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Abstract
Out-of-distribution (OOD) detection is essential
for enhancing the robustness and security of deep
learning models in unknown and dynamic data
environments. Gradient-based OOD detection
methods, such as GAIA, analyse the explana-
tion pattern representations of in-distribution (ID)
and OOD samples by examining the sensitivity
of model outputs w.r.t. model inputs, resulting
in superior performance compared to traditional
OOD detection methods. However, we argue that
the non-zero gradient behaviors of OOD samples
do not exhibit significant distinguishability, espe-
cially when ID samples are perturbed by random
perturbations in high-dimensional spaces, which
negatively impacts the accuracy of OOD detec-
tion. In this paper, we propose a novel OOD
detection method called S & I based on layer
Splitting and gradient Integration via Adversarial
Gradient Attribution. Specifically, our approach
involves splitting the model’s intermediate lay-
ers and iteratively updating adversarial examples
layer-by-layer. We then integrate the attribution
gradients from each intermediate layer along the
attribution path from adversarial examples to the
actual input, yielding true explanation pattern rep-
resentations for both ID and OOD samples. Ex-
periments demonstrate that our S & I algorithm
achieves state-of-the-art results, with the average
FPR95 of 29.05% (ResNet34)/38.61% (WRN40)
and 37.31% (BiT-S) on the CIFAR100 and Im-
ageNet benchmarks, respectively. Our code is
available at: https://github.com/LMBTough/S-I
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1. Introduction
Deep neural networks have achieved remarkable success in
a variety of domains, including autonomous driving (Chen
et al., 2021) and medical diagnosis (Yadav & Jadhav, 2019).
However, their performance and reliability are strongly influ-
enced by the assumption that the test data originates from the
same distribution as the training data. In practical applica-
tions, this assumption is frequently violated, as models often
face inputs that deviate significantly from the in-distribution
(ID) training data. Such inputs, known as out-of-distribution
(OOD) samples, present a major challenge for deep neural
networks, which can produce overconfident yet incorrect
predictions.

Therefore, performing OOD detection is essential for ensur-
ing the safe and reliable deployment of deep neural networks
in real-world applications. Currently post-hoc OOD detec-
tion methods can be mainly divided into three categories:
output-based methods (Hsu et al., 2020; Liu et al., 2020;
Hendrycks & Gimpel, 2016; Liang et al., 2017), feature
representation-based methods (Sun et al., 2021; Sastry &
Oore, 2020; Song et al., 2022) and gradient-based meth-
ods (Huang et al., 2021; Lee & AlRegib, 2020; Igoe et al.,
2022; Chen et al., 2023). Among them, output-based meth-
ods rely on the confidence score of the model output to
determine whether the input sample belongs to the training
data distribution, while feature representation-based meth-
ods detect OOD samples by analyzing the feature vectors
of the intermediate layers of the neural network. However,
compared with gradient-based methods that identify OOD
samples by calculating the gradient information of input
samples w.r.t. model parameters (or a certain layer output),
they are easily deceived by some OOD samples with high
output similarity or easily affected by the quality of fea-
ture representation. Therefore, in this paper we focus on
gradient-based methods.

As one of the mainstream gradient-based methods, the
GAIA (Chen et al., 2023) algorithm investigates the ex-
planation pattern representations of ID and OOD samples
from the sensitivity of model outputs w.r.t model inputs,
i.e., the attribution gradients (Simonyan, 2013). Specifically,
by back-propagating the attribution gradient ∂f(x;θ)

∂x of the
model output f(x; θ) w.r.t. the input sample x on each inter-
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Figure 1. Algorithm flowchart. The gradient distribution (Y-axis frequency) of OOD samples investigated by GAIA tends to exhibit
non-zero values (X-axis attribution gradient). We argue that the abnormal gradients induced by perturbations in input data cause feature
components that should be predicted as ID to be incorrectly classified as OOD, resulting in irregular gradient distributions. By performing
multiple adversarial attacks to analyze the feature distribution shifts from ID adversarial examples to OOD input samples, we can
progressively identify high-confidence non-zero gradients and obtain true explanation pattern representations denoted by the shaded
regions.

mediate layer, GAIA considers input samples with a large
number of non-zero attribution gradients as OOD samples.
As shown in Fig. 2, we find that for OOD samples, the at-
tribution map often does not focus on certain key features
and shows a scattered pattern, which means that the model
has no clear understanding of OOD samples. Therefore, we
argue that this phenomenon indicates that the model may
have higher sensitivity (i.e., larger gradient value) to any
feature under an unseen distribution, and even some irrele-
vant details will get high gradient values. This characteristic
makes the non-zero gradient behavior of OOD samples not
significantly differentiating, especially when ID samples are
subject to random perturbations in high-dimensional space.
At this time, the gradient fluctuation caused by small input
changes of the model will make it difficult for the gradient
sensitivity to stably reflect the actual relationship between
the model output and the input, affecting the distinction
between the explanation pattern representations of ID and
OOD samples.

In this paper, to address this shortcoming, for the first time,
we investigate the explanation pattern representation of
ID and OOD samples from the perspective of adversar-
ial attacks (Kurakin et al., 2018). Specifically, we intro-
duce adversarial examples to artificially add perturbations
to input samples. Then, we use adversarial examples as
baselines and gradually integrating the adversarial gradi-

Figure 2. Attribution visualization. The left two images (label
’tulip’) represent the ID input sample and its attribution map, while
the right two images (label ’0’) represent the OOD input sample
and its attribution map.

ent ∂L(f(xi;θ))
∂xi

of the loss function over the model output
L(f(xi; θ)) w.r.t the i-th iteration adversarial example xi

along the attribution path from the baseline to the actual
input, thereby smoothing the volatility of the attribution
gradient and reflecting the true explanation pattern represen-
tation.

Besides, it is worth emphasizing that traditional gradient-
based methods such as GAIA assume that the influence of
each intermediate layer of the model on the input features
is uniform and linearly cumulative. In fact, the sensitiv-
ity of intermediate features in different layers to the input
may be highly heterogeneous, with early layers focusing
on low-level edge or texture information and later layers
focusing on high-level semantic features. In deeper neural
networks, this may introduce unstable gradient explosions
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or cumulative errors in inter-layer features, reducing the
representation accuracy of the explained pattern. To address
this problem, we introduce the concept of layer splitting
for the first time. Assuming that the neural network has
a total of l intermediate layers, we split the current j-th
intermediate layer from the subsequent (j + 1 ∼ l)-th inter-
mediate layer while updating the adversarial example layer
by layer. Based on these insights, we propose a novel OOD
detection method called S & I based on layer Splitting and
gradient Integration via Adversarial Gradient Attribution.
Comprehensive experiments on both CIFAR100 and large-
scale ImageNet-1K benchmarks validate the effectiveness of
our S & I algorithm. Fig. 1 shows the algorithm flowchart.

Our key contributions are summarized as follows:

• Given the observation that the attribution gradients
of OOD samples are not significantly distinguishable,
in order to reduce the abnormal gradient fluctuations
caused by random perturbations in ID samples in high-
dimensional space, we first introduce adversarial ex-
amples to artificially add perturbations to the input
samples for OOD detection, thereby reflecting ture
explanation pattern representations.

• We, for the first time, propose the concept of layer
splitting and adversarial attribution gradient integra-
tion for OOD detection. By decomposing intermediate
layers and iteratively updating adversarial examples
layer-by-layer, we integrate the attribution gradients of
each iteration along the attribution path from adversar-
ial examples to the actual input sample. We also give
the theoretical proof of our algorithm in our paper.

• Experiments demonstrate that our S & I algorithm
achieves SOTA results, with the average FPR95 of
29.05% (38.61%) and 37.31% on the CIFAR100 and
ImageNet benchmarks, respectively. We have also
open-sourced the relevant code.

2. Preliminaries
2.1. Problem definition

Given a deep neural network f with parameters θ, for a su-
pervised task, the output of the network for the input sample
space X can be expressed as f(X; θ;Y ). Here Y repre-
sents the label space, and in the following we omit Y for
convenience. The goal of out-of-distribution (OOD) detec-
tion is to identify input data that comes from a distribution
different from the training data. Let xin ∈ X represents
the in-distribution (ID) samples, and xout ∈ X represents
the OOD samples. Typically, there is no intersection be-
tween the label sets yin ∈ Y and yout ∈ Y for ID and OOD
samples. Taking an image classification task as an example,
since the model f has never seen OOD data xout during

training, it tends to produce overconfident predictions for
such inputs (Nguyen et al., 2015; Hein et al., 2019). Based
on this characteristic, OOD detection can be formulated
as a binary classification problem as follows (Zhang et al.,
2023):

Binary Classifier =

{
OOD , if Ω(X) ≥ ξ

ID , if Ω(X) < ξ

(1)

Where ξ represents the threshold for distinguishing OOD
and ID samples, and Ω(X) is the confidence score func-
tion for the binary classification. We consider input sam-
ples x with confidence scores greater than or equal to ξ as
OOD samples xout. Here Eq. 1 provides a mathematical
understanding of OOD detection and does not affect the
subsequent introduction of our algorithm.

2.2. From gradient-based attribution to adversarial
attack

In general, for an image classification interpretation task,
the objective of gradient-based attribution is to determine
an attribution value Ars ∈ RR×S×K that reflects the im-
portance of each feature component x

(rs)
within the input

sample x ∈ RR×S×K w.r.t. the model output f(x; θ). Here
x

(rs)
is a pixel-level feature, S and R represent the width and

height of the k-th channel input sample. f(x; θ) typically
represents the predicted labels of the image, expressed as
confidence scores for each class.

One approach to understanding how a model makes deci-
sions is to pinpoint the minimal feature changes that either
weaken or strengthen its current prediction. This requires
that the feature modifications remain limited, so as not to
distort the semantic content of the original sample. Conse-
quently, the challenge of interpretation can be reformulated
as identifying the most influential features that affect the
model’s decision, while ensuring the changes remain within
certain constraints.

Attribution gradients calculation Currently, commonly
employed gradient-based attribution algorithms, such as
Integrated Gradients (IG) (Sundararajan et al., 2017) and
Boundary-based Integrated Gradients (BIG) (Wang et al.,
2021), utilize gradient information ∂f(x;θ)

∂x to represent local
changes for calculating importance scores. If we denote the
importance of each feature component in the input sample
calculated by IG as AIG

rs , then the integration process of IG
can be expressed as Eq. 2:
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AIG
rs (x) = ( x

(rs)
− x′

(rs)
)×

T∑
i=1

∂f
(
x′ + i

T × (x− x′)
)

∂ x
(rs)

× 1

T

(2)

where rs = 1, 2, ..., RS represents the rs-th feature com-
ponent in the input sample x. The gradient of the model
output w.r.t. the rs-th feature component is denoted by
∂f(x′+ i

T ×(x−x′))
∂ x
(rs)

. In this context, x′ denotes the baseline

sample, typically represented by a black image or a zero
embedding vector in image or text models. From Eq. 2,
we can see IG divides the integration path (x − x′) into
T iterations with equal step sizes to compute AIG

rs (x). In
GAIA (Chen et al., 2023), the authors argue that the attri-

bution gradients g =
∂f(x′+ i

T ×(x−x′))
∂ x
(rs)

related to the input

samples are the key gradients for OOD detection. Moreover,
input samples x exhibiting non-zero attribution gradients
across most feature components x

(rs)
are highly likely to be

OOD samples.

Accuracy loss of attribution gradients However, both
attribution algorithm IG or attribution-based OOD detection
algorithm GAIA set the baseline sample x′ as a black image,
i.e., x′ = 0. It is worth noting that for tasks of varying
scales, the selection of baseline points is complex and of-
ten ad-hoc. Additionally, using black images as baselines
can make it difficult to preserve the original semantic infor-
mation. In this regard, adversarial attacks (Kurakin et al.,
2018)—capable of altering model decisions with minimal
perturbations—can generate adversarial examples that are
highly similar to the original images, relying solely on input
samples and the model. Therefore, employing adversarial
examples as baselines for attribution retains semantic in-
formation and eliminates the need for a specific baseline
selection method. We believe that using adversarial exam-
ples with semantics similar to the original sample as the
baseline (Pan et al., 2021; Zhu et al., 2024b;a) can improve
the accuracy of attribution gradient calculations, a concept
that has already been demonstrated in several SOTA attri-
bution algorithms. The accuracy of attribution gradients is
crucial for attribution-based OOD detection, as it signifi-
cantly influences the distribution of the attribution gradients.

2.3. Definition of adversarial attacks

Given a deep neural network f and an original input sam-
ple x ∈ RR×S×K , for a standard image classification task,
where the true label corresponding to x is t ∈ yin, the objec-
tive of adversarial attacks is to generate an adversarial exam-
ple xadv by adding perturbations to x. These perturbations
are designed to mislead the model into making incorrect

predictions while maintaining the semantic similarity to the
original input. In this scenario, the label of the adversarial
example is manipulated to be t′. It is important to note that,
according to the characteristic of adversarial attacks, the
label t′ is manipulated by the model during training, and
therefore, t′ still belongs to the ID label set yin. Generally,
T iterations are required to obtain the optimal adversarial
example. The attack process can be described as follows:

xi = xi−1 + η · sign
(
∇xi−1L(f(xi−1); θ)

)
s.t. f(xi; θ) = t′ ̸= t

(3)

where η denotes the learning rate, i = 1, 2, . . . , T , x0 = x,
and xadv = xT . The sign(·) function indicates the direction
of the update for the adversarial example. To ensure that the
perturbations added do not alter the semantic information
of the original sample, we constrain the magnitude of these
perturbations as follows:

∥xadv − x∥2 ≤ ϵ (4)

where ∥·∥2 represents the L2 norm and ϵ denotes the maxi-
mum allowable perturbation. It is clear that the iteration of
adversarial samples can be interpreted as a gradient ascent
process that maximizes the loss function associated with the
original label (thereby misleading the model’s predictions)
while simultaneously minimizing the perturbations applied
to the input sample, in accordance with the requirements
of the interpretation challenge. In the next section, we will
introduce how we incorporate adversarial attacks into attri-
bution to explore the distributional characteristics of ID and
OOD samples.

3. Layer splitting and adversarial attribution
gradient integration for OOD detection

3.1. Zero importance verification under the adversarial
attack

In this subsection, we first give a mathematical proof of
zero importance verification under the adversarial attack.
Our goal is to proof that, when adversarial examples are
used as the baseline, the attribution gradients of each feature
component x

(rs)
still tend to be zero for ID samples, indi-

cating zero importance. In the GAIA (Chen et al., 2023)
scenario, we can express the model output f(x; θ) w.r.t the
true label t using a higher-order Taylor expansion under the
zero baseline (black image):
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f(x; θ) = f(0; θ) +

P∑
p=1

RS∑
rs=1

1

p!

∂pf(x; θ)

∂ x
(rs)

p
x

(rs)

p

+
1

2!

∂2f(x; θ)

∂ x
(1)

∂ x
(2)

x
(1)

x
(2)

+ ...+Rp(x)

(5)

where ∂pf(x;θ)
∂ x
(rs)

p represents the p-th order derivative of output

f(x; θ) w.r.t the feature component x
(rs)

. ∂2f(x;θ)
∂ x
(1)

∂ x
(2)

represents

the second-order mixed partial derivative of f(x; θ). Rp(x)
is the remainder after Taylor expansion. Then we can get
the following label output change, i.e., the absolute value of
the attribution for the input sample x:

|A(x)| = |f(x; θ)− f(0; θ)|

=

∣∣∣∣∣∣
P∑

p=1

RS∑
rs=1

1

p!

∂pf(x; θ)

∂ x
(rs)

p
x

(rs)

p

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 12! ∂
2f(x; θ)

∂ x
(1)

∂ x
(2)

x
(1)

x
(2)

+ ...+Rp(x)

∣∣∣∣∣∣
(6)

According to the description of the sensitivity axiom in
GAIA and IG (Sundararajan et al., 2017), we can get the
following theorem:

Theorem 1: An attribution method adheres to the Sensitivity
Axiom if, for any input and baseline that differ in a single
feature and produce different predictions, the feature with
the difference must be assigned a non-zero attribution.

Since GAIA demonstrates that OOD samples typically ex-
hibit overconfident predictions (Chen et al., 2023), we
can assert that the label output change for OOD samples
|f(xout; θ)− f(0; θ)| is, to some extent, greater than that
|f(xin; θ)− f(0; θ)| for ID samples. Then we can get
|A(xin)| < |A(xout)| in common cases. This is intuitive
because the feature components of ID samples typically
match the distribution of the training data, resulting in a
smaller contribution to the predictions and relatively lower
attribution values. According to Theorem 1, the attribution
for features that do not influence the model predictions is
zero, indicating zero importance. Therefore, the smaller
attribution of ID samples |A(xin)| =

∑RS
rs=1 |Ars(xin)|

imply that the gradient polynomials associated with the fea-
ture components xin

(rs)
in the higher-order Taylor expansion

have a higher occurrence of zero gradients.

Proposition 1: For a feature component x
(rs)

∈ x that is

to be attributed, if ∂f(x;θ)
∂ x
(rs)

is zero throughout the entire at-

tribution process, then |Ars(x)|=0. In this case, the input

sample x with a higher prevalence of zero-valued ∂f(x;θ)
∂ x
(rs)

yield smaller attribution |A(x)| =
∑RS

rs=1 |Ars(x)|, indicat-
ing an ID sample xin.

Proof 1: It is known from advanced calculus that if
∂f(x;θ)
∂ x
(rs)

= 0, then its p-th partial derivative ∂pf(x;θ)
∂ x
(rs)

p = 0.

Consequently, due to the chain rule of gradients, its p-th
mixed partial derivative ∂pf(x;θ)

∂ x
(1)

∂ x
(2)

...∂ x
(p)

= 0. From Eq. 6,

|Ars(x)| = 0 always holds.

|A(x)| = |f(x; θ)− f(xadv; θ)|

=

∣∣∣∣∣∣
P∑

p=1

RS∑
rs=1

1

p!

∂pf(x; θ)

∂ x
(rs)

p
(xadv
(rs)

− x
(rs)

)p

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
1

2!

∂2f(x; θ)

∂(xadv
(1)

− x
(1)

)∂(xadv
(2)

− x
(2)

)

·(xadv
(1)

− x
(1)

)(xadv
(2)

− x
(2)

)

∣∣∣∣∣
+ · · ·+ |Rp(xadv − x)|

(7)

In the adversarial attack scenario, instead of using f(0; θ),
we use f(xadv; θ) as the baseline. At this time, Eq. 6 is
transformed into Eq. 7.

Proposition 2: When the baseline sample is an adversarial
sample, if the gradient ∂f(x;θ)

∂ x
(rs)

satisfies the conditions in

Proposition 1, then the attribution gradients of each feature
component x

(rs)
still tend to be zero for ID samples.

Proof 2: After adversarial attacks, the label t′ of the ad-
versarial sample still belongs to the ID label set yin. Addi-
tionally, adversarial samples possess the characteristic that
require iterative training within the neural network. There-
fore, adversarial samples can be regarded as ID samples in
our opinion. According to Theorem 1, GAIA demonstrates
that OOD samples typically exhibit overconfident predic-
tions, since the input sample x ∈ xin, then neither f(x; θ)
nor f(xadv; θ) exhibits overly confidence in this case. We
can get a low-level |A(x)|, which means that the input sam-
ple x has a higher prevalence of zero-valued ∂f(x;θ)

∂ x
(rs)

. When

the input sample x ∈ xout, then f(xadv; θ) will exhibit
overly confidence. In this case, we can demonstrate that
|f(xout; θ)− f(xadv; θ)| > |f(xin; θ)− f(xadv; θ)|, indi-
cating a higher prevalence of non-zero gradients for OOD
samples.
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3.2. S & I algorithm

3.2.1. ADVERSARIAL ATTRIBUTION GRADIENT
INTEGRATION

From Sec. 3.1, it can be concluded that the key to OOD
detection lies in obtaining the distribution of attribution gra-
dients. For the input sample x, we perform Eq. 3 to update
adversarial examples. To integrate the attribution gradients
we need, we apply the first-order Taylor approximation to
expand the loss function and incorporate the gradient infor-
mation along the attribution path from x0 to xT :

L (f (xi)) = L (f (xi−1)) +
∂L (f (xi−1))

∂xi−1
(xi − xi−1) + o

T∑
i=1

L (f (xi)) =

T−1∑
i=0

L (f (xi)) +

T−1∑
i=0

∂L (f (xi))

∂xi
(xi+1 − xi)

A = L (f (xT ))− L (f (x0)) =

T−1∑
i=0

∂L (f (xi))

∂xi
(xi+1 − xi)

=

T−1∑
i=0

△xi ⊙ g(xi) =

T∑
i=1

△xi−1 ⊙ g(xi−1)

(8)
Here o and θ is omitted for convenience. And △xi−1 =

xi − xi−1, g(xi−1) = ∂L(f(x))
∂xi−1

. It is obvious that Eq. 8
satisfies Theorem 1. However, there is a problem with Eq. 8.
Since the neural network has l intermediate layers, we can-
not use the union parameters θ of the neural network when
performing gradient ascent on the j-th layer. In fact, we use
the parameters θ(j+1)∼l of the (j+1) ∼ l-th layers to update
the adversarial examples. Unlike GAIA, which assumes that
each intermediate layer of the model has a uniform impact
on the feature map, our purpose is to distinguish the sen-
sitivity of intermediate feature maps on different layers to
the model input. Therefore, we first introduce the concept
of layer splitting to deeply investigate the distribution of
attribution gradients.

3.2.2. LAYER SPLITTING

Specifically, assuming that the dimension of the sample
space is RR×S×K , we will use the following formula to
update the adversarial example xjk

i with predicted label y
on the k-th channel, j-th layer:

xjk
i = xjk

i−1 + η · sign

∂L
(
f
(j+1)∼l
y

(
xjk
i−1; θ

(j+1)∼l
))

∂xjk
i−1


(9)

where xjk
0 = xjk. And we can get △xjk

i−1 = xjk
i − xjk

i−1,

g(xjk
i−1) =

∂L(f(j+1)∼l
y (xjk

i−1;θ
(j+1)∼l))

∂xjk
i−1

. To compute attribu-

tion of the rs-th feature component on xjk, we then trans-

form Eq. 8 into:

Ajk
rs =

T∑
i=1

△xjk
i−1
(rs)

⊙ g(xjk
i−1
(rs)

) (10)

From Proposition 2, it can be deduced that if the attribution
gradient g(xjk

i−1
(rs)

) of the feature component xjk
i−1
(rs)

on the j-th

layer and the k-th channel tends to be non-zero, then the
feature component tends to be OOD. Therefore, we need to
compute the non-zero density of input sample xjk to obtain
the non-zero expectation. Here, following the conditions set
by GAIA-Z, when the label space Y is relatively small, such
as in CIFAR100 (Krizhevsky et al., 2009), we can derive
the expectation:

E
[
ϵ|xjk

]
=

1

R× S × T

∣∣∣∣∣
{
xjk
i−1
(rs)

|g(xjk
i−1
(rs)

) ̸= 0

}∣∣∣∣∣ (11)

When the labe space Y is relatively large, such as Ima-
geNet (Deng et al., 2009), it is time-consuming to calculate
the non-zero density for each label in the dataset. Following
the conditions set by GAIA-A, assuming that the network
feature extraction function is Ψ(·), we can get the last l-th
layer input xl

i−1 = Ψ(xi−1; θ). Considering the gradient
matrix on the l-th layer, k-th channel input sample xlk

i−1 and
the j-th layer, k-th channel input sample xjk

i−1, we get:

▽xjk
i−1 =

∂xlk
i−1

∂xjk
i−1

▽xlk
i−1 =

∂(0.9∗
∑

ym∈Y (log softmax(f l
ym(xlk

i−1;θ
l))))

∂xlk
i−1

(12)

where Y = {ym|ym ∈ Y }. It is worth noting that unlike
GAIA, we only take the top-N% outputs (here top-90%)
when integrating the outputs of each label to remove the
influence of redundant channels in the last layer. Then we
can get the expectation w.r.t. xjk:

E
[
ϵ|xjk

]
=

∣∣∣ 1
R×S×T

∑T
i=1

∑
Gjk

i−1∈▽xjk
i−1

(Gjk
i−1)

∣∣∣∣∣∣ 1
Rl×Sl×T

∑T
i=1

∑
Glk

i−1∈▽xlk
i−1

(Glk
i−1)

∣∣∣ 1
2

(13)

where Rl and Sl represent the height and width of the last
l-th layer input sample, respectively. G represents a gradient
component in the gradient matrix. Finally, we can get the
overall OOD score:

6



Splitting & Integrating: Out-of-Distribution Detection via Adversarial Gradient Attribution

Table 1. Experimental result on CIFAR100 benchmark. Here backbone models are ResNet34 and WRN40. The lower the FPR95, the
better the performance, with AUROC behaves inversely. All values are percentages and the best value is bolded.

SVHN LSUN TinyImageNet Places Textures AVG
Dataset/Model Methods FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 85.69 74.8 83.87 73.7 78.05 77.11 86.4 72.65 82.09 74.79 83.22 74.61
ODIN 86.21 74.13 83.58 72.81 75.21 79.31 87.19 70.61 82 74.76 82.84 74.32
Energy 87.55 73.91 84.38 72.58 73.46 79.83 88.53 70.17 82.54 74.69 83.29 74.24

GradNorm 71.08 62.5 18.99 94.06 68.35 64.57 69.62 53.13 35.56 78.99 52.72 70.65
Rankfeat 92.94 65.55 90.84 70.65 87.46 74.98 90.78 72.68 86.74 73.99 89.75 71.57

React 93.15 80.88 82.3 79.63 73.02 79.88 86.07 77.9 79.01 80.54 80.83 79.77
GAIA 15.73 97.06 33.33 94.18 63.85 89.17 16.78 97.17 15.82 97.09 29.1 94.93

CIFAR100
/ResNet34

Our 15.68 97.06 33.29 94.18 63.71 89.17 16.73 97.17 15.82 97.09 29.05 94.93

MSP 83.27 77.83 82.68 76.92 82.05 75.36 87.07 72.3 84.73 73.53 83.96 75.19
ODIN 83.44 79.85 76.68 80.32 76.91 77.84 85.81 72.5 83.42 74.95 81.25 77.09
Energy 84.58 79.7 76.32 80.45 76.77 77.9 86.13 72.35 83.95 74.83 81.55 77.05

GradNorm 65.2 65.62 55.7 82.81 100 4.55 98.73 14.4 77.78 44.05 79.48 42.29
Rankfeat 99.97 15.4 98.79 34.34 99.04 36.01 99.71 22.18 99.47 22.49 99.4 26.08

React 94.11 67.95 87.02 67.13 88.66 65.39 89.75 64.31 89.91 63.88 89.89 65.73
GAIA 15.19 97.19 37.97 91.59 87.06 73.42 25.64 95.26 27.29 94.05 38.63 90.3

CIFAR100
/WRN40

Our 15.19 97.19 37.95 91.59 87.01 73.42 25.63 95.26 27.27 94.05 38.61 90.3

τ =

√√√√ l∑
j=1

K∑
k=1

(E [ϵ|xjk])
2 (14)

where K is the maximum number of channels among all l
intermediate layers. We use E

[
ϵ|xjk

]
in Eq. 11 and Eq.

13 respectively at different levels of label space Y . Here τ
represents a confidence score, where a larger τ indicates a
higher likelihood that the input sample is an OOD sample.
The pseudocode of our S& I algorithm can be found in
Appendix. A.

4. Experiments
4.1. Experimental setup

Datasets and models: We followed the experimental
setup of GAIA (Chen et al., 2023) and conducted extensive
experiments. Specifically, on the CIFAR100 benchmark, we
used CIFAR10 as ID datasets (Krizhevsky et al., 2009). We
select SVHN (Netzer et al., 2011), TinyImageNet (Liang
et al., 2017), LSUN (Yu et al., 2015), Places (Zhou et al.,
2017) and Textures (Cimpoi et al., 2014) as OOD datasets.
The corresponding backbone models are ResNet34 (He
et al., 2016) and WRN40 (Zagoruyko, 2016). On the Ima-
geNet benchmark, we use ImageNet as our ID dataset (Deng
et al., 2009). We also selected iNaturalist (Van Horn et al.,
2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2017)
and Textures (Cimpoi et al., 2014) as OOD datasets. The
corresponding backbone model is the pre-trained Google
BiT-S (Kolesnikov et al., 2020).

Baselines and evaluation metrics: We selected various
post-hoc OOD detection methods as our baselines. Among
them, MSP (Hendrycks & Gimpel, 2016), ODIN (Liang
et al., 2017), Energy-based framework (Liu et al., 2020)

are output-based methods. ReAct (Sun et al., 2021) and
Rankfeat (Song et al., 2022) are feature representation-based
methods. GradNorm (Huang et al., 2021) and GAIA (Chen
et al., 2023) are gradient-based methods. Here GAIA is our
main competitive baseline. We use FPR95 (false positive
rate at 95% true positive rate) and AUROC (area under the
receiver operating characteristic curve) as our evaluation
metrics (Chen et al., 2023).

4.2. Experimental result

Experiments on CIFAR100 benchmark: In Tab. 1, we
evaluate the OOD detection performance of our S & I al-
gorithm and other baselines on the CIFAR100 benchmark.
Since CIFAR100 is a small label space dataset, we use
Eq. 11 to obtain the OOD score. Experimental results show
that our S & I algorithm achieves the best performance com-
pared with other post-hoc OOD detection methods. Specif-
ically, our method achieves the lowest average FPR95 of
29.05% and 38.61% on ResNet34 and WRN40 models,
respectively. For the representative output-based method
ODIN, our method achieves 65.15% and 52.47% FPR95
reduction on ResNet34 and WRN40 models, respectively.
At the same time, our method achieves 67.63% and 45.24%
FPR95 reduction on the ResNet34 model compared with the
feature representation-based method Rankfeat and gradient-
based method GradNorm, respectively. For the AUROC
evaluation metric, our method achieved the highest average
AUC of 94.93% on the ResNet34 model. It can be noticed
that compared with the main competitive baseline GAIA,
our method did not achieve a particularly large improvement
on CIFAR100. We believe that this is because the feature
distinction between classes in small label space datasets is
low, and adversarial attacks may not be able to effectively
amplify the difference between ID samples and OOD sam-
ples. For the ImageNet-1K dataset with a large label space,
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Table 2. Experimental result on ImageNet benchmark. Here backbone model is BiT-S. The lower the FPR95, the better the performance,
with AUROC behaves inversely. All values are percentages and the best value is bolded.

Methods iNaturalist Textures SUN Places AVG

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 63.93 87.57 82.66 74.45 80.24 78.22 81.43 76.71 77.06 79.24
ODIN 62.69 89.36 81.31 76.3 71.67 83.92 76.27 80.67 72.99 82.56
Energy 64.91 88.48 80.87 75.79 65.33 85.32 73.02 81.37 71.03 82.74

GradNorm 50.03 90.33 61.42 81.07 46.48 89.03 60.86 84.82 54.7 86.3
Rankfeat 46.54 81.49 27.88 92.18 38.26 88.34 46.06 89.33 39.69 87.84

React 44.52 91.81 52.71 90.16 62.66 87.83 70.73 76.85 57.66 86.67
GAIA 29.49 93.51 40.46 92.69 34.88 92.42 48.48 88.04 38.33 91.67

Our 28.59 93.67 39.17 92.9 33.78 92.58 47.72 88.21 37.31 91.84

we can use adversarial attacks to gradually identify OOD
samples with high confidence scores, so the improvement is
more obvious. We will verify this in the next subsection.

Experiments on ImageNet benchmark: In Tab. 2, we
evaluate the OOD detection performance of our S & I al-
gorithm and other baselines on the ImageNet benchmark.
Since ImageNet is a large label space dataset, we use Eq. 13
to obtain the OOD score. Experimental results show that our
S & I algorithm achieves the best performance compared
with other post-hoc OOD detection methods. Specifically,
our method achieves the lowest average FPR95 of 37.31%
on the backbone model BiT-S model. At the same time, our
method also achieves the highest AUROC of 91.84%. For
the representative output-based method ODIN, our method
achieves an FPR95 reduction of 48.88%. At the same time,
our method achieves an FPR95 reduction of 6% and 31.79%
compared with the feature representation-based method
Rankfeat and the gradient-based method GradNorm, re-
spectively. Notably, compared with the main competitive
baseline GAIA, our method obtains a 2.66% FPR95 reduc-
tion, demonstrating the excellent performance on large label
space datasets. Furthermore, to verify the impact of the ad-
versarial attack and the layer-splitting modules (our first two
contributions) on OOD detection, we conducted detailed
ablation experiments in Appendix. B. The experimen-
tal results demonstrate that both two modules significantly
contribute to performance improvement. We also compare
the computational costs of each method in Appendix. C.
Finally, Appendix D provides additional experiments, in-
cluding a comparative analysis with SCALE (Xu et al.,
2024)—the latest post-hoc OOD detection method proposed
in 2024—as well as an investigation into the effects of the
adversarial attack learning rate η.

5. Related work
Here we focus on post-hoc OOD detection methods as they
can perform OOD detection after the model is deployed
without retraining the model or accessing the original train-

ing data. Among them, output-based methods rely on the
confidence score of the model output to determine whether
the input sample belongs to the training data distribution,
which is common in OOD detection based on the maxi-
mum softmax probability (MSP) (Hendrycks & Gimpel,
2016). Liang et al. proposed the ODIN algorithm, which
utilizes temperature scaling and random perturbations to
differentiate the softmax score distributions of ID and OOD
samples (Liang et al., 2017). In order to explore the applica-
bility of ODIN in different scenarios, Hus et al. proposed a
confidence score decomposition approach and an improved
input preprocessing approach based on the existing ODIN
algorithm (Hsu et al., 2020). Liu et al. proposed a unified
OOD detection framework based on energy scores to replace
the traditional softmax score, thereby reducing the effect
of overconfident output for softmax scores when inputting
OOD samples (Liu et al., 2020). Considering the problem
that output-based methods have poor discrimination effect
in high-dimensional feature space, feature representation-
based methods detect OOD samples by capturing structural
information in feature space. Sun et al. proposed the Re-
Act (Sun et al., 2021) algorithm based on the analysis of
the internal activation pattern of the model to reduce the
overconfidence of neural networks on OOD samples. By
removing the rank-1 matrix consisting of the largest singular
value and its corresponding singular vector in the feature
matrix, Song et al. proposed the Rankfeat (Song et al.,
2022) algorithm for OOD detection. Gradient-based meth-
ods are dedicated to analyzing the gradient information of
input samples relative to model parameters (or output of a
certain layer) (Huang et al., 2021; Lee & AlRegib, 2020;
Igoe et al., 2022). Chen et al. proposed the state-of-the-art
GAIA (Chen et al., 2023) algorithm to investigate the dif-
ferent representations of attribution gradients (Simonyan,
2013) on ID and OOD samples for the first time. We further
explore the true explanatory pattern representations by layer
splitting and adversarial attribution gradient integration to
enhance the accuracy of OOD detection.
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6. Conclusion
In this paper, we contend that non-zero gradient behaviors
of OOD samples lack sufficient differentiation, particularly
when ID samples are perturbed by random perturbations in
high-dimensional spaces, which hampers the accuracy of
OOD detection. To tackle this issue, we propose the S & I al-
gorithm. Specifically, we first split the model’s intermediate
layers and iteratively update adversarial examples layer-by-
layer. The attribution gradients of each intermediate layer
along the attribution path from adversarial examples to the
actual input are integrated to obtain true explanation pattern
representations for ID and OOD samples. Experimental re-
sults demonstrate that our S & I algorithm achieves superior
performance compared to SOTA post-hoc OOD detection
methods. The results highlight the effectiveness of S & I
algorithm in enhancing the robustness of OOD detection
method in dynamic data environments, paving the way for
more secure applications in real-world scenarios.

Impact statement
Ensuring the safe deployment of machine learning models in
real-world applications hinges on their ability to recognize
unfamiliar or anomalous inputs. This work introduces S & I,
a novel Out-of-Distribution (OOD) detection algorithm that
integrates adversarial attribution gradients with layer-wise
model decomposition. By addressing the limitations of prior
gradient-based approaches, S & I captures more faithful ex-
planation pattern representations, achieving state-of-the-art
performance on both small- and large-scale benchmarks
such as CIFAR100 and ImageNet. Beyond technical innova-
tion, our method contributes to the broader societal goal of
trustworthy AI. Robust OOD detection plays a foundational
role in safety-critical domains such as autonomous driving,
healthcare diagnostics, and real-time decision-making sys-
tems, where failing to identify unfamiliar data can lead to
harmful or even catastrophic consequences. By improving
detection accuracy and stability without requiring retrain-
ing, S & I supports more reliable and adaptable AI systems
that are better equipped to operate in dynamic, open-world
environments.
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A. Pseudocode

Algorithm 1 S & I
Input: Input sample x, model f with parameters θ, number of layers l, number of iterations T , number of channels K,

image height R, image width S, loss function L, learning rate η.
Output: OOD score τ

1: Initalize : xjk
0 = xjk

2: for i = 1 → T do
3: for j = 1 → l − 1 do
4: Perform adversarial attack by Eq. 9 to get △xjk

i−1 and g(xjk
i−1)

5: Back-propagate adversarial attribution gradients by Eq. 10 or Eq. 12.
6: Calculate E

[
ϵ|xjk

]
by Eq. 11 or Eq. 13 depending on the label space Y = {ym|ym ∈ Y }.

7: Calculate the overall OOD score τ by Eq. 14.
8: end for
9: end for

10: return OOD score τ

B. Ablation experiments
Here we conduct detailed ablation experiments on the adversarial attack module and layer splitting module of our S& I
algorithm. Specifically, we set up three scenarios: a) our model with non-adversarial + layer-splitting, b) our model with
adversarial + non-layer-splitting, and c) our model with non-adversarial + non-layer-splitting. The ablation experiment
results are as follows:

Table 3. S & I (Non-adversarial + Layer Splitting)
OOD Dataset FPR95 (%) ↓ AUROC (%) ↑
iNaturalist 34.75 92.48
Textures 55.05 88.73
Sun 24.85 95.38
Places 40.60 91.47
Average 38.81 92.02

Table 4. S & I (Adversarial + Non-layer Splitting)
OOD Dataset FPR95 (%) ↓ AUROC (%) ↑
iNaturalist 28.70 93.82
Textures 61.79 85.72
Sun 32.75 92.90
Places 55.80 84.12
Average 44.76 89.14

Table 5. S & I (Non-adversarial + Non-layer Splitting)
Dataset FPR95 (%) ↓ AUROC (%) ↑
iNaturalist 47.05 88.92
Textures 60.11 80.76
Sun 46.35 86.62
Places 67.00 79.57
Average 55.13 83.97

It can be seen that compared with Tab. 3 (Non-adversarial + Layer splitting), Tab. 5 (Non-adversarial + Non-layer splitting)
achieved a performance reduction of 16.32% and 8.05% on FPR95 and AUROC, respectively, and performed worse on
each dataset, which shows the effectiveness of the layer splitting module. Compared with Tab. 4 (Adversarial + Non-layer
splitting), Tab. 5 (Non-adversarial + Non-layer splitting) achieved a performance reduction of 10.37% and 5.17% on FPR95
and AUROC, respectively, and performed worse on other datasets except the FPR95 metric of Textures, which strongly
shows the effectiveness of the adversarial attack module. Therefore, through ablation experiments, we believe that the
first two contributions proposed in the introduction are effective.
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C. Comparison of computational costs
Here we provide a comparison of computational costs between our method and other baselines with the evaluation metric
Frame Per Second (FPS). This metric refers to the number of image frames the model can process per second. In OOD
detection, FPS reflects the inference speed or real-time capability of the model, serving as a critical metric of algorithm
efficiency. A higher FPS indicates faster processing speed.

Table 6. FPS comparison of different OOD detection methods (ImageNet)
Method FPS
Our 4.9019
GAIA 6.3572
MSP 16.9090
ODIN 6.6613
Energy 16.3934
GradNorm 8.7750
RankFeat 4.8416
ReAct 15.8378

From Tab. 6, it can be observed that on the ImageNet dataset, our method is slightly slower than GAIA. However, from the
perspective of the main experimental metrics, FPR95 and AUROC, on the ImageNet dataset, our method achieves significant
performance improvement. Compared to the computationally similar RankFeat method, our approach not only achieves
faster runtime efficiency but also provides more accurate OOD detection. Therefore, we believe the computational cost of
our algorithm is an acceptable trade-off.

D. Additional experiments
In this part, we first conduct an ablation study on the hyperparameter learning rate η. We vary the learning rate in the
range 0.0005, 0.001, 0.0015, 0.002. It can be seen that our method consistently achieves high AUROC and low FPR95
scores across all OOD datasets under different settings. The performance remains stable, with only marginal fluctuations
observed. This demonstrates that our method is robust to learning rate selection and can generalize well without requiring
sensitive hyperparameter tuning. Then, we compare our method with the latest 2024 baseline SCALE (Xu et al., 2024). It
can be seen that our method has better performance than SCALE on each OOD dataset. Using CIFAR100 as the benchmark
and a learning rate of 0.001, our method shows a 65.32% improvement in FPR95 and a 28.37% improvement in AUROC
compared to SCALE.

Table 7. Additional experiments
Dataset/Model Methods SVHN LSUN TinyImageNet Places Textures AVG

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Ablation experiment on learning rate 0.001 CIFAR100/ResNet34 0.001 Our 15.68 97.06 33.29 94.18 63.71 89.17 16.73 97.17 15.82 97.09 29.05 94.93
Ablation experiment on learning rate 0.0005 CIFAR100/ResNet34 0.0005 Our 15.67 97.05 33.32 94.17 63.72 89.15 16.71 97.17 15.74 97.1 29.03 94.93
Ablation experiment on learning rate 0.0015 CIFAR100/ResNet34 0.0015 Our 15.65 97.04 33.3 94.15 63.75 89.13 16.67 97.16 15.73 97.11 29.02 94.92
Ablation experiment on learning rate 0.002 CIFAR100/ResNet34 0.002 Our 15.69 97.03 33.4 94.13 63.74 89.13 16.72 97.16 15.7 97.12 29.05 94.91
Comparative experiment with SCALE CIFAR100/ResNet34 SCALE 87.3 74.07 84.8 72.3 74.55 79.64 89 70.08 83.16 73.66 83.76 73.95
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