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Summary
Competitive Pokémon Singles (CPS) is a popular strategy game where players learn to

exploit their opponent based on imperfect information in battles that can last more than one
hundred stochastic turns. AI research in CPS is led by heuristic tree search and online self-
play, but the game may create a platform to study adaptive policies trained offline on large
datasets. We develop a pipeline to reconstruct the first-person perspective of an agent from
logs saved from the third-person perspective of a spectator, thereby unlocking a dataset of real
human battles spanning more than a decade that grows larger every day. This dataset enables
a black-box approach where we train large sequence models to adapt to their opponent based
solely on their input trajectory while selecting moves without explicit search of any kind. We
study a progression from imitation learning to offline RL and offline fine-tuning on self-play
data in the hardcore competitive setting of Pokémon’s four oldest (and most partially observed)
game generations. The resulting agents outperform recent LLM approaches and rival or exceed
the best heuristic search engines. Playing anonymously in online battles against humans, our
agents surpass a 50% estimated win rate in all four generations and climb inside the top ranked
players in the game’s longest-horizon rulesets.

Contribution(s)
1. We build an offline RL dataset comprising nearly 1M trajectories reconstructed from years

of human gameplay in the complex decision-making task of Competitive Pokémon Singles.
Context: None

2. We demonstrate our dataset’s ability to train black-box adaptive policies that play Compet-
itive Pokémon at a human level.
Context: Prior work has used online self-play and heuristic search to build successful
Pokémon agents.
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Abstract

Competitive Pokémon Singles (CPS) is a popular strategy game where players learn1
to exploit their opponent based on imperfect information in battles that can last more2
than one hundred stochastic turns. AI research in CPS is led by heuristic tree search3
and online self-play, but the game may create a platform to study adaptive policies4
trained offline on large datasets. We develop a pipeline to reconstruct the first-person5
perspective of an agent from logs saved from the third-person perspective of a spectator,6
thereby unlocking a dataset of real human battles spanning more than a decade that7
grows larger every day. This dataset enables a black-box approach where we train8
large sequence models to adapt to their opponent based solely on their input trajectory9
while selecting moves without explicit search of any kind. We study a progression10
from imitation learning to offline RL and offline fine-tuning on self-play data in the11
hardcore competitive setting of Pokémon’s four oldest (and most partially observed)12
game generations. The resulting agents outperform recent LLM approaches and rival or13
exceed the best heuristic search engines. Playing anonymously in online battles against14
humans, our agents surpass a 50% estimated win rate in all four generations and climb15
inside the top ranked players in the game’s longest-horizon rulesets.16

1 Introduction17

Competitive Pokémon (Singles) (CPS) is a two-player strategy game that combines the long plan-18
ning horizons of chess with the imperfect information, opponent modeling, and stochasticity of19
poker — and then adds so many named entities and niche gameplay mechanics that it takes an en-20
cyclopedia to document them all. In CPS, players construct a team from billions of possibilities and21
battle against an opponent’s partially observed team. On each turn of the battle, players can choose22
to use a move from the Pokémon already on the field or switch to another member of their team23
(Figure 1 Right). Moves can deal damage to the opponent, eventually causing it to faint, until the24
last player with active Pokémon wins. CPS’s complexity is a significant challenge for AI and creates25
an exciting research opportunity in Reinforcement Learning (RL). Previous efforts rely on heuris-26
tic search in custom simulators (Mariglia, 2024) or test-time MCTS with self-play (Wang, 2024).27
Competitive Pokémon is played on a website that saves turn-by-turn records of battles dating back28
over a decade. We develop a pipeline to convert these logs to the partially observed point-of-view29
of an agent playing on the online ranked ladder, thereby unlocking a naturally occurring source of30
offline RL data (Levine et al., 2020; Lange et al., 2012) that grows larger every day. This dataset31
enables a perspective on the CPS AI problem that has previously been impractical: that sequence32
models might be able to learn to play without explicit search by using model-free RL and long-term33
memory to infer their opponent’s team and tendencies.34

Our experiments provide a case study in the process of training, evaluating, and improving large35
policies (Fig. 1 Left) (Springenberg et al., 2024; Lampe et al., 2024). We create a suite of heuristic36
and imitation learning (IL) opponents for offline evaluation with procedurally generated Pokémon37
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teams. With these opponents as a benchmark, we evaluate Transformer (Vaswani et al., 2017) poli-38
cies of up to 200M parameters trained by IL and offline RL. When deployed on the Pokémon Show-39
down website in ranked battles against human players in the highly competitive realm of CPS’s first40
four generations — where battles are longest and reveal the least information about the opponent’s41
team — our largest RL policy is officially estimated to have a 41-58% chance to defeat a randomly42
sampled opponent (depending on the generation). Rather than waiting for more data to accumulate43
in our dataset, we explore the idea that our models would benefit from training on intentionally44
unrealistic self-play data that does not attempt to recreate the unknown distribution of teams and45
opponents in online battles. The resulting agents improve to win rates of 50-75% and rise onto46
the global leaderboard. LLM-Agent approaches (Hu et al., 2024b) prove uncompetitive in the long47
horizons of early generations, and our best agent — without search — exceeds or at least closely48
rivals the best heuristic search engine (Mariglia, 2024) across all four generations.49

Figure 1: Batch Training and Evaluation in CPS. We develop a platform called Metamon that
enables an offline RL workflow on a dataset of human gameplay from Pokémon Showdown.

2 Background: Competitive Pokémon Singles50

If the reader is unfamiliar with CPS, it is difficult to overstate how complicated top-level strat-51
egy can be. The game combines opponent modeling (Nashed & Zilberstein, 2022) with stochastic52
transitions, complex dynamics, long-horizon planning, and a large initial state space. Pokémon is53
highly stochastic and gameplay revolves around nuanced mechanics with endless edge cases and54
unintended behavior. This complexity is notable both because it hinders the sample efficiency of55
any learning method and because it effectively ensures independent implementations (i.e., to speed56
up tree search) will not be perfectly accurate. The ground-truth simulator is Pokémon Showdown57
(PS) — a popular website with thousands of daily players. PS simulates the combat mechanics of58
each major commercial game release (or “generation”). Some fundamentals transfer, but compet-59
itive play relies on details specific to each generation. PS divides generations into “tiers” that ban60
Pokémon and enforce various rules to maintain competitive balance. Each generation of each tier is61
essentially treated as its own game — or rather, two games played consecutively: team design and62
control. Players design teams before they are matched with their opponent and must consider all63
the threats they believe they will face. Team design converges to an equilibrium that narrows the64
search to perhaps thousands of meaningfully distinct teams that are considered competitively viable.65
However, this set shifts to counter the latest trends and has changed significantly over time.66

In addition to navigating Pokémon’s randomness, team control (battling) focuses on decision-making67
under imperfect information. Details of the opponent’s Pokémon are only revealed when they68
directly impact the battle. We can gain an advantage by inferring our opponent’s team compo-69
sition based on what they have already revealed. For example, we might know that Pokémon70
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A is often used alongside Pokémon B and that Pokémon A commonly brings move x or y but71
does not have space to bring both. We may try to mislead our opponent by revealing infor-72
mation that suggests one team design only to surprise them when they are no longer defending73
against our real strategy. Players make (most) decisions simultaneously. Accurately predicting74
the opponent’s choices based on their team and previous tendencies is the key skill differentiat-75
ing high-level players. For example, a move may win the battle but only be safe to select if we76
believe our opponent will switch their Pokémon on this turn. In short, Pokémon players are con-77
stantly updating a prior over the opponent’s team and strategy to improve their decision-making.78

Figure 2: Episode Length, Team Diversity, and Variance By Gen-
eration. GXE statistics taken in February 2025. Episode length data
is compiled from our replay dataset.

79

There are two important80
player metrics on PS.81
Glicko-1 is an ELO-like skill82
rating. The matchmaking83
system on PS prefers to pair84
players with similar ratings.85
GXE corrects for this match-86
making bias to estimate a87
player’s odds of defeating a88
randomly sampled opponent.89

AI research in PS faces the90
question of which genera-91
tion and tiers to study. The92
standard choice is the most93
recent generation’s “random94
battles” tier. Random battles remove the team design question entirely by providing each player95
with a procedurally generated team. This ruleset has a more casual player base, and we will focus96
on formats where players design teams tailored to their playstyle. Our agents will learn to play97
four different tiers, but evaluations will focus on “OverUsed” (OU). OU is the definitive com-98
petitive format of CPS, making it the most popular and therefore the tier with the most data to learn99
from (Section 3). Each generation of OU increases the number of team combinations and gameplay100
mechanics (Figure 2 Right). Importantly, the size of team space becomes so unmanageable from101
Generation 5 onwards that PS adopts a mechanic called “team preview” that reveals the opponent’s102
team before the start of the battle. For this reason, we focus on the first four generations.103

Early Generation OverUsed. In addition to their signature lack of team preview, the early gener-104
ations of CPS are defined by their unique gameplay mechanics and outlier battle lengths (Figure 2105
Left). The early generations are an almost independent competitive community with a long history106
and a small but self-selective player base. The people we will be playing against have intentionally107
sought out the competitive format of a 15+ year-old game because it is their interest and exper-108
tise. Gen1 and Gen2 are infamously stochastic, and reduced offensive power shifts focus away from109
team composition and towards battle strategy over long exchanges. Gen3 is notable for its enduring110
popularity and competitive balance. Gen4 resembles modern versions in that many Pokémon can111
eliminate their opponent in a single move — leading to a faster pace of play. Appendix B.1 Figure112
13 finds that a heuristic using basic Pokémon principles and lookup tables is far less effective against113
human players in early-generation OU than modern random battles.114

While our use of black-box sequence-based RL and focus on early-gen OU are novel, there is ex-115
isting work on AI for CPS. The best Pokémon bots focus on heuristic tree search with custom116
high-throughput simulators. Some work has experimented with network-based state evaluation and117
self-play MCTS (Huang & Lee, 2019) for random battles formats. CPS is primarily played and118
discussed on the internet, and this affords considerable gameplay knowledge to recent LLM-Agents119
techniques (Hu et al., 2024b; Karten et al., 2025b). Appendix A provides a survey of AI in CPS.120

3



Under review for RLC 2025, to be published in RLJ 2025

3 Building an Offline RL Dataset of Real Human Battles121

PS creates a log (“replay”) of every battle that expires after a brief period unless saved. Players122
save replays for later study, to share a fun outcome with friends, or as a way to record official123
tournament results. PS has been the home of Competitive Pokémon for over a decade — time enough124
to accumulate millions of replays. The PS replay dataset1 is an exciting source of naturally occurring125
data. However, there is a critical problem: CPS decisions are made from the partially observed point-126
of-view of one of the two competing players, but PS replays record the perspective of a third-party127
spectator who has access to information about neither team. We unlock the PS replay dataset by128
converting spectator views to each player’s perspective separately. Our “reconstruction” process is129
specific to CPS and will create further CPS-specific problems that RL will need to overcome. At130
a high level, though, it is an example of a problem that may arise when trying to use existing data131
to kickstart a data flywheel. There are applications of RL (healthcare, finance), where lots of data132
surrounding the problem exists (patient records, time series) but is not formatted as trajectory data133
from the point-of-view of an agent, and would require a conversion to this format that opens up a134
sim2real-like gap between the reconstructed (PO)MDP and the real world.135

Replay reconstruction involves four high-level steps. First, we simulate the current state of the136
battle from a spectator perspective according to the PS API. Throughout this process, we use in-137
coming information to estimate the initial configuration of both unobserved teams. At the end of138
the battle, we infer any information that was never revealed. To do this, we need a way to model139
the distribution of competitive teams in each generation and tier. Fortunately, the PS community140
tracks pokémon usage statistics to measure trends and evaluate rule changes. We use all available141
historical data to model the distribution of human-constructed teams and simplify by ignoring the142
fact that team construction trends on PS are non-stationary for a number of reasons. Next, we back-143
fill inferred team rosters for a chosen point-of-view player to replicate the information they would144
have observed when their decisions were made. Finally, we convert the reconstructed trajectory to145
a format identical to the online simulator. Appendix B.2 walks through a simplified example and146
uses a real replay to visualize the raw input, inferred team, and trajectory output according to the147
observation space, action space, and reward function discussed in the next section.148

Reconstructed Human Demonstrations Demonstrations by ELO Rating Demonstrations by Trajectory Length

Figure 3: Dataset Summary. The initial version of our offline dataset includes 475k battles —
summarized here by their PS format (left), ELO rating (center), and length in agent timesteps (right).

This process is not always successful, as some gameplay mechanics cannot be reconstructed from149
incomplete information. A long list of checks identifies trajectories that have entered ambiguous150
situations and (quite conservatively) discards them. All told, we are able to download and reconstruct151
more than 475k human demonstrations with shaped rewards from historical Gen 1-4 battles dating152
back to 2015 (Figure 3). Each battle yields two point-of-view trajectories for a total of about 950k153
sequences containing 38M timesteps. Our pipeline is now actively downloading new battles in the154
15 minute window before they are deleted (regardless of whether a player chose to save them). This155

1https://replay.pokemonshowdown.com/
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has significantly increased the growth rate of the dataset for future work, but the experiments in this156
paper will only be using the original 950k trajectory version.157

4 Search-Free Pokémon with Offline RL On Sequence Data158

Pokémon players discuss and teach the game based on the idea that their decision-making policy π159
is conditioned on their current estimate of their opponent’s policy (πo) and team composition (co).160
Let cp be our own team composition. We can follow a meta-RL perspective (Beck et al., 2023;161
Ghosh et al., 2021) where we consider our opponent’s choices part of the environment’s unknown162
transition function T (st+1 | st, at, πo, co, cp) (Zintgraf et al., 2021a). Our goal is to find a policy163
that maximizes return over some distribution of these latent variables, which in our case would be164
the distribution of opponents currently active on PS and our own distribution of teams:165

η(π) = Eπo, co∼p(πo,co),cp∼p(cp)

[
Eτ∼p(τ |π,πo,co,cp)

[
T∑

t=0

γt R(st, at)

]]
(1)

Context-based methods aim to maximize η(π) by conditioning the policy on estimates of the un-166
observed variables derived from previous experience. Here, this would amount to using the entire167
history of a battle2 (states, rewards3, and the actions of both players) to estimate (co, πo). If we want168
to avoid explicitly predicting co or πo (Humplik et al., 2019) (which is difficult to formulate) or169
modeling the complicated dynamics of Pokémon (Zintgraf et al., 2021b), we can follow the black-170
box meta-RL framework (Duan et al., 2016; Wang et al., 2016) — which has seen great success in171
large-scale problems (Team et al., 2023). In black-box meta-RL a sequence model Sθ takes all prior172
experience under the current latent variables (the entire battle up until the current timestep, τ0:t) as173
input and outputs a representation ht for the policy network πϕ. The system is trained end-to-end174
to maximize Eq. 1 as in standard deep RL. Because a better estimate of the opponent will increase175
rewards (win rate), the sequence model will implicitly learn that behavior. The policy navigates an176
exploration-exploitation trade-off at test time, where it may take exploratory actions that improve177
the sequence model’s representation if this increases expected returns. CPS strategies like feeding178
our opponent misleading information about our own team also follow from this framework.179

We will be using the offline dataset (D) from Section 3 to approximate the expectations in Eq. 1.180
The implicit assumption is that the distribution of teams and playstyles across history is identical to181
that of the current game (Dorfman et al., 2020). This is false, but it may be close enough, particularly182
in the highly-optimized world of Early Gen OU. If we want to expand our dataset (i.e., by self-play),183
we need to try to select teams and opponents that match the true distribution. Alternatively, we can184
collect data that is unambiguously out-of-distribution. For example, we can place a rare Pokémon in185
the lead-off position so that when the policy begins a real battle and sees a more standard choice, it186
has no reason to overestimate the odds it is facing our synthetically generated teams or opponents.187

In summary, we have reduced the problem of learning to play CPS to the problem of training a188
sequence model with offline RL. However, this model may need to be quite large, so training is non-189
trivial. We can use an update that safely reduces to behavior cloning (BC) but gives room to skew the190
loss function towards return-maximizing behavior if we decide the offline RL risks are sufficiently191
small (Springenberg et al., 2024; Wu et al., 2019; Fujimoto & Gu, 2021). Ideally, BC becomes a192
lower bound we can improve upon. Solutions of this kind are actor-critics that train their critic to193
output Q-values with standard one-step backups. Actor loss functions take the general form:194

LActor = Eτ∼D

[
1

T

T∑
t=0

(
−w(ht, at) log π(at | ht)− λEa∼π(·|ht) [Q (ht, a)]

)]
(2)

2A natural extension of the context-based framework here would include previous battles between the same players
alongside their current battle. This may allow for adaptation in a tournament best-of-three match format.

3Because our Pokémon reward function never changes, it would be considered part of the state space and happens to be
important for inferring the outcome of the previous turn in our setup.
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Figure
Nickname w(z, a) = λ

"IL" 1 0

"Exp"
(or just "RL")

exp(βAπ(z, a))
(clipped) 0

"Binary"
(or "FBC") Aπ(z, a) > 0 0

"DPG"
(or "DPG+FBC",
"DPG Binary”)

Aπ(z, a) > 0 > 0

Table 1: Lactor Configurations (Eq. 2).
Advantages are estimated by the critic:
Aπ(h, a) = Q(h, a)−Ea′∼π[Q(h, a′)].

Where in our setting ht is the output of the sequence195
model Sθ(τ0:t) that replaces the state. The first term is196
a BC objective that re-weights decisions according to a197
heuristic w that constrains learning to actions taken in the198
offline dataset (Wang et al., 2020; Nair et al., 2020). The199
second term is the standard online off-policy actor update200
that risks overestimating the value of OOD actions when201
used offline (Kumar et al., 2019). Our notation and imple-202
mentation details are closer to popular continuous-action203
variants where off-policy actor-critics are necessary even204
without the desire to reduce to BC (Lillicrap et al., 2015;205
Fujimoto et al., 2018; Chen et al., 2021). Pokémon’s dis-206
crete actions let us compute Ea∼π[Q(h, a)] directly (De-207
gris et al., 2012; Christodoulou, 2019). Our experiments208
will study various configurations of Equation 2 summarized by Table 1. For further discussion of209
RL engineering details, we refer the reader to the AMAGO (Grigsby et al., 2024) implementation210
used throughout our experiments. One detail worth highlighting is the parallel training of multiple γ211
values (Eq. 1), which is an effective trick for problems like CPS that have sparse rewards but require212
long horizons (γ > .99).213

Before discussing the network architecture, we need to define a state space, action space, and reward214
function for CPS. Our agent needs enough information to mirror human decisions, and a good point215
of reference is the UI of the PS website. However, our models have memory, and we do not need216
to provide all of this information at every timestep. We have a trade-off between state size, memory217
difficulty, generalization over Pokémon’s damage formula, and exposure to sim2real errors between218
replay reconstruction and deployment. We settle on a compromise of 87 words of text and 48219
numerical features. The text component is semi-readable, and Figure 4 provides an example from220
a replay in our dataset. The most important detail is that we are relying entirely on memory to221
infer the opponent’s team; states only include the opponent’s active pokémon. We are confident in222
our sequence models’ ability to recall previous states, and this makes it worth avoiding the sim2real223
exposure of tracking the opponent’s team as it is revealed. There are nine discrete actions, where224
the first four indices correspond to the moves of the active pokémon, and the remaining five switch225
to another team member. The state conveys the precise meaning of these actions in a predictable226
order. The reward function is dominated by binary win/loss but includes light shaping for damage227
dealt and health recovered. Appendix C provides more details.228

<gen3uu> <anychoice> <player> ampharos leftovers static electric notype 
noeffect tox <move> healbell normal status <move> thunder electric special 

<move> thunderbolt electric special <move> thunderwave electric status 
<switch> feraligatr leftovers torrent <moveset> dragonclaw hydropump 

hyperbeam surf <switch> kangaskhan leftovers earlybird <moveset> bodyslam 
rest toxic wish <switch> scyther choiceband swarm <moveset> aerialace 

hiddenpowerflying quickattack substitute <switch> walrein leftovers thickfat 
<moveset> earthquake hiddenpowergrass icebeam sleeptalk <switch> <blank> 
<blank> <blank> <blank> <blank> <blank> <blank> <blank> <opponent> hypno 

leftovers unknownability notype psychic noeffect nostatus <conditions> 
noweather noconditions reflect <player_prev> thunder <opp_prev> psychic

[Gen 3] UU 
#471406089

(November 6th, 2016)

Turn 11

battle format player’s active pokémon

move #1

switch #1

pokémon 
fainted

active pokémon previous movesweather and field effects

opponent’s 
active 

pokémon

player can move or switch

Action 0 … 3 4 … 8

Type Move 1 … Move 4 Switch 1 … Switch 5

Result Heal 
Bell … Thunder-

wave Feraligatr … Fainted
(Invalid)

Figure 4: Annotated Text State and Action Space. Text order is important, but words can be
tokenized into arrays with a consistent length (of 87). States also include 48 numerical features. The
meaning of each action index varies by turn but is presented in the text in a consistent order.

The state, previous action, and previous reward at each timestep are processed by a Transformer229
encoder that uses designated summary tokens to create an embedding by attending over the multi-230
modal sequence (Dosovitskiy et al., 2020; Devlin et al., 2019). Text is encoded by tokenizing the231
Pokémon vocabulary based on our replay dataset with an “<unknown>” token for rare cases we232
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may have missed. The resulting sequence of turn representations is the input to a causal Transformer233
with actor and critic output heads (Figure 5).234

5 Experiments235

Figure 5: Architecture. Actions are predicted
based on representations of the state, action, and re-
ward of every turn of the current battle.

We will begin evaluating a progression of236
increasingly RL-heavy training objectives237
across model architectures with “Small”238
(15M), “Medium” (50M), and “Large”239
(200M) parameter counts summarized by Ta-240
ble 2. Models are named in results accord-241
ing to their size and training objective (Ta-242
ble 1). Results will be discussed in a semi-243
chronological order, though some figures will244
spoil results from a synthetic self-play pro-245
cess discussed in Section 5.4. Our goal is to246
compete against human players, but this is ex-247
pensive and creates a challenging offline eval-248
uation problem: which methods (and check-249
points of those methods) do we deploy on PS?250
Our efforts to answer this question result in251
extensive evaluations against various opponents.252

Training uses the offline dataset to assign our players’ teams, but we need to “prompt” our agents253
with a set of teams during evaluations. We use three sets: 1) The Variety Set procedurally gener-254
ates 1k intentionally diverse teams per gen/tier and will be used to evaluate OOD gameplay and to255
generate unambiguous self-play data as mentioned in Section 4. 2) The Replay Set approximates256
the choices of top players based on their replays and infers unrevealed details as done in Section257
3. 3) The Competitive Set comprises 10-20 complete “sample” teams per gen/tier scraped from258
forum discussions; these are generally designed for beginners by experts. Win rates are measured259
over large samples of hundreds or thousands of battles unless otherwise noted. Evaluations use260
poke-env (Sahovic, 2020) to interact with a locally hosted PS server and the public website.261

5.1 Heuristic Evaluations262

OverUsed
(430k Replays)

NeverUsed
(7k Replays)

60
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Performance Decline from OU  NU

SyntheticRL-V2
Large-RL (Exp)
Medium-RL (Exp Aug)
Medium-RL (Exp)
Small-RL (Binary)
Small-RL (DPG Binary)
Small-RL (Exp Aug)
Small-RL (Exp Extreme)
Small-RL (Exp)
Large-IL
Medium-IL
Small-IL

Figure 6: OU → NU. Heuristic opponents
represent a fixed target and highlight the
discrepancy between popular OU tiers with
strong data coverage and unpopular tiers with
far fewer replays.

We create a suite of heuristic opponents that263
evaluate core game knowledge. Strategies are264
based on fundamental Pokémon concepts and re-265
implementations of policies from official versions of266
Pokémon, fan-made ROM hacks with inflated diffi-267
culty, and popular CPS AI baselines. Full descrip-268
tions of these policies and their relative performance269
are provided in Appendix B.1. The average win rate270
against 6 of these heuristics on the Variety set forms271
a “Heuristic Composite Score.” The main benefit of272
this metric is that it represents a fixed target unaf-273
fected by the discrepancies in data availability be-274
tween OU and the other three tiers our agents are275
trained to play (Fig. 3). Figure 6 documents a pre-276
dictable decline from OU to NeverUsed (NU) game-277
play, and is the first example of a consistent theme278
where RL outperforms IL. We evaluate many variants of the Lactor objective (Eq. 2), but do not find279
significant differences between them. We tune the Turn Encoder architecture (Fig. 5) with RNN280
trajectory models Sθ between 500k-4M parameters trained by BC. The predictive accuracy of these281
models, and their performance against the heuristics, is documented in Appendix D. The best BC-282
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RNN models lead the early Heuristic Composite rankings, and these will become the next rung on283
the ladder towards human-level gameplay. Clear signs of underfitting motivate the starting point of284
15M for our Transformer agents.285

5.2 Model-Based Evaluations286
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Figure 7: Multi-γ Action Selection.

Appendix D evaluates our larger Transformer287
models against our best RNN baseline. RL288
updates significantly outperform the pure-BC289
Transformers, but there is little difference be-290
tween the many RL variants considered. The291
expected relationship between model size and292
performance is clearer for BC than it is RL. Fol-293
lowing Grigsby et al. (2024), we are optimizing294
actor and critic network outputs for a set of γs295
in parallel. At test-time, we are able to select the action corresponding to any of these horizons.296
Figure 7 verifies that our agents are using long-term value estimates to improve their win rate. All297
other evaluations follow the policy for γ = .999. With RL comfortably outplaying our smaller IL298
baselines on the more limited Competitive team set, we shift to playing against Large-IL on the299
Replay set. Figure 8 highlights the win rate of key models.300
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Figure 8: Self-Evaluation Against Large-IL. Results are determined by the best checkpoint over
the last 200k training steps and models are sorted by their average win rate across generations.

5.3 Playing Humans On the Pokémon Showdown Ranked Ladder301

We play against human players by queuing for ranked battles on the public PS ladders. The player302
pool of early generations is relatively small. We evaluate our agents over periods of several days and303
frequently switch between generations for sample sizes of at least 400 battles. Models’ Glicko-1304
and GXE stats at the end of their final battle are shown in Figure 9. We include the results of the305
PokeEnv (Sahovic, 2020) baseline heuristic4 agent from Fig. 13 for additional context.306

The Large-RL model rises to the level of an intermediate player, and is favored to win a battle against307
a randomly selected opponent in Generations 1 and 2. Qualitatively, our models display human-like308
gameplay; during our evaluation process, we saved sample replays on the PS website, which can be309
viewed by searching their assigned usernames (Table 3) on replay.pokemonshowdown.com.310
Learning from data, our agents play reasonable openings, make safe pokémon switches, and can311
anticipate the moves of their opponent. Figure 10 evaluates the impact of memory on the win rate of312
a policy competing against the full-context-length version of itself. However, they can suffer from313
the kind of accumulating errors we might expect from a sequence policy, and can begin to make314

4The PokeEnv heuristic is chosen for ladder evaluations because it appears in recent work (Hu et al., 2024b; Wang, 2024).
Against PokeEnv, the Small-IL and Large-RL models have win rates of ≈ 55% and ≈ 75%, respectively.

8

https://replay.pokemonshowdown.com/


Online Pokémon with Offline RL

Gen1OU Gen2OU Gen3OU Gen4OU

1200

1300

1400

1500

1600

1700

Of
fic

ia
l G

lic
ko

-1
 R

at
in

g
GXE (%)

Ladder Ratings in Online Battles vs. Humans

PokeEnv Heuristic
Small-IL

Large-IL
Large-RL

SyntheticRL-V0
SyntheticRL-V1

SyntheticRL-V1+SelfPlay

27

22

32

47

32
28

37

47
42

35
38

58
53

42 41

69

59

52
48

74

63

51

62

70

63
58

53

Leaderboard Threshold (Approx.)
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Bar labels represent GXE statistics. To compare across generations, we plot the heuristic baseline’s
performance and the average Glicko-1 of the bottom 100 players on the Top 500 global leaderboard.

nonsensical decisions in long battles — particularly when the opponent is playing with a rare team315
or uncommon strategy.316

5.4 Synthetic Data from Self-Play317
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Figure 10: Evaluating Memory. A
200M policy battles with varying con-
text lengths against a version of itself
that can recall the entire battle.

Our offline dataset yields policies capable of collecting318
useful human-level gameplay on the public ladder. These319
agents are now actively contributing to each day’s batch of320
new replays and grow the dataset alongside human play-321
ers. In principle, we could wait to retrain new policies on a322
larger dataset, but on the timescale of a single project this323
data is not making a significant difference. We can speed324
up this process by deploying agents on a local PS ladder,325
adding their trajectories to the human gameplay dataset,326
and then retraining from scratch with offline RL (Figure327
1). However, we need to be wary of a shift between the328
frequency of teams and opponents implied by the new of-329
fline dataset and the true distribution on PS. One approach330
would be to try and generate data that is clearly different331
from the original set, so that when conditioned on a real332
battle, our model’s implicit estimate of p(πo, co | τ0:i)333
should be unchanged at small i. We do this by hosting334
local ladders with the Variety team set and using a mix of many checkpoints of all our agents —335
prioritizing diversity over realism. The hope is that this data may still be valuable for model-free336
learning of Pokémon’s stochastic transitions. The SyntheticRL models are Large-RL (DPG) (Eq. 2)337
policies trained from scratch. SyntheticRL-V0 trains on “synthetic” variety data for generations 1338
and 3 only, for a total dataset size of 2M trajectories. It is a promising improvement over our previous339
policies against heuristics (Fig. 20), BC-RNN (with win rates as high as 95% in Gen1OU and 85% in340
Gen3OU), Large-IL (Fig. 8), and humans (Fig. 9). SyntheticRL-V1 takes this dataset and adds gen-341
erations 2 and 4 to reach a total of 3M trajectories. Playing under the username TheDealyTriad,342
it ends its evaluation rank #46 on the Gen1OU ladder. While leaderboard rankings are quite noisy5,343
its results in Figure 9 are safely human-level by any standard.344

5The leaderboards are sorted by PS’s ELO metric. Glicko-1 considers the full history of battles under the same username
and is a much better metric for our purposes. By Glicko-1, SyntheticRL-V1 would not be a top 50 player, but certainly
deserves to be on the leaderboard, with a Glicko-1 of 1699 after 171 battles.
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We might wonder whether any of the caution of the “synthetic” data process was necessary. We345
test this by letting SyntheticRL-V1 battle itself with the more realistic Replay team set until the346
offline dataset is 5M trajectories. Afterwards, we resume training for another 200k gradient steps.347
As expected, the resulting model is significantly better against itself (even when accounting for the348
extra training budget by continuing on the original dataset) (Appendix Table 4), but this translates349
to inconsistent improvement against real players in Figure 9.350

5.5 LLM-Agents and Heuristic Search351

Foul Play (Mariglia, 2024) is an advanced engine for CPS that uses a custom high-throughput352
simulator to search over Pokémon’s game tree. With extensive domain knowledge, it implements353
much of the behavior we would hope our policies can learn from data. For example, it infers its354
opponent’s team during battles using PS usage statistics, much like we do during dataset construc-355
tion. We challenge the engine to matches of 300 battles per generation on the Replay team set, with356
results shown in Figure 11a. PokéLLMon (Hu et al., 2024a) is a more general approach that takes357
advantage of Pokémon ’s extensive web presence to build an LLM-Agent. Prompts are constructed358
with Pokémon type matchups and damage calculations similar to our heuristic agents, and the LLM359
is tasked with deciding between the available moves. Hu et al. (2024b) evaluate in a random battles360
tier and note that the agent struggles with long-term planning; this effect is more noticeable in the361
longer battle lengths of our setting. We tune the general Pokémon system prompt to be specific to362
the tier and experiment with changing the LLM backend from the original GPT-4 (1106-preview)363
to GPT-4o-mini and the o1-mini reasoning model. Results against these modifications are listed in364
Figure 11b.365
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(a) Foul Play Evaluation. Using both available
search algorithms and poke-engine v0.31.0.

PokéLLMon Matchup Win Rate (%)

Small-IL vs. GPT-4 in Gen1OU 73
Large-RL vs. GPT-4 in Gen1OU 76
SynRL2 vs. GPT-4 in Gen1OU 92
SynRL2 vs. GPT-4o mini in Gen1OU 96
SynRL2 vs. o1-mini in Gen1OU 85
Large-RL vs. GPT-4 in Gen4OU 68
SynRL2 vs. GPT-4o mini in Gen4OU 92

(b) PokéLLMon Matchup. Evaluations use a
custom system prompt for early-gen OU and
vary the LLM backend from the original paper.

6 Conclusion366

Our work presents a scalable offline RL approach for Competitive Pokémon Singles, and shows367
that sequence models trained on historical gameplay data can be competitive with humans in the368
rulesets of Generations 1-4 OverUsed. Our PS trajectory dataset will continue to grow over time,369
and may be of broader interest in offline RL as a way to evaluate new research on a complex task. In370
CPS more specifically, there may be significant room for improvement by iterating on the learning371
update, architecture, and self-play data generation techniques to reach expert-level performance.372

References373

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint374
arXiv:1607.06450, 2016.375

10



Online Pokémon with Offline RL

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shi-376
mon Whiteson. A survey of meta-reinforcement learning. arXiv preprint arXiv:2301.08028,377
2023.378

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning:379
Learning fast without a model. arXiv preprint arXiv:2101.05982, 2021.380

Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207,381
2019.382

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint383
arXiv:1205.4839, 2012.384

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep385
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of386
the North American chapter of the association for computational linguistics: human language387
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.388

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta learning of exploration. arXiv preprint389
arXiv:2008.02598, 2020.390

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas391
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An392
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint393
arXiv:2010.11929, 2020.394

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl 2: Fast395
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.396

Foul Play, 2019. URL https://github.com/pmariglia/foul-play.397

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.398
Advances in neural information processing systems, 34:20132–20145, 2021.399

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-400
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.401

Future Sight AI, 2020. URL https://www.pokemonbattlepredictor.com/FSAI/402
how-fsai-works.403

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why404
generalization in rl is difficult: Epistemic pomdps and implicit partial observability. Advances in405
neural information processing systems, 34:25502–25515, 2021.406

Jake Grigsby, Linxi Fan, and Yuke Zhu. AMAGO: Scalable in-context reinforcement learning for407
adaptive agents. In The Twelfth International Conference on Learning Representations, 2024.408
URL https://openreview.net/forum?id=M6XWoEdmwf.409

Varun Ramesh Harrison Ho, 2014. URL https://varunramesh.net/content/410
documents/cs221-final-report.pdf.411

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado412
Van Hasselt. Multi-task deep reinforcement learning with popart. In Proceedings of the AAAI413
Conference on Artificial Intelligence, volume 33, pp. 3796–3803, 2019.414

Sihao Hu, Tiansheng Huang, and Ling Liu. Pokellmon: A human-parity agent for pokemon battles415
with large language models, 2024a. URL https://arxiv.org/abs/2402.01118.416

Sihao Hu, Tiansheng Huang, and Ling Liu. Pokéllmon: A human-parity agent for pokémon battles417
with large language models. arXiv preprint arXiv:2402.01118, 2024b.418

11

https://github.com/pmariglia/foul-play
https://www.pokemonbattlepredictor.com/FSAI/how-fsai-works
https://www.pokemonbattlepredictor.com/FSAI/how-fsai-works
https://www.pokemonbattlepredictor.com/FSAI/how-fsai-works
https://openreview.net/forum?id=M6XWoEdmwf
https://varunramesh.net/content/documents/cs221-final-report.pdf
https://varunramesh.net/content/documents/cs221-final-report.pdf
https://varunramesh.net/content/documents/cs221-final-report.pdf
https://arxiv.org/abs/2402.01118


Under review for RLC 2025, to be published in RLJ 2025

Dan Huang and Scott Lee. A self-play policy optimization approach to battling pokémon. In 2019419
IEEE Conference on Games (CoG), pp. 1–4, 2019. DOI: 10.1109/CIG.2019.8848014.420

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A Ortega, Yee Whye Teh, and421
Nicolas Heess. Meta reinforcement learning as task inference. arXiv preprint arXiv:1905.06424,422
2019.423

Seth Karten, Andy Luu Nguyen, and Chi Jin. Pokechamp: an expert-level minimax language424
agent for competitive pokemon, 2025a. URL https://openreview.net/forum?id=425
zi8YBcmXqA.426

Seth Karten, Andy Luu Nguyen, and Chi Jin. Pokechamp: an expert-level minimax language427
agent for competitive pokemon, 2025b. URL https://openreview.net/forum?id=428
zi8YBcmXqA.429

Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. Stabilizing off-policy q-learning via430
bootstrapping error reduction, 2019.431

Thomas Lampe, Abbas Abdolmaleki, Sarah Bechtle, Sandy H Huang, Jost Tobias Springenberg,432
Michael Bloesch, Oliver Groth, Roland Hafner, Tim Hertweck, Michael Neunert, et al. Mastering433
stacking of diverse shapes with large-scale iterative reinforcement learning on real robots. In434
2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 7772–7779. IEEE,435
2024.436

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-437
ment learning: State-of-the-art, pp. 45–73. Springer, 2012.438

Scott Lee and Julian Togelius. Showdown ai competition. In 2017 IEEE Conference on Computa-439
tional Intelligence and Games (CIG), pp. 191–198, 2017. DOI: 10.1109/CIG.2017.8080435.440

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-441
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.442

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,443
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv444
preprint arXiv:1509.02971, 2015.445

P. Mariglia. Foul play - a competitive pokémon ai research project. https://github.com/446
pmariglia/foul-play, 2024. Accessed: 2025-02-27.447

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-448
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.449

Samer Nashed and Shlomo Zilberstein. A survey of opponent modeling in adversarial domains.450
Journal of Artificial Intelligence Research, 73:277–327, 2022.451

H. Sahovic. poke-env: A python interface for training reinforcement learning agents in pokémon452
battles. https://github.com/hsahovic/poke-env, 2020. Accessed: 2025-02-27.453

Nicholas R. Sarantinos. Teamwork under extreme uncertainty: Ai for pokemon ranks 33rd in the454
world, 2023. URL https://arxiv.org/abs/2212.13338.455

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy456
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.457

Sam Shleifer, Jason Weston, and Myle Ott. Normformer: Improved transformer pretraining with458
extra normalization. arXiv preprint arXiv:2110.09456, 2021.459

12

https://openreview.net/forum?id=zi8YBcmXqA
https://openreview.net/forum?id=zi8YBcmXqA
https://openreview.net/forum?id=zi8YBcmXqA
https://openreview.net/forum?id=zi8YBcmXqA
https://openreview.net/forum?id=zi8YBcmXqA
https://openreview.net/forum?id=zi8YBcmXqA
https://github.com/pmariglia/foul-play
https://github.com/pmariglia/foul-play
https://github.com/pmariglia/foul-play
https://github.com/hsahovic/poke-env
https://arxiv.org/abs/2212.13338


Online Pokémon with Offline RL

Jost Tobias Springenberg, Abbas Abdolmaleki, Jingwei Zhang, Oliver Groth, Michael Bloesch,460
Thomas Lampe, Philemon Brakel, Sarah Bechtle, Steven Kapturowski, Roland Hafner, et al. Of-461
fline actor-critic reinforcement learning scales to large models. arXiv preprint arXiv:2402.05546,462
2024.463

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar464
Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, et al.465
Human-timescale adaptation in an open-ended task space. arXiv preprint arXiv:2301.07608,466
2023.467

Technical Machine, a Pokemon AI, 2010. URL https://github.com/davidstone/468
technical-machine.469

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,470
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-471
tion processing systems, 30, 2017.472

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,473
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.474
arXiv preprint arXiv:1611.05763, 2016.475

Jett Wang. Winning at pokémon random battles using reinforcement learning. Master of engineering476
thesis, Massachusetts Institute of Technology, Cambridge, MA, February 2024. Submitted to the477
Department of Electrical Engineering and Computer Science.478

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E479
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized480
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.481

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.482
arXiv preprint arXiv:1911.11361, 2019.483

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe484
Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing attention485
entropy collapse. In International Conference on Machine Learning, pp. 40770–40803. PMLR,486
2023.487

Alex Zhang, Ananya Parashar, and Dwaipayan Saha. A simple framework for intrinsic reward-488
shaping for rl using llm feedback. 2023. URL https://alexzhang13.github.io/489
assets/pdfs/Reward_Shaping_LLM.pdf.490

Luisa Zintgraf, Sam Devlin, Kamil Ciosek, Shimon Whiteson, and Katja Hofmann. Deep interac-491
tive bayesian reinforcement learning via meta-learning. In Proceedings of the 20th International492
Conference on Autonomous Agents and MultiAgent Systems, pp. 1712–1714, 2021a.493

Luisa Zintgraf, Sebastian Schulze, Cong Lu, Leo Feng, Maximilian Igl, Kyriacos Shiarlis, Yarin494
Gal, Katja Hofmann, and Shimon Whiteson. Varibad: Variational bayes-adaptive deep rl via495
meta-learning. Journal of Machine Learning Research, 22(289):1–39, 2021b.496

A AI in Pokémon497

A.1 Tree Search498

Tree search agents use the Pokémon game simulator to try out various actions and evaluate the re-499
sulting game states with heuristic score functions (Technical Machine, a Pokemon AI; Harrison Ho,500
2014; Foul Play). Other approaches use deep learning to model value functions (Sarantinos, 2023;501
Lee & Togelius, 2017). Notably, Future Sight AI trains an imitation learning policy and value func-502
tion on replays scraped from Pokémon Showdown.503

13

https://github.com/davidstone/technical-machine
https://github.com/davidstone/technical-machine
https://github.com/davidstone/technical-machine
https://alexzhang13.github.io/assets/pdfs/Reward_Shaping_LLM.pdf
https://alexzhang13.github.io/assets/pdfs/Reward_Shaping_LLM.pdf
https://alexzhang13.github.io/assets/pdfs/Reward_Shaping_LLM.pdf


Under review for RLC 2025, to be published in RLJ 2025

vs
. B

as
icS

wi
tc

he
r

vs
. B

ug
Ca

tc
he

r

vs
. E

KR
isk

y

vs
. E

m
er

al
dK

ai
zo

vs
. G

en
1G

oo
dA

I

vs
. G

en
1T

ra
in

er

vs
. G

ru
nt

vs
. G

ym
Le

ad
er

vs
. K

ai
zo

Pl
us

vs
. M

ax
BP

Ba
se

lin
e

vs
. P

ok
eE

nv
He

ur
ist

ic

vs
. R

an
do

m
Ba

se
lin

e

vs
. S

m
og

on
Sw

itc
he

r

BasicSwitcher
BugCatcher

EKRisky
EmeraldKaizo
Gen1GoodAI
Gen1Trainer

Grunt
GymLeader

KaizoPlus
MaxBPBaseline

PokeEnvHeuristic
RandomBaseline
SmogonSwitcher

0 20 40 60 80 100
Win Rate (%)

Figure 12: Heuristic Round-Robin. Entries
denote the win rate of the row player against the
column player in 500 battles under the Variety
team set.

Gen1OU Gen3OU Gen4OU Gen7
Random

Gen9
Random

1200

1250

1300

1350

1400

1450

1500

Gl
ick

o-
1 

Ra
tin

g

GXE:
26.7%

GXE:
21.8%

GXE:
31.6%

GXE:
39.7%

GXE:
41.2%

Basic Heuristic Ratings

Figure 13: PokeEnv Heuristics vs. Humans.
Early-Gen OUs are unique games that priori-
tize long-horizon control over memorization of
damage matchups between pokémon.

A.1.1 RL Self-Play504

Prior works use an online self-play process by collecting on-policy data against their own policy.505
Huang & Lee (2019) train PPO (Schulman et al., 2017) self-play agents without tree search. They506
achieve a 1677 Glicko-1 and 72% GXE on the Gen7RandomBattle Pokémon Showdown ladder.507
Wang (2024) augments PPO with MCTS at test-time and achieve a 1756 Glicko-1 and 79.5% GXE508
on the Gen4RandomBattle Pokémon Showdown ladder.509

A.1.2 Large Langauge Model Agents510

The generalization and reasoning capacities of large language models (LLMs) allow them to digest511
and act on provided Pokémon game states — which involve many categorical variables that can be512
formatted as natural language. PokeLLMon (Hu et al., 2024a) conditions the LLM on a history513
of states, actions, and turn results to select the next action. They also use retrieval-augmented514
generation from a Pokémon knowledge database to inform the LLM’s decisions. They achieve a515
49% win rate on the Gen8 Pokémon Showdown ladder but do not report Glicko-1 or GXE statistics516
that control for matchmaking bias. Karten et al. (2025a) combine an LLM with an Expectiminimax517
algorithm to achieve a 1500 ELO in the Gen9OU Pokémon Showdown ladder and a 76% win rate518
against PokeLLMon. By using an LLM to select actions and evaluate states, they create an effective519
minimax tree search agent. Finally, Zhang et al. (2023) use an LLM for reward design to improve520
sample efficiency when training a DQN policy against heuristic baselines.521

B Additional Environment Details522

B.1 Heuristic Opponents523

In an attempt to evaluate a variety of Pokémon fundamentals, we develop an array of heuristic oppo-524
nents. These policies are unable to cheat by accessing unrevealed information about their opponent’s525
team, but are otherwise free to use ground-truth knowledge of Pokémon’s type matchups, damage526
formula, and similar information to select actions. Figure 12 summarizes the relative performance527
of these heuristics. Ultimately, we find it difficult to generate meaningful diversity from this larger528
set, and choose to focus on six heuristics:529
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• RandomBaseline selects a legal move (or switch) uniformly at random, and measures the most530
basic level of learning early in training runs.531

• Gen1BossAI emulates the decision making of opponents in the original Pokemon Generation 1532
games. It usually chooses random moves. However, it prefers using status boosting moves on the533
second turn and super effective moves if it has any.534

• Grunt is a maximally offensive player that selects the move that will deal the highest damage535
against the current opposing Pokemon using Pokemon’s damage equation and a type chart, and536
selects the best matchup by type when forced to switch. By using the damage formula instead537
of the listed base power of each move, it creates an improved version of a common heuristic in538
Pokémon AI work.539

• GymLeader improves upon Grunt by additionally taking into account factors such as health. It540
prioritizes using stat boosts when the current Pokemon is very healthy, and heal moves when the541
current Pokemon is unhealthy.542

• PokeEnv is the SimpleHeuristicsPlayer baseline provided by Sahovic (2020). It chooses543
the highest damage move using each move’s base power, accuracy, and type. It attempts to cal-544
culate favorable matchups and switches Pokemon when a switch is calculated to be optimal. It545
prioritizes stat boosts when the current Pokemon is healthy.546

• EmeraldKaizo is an adaptation of the AI in Emerald Kaizo, a Pokemon Emerald ROM hack547
intended to be as difficult as possible. The game’s online popularity has led to a community effort548
to document its decision-making in extensive detail. We use this documentation to re-implement549
the policy. Actions are selected by scoring the available options against a rule set that includes550
handwritten conditional statements for a large portion of the moves in the game.551

B.2 Replay Reconstruction552

Pokémon Showdown generates a log (“replay”) for every battle, capturing move selections and553
their effects. However, the raw replay lacks two crucial elements: (1) the complete movesets for554
each Pokémon on a player’s team and (2) the observation states for each turn. Figure 14 shows555
a snippet of a raw replay downloaded from the Pokémon Showdown server. The replay can be556
viewed in a browser with the following link: https://replay.pokemonshowdown.com/557
gen4nu-776588848.558

To extract complete battle information, we follow a process visualized by a simpler example by559
Figure 15. For each turn, we add newly revealed information to the running estimation of the team560
stats. By the end of the battle, some details may still be missing. We infer these using Pokémon561
Showdown statistics. Since Player A has full knowledge of their own team, we will reconstruct a562
fully observed perspective for them by filling the missing information.563

After reconstruction, we will obtain: (1) the complete team composition for each player and (2)564
per-turn observations from one player’s point of view. Figure 17 uses the above linked replay as565
an example — where the left side shows the initially observed team, and the right side shows the566
inferred full team after reconstruction. Finally, Figure 18 shows the fully reconstructed replay file,567
containing all necessary information for model training. The dataset extends back to the early years568
of Pokémon Showdown (Figure 16) and in some cases needs to account for changes in the PS log569
API over that time.570

C Model Training Details571

C.1 Reward Design572

In each turn, the rewards is composed by four terms:573
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Raw Replay: [Gen 4] NU (#776588848)

id:		gen4nu-776588848
format:		[Gen	4]	NU
players:		- King	Wynaut - lt51np	confide

log:		

… (boilerplate pre-battle messages cut for space)

|start
|switch|p1a:	Piloswine|Piloswine,	M|100/100
|switch|p2a:	Electrode|Electrode|100/100

|turn|1|
|move|p2a:	Electrode|Rain Dance|p2a:	Electrode|-weather|RainDance
|move|p1a:	Piloswine|Earthquake|p2a:	Electrode|-supereffective|p2a:	Electrode|-damage|p2a:	Electrode|0	
fnt|-damage|p1a:	Piloswine|91/100|[from]	item:	Life	Orb|faint|p2a:	Electrode||-
weather|RainDance|[upkeep]|upkeep|
|switch|p2a:	Relicanth|Relicanth,	F|100/100

|turn|2|
|switch|p1a:	Politoed|Politoed,	M|100/100
|move|p2a:	Relicanth|Aqua Tail|p1a:	Politoed|-immune|p1a:	Politoed|[msg]|[from]	ability:	Water	Absorb|
|-weather|RainDance|[upkeep]|upkeep

|turn|3|
|move|p2a:	Relicanth|Stone Edge|p1a:	Politoed|-damage|p1a:	Politoed|42/100|-damage|p2a:	
Relicanth|91/100|[from]	item:	Life	Orb
|move|p1a:	Politoed|Surf|p2a:	Relicanth|-damage|p2a:	Relicanth|33/100||-weather|RainDance|[upkeep]
|-heal|p1a:	Politoed|48/100|[from]	item:	Leftovers|upkeep

… (cut for space)

turn|21|
|move|p1a:	Magmortar|Focus Blast|p2a:	Skuntank|-damage|p2a:	Skuntank|0	fnt|faint|p2a:	Skuntank|
|win|King Wynaut

uploadtime:		1531753033
views:		17

Figure 14: A real Gen4 NU replay file downloaded from PS server.
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Figure 15: Simplified Replay Reconstruction for the POV of Player A in a Gen1OU example with
teams of 3 Pokémon .

Figure 16: Raw Replay Frequency by Battle Date.

rmetamon = rhp + 0.5 ∗ rstat + rfaint + 100 ∗ rwin

HP Reward rhp: Calculated by the damage dealt to the opponent’s Pokémon plus the HP restored574
by the active Pokémon, both measured as a percentage.575

Status Reward rstat: Calculated by the status given to the opponent pokemon minus the status576
received by the active Pokémon.577

Fainted Reward rfaint: Calculated by the number of opposing Pokémon knocked out during the578
turn minus the number of fainted Pokémon in the player’s team.579

Win Reward rwin: Assigned a value of 1 if the player wins the game and -1 if they lose.580
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Replay: [Gen 4] NU #776588848
Player 1’s 

Observed Team
Player 1’s 

Inferred Team

Figure 17: A real Gen4 NU example of the observed team and the inferred team after replay recon-
struction.
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Reconstructed Replay: [Gen 4] NU (#776588848)
King Wynaut vs. lt51np confide (from POV of King Wynaut)

Played July 16th, 2018

Text Obs #0:	<gen4nu>	<anychoice>	<player>	piloswine lifeorb oblivious	ground	ice	noeffect nostatus
<move> avalanche	ice	physical	<move> earthquake	ground	physical	<move> stealthrock rock	status	<move>
stoneedge rock	physical	<switch> haunter	lifeorb levitate	<moveset>	shadowball sludgebomb substitute	
thunderbolt	<switch> jynx focussash forewarn	<moveset>	focusblast grassknot lovelykiss nastyplot <switch>
magmortar choicescarf flamebody <moveset>	fireblast flamethrower	focusblast sleeptalk <switch> magneton	
leftovers	magnetpull <moveset>	explosion	flashcannon substitute	thunderbolt	<switch> politoed leftovers	
waterabsorb <moveset>	encore	perishsong protect	surf	<opponent>	electrode	unknownitem unknownability
electric	notype noeffect nostatus <conditions>	noweather noconditions noconditions <player_prev>	nomove
<opp_prev>	nomove

(observations also include an array of numerical features)

Action #0:	1 (à 2nd <move> à earthquake)
Reward #1: 0.91

Text Obs #1:	<gen4nu>	<anychoice>	<player>	piloswine lifeorb oblivious	ground	ice	noeffect nostatus <move>
avalanche	ice	physical	<move> earthquake	ground	physical	<move> stealthrock rock	status	<move> stoneedge
rock	physical	<switch> haunter	lifeorb levitate	<moveset>	shadowball sludgebomb substitute	thunderbolt	
<switch> jynx focussash forewarn	<moveset>	focusblast grassknot lovelykiss nastyplot <switch> magmortar
choicescarf flamebody <moveset>	fireblast flamethrower	focusblast sleeptalk <switch> magneton	leftovers	
magnetpull <moveset>	explosion	flashcannon substitute	thunderbolt	<switch> politoed leftovers	waterabsorb
<moveset>	encore	perishsong protect	surf	<opponent>	relicanth unknownitem unknownability rock	water	
noeffect nostatus <conditions>	raindance noconditions noconditions <player_prev>	earthquake	<opp_prev>	
nomove

Action #1:	8 (à 5th <switch> à politoed)
Reward #2: 0.00

Text Obs #2:	<gen4nu>	<anychoice>	<player>	politoed leftovers	waterabsorb notype water	noeffect nostatus
<move> encore	normal	status	<move> perishsong normal	status	<move> protect	normal	status	<move> surf	
water	special	<switch> haunter	lifeorb levitate	<moveset>	shadowball sludgebomb substitute	thunderbolt	
<switch> jynx focussash forewarn	<moveset>	focusblast grassknot lovelykiss nastyplot <switch> magmortar
choicescarf flamebody <moveset>	fireblast flamethrower	focusblast sleeptalk <switch> magneton	leftovers	
magnetpull <moveset>	explosion	flashcannon substitute	thunderbolt	<switch> piloswine lifeorb oblivious	
<moveset>	avalanche	earthquake	stealthrock stoneedge <opponent>	relicanth unknownitem unknownability rock	
water	noeffect nostatus <conditions>	raindance noconditions noconditions <player_prev>	nomove <opp_prev>	
aquatail

Action #2:	3 (4th <move> à surf)
Reward #3:	0.15

…	(cut for space)
Text Obs #25:	<gen4nu>	<anychoice>	<player>	magmortar choicescarf flamebody fire	notype noeffect
nostatus <move> fireblast fire	special	<move> flamethrower	fire	special	<move> focusblast fighting	special	
<move> sleeptalk normal	status	<switch> <blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	
<switch> <blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<switch> <blank>	<blank>	<blank>	
<blank>	<blank>	<blank>	<blank>	<blank>	<switch>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	
<blank>	<switch>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<blank>	<opponent>	skuntank
unknownitem unknownability dark	poison	noeffect nostatus <conditions>	noweather noconditions noconditions
<player_prev>	focusblast <opp_prev>	crunch

Action #25:	2 (3rd <move> à focusblast)
Reward #26:		101.91

Figure 18: A real Gen4 NU example of the reconstructed replay file.
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The reward function is designed to give some shaping to help the offline filter w (Equation 2) learn581
to assign unique weights over short horizons, but be dominated by the binary win/loss outcome we582
ultimately care about. We do find some qualitative evidence of models exploiting the shaped terms.583
For example, our agents tend to cling to life in clearly lost positions by using recovery moves.584

C.2 Training Hyperparameters585

Small Medium Large
Learning Rate 1e-4
Linear LR Warmup Steps 1000
Target Critic τ 0.004
TD Loss Coeff 10
Grad Clip 1.5
L2 Coeff 1e-4
Batch Size 32 40 48
Actor Activation Leaky ReLU
Actor Layers 2
Actor Hidden Dimension 300 400 512
Agent Popart (Hessel et al., 2019) True
Critic Ensemble Size (Chen et al., 2021) 4
Critic Layers 2
Critic Activation Leaky ReLU
Critic Hidden Dimension 300 400 512
Turn Encoder Token Dim 100 100 160
Turn Encoder Layers 3 3 5
Turn Encoder Summary Tokens 4 6 11
Turn Encoder Attention Heads 5 5 8
Turn Encoder Numerical Tokens 6
Causal Transformer Layers 3 6 9
Causal Transformer Attention Heads 8 8 20
Causal Transformer FF Dim. 2048 3072 5120
Causal Transformer Model Dim. 512 768 1280
NormFormer (Shleifer et al., 2021) True
σReparam (Zhai et al., 2023) True
Causal Transformer Normalization LayerNorm (Ba et al., 2016)
Causal Transformer Activation Leaky ReLU

Table 2: Training Hyperparameters by Model Size. In reference to the architecture in Figure 5
and the AMAGO training configuration (Grigsby et al., 2024).

D Additional Figures586
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Model Name PS Username

Small-IL SmallSparks

Large-IL DittoIsAllYouNeed

Large-RL Montezuma2600

SyntheticRL-V0 Metamon1

SyntheticRL-V1 TheDeadlyTriad

SyntheticRL-V1
+ Self-Play ABitterLesson

Table 3: Public Ladder Usernames. Models are tied to unique usernames throughout evaluations,
and we use the official PS account statistics for results in Figure 9.
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Figure 19: Heuristic Composite Scores. The average win rate against six of our heuristic opponents
creates a data-agnostic reference point for Gens 1-4 OU, UU, NU, and Ubers.
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Figure 20: Heuristic Composite Learning Curves. Performance converges quickly but shows no
sign of degrading over long training runs. BC and offline RL form two clear clusters with Lactor
changes and model size having no clear impact.

Gen1OU Gen2OU Gen3OU Gen4OU
SyntheticRL-V1+SelfPlay @ 1.2M Steps 63.6% 59.6% 61.4% 59%

Synthetic-V1 @ 1.2M Steps 50% 53.8% 48.4% 48.2%

Table 4: SyntheticRL-V2 Self-Play Win Rates. We evaluate a checkpoint fine-tuned on a dataset
of self-play battles against the original version (at 1M training steps). We control for the additional
training steps with a second version that maintains its original dataset. Sample size of 500 games.
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Figure 21: BC-RNN Accuracy. Pokémon action labels are high-entropy and we find Top-2 accuracy
to be a more useful metric for tuning. “BaseRNN” is 3.5M params, “MiniRNN” ablates to 800k,
and “WinsOnlyRNN” follows the filtered BC approach of only imitating decisions from the POV of
the winning player (cutting its train/val sets in half).
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Figure 22: Underfitting on the PS Replay Dataset. We report the train-set accuracy of (small)
recurrent BC policies on increasingly large datasets of human gameplay. Error bars denote the
maximum and minimum over four random subsets. Model sizes are reported by their hidden state
and number of recurrent layers
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Figure 23: Transformer IL and RL vs. RNN BC. We evaluate the performance of Transformer
policies trained on the offline replay dataset against a smaller RNN-based model designed for CPU-
only inference. The RL updates do not display meaningfully distinct performance, but outperform
BC at all model sizes.

0.0 0.2 0.4 0.6 0.8 1.0
Gradient Steps 1e6

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ac
to

r L
os

s (
NL

L)

Imitation Loss by Model Size
Model (Parameters)

Small-IL (14M)
Medium-IL (50M)
Large-IL (195M)

Figure 24: Transformer IL Train Loss Curves.
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Figure 25: Q-functions as a win estimate. We track critic value predictions (for γ = .999) during
battles across a 24-hour period of the Large-RL model’s gameplay on the PS ladder. If we simplify
by ignoring the reward function’s small shaping terms and the discount favor, we can plot these
values as a more interpretable estimate win probability. We mark these value series by their true
outcome. Small error bars denote two standard deviations over the ensemble of 4 critics.
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