)2k−1 .

For noise levels ρ1, ρ2 from Corollary 7 if ρ2 ≥ ν(ρ1), then |GESρ1
AUCSρ1

(G, γ)| <

|GESρ2
AUCSρ2

(G, γ)|, and |pbadESρ1

| > |pbadESρ2

|. Therefore,

|HsetESρ1

(Fp
d)| =

d∏
k=1

(p− k + 1)2
k−1

−
d∏

k=1

(|pbadESρ1
| − k + 1)2

k−1

<

d∏
k=1

(p− k + 1)2
k−1

−
d∏

k=1

(|pbadESρ2
| − k + 1)2

k−1

= |HsetESρ2

(Fp
d)|,

and

HratioESρ1

(Fp
d) =

1

22d

1−
d∏

k=1

(
|pbadESρ1

| − k + 1

p− k + 1

)2k−1

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<
1

22d

1−
d∏

k=1

(
|pbadESρ2

| − k + 1

p− k + 1

)2k−1
 = HratioESρ2

(Fp
d).

Thus, with noise, the size of the set and fraction of grounded models increases.

G Proof of Theorem 9
Theorem 9 (Exponential loss under additive attribute noise). Consider the dataset S and a hypoth-
esis space F of linear models, F = {f = ωTx, ω ∈ Rp}. For a given model f ∈ F , consider the
exponential loss LS(f) =

1
n

∑n
i=1 e

−yiω
T xi . Let ϵi, such that ϵi ∼ N (0̄, σ2I) (σ > 0, I is identity

matrix), be i.i.d. noise vectors added to every sample: x′
i = xi + ϵi. If Eϵ LSε(σ)

(f) is the expected
exponential loss under additive Gaussian noise, then

Eϵ LSε(σ)
(f) = LS(f) · e

σ2

2 ∥ω∥2
2 ,

where for simplicity we denote Eϵ1,...,ϵn∼N (0̄,σ2I) as Eϵ.

Proof. We can write the following:

Eε LSε(σ)
(ω) =

1

n

n∑
i=1

Eε e
−yiω

T (xi+ε)

=
1

n

n∑
i=1

e−yiω
T xi Eε[e

−yiω
T ε]

=
1

n

n∑
i=1

e−yiω
T xi Eε[e

−ωT ε]

= Eε[e
−ωT ε] · 1

n

n∑
i=1

e−yiω
T xi

= LS(ω) · Eε[e
−ωT ε]

From here, note that for any multivariate Gaussian random variable δ ∼ N (µ,Σ) and matrix A, we
have that Aδ ∼ N (Aµ,AΣAT ). Repeated usage of this identity yields

Eε[e
−ωT ε] = Eδ∼N (0̄,I)[e

−σωT δ] = Eδ∼N (0,∥ω∥2
2)
[e−σδ] = Eδ∼N (0,1)[e

−σ·∥ω∥2·δ]

We can directly compute the latter term by integrating. For any k,

Eδ∼N (0,1)[e
kδ] =

∫ ∞

−∞

1√
2π

e−
1
2x

2

· ekxdx

=

∫ ∞

−∞

1√
2π

e−
1
2 (x−k)2+ 1

2k
2

dx

= e
1
2k

2

∫ ∞

−∞

1√
2π

e−
1
2 (x−k)2dx

= e
1
2k

2

If we set k = −σ · ∥ω∥2, then we obtain the claim.

Note that there is an immediate generalization of Theorem 9 to when the standard deviation of
noise applied is unequal across each feature. If feature j receives independent Gaussian noise with
standard deviation σj , then

Eε LSε(σ)
(ω) = LS(f) · exp

1

2

p∑
j=1

σ2
jω

2
j


We can observe that a higher degree of noise of a feature corresponds to a greater degree of reg-
ularization of the corresponding weight.In particular, if a given feature is not subject to additive
Gaussian noise, then the weight corresponding to that feature is not regularized at all.
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Data Name # samples #features Processing notes
Amsterdam (Recidivism) 20000 9

Broward County (Recidivism) 1954 16
NIJ Recidivism Challenge 16264 15 Fill missing prison offenses with ‘Unknown’

Australian Credit 640 15 Outliers in columns ‘A13’ and ‘A14’ removed
German Credit 1000 7

GiveMeSomeCredit 18040 7 Downsample to balance classes
Polish Companies 1597 26 Downsample to balance classes

Iranian Churn 3150 8
Telco Churn 7032 12

Occupancy Detection 20560 26 Drop ‘date’ column entirely
Bank-full 9042 7 Downsample to balance classes

Banknote Authentication 1372 4
COMPAS (Recidivism) 6907 13 Same as [Xin et al., 2022, Semenova et al., 2023]

FICO (Credit) 10459 18 Same as [Xin et al., 2022, Semenova et al., 2023]
monks1 169 12 Same as [Xin et al., 2022, Semenova et al., 2023]
monks2 124 12 Same as [Xin et al., 2022, Semenova et al., 2023]
monks3 122 12 Same as [Xin et al., 2022, Semenova et al., 2023]

Breast Cancer Wisconsin 699 11 Same as [Xin et al., 2022, Semenova et al., 2023]
Car Evaluation 1728 16 Same as [Xin et al., 2022, Semenova et al., 2023]

bar 1913 16 Same as [Xin et al., 2022, Semenova et al., 2023]
bar7 1913 15 Same as [Xin et al., 2022, Semenova et al., 2023]

Carryout Takeaway 2280 16 Same as [Xin et al., 2022, Semenova et al., 2023]
Coffee House 3816 16 Same as [Xin et al., 2022, Semenova et al., 2023]
Restaurant 20 2653 16 Same as [Xin et al., 2022, Semenova et al., 2023]

Table 2: Summary count statistics of all datasets after preprocessing

H Datasets
In Table 2, we provide the description of the datasets used in this paper and pre-processing steps.
All categorical variables were one-hot encoded, and all continuous data was binned into a one-hot
binary encoding using thresholds determined by the GOSDT-guesses algorithm [McTavish et al.,
2022]. All rows with missing values were removed from the datasets unless otherwise indicated in
the processing notes. The GOSDT-guesses algorithm was also used to perform feature selection.
The dataset statistics presented in Table 2 reflect the data used in the experiments after all pre-
processing, including feature selection. When necessary, we downsampled to balance classes to
avoid trivial optimal sparse decision trees.

I Additional Experiments
I.1 The Complexity of Models in the Expected Empirical Rashomon Set
We now present an experiment demonstrating the results of Section 4.2, where we showed that the
complexity of models in the true Rashomon set tends to decrease with the injection of label noise. In
the experimental setting, we may only observe samples from the true data distribution, and thus we
only have access to empirical Rashomon sets. To simulate the Rashomon set of models trained on
the expected distribution of datasets under label noise, 150 noise draws were independently sampled
then concatenated for every dataset to create a training set for sparse decision trees. We used a
multiplicative Rashomon parameter of 0.05 and a regularization parameter of 0.02 throughout these
experiments. Figure 3 shows how the discrete probability distribution of the number of leaves of
models in the expected empirical Rashomon set skews simpler as noise is injected into the data.
This result holds both for the aggregated number of leaves in all of our datasets (a), in recidivism
and credit default datasets (b), and in individual datasets, some of which are displayed in Figure 5

I.2 Model Simplification Under Expected Label Noise
0-1 Loss and Sparse Decision Trees We now discuss the set-up of the experiment conducted to
review Theorems 1 and 2. This experiment was conducted with sparse optimal decision trees trained
on a subset of the complete feature set, with continuous features binarized via the binning procedure
of the GOSDT-guesses algorithm [McTavish et al., 2022]. Throughout the experiment, we allowed
a maximum depth of 5, which we did not find to be a limiting factor. Each dataset is split into a
training set and a test set, where the training set consists of roughly 80% of the data. Before injecting
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Data Name License Citation
Amsterdam (Recidivism) DANS Tollenaar and Heijden [2013]

Broward County (Recidivism) Publicly Available Wang et al. [2023]
NIJ Recidivism Challenge Publicly Available NIJ [2011]

Australian Credit CC BY 4.0 Quinlan [2006]
German Credit CC BY 4.0 Hofmann [1994]

GiveMeSomeCredit Kaggle Competition Rules Credit Fusion [2011]
Polish Companies CC BY 4.0 Tomczak [2016]

Iranian Churn CC BY 4.0 mis [2020]
Telco Churn Publicly Available Hao [2024]

Occupancy Detection CC BY 4.0 Candanedo [2016]
Bank-full CC BY 4.0 Moros et al. [2012]

Banknote Authentication CC BY 4.0 Lohweg [2013]
COMPAS (Recidivism) Publicly Available Mattu et al. [2016]

FICO (Credit) FICO FICO [2018]
monks1 CC BY 4.0 Wnek [1992]
monks2 CC BY 4.0 Wnek [1992]
monks3 CC BY 4.0 Wnek [1992]

Breast Cancer Wisconsin CC BY 4.0 Wolberg [1992]
Car Evaluation CC BY 4.0 Bohanec [1997]

bar CC BY 4.0 Wang et al. [2020]
bar7 CC BY 4.0 Wang et al. [2020]

Carryout Takeaway CC BY 4.0 Wang et al. [2020]
Coffee House CC BY 4.0 Wang et al. [2020]
Restaurant 20 CC BY 4.0 Wang et al. [2020]

Table 3: Licensing and Data Source Information for all Datasets

any noise, the optimal value λ of the regularization parameter for the GOSDT algorithm was chosen
using 5-fold cross validation on the training set. Then, for 51 parameters ρ for label noise linearly
spaced between 0 and 0.3, inclusive, we run the following procedure:

1. Sample 250 i.i.d. draws of random label noise with parameter ρ.

2. Stack all of these draws of random label noise into a single dataset.

3. Find the optimal sparse decision tree on this new, concatenated dataset.

4. Report the accuracy of the tree on its noisy training set (green), on the original (cleaner)
training set (orange), and on the held out test set (blue).

5. Report the number of leaves (blue) of the optimal model trained on the noisy concatenated
dataset.

6. Separately find the optimal sparse decision tree over the original training set with regular-
ization parameter λ/(1− 2ρ), and report the number of leaves in this model (orange).

7. Compute the upper bound from Corollary 10 (green) based on the loss difference between
the noisy optimal model and the baseline optimal model on the original data (difference in
orange accuracy line from its initial value).

Complete results of these experiments for all datasets are shown in Figure 2, 6, and 7.

Exponential Loss and Linear Models For the experiment corresponding to Theorem 9, we use a
simpler setup to demonstrate that additive noise has a regularizing effect. We seek to optimize the
exponential loss of a given binary classification dataset over the set of linear models. To do this, we
directly use gradient descent with the exponential loss. We optimize for 1000 epochs with an initial
learning rate of 0.1 with the ADAM optimizer [Kingma and Ba, 2015]. We furthermore decrease
the learning rate by a factor of 0.3 if the exponential loss plateaus for over 50 epochs. Using this
optimization procedure, our experiment is as follows:

1. Sample 100 i.i.d. draws of additive Gaussian noise with standard deviation σ on all contin-
uous features.

2. For each noisy draw, find the optimal linear model using the gradient descent procedure
described above.
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3. Report the sum of the squares of the weights of the optimal model corresponding to con-
tinuous noisy features.

I.3 Empirical Evidence that the Set of Grounded Models Tend to Contain the Rashomon Set
Trees in the Rashomon set tend to rely on features with good signals; therefore, the set of grounded
models tends to overlap significantly with the Rashomon set. We demonstrate this empirically based
on 19 classification datasets in Table 4. To compute the set of good features, we used the AUC
as a feature quality metric and set γ to 0.05. To compute the Rashomon set, we considered the
hypothesis space of sparse decision trees of depth 4 with a regularization parameter of 0.01. We
used TreeFARMS and set the Rashomon parameter to 5%. For every tree in the Rashomon set,
we verified whether it relies on at least one feature from the set of good features. The results are
reported in the fourth column of Table 4. At least 95% of trees in every Rashomon set contains at
least one feature from the set of good features.

Data name # of features Size of the set of
good features

Percentage of trees in the Rashomon
set, that rely on at least one feature
from the set of good features

Carryout Takeaway 15 7 99.87% (18344/18368)
Amsterdam 8 8 100% (1153/1153)
Coffee House 15 8 100% (3483/3483)
Australian Credit 14 1 100% (6296/6296)
COMPAS 12 2 100% (19859/19859)
NIJ Recidivism 14 4 99.98% (112065/112083)
Bank-full 6 3 99.90% (1003/1004)
FICO 17 2 100% (125809/125809)
Occupancy Detection 25 13 99.99% (205762/205791)
bar7 14 2 100% (3939/3939)
German Credit 6 2 95.21% (1807/1898)
Polish Companies 25 10 99.55% (2107937/2117559)
bar 15 6 100% (13950/13950)
GiveMeSomeCredit 6 4 99.68% (1247/1251)
Restaurant 20 15 3 99.81% (112971/113189)
BCW-bin 10 3 97.21 % (22552/23200)
Telco Churn 11 5 95.82% (11830/12346)
Broward 15 14 100% (416118/416119)
Iranian Churn 7 4 95.16% (531/558)
Table 4: The set of grounded models is likely to contain the Rashomon set for various datasets.

I.4 Noise Distorts the Signal in Features and Increases the Size of the Set of Good Features
We now present an empirical demonstration of the effect of label noise on relative feature quality,
which we measure as a feature’s AUC with the labels (see Section 5.1). The uniformity assumption
in our results in that section was designed to avoid situations where one feature is clearly more
predictive than all of the others, which negates the effect of small amounts of label noise on the
set of good features. Therefore, we designed our experiments to align with the assumptions in our
theoretical results by intentionally removing features that were clear outliers in predictive quality.
We are left with a somewhat uniform distribution of cleaner-data AUC values in Figure 4. With label
noise, the distribution skews left as predicted – this indicates that the high-quality features degrade
towards 0.5 AUC faster than low-quality features, as predicted in Theorem 5.

I.5 Computation Resources
We performed experiments on Duke University’s Computer Science Department cluster. We re-
quested 200GB of shared total memory, and one compute core per dataset (23 datasets) so that we
could run the experiments for each dataset in parallel. It took up to 10 hours to compute the optimal
models for all different noise levels and draws (Figures 1a-b, ,2, 6, 7), and 2 hours to compute the
simplicity of models in the Rashomon set (Figures 3, 5). For the experiments corresponding to Fig-
ure 1c, it took up to 3 hours per dataset to compute the optimal models for all different noise levels
and draws.
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Figure 4: Feature AUC distribution before (left; blue) and after (right; orange) injecting 15% label
noise, aggregated across 9 criminal recidivism and financial datasets with feature quality parameter
γ = 0.05 (total of 109 features). All features degrade towards 0.5 AUC when label noise is intro-
duced, and better features tend to degrade faster. This increases the size of the set of features within
γ AUC of the best feature (green shaded regions) from 15 features with original (cleaner) labels to
27 features with noisy labels, which aligns with our prediction in Corollary 7.
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Figure 5: A selection of individual datasets from the findings in Figure 3. (a) is a recidivism dataset
collected from the city of Amsterdam. (b) is a recidivism dataset from the NIJ’s Recidivism Chal-
lenge. (c) is a credit default dataset from a Kaggle competition. (d) is a synthetic dataset. Datasets
were chosen to represent an array of domains, including real-world and synthetic data.
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Figure 6: Experimental results for Section 4 on financial datasets. See experimental design in Ap-
pendix I.2 for a description of each line.
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Figure 7: Experimental results for Section 4 on miscellaneous datasets. See experimental design in
Appendix I.2 for a description of each line.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed throughout the work, and we provide limitation
paragraph in Section 9.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Appendices A-G give proofs for all theorems, with detailed assumptions in
the statements of theorems.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental designs are detailed in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code and data may be found in the supplemental materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental designs are detailed in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For experiments performed over multiple trials, error bars are described in
the experimental design. Many of the experiments in this paper are performed by fitting a
model on the concatenated version of many independent noise draws - performing this op-
eration many times to measure the error is prohibitively expensive. The error is sufficiently
mitigated by sampling a very large number of noise draws.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss our compute time and resources in a separate subsection in Ap-
pendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 9 details the practical implications of our work for policy decisions.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use open access datasets and cite the sources of all the datasets we used
in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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