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Abstract

We study the problem of training certifiably robust models against adversarial
examples. Certifiable training minimizes an upper bound on the worst-case loss
over the allowed perturbation, and thus the tightness of the upper bound is an
important factor in building certifiably robust models. However, many studies have
shown that Interval Bound Propagation (IBP) training uses much looser bounds
but outperforms other models that use tighter bounds. We identify another key
factor that influences the performance of certifiable training: smoothness of the
loss landscape. We find significant differences in the loss landscapes across many
linear relaxation-based methods, and that the current state-of-the-arts method often
has a landscape with favorable optimization properties. Moreover, to test the claim,
we design a new certifiable training method with the desired properties. With the
tightness and the smoothness, the proposed method achieves a decent performance
under a wide range of perturbations, while others with only one of the two factors
can perform well only for a specific range of perturbations. Our code is available
at https://github.com/sungyoon-lee/LossLandscapeMatters.

1 Introduction

Despite the success of deep learning in many applications, the existence of adversarial example,
an imperceptibly modified input that is designed to fool the neural network [34, 4], hinders the
application of deep learning to safety-critical domains. There has been increasing interest in building
a model that is robust to adversarial attacks [14, 26, 23, 47, 43, 16, 41]. However, most defense
methods evaluate their robustness with adversarial accuracy against predefined attacks. Thus, these
defenses can be broken by new attacks [1, 6, 37, 8, 9].

To this end, many training methods have been proposed to build a certifiably robust model that can be
guaranteed to be robust to adversarial perturbations [17, 28, 39, 11, 24, 15, 46, 2, 19]. They develop
an upper bound on the worst-case loss over valid adversarial perturbations and minimize it to train
a certifiably robust model. These certifiable training methods can be mainly categorized into two
types: linear relaxation-based methods and bound propagation methods. Linear relaxation-based
methods use relatively tighter bounds, but are slow, hard to scale to large models, and memory-
inefficient [39, 40, 11]. On the other hand, bound propagation methods, represented by Interval
Bound Propagation (IBP), are fast and scalable due to the use of simple but much looser bounds
[24, 15]. One would expect that training with tighter bounds would lead to better performance, but
IBP outperforms linear relaxation-based methods, especially when the perturbation is large, despite
using much looser bounds.
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These observations on the performance of certifiable training methods raise the following questions:

Why does certifiable training with tighter bounds not result in a better performance?
What other factors may influence the performance of certifiable training?

In this paper, we provide empirical and theoretical analysis to answer these questions. First, we
demonstrate that IBP [15] has a more favorable (smooth) loss landscape than other linear relaxation-
based methods, and thus it often leads to better performance even with much looser bounds. To
account for this difference, we present a unified view of IBP and linear relaxation-based methods and
find that the relaxed gradient approximation (which will be defined in Definition 1) of each method
plays a crucial role in its optimization behavior. Based on the analysis of the loss landscape and
the optimization behavior, we propose a new certifiable training method that has a favorable loss
landscape with tighter bounds. As a result, the proposed method can achieve a decent performance
under a wide range of perturbations. We summarize the contributions of this study as follows:

• We provide empirical and theoretical analysis of the loss landscape of certifiable training
methods and find that smoothness of the loss landscape is important for building certifiably
robust models, in addition to the tightness of the upper bound.

• We find that the relaxed gradient approximation of a certifiable training method plays a
major role in shaping the loss landscape, determining its optimization behavior.

• To verify our claims, we propose a certifiable training method with tighter bounds and a
favorable loss landscape. With the two key factors, the proposed method can achieve a
decent performance under a wide range of perturbations, while others with only one of the
two can perform well only for a specific range of the adversarial perturbations.

2 Related Work

Earlier studies on training certifiably robust models were limited to 2-layered networks [17, 27].
To scale to larger networks, a line of work has proposed the use of linear relaxation of nonlinear
activation to formulate a robust optimization. Then, a dual problem is considered and a dual feasible
solution is used to simplify the computation further. By doing so, Wong and Kolter [39] built a method
that can scale to a 4-layered network, and later, Wong et al. [40] used Cauchy random projections
to scale to much larger networks. However, they are still slow and memory-inefficient. Dvijotham
et al. [11] proposed a method called predictor-verifier training (PVT), which uses a verifier network
to optimize the dual solution. This is similar to our proposed method but we do not require any
additional network. Similarly, a recent work called FROWN [22] used an optimizer to obtain tighter
robustness certificates, but it focuses on efficient certification, not on certifiable training. Xiao et al.
[42] proposed to add regularization technique with adversarial training for inducing ReLU stability,
but it is less effective than other certified defenses.

Mirman et al. [24] proposed the propagation of a geometric bound (called domain) through the
network to yield an outer approximation in logit space. This can be done with an efficient layerwise
computation that exploits interval arithmetic. Over the outer domain, one can compute the worst-
case loss to be minimized during training. Gowal et al. [15] used a special case of the domain
propagation called Interval Bound Propagation (IBP) using the simplest domain, the interval domain
(or interval bound). They also introduced a different objective function, heuristic scheduling on the
hyperparameters, and elision of the last layer to stabilize the training and to improve the performance.

Both approaches, linear relaxation-based methods and bound propagation methods, use an upper
bound on the worst-case loss. Bound propagation methods exploit much looser upper bounds, but
they enjoy an unexpected benefit in many cases: better robustness than linear relaxation-based
methods. Balunovic and Vechev [2] hypothesized that the complexity of the loss computation makes
the optimization more difficult, which could be a reason why IBP outperforms linear relaxation-based
methods. They proposed a new optimization procedure with the existing linear relaxation. In this
paper, we further investigate the causes of the difficulties in the optimization. Recently, Zhang et al.
[46] proposed CROWN-IBP which uses linear relaxation in a verification method called CROWN
[45] in conjunction with IBP to train a certifiably robust model.

Although beyond our focus here, there are other lines of work on certification with convex relaxation
[38, 31, 33, 32, 45, 5, 29, 22, 35, 10, 48] and probabilistic certification called randomized smoothing

2



[20, 18, 7, 44, 25]. They focus solely on the tightness of the certified bounds. However, our work
studies certifiable training from an optimization perspective.

3 Background

First, we provide a brief overview of certifiable training methods. Then, we consider IBP [15] as a
special case of linear relaxation-based methods. This unified view on certifiable training methods
helps us to comprehensively analyze the differences between the two approaches: bound propagation
and linear relaxation. We present the details of IBP in Appendix B.

3.1 Notations and Certifiable Training

We consider a c-class classification problem with a neural network f(x;θ) with the layerwise
operations z(k) = h(k)(z(k−1)) (k = 1, · · · ,K) and the input z(0) = x ∈ X . The corresponding
probability function is denoted by pf = softmax ◦ f : X → [0, 1]c with subscript f . We denote a
subnetwork with k operations as h[k] = h(k) ◦ · · · ◦ h(1). For a linear operation h(k), we useW (k)

and b(k) to denote the weight and the bias for the layer. We consider the robustness of the classifier
against the norm-bounded perturbation set B(x, ε) = {x′ ∈ X : ‖x′−x‖ ≤ ε} with the perturbation
level ε. Here, we mainly focus on the `∞-norm bounded set. To compute the margin between the
true class y for the input x and the other classes, we define a c× c matrix C(y) = I − 1e(y)

T

with
(C(y)z(K))m = z

(K)
m − z(K)

y (m = 0, · · · , c− 1). For the last linear layer, the weightsW (K) and
the bias b(K) are merged with C(y), that is,W (K) ≡ C(y)W (K) and b(K) ≡ C(y)b(K), yielding
the margin score function s(x, y; θ) = C(y)f(x; θ) = f(x; θ) − fy(x; θ)1 satisfying ps = pf .
Then we can define the worst-case margin score s∗(x, y, ε; θ) = maxx′∈B(x,ε) s(x

′, y; θ) where
max is element-wise maximization. With an upper bound s on the worst-case margin score, s ≥ s∗,
we can provide an upper bound on the worst-case loss over valid adversarial perturbations as follows:

L(s(x, y, ε;θ), y) ≥ max
x′∈B(x,ε)

L(f(x′;θ), y) (1)

for cross-entropy loss L [39]. We denote the empirical loss E(x,y)[L(s(x, y, ε;θ), y)] as Lε(θ),
Therefore, we can formulate certifiable training as a minimization of the upper bound, minθ Lε(θ),
instead of directly solving minθ E(x,y)[maxx′∈B(x,ε) L(f(x′; θ), y)] which is infeasible. Note that
adversarial training [23] uses a strong iterative gradient-based attack (PGD) to provide a lower bound
on the worst-case loss to be minimized, but it cannot provide a certifiably robust model. Whenever
possible, we will simplify the notations by omitting variables such as x, y, ε, and θ.

3.2 Linear Relaxation-based Methods

For a subnetwork h[k], given with the pre-activation upper/lower bounds, u and l, for each nonlinear
activation function h in h[k], linear relaxation-based methods [39, 40, 46] use a relaxation of the
activation function by two elementwise linear function bounds, h and h, that is, h(z) ≤ h(z) ≤ h(z)
for l ≤ z ≤ u. We denote the function bounds as h(z) = a � z + b and h(z) = a � z + b for
some a, b,a, and b, where � denotes the elementwise (Hadamard) product. Using all the function
bounds h’s and h’s for the nonlinear activations in conjunction with the linear operations in h[k], an
ith (scalar) activation h[k]i (·) ∈ R can be upper bounded by a linear function h

[k]

i (·) = gT ·+b over
B(x, ε) as in Zhang et al. [45]. This can be equivalently explained with the dual relaxation viewpoint
in Wong and Kolter [39]. Further details are provided in Appendix C. Now we are ready to upper
bound the activation h[k]i over B(x, ε).

Definition 1 (Linear Relaxation with Relaxed Gradient Approximation). For each neuron activation
h
[k]
i , a linear relaxation method computes an upper approximation of the activation over B(x, ε) by

using g ∈ Rd and b ∈ R as follows:

max
x′∈B(x,ε)

h
[k]
i (x′) ≤ max

x′∈B(x,ε)
gTx′ + b = gTx+ ε‖g‖∗ + b. (2)

We call g the relaxed gradient approximation of h[k]i over B(x, ε).
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Similarly, we can obtain the corresponding lower bound. Inductively using these upper/lower bounds
on the output of the subnetwork, we can obtain the bounds for the next subnetwork h[k+1] and then
for the whole network s. The final bound s on the whole network s can then be used in the objective
(1). The tightness of the bounds s and L(s, y) highly depend on how the linear bounds h and h are
chosen in each layer.

Unified view of IBP and linear relaxation-based methods IBP can also be considered as a linear
relaxation-based method using zero-slope (a = a = 0) linear bounds, h(z) = u+ and h(z) = l+,
where v+ = max(v,0) and v− = min(v,0). Thus, the bounds of a nonlinear activation depend
only on the pre-activation bounds u and l for the activation layer, substantially reducing the feed-
forward/backpropagation computations. CROWN-IBP [46] applies different linear relaxation schemes
to the subnetworks and the whole network. It uses the same linear bounds as IBP for the subnetworks
h[k] for k < K except for the network s = h[K] itself, and uses h(z) = u+

u+−l− � (z − l−) and
h(z) = 1[u+ + l− > 0]� z for the whole network s. Moreover, CROWN-IBP uses interpolations
between two bounds with the mixing weight β, the IBP bound and the CROWN-IBP bound, with the
following objective:

L
(
(1− β)sIBP(x, y, ε;θ) + βsCROWN-IBP(x, y, ε;θ), y

)
. (3)

CAP [39, 40] uses the linear bounds h(z) = u+

u+−l− � (z − l−) and h(z) = u+

u+−l− � z for all
subnetworks h[k] and the entire network. As CAP utilizes the linear bounds for each neuron, it
is slow and memory-inefficient. It can be shown that tighter relaxations on nonlinear activations
yield a tighter bound on the worst-case margin score s∗. To specify the linear relaxation variable
φ ≡ {a,a, b, b} used in relaxation, we use the notation s(x, y, ε;θ,φ) with φ. CROWN-IBP and
CAP generally yield a much tighter bound than IBP. These relaxation schemes are illustrated in
Appendix D.

4 What factors influence the performance of certifiable training?

One would expect that a tighter upper bound on the worst-case loss in (1) is beneficial in certifiable
training. However, several previous works have shown that this is not the case: IBP performs
better than linear relaxation-based methods in many cases while utilizing a much looser bound. We
investigate the loss landscape and the optimization behavior of IBP and other linear relaxation-based
methods, and find that the non-smoothness of the relaxed gradient approximation of linear relaxations
negatively affects their optimization. Detailed settings are presented in Appendix A.

4.1 Loss Landscape of Certifiable Training

We empirically show that CROWN-IBP [46] and CAP [39] tend to have non-smooth loss landscapes,
which hinder optimization during training. We examine the learning curves of IBP and these methods.
For a simple analysis on the relation between their optimization and the linear relaxation they used,
we avoid considering the mixture of the two logits in (3), and use β = 1 to consider the CROWN-IBP
logit only. Later, we will discuss how β-scheduling affects the optimization. Figure 1 shows the
learning curves on CIFAR-10 under εtrain = 8/255. We use εt-scheduling with the warm-up (regular
training, εt = 0) for the first 10 epochs and the ramp-up (0 ≤ εt ≤ εtrain) during epochs 10-130 where
we linearly increase the perturbation radius εt at iteration t from 0 to the target perturbation εtrain.
Thus, the training loss may increase even during learning.

In the early phase of the ramp-up period, in which the models are trained with small εt, CAP and
CROWN-IBP have lower losses than IBP as expected because they use much tighter relaxation
bounds than IBP. This is consistent with the known results, that CAP tends to outperform the others at
small perturbations, such as εtrain = 2/255 on CIFAR-10 (see Table 1 for details). However, at the end
of the training, when the perturbation reaches its maximum target value (εtrain = 8/255), the opposite
result is observed where CAP and CROWN-IBP (β = 1) perform worse than IBP.

To understand this inconsistency, we measure the variation in the loss value along the gradient
direction (zeroth-order smoothness) as in Santurkar et al. [30], which is represented as the shaded
region in Figure 1. We find that linear relaxation-based methods have large variations, while IBP
maintains a small variation throughout the entire training phase. It is known that a smooth loss
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Figure 1: Left: The learning curves for the scheduled value of εt with the loss variation along
the gradient descent direction. The vertical line indicates when the ramp-up ends. IBP starts with
a higher loss but ends with a relatively lower loss (error), demonstrating smaller loss variations. Our
method uses tight bounds like CROWN-IBP, while its landscape is as favorable as IBP, achieving the
best performance among these four methods. We also provide train loss at the beginning and test error
at the best checkpoint for the certifiable training methods in the top table. Right: Non-smoothness
measures of the loss landscape between the certifiable training methods. Lower is better. (Top)
Loss variations along the gradient descent direction, (Middle) `2-distance between two consecutive
loss gradients and (Bottom) the cosine distance between them during the ramp-up phase. Note that
they are evaluated with the scheduled value of εt.

landscape with a small loss variation induces stable and fast optimization with well-behaved gradients
[30], which will be discussed in detail in the following section. Therefore, even though CAP and
CROWN-IBP (β = 1) show better robustness in the early phase of training, the non-smooth loss
landscape in the ramp-up period hinders the optimization, yielding less robust models.

Non-smoothness measures of loss landscape Next, we further investigate the smoothness of the
loss landscape to establish a relationship between the optimization behavior and linear relaxation.
Figure 1 (Right, middle and bottom) shows the difference between two successive loss gradient
steps during training in terms of `2- and cosine distance, respectively. We observe that some linear
relaxation methods have less smooth loss landscapes with unstable gradients, especially in the early
stage of CAP and the middle stage of CROWN-IBP (β = 1). Moreover, since the gradient directions
are not well-aligned, they may not enjoy the advantages of momentum-based optimizers and be
sensitive to the learning rate. As will be discussed in the following section, we find that the loss
landscape is highly related to the relaxed gradient approximation g used in linear relaxation.

4.2 Smoothness of Relaxed Gradient Approximation

In this section, we investigate the optimization behavior further from a theoretical perspective to
answer the question: "What makes some loss landscapes more favorable than others?" We find that
the relaxed gradient approximation of a linear relaxation affects the smoothness of the landscape.
Before that, in the following theorem, we first look at the relation between the optimization and the
smoothness of the loss landscape in terms of the Hessian of the loss function with respect to weight
parameters. We defer the proof to Appendix F.
Theorem 1. With gradient descent using a step size within an interval It during the ramp-up period
(0 ≤ εt ≤ ε), the loss Lε for the target perturbation ε is reduced with

Lε(θt+1) ≤Lε(θt)
(
1− µ

2
cos2(φt)‖Hε

tut‖−1
)

(4)

for ut = ∇θLεt (θt)
‖∇θLεt (θt)‖ where 0 < µ ≤ ‖∇θLε‖2

2Lε , cos(φt) = ∇θLεT∇θLεt
‖∇θLε‖‖∇θLεt‖ and Hε

t satisfies
Lε(θt+1) = Lε(θt) +∇θLε(θt)T∆t + 1

2∆T
t H

ε
t∆t and ∆T

t H
ε
t∆t > 0 with ∆t = θt+1 − θt.

Here, µ is a modified Polyak-Lojasiewicz (PL) constant which is important for the optimization
together with the Hessian term ‖Hε

tut‖ [3, 21]. In this paper, we mainly focus on the Hessian
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term. Note thatHε
t = ∇2

θLε(θ̃t) is the Hessian of Lε at some θ̃t between θt and θt+1. Thus, since
∆t = −ηt∇θLεt(θt) with the learning rate ηt, we can approximate

‖Hε
tut‖ ∝ ‖Hε

t∆t‖ ≈ ‖∇θLε(θt+1)−∇θLε(θt)‖. (5)

Therefore, it optimizes better with a smaller loss gradient difference (first-order smoothness).

To see what factors influence the loss gradient difference, we first need some mild smoothness
assumptions that are natural when the network parameters θ1 and θ2 are close to each other, especially
they are two consecutive parameters from gradient descent update, i.e., θt and θt+1.
Assumption 1. Given a linear relaxation method, we make the following assumptions on the bias
b(x;θ) in the linear relaxation (2) and the probability function p(x;θ):
(i) ‖∇θb(x;θ2)−∇θb(x;θ1)‖ ≤ Lbθθ‖θ2 − θ1‖ and
(ii) ‖p(x;θ2)− p(x;θ1)‖ ≤ Lpθ‖θ2 − θ1‖, ∀θ1,θ2 and x.

With the above assumptions, we can provide an upper bound on the loss gradient difference for linear
relaxation-based methods to understand the optimization behavior as follows:
Theorem 2. Suppose x ∈ X is bounded ‖x‖ ≤M with some M > 0. For a linear relaxation-based
method with the upper bound sm(x;θ) = maxx′∈B(x,ε) g

(m)
θ (x)Tx′ + b

(m)
θ (x), if each b(m)

θ and
ps satisfies Assumption 1, then

‖∇θLε(θ2)−∇θLε(θ1)‖
≤ E(x,y)

[
max
m

(
2ε‖∇θg(m)

θ1,2
(x)‖+M‖∇θg(m)

θ2
(x)−∇θg(m)

θ1
(x)‖+ L(m)‖θ2 − θ1‖

)]
(6)

for any θ1,θ2, where L(m) = Lb
(m)

θθ + Lpsθ ‖∇θs(x;θ1,2)‖ and θ1,2 can be any of θ1 and θ2.

According to Theorem 2, the relaxed gradient approximations g(m) in the linear relaxation play a
major role in shaping the loss landscape. The first two terms in the right hand side of (6) indicate
the zeroth- and first-order smoothness of the relaxed gradient approximation with respect to weight
parameters, respectively. The smoother the relaxed gradient approximations are, the smoother the
loss landscape is. Especially for IBP, using the zero-slope relaxed gradient approximation g(m) ≡ 0
for all m, the loss gradient difference is upper bounded by only the last term, maxL(m)‖θ2 − θ1‖,
and it is relatively small for a single gradient step. On the other hand, for other linear relaxation-based
methods using non-zero relaxed gradient approximation g(m) 6= 0, the gradient updates used in the
training are more unstable than IBP. It is consistent with the empirical results shown in Figure 1 that
there are significant differences between the loss landscape of IBP and others.

5 Proposed Method

Our analyses so far suggest that not only tightness of the upper bound on the worst-case loss but also
smoothness of the loss landscape is important for building a certifiably robust model. Therefore, we
aim to design a new certifiable training method to improve the aforementioned factors (favorable
landscape and tighter bound).

Favorable landscape with smooth g via sparse a To have a smooth loss landscape, we aim to
build a linear relaxation with a smooth relaxed gradient approximation by using sparse a. For example,
in a simple 2-layered network case with sm(x) = wTh(Wx+ b) + b, we have g(m) = W T (a�
w−+a�w+) and ‖∇wg(m)‖ = ‖W T diag(a�1[w < 0]+a�1[w ≥ 0])‖ ≤ ‖W T ‖(‖a‖+‖a‖)
where diag(v) is the diagonal matrix whose entries are the elements of v. This simple example
implies that a sparse a may help to smooth the relaxed gradient approximation.

To this end, we investigate variants of CROWN-IBP with different a settings for unstable ReLUs to
see their effects on the smoothness of the loss landscape. For each setting, we sample a ∈ {0, 1} with
different (p, q) with P (a = 1 | |l| > |u|) = p and P (a = 1 | |l| ≤ |u|) = q for each neuron with pre-
activation bounds l and u. For example, CROWN-IBP uses (p, q) = (0, 1). We use a = 1[u++l− >
0] for the other stable ReLUs. We consider the variants (p, q) = (0, 0), (0, 0.5), (0, 1), (0.5, 1), and
(1, 1), in order of decreasing the sparsity. For the other elements of the linear relaxation variable
φ = {(a,a, b, b)}, we fix a = u+

u+−l− , b = − u+l−

u+−l− , and b = 0 for each activation node, because
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Figure 2: Left: The non-smoothness measures of the models with different levels of sparsity of
a during the ramp-up period (same as in Figure 1 (Right)). Notation (p, q) denotes the variant
with sampling a ∈ {0, 1} with P (a = 1 | |l| > |u|) = p and P (a = 1 | |l| ≤ |u|) = q for unstable
ReLUs. As a becomes sparse, the loss landscape is much smoother. Right: The configuration
of a used for unstable ReLUs during the ramp-up period. It indicates that the proposed method
reduces the number of nonzero a (purple+yellow).

they are the optimal choices for tightening the bound (see Appendix C.2 for details). As expected,
Figure 2 (Left) shows that it tends to have a more smooth landscape as a becomes more sparse.

However, the sparsity only is not enough to achieve robustness unless the tightness is guaranteed. A
variant of CROWN-IBP with (p, q) = (0, 0) achieves a favorable landscape, but they show looser
upper bounds which lead to a worse performance (details are presented in Appendix E). Therefore, it
is required to search for appropriate a that can achieve both tightness and favorable landscape.

Tighter bound via optimization Now, we aim to make a sparse and to tighten the upper bound in
(1), simultaneously. We can achieve both by minimizing the upper bound over the linear relaxation
variable φ as follows: L(s(x)) ≥ minφ L(s(x;φ)) ≥ maxx′∈B(x,ε) L(f(x′)). It can be equiva-
lently understood as solving the dual optimization in CAP rather than using a dual feasible solution.
However, solving the dual optimization is computationally prohibited for the linear relaxation of
CAP. To resolve this problem, we use the same linear relaxation as IBP for the subnetworks of s
except for s itself, similar to CROWN-IBP. Further, we efficiently compute a surrogate â of the
minimizer a∗ = arg mina L(s(x;φ = {(a,a, b, b)})) using the one-step projected gradient update
of the relaxation variable a for unstable ReLUs. Specifically, we have

â = Π[0,1]n
(
a0 − ηsign(∇aL(s(x;φ0)))

)
(7)

with an initial variable φ0 = {(a,a0, b, b)} where a0 ∼ U [0, 1]n and η ≥ 1, yielding the final
objective L(s(x; φ̂)) where φ̂ = {(a, â, b, b)}.
The update (7) implicitly leads to a sparse â since the update direction tends to be negative for
unstable ReLUs. We get the motivation from the relaxation of CROWN-IBP explained in Appendix
C.1. By tracking the sign of each element in computing the update direction, we can conclude
that (7) yields a sparse â. When computing the upper bound s, the lower slope a ∈ [0, 1]n is
multiplied with non-positive w− ≤ 0, which yields w−j aj ≤ 0, and thus the preactivation value zj
is likely to be (close to) the lower bound lj to maximize the value

∑
j:wj<0wjajzj for the element

j s.t. wj < 0. Thus, ∇ajsm(x) = w−j lj ≥ 0. Thus, when projected onto [0, 1]n, the update
direction, −ηsign(∇aL(s(x;φ0), y)) = −ηsign(

∑
m 6=y pm∇asm), is likely to yield a sparser â

than CROWN-IBP (cf. Appendix F). Similar logic applies to the inner layers.

6 Experiments

In this section, we demonstrate the proposed method satisfies two key criteria required for building
certifiably robust models: 1) tightness of the upper bound on the worst-case loss, and 2) smoothness
of the loss landscape. Subsequently, we evaluate the performance of the method by comparing with
others certifiable training methods. Details on the experimental settings are in Appendix A.
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Figure 3: Violin plots of the test loss (Left) and of tightness (Right) for various linear relaxations.
Lower is better. This shows that the proposed relaxation method has a tighter bound than the others.

Table 1: Test errors (Standard / PGD / Verified error) of IBP, CROWN-IBP (β = 1), CAP, and OURS.
Bold and underline numbers are the first and second lowest verified error. We use two different
models (Shallow/Deep) for CIFAR-10 detailed in Appendix A.

Data εtest(l∞) IBP CROWN-IBP (β = 1) CAP OURS

MNIST

0.1 1.18 / 2.16 / 3.52 1.07 / 1.69 / 2.10 0.80 / 1.73 / 3.19 1.09 / 1.77 / 2.36
0.2 2.00 / 3.29 / 6.31 2.99 / 5.50 / 7.97 3.22 / 6.72 / 11.06 1.70 / 3.44 / 4.34
0.3 3.50 / 5.85 / 10.45 5.73 / 10.76 / 16.28 19.19 / 35.84 / 47.85 3.49 / 5.59 / 9.79
0.4 3.50 / 7.30 / 17.96 5.73 / 14.63 / 23.80 - 3.49 / 6.77 / 15.42

CIFAR-10
(Shallow)

2/255 37.98 / 49.40 / 55.39 32.48 / 42.77 / 50.15 28.80 / 38.95 / 48.50 31.49 / 42.73 / 49.42
4/255 46.42 / 57.42 / 62.80 45.56 / 58.24 / 64.47 40.78 / 52.62 / 61.88 42.53 / 55.55 / 61.52
6/255 52.84 / 63.92 / 68.79 54.72 / 65.28 / 71.04 49.20 / 60.85 / 69.03 50.19 / 61.88 / 66.90
8/255 55.71 / 66.79 / 70.95 61.37 / 70.66 / 75.37 56.77 / 66.78 / 73.02 56.01 / 66.17 / 69.70
16/255 67.10 / 75.12 / 78.26 76.65 / 81.90 / 84.42 75.11 / 80.67 / 82.07 65.93 / 75.39 / 77.87

CIFAR-10
(Deep)

2/255 39.17 / 48.80 / 55.48 29.02 / 40.17 / 46.22 - 31.48 / 42.52 / 47.89
8/255 59.53 / 65.98 / 70.86 59.43 / 65.79 / 73.34 - 50.78 / 62.58 / 68.44

SVHN 0.01 19.91 / 34.12 / 43.83 17.25 / 30.84 / 39.88 16.88 / 30.16 / 37.09 16.41 / 30.43 / 39.44

Tightness To validate that the proposed method (OURS) has sufficiently tight bounds, we analyze
various linear relaxation methods in Figure 3. We define a tightness measure as

∑c−1
m=0 sm(x). Then,

we evaluate multiple methods on a single fixed model pre-trained with the proposed training method.
The compared methods are, from left to right, OURS, CROWN-IBP, CAP-IBP, and RANDOM. All
methods use the same IBP relaxation for subnetworks, but use different linear relaxation variables
a for the whole network s. CROWN-IBP, CAP-IBP, and RANDOM use a = 1[u+ + l− > 0],
a = u+

u+−l− and a ∼ U [0, 1]n, respectively. We fix the other variables a, b, and b, as in Section 5.
In both figures, our method shows the lowest value on average, which indicates that a single gradient
step in (7) is sufficient to obtain tighter bounds. See Appendix M for other models.

Smoothness Figure 2 (Right) shows that our method has successfully yielded more sparse a than
CROWN-IBP (β = 1). This leads to the results shown in Figure 1 (Right) that the proposed method
has a smooth loss landscape as with IBP, whereas the others have less smooth ones.

Certified Robustness We evaluate the performance of the proposed method and compare it to
other certifiable training methods: IBP [15], CROWN-IBP (β = 1) [46], and CAP [40], as in Section
4.1. On MNIST, we follow Zhang et al. [46] and use εtrain ≥ εtest; whereas for CAP, we use the same
εtrain = εtest which yields better results. We used three evaluation metrics: standard (clean), 100-step
PGD, and verified error. For the verified error, we evaluated with the bound s of each method.

Table 1 summarizes the evaluation results under different εtest for each dataset. In general, when εtest
is low, methods with tighter linear relaxations show good performance, whereas IBP tends to perform
better as εtest increases. In short, the current SOTA methods perform well for a specific range of
εtest. For example, IBP shows relatively better performance in the case of εtest = 0.3, 0.4 on MNIST
and εtest = 6/255, 8/255, 16/255 on CIFAR-10. On the other hand, CAP and CROWN-IBP (β = 1)
outperform IBP in the case of εtest = 0.1 on MNIST, εtest = 2/255 on CIFAR-10 and εtest = 0.001 on
SVHN. This result is consistent with the analysis shown in Figure 1 that CAP and CROWN-IBP
(β = 1) have lower loss than IBP at small ε, but their loss landscape is less smooth than IBP, leading
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Table 2: Test errors (Standard / Verified error) compared to the best errors reported in the literature.
Bold numbers are the lowest verified error. The results in RS [42] and COLT [2] are evaluated with a
MILP based exact verifier [36].

Data
εtest(l∞)

MNIST CIFAR-10
0.1 0.3 2/ 255 8/ 255

RS 1.32 / 4.87 2.67 / 19.32 38.88 / 54.07 59.55 / 79.72
DiffAI 1.3 / 4.2 3.4 / 10.7 37.7 / 54.5 53.8 / 72.8
COLT 0.8 / 2.9 2.7 / 14.3 21.6 / 39.5 48.3 / 72.5
OURS 1.09 / 2.28 2.42 / 7.84 31.48 / 47.89 50.78 / 68.44

to worse performance at large ε. Moreover, CAP cannot be trained on MNIST when εtrain = 0.4. As
the case is also not specified in Wong et al. [40], it seems that CAP is hard to be robust to εtrain ≥ 0.4.
On the other hand, the proposed method shows consistent performance in a wide range of εtest values,
achieving the best performance in most cases, since it has tighter bounds and a favorable landscape,
not overfitting to a local minimum during the εt-scheduling. We also conduct additional experiments
on the hyperparameters in Appendix I, J, and K.

We also compared our method with other prior work, ReLU Stability (RS) [42], DiffAI [24] and
COLT [2], in Table 2. All experiments and results, except for Table 2, in this paper are based on
our own reimplementation. The proposed method shows the best verified error, except for the case
εtest = 2/255 on CIFAR-10, in which COLT performs better. This is because COLT is based on the
linear relaxation used in CAP.

Unlike standard training, certifiable training requires εt-scheduling. It is implicitly assumed a set of
weights that makes the network robust to a small εt is a good initial point to learn robustness to a
large εtrain. However, training methods with tighter bounds start with a lower loss at a small εt, but
with an unfavorable loss landscape, they cannot explore a sufficiently large area of the parameter
space. Hence, they overfit to be robust to a small perturbation, and cannot generalize to a large
perturbation. CAP and CROWN-IBP (β = 1) are typical examples that demonstrate the overfitting.
This may overegularize the weight norm and decrease the model capacity [40, 46]. The tightness
of the proposed method improves the performance for a small εtrain, while the smoothness helps
the optimization process, which also leads to better performance for a large εtrain. To conclude, the
proposed method can achieve a decent performance under a wide range of perturbations.

7 Discussion

A proper β-scheduling in (8) could help the model to obtain a smoother landscape and to improve
the robustness performance. We use two different settings of β, CBP1→1 and CBP1→0, where CBP
stands for CROWN-IBP and the subscript βstart → βend refers to the linear scheduling on β from
βstart to βend. Zhang et al. [46] found that the β-scheduling of CBP1→0 can improve the robustness
performance. And they argued that this is because training with a tighter bound of CROWN-IBP at
the beginning can provide a good initialization for later IBP training. On the other hand, we provide
another explanation that CBP1→0 starts with a tighter bound (CROWN-IBP only) but not overfits to
small perturbation by gradually introducing the IBP objective which has a smoother landscape. In
Appendix P, we show that the success of CBP1→0 is due to the smoothness.

In the case of εtest = 8/255, CBP1→0 obtains the improved standard/PGD/verified error of
54.02/65.42/66.94 in the literature [46] while CBP1→1 shows 59.43/65.79/73.34. The result also
implies that the smoothness is a crucial factor in certifiable training, especially in a large εtrain. The pro-
posed method achieves 50.78/62.58/68.44. Although we couldn’t achieve the same verification perfor-
mance (∆ = −1.50), it has better standard/PGD accuracy by a larger margin (∆ = +3.24/+ 2.84).
For εtest = 2/255, however, CBP1→0 shows 35.83/46.21/52.26, worse than 29.02/40.17/46.22 of
CBP1→1. For a small εtest, the tightness affects the performance significantly. The proposed method
shows 31.48/42.52/47.89, the similar performance using a tighter bound (CBP1→1).

To summarize, we emphasize two points in this section: (1) the β-scheduling in CBP1→0 improves the
smoothness by introducing the IBP objective, and (2) while the two CROWN-IBP methods perform
well only for a specific range of perturbations due to lack of either the tightness or the smoothness,
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the proposed method has the two desired properties even without introducing the mixture parameter
β and it shows a decent performance in a wide range of adversarial perturbations.
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8 Conclusion

We have investigated the loss landscape of certifiable training and found that the smoothness of
the loss landscape is an important factor that influences in building certifiably robust models. To
this end, we proposed a method that satisfies the two criteria: tightness of the upper bound on the
worst-case loss and smoothness of the loss landscape. With the two factors, the proposed method can
achieve a decent performance for a wide range of perturbations, while others with only one of the
two factors can perform well only for a specific range of perturbations. We believe that with a better
understanding of the loss landscape, better certifiably robust models can be built.
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