DUAL PRIVACY PROTECTION IN DECENTRALIZED LEARNING

Anonymous authorsPaper under double-blind review

000

001

003 004

010 011

012

013

014

015

016

017

018

019

021

025 026 027

028 029

031

033

034

035

037

040

041

042

043

044

046

047

048

050 051

052

ABSTRACT

In collaborative learning systems, significant effort has been devoted to protecting the privacy of each agent's local data and gradients. However, the shared model parameters themselves can also reveal sensitive information about the targets the network is estimating. To address both risks, we propose a dual-protection framework for decentralized learning. Within this framework, we develop two privacypreserving algorithms, named DSG-RMS and EDSG-RMS. Different from existing privacy distributed learning methods, these algorithms simultaneously obscure the network's estimated values and local gradients. They do this by adding a protective perturbation vector at each update and by using randomized matrixstep-size. Then, we establish convergence guarantees for both algorithms under convex objectives, and derive error bounds that also explicitly account for the influence of network topology. In particular, our analysis highlights how the spectral gap of the mixing matrix and the variance of the randomized matrix-step-sizes affect algorithm performance. Finally, we validate the practical effectiveness of the proposed algorithms through extensive experiments across diverse applications, including distributed filtering, distributed learning, and target localization.

1 Introduction

In decentralized learning, a key task is estimating global parameters from local data across distributed agents, as in cooperative spectrum sensing, multi-target localization, and bio-inspired systems Sayed (2022). Agents collaborate via incremental, consensus, or diffusion strategies, exchanging intermediate results or gradients. Such exchanges, however, can compromise privacy, since gradients may reveal sensitive information Shokri & Shmatikov (2015); Ma et al. (2023).

To address privacy concerns in decentralized learning, various protective mechanisms have been developed. Cryptographic approaches include secret sharing Li et al. (2019), secure multi-party computation Mohassel & Zhang (2017), and homomorphic encryption Lu & Zhu (2018); Ruan et al. (2019); Fu et al. (2024), while system decomposition methods enhance privacy through virtual agent construction and objective function restructuring Zhang et al. (2018). Differential privacy mechanisms provide lightweight protection by injecting zero-mean noise He et al. (2018); Wei et al. (2020) and have been successfully integrated into ADMM-based distributed algorithms and gradient tracking frameworks for both directed and undirected network topologies Zhang & Zhu (2016); Huang et al. (2024); Zhu et al. (2018); Lü et al. (2020). Another class of noise-based methods applies multiplicative noise to modify local measurements, as seen in Harrane et al. (2016). However, its effectiveness depends on the assumption that local optima are equivalent to global solutions and the communication burden has increased significantly. Techniques such as variance-decaying noise, zero-sum noise, and graph-homomorphic noise have been introduced in consensus optimization to achieve (ϵ, δ) -differential privacy Ding et al. (2021); Rizk et al. (2023). Nevertheless, security risks remain, as the mean of transmitted data may be exposed through operations like sliding averages. This concern is particularly critical in wireless sensor localization networks, where shared data often contain sensitive location information Piperigkos et al. (2021); Shi et al. (2022).

In this paper, we focus on the privacy risks related to the exposure of network estimated values and local gradients/data during information exchange. To address these concerns, we introduce a novel dual-protection privacy-enhancing framework that integrates two key components: a non-zero protection vector and a random matrix-step-sizes (RMS) mechanism. By embedding this framework

into the decentralized stochastic gradient (DSG) algorithm and exact diffusion variant (EDSG), we develop two advanced privacy-preserving methods: DSG-RMS and EDSG-RMS. Then, we conduct a comprehensive convergence analysis of the proposed algorithms under convex objective functions. The theoretical results demonstrate that both DSG-RMS and EDSG-RMS achieve convergence to a neighborhood of the optimal solution. Furthermore, we examine the effect of random matrix-step-sizes and protection vectors on algorithm performance. Notably, higher variance in the random matrix-step-sizes amplifies sensitivity to data heterogeneity, leading to higher error bounds and reduced network estimation accuracy. However, as the parameter γ decreases, the estimation accuracy improves across the network. Our main contributions are summarized as follows:

- We propose two novel algorithms for decentralized learning that incorporate dual privacy protection: DSG-RMS and EDSG-RMS. The EDSG-RMS variant is particularly wellsuited for settings with heterogeneous data across devices.
- We provide a rigorous analysis of the convergence behavior of both algorithms under convex and strongly convex objective functions. This analysis reveals how specific design choices affect the performance of the overall network.
- We conduct comprehensive experiments and the results confirm the effectiveness of our methods. We further evaluate their ability to preserve privacy, showing that both network estimates and individual data remain well protected.

2 RELATED WORKS

As discussed earlier, differential privacy offers a way to protect shared gradient information by adding random noise. However, because this noise typically has a zero mean, it is susceptible to statistical averaging attacks. Over time, simple techniques like sliding averages can reveal underlying patterns, undermining privacy guarantees. A recent method using masked diffusion attempts to address this issue, but it also employs a zero-mean noise Han et al. (2025). To maintain local gradient privacy, the method requires adding large amounts of zero-mean noise. This, in turn, forces the use of a small forgetting factor, which weakens the collaboration between nodes in the network. Our approach takes a different direction. Instead of relying on zero-mean noise, we introduce nonzero vectors and, more generally, random matrix-step-sizes. This improves privacy protection while preserving learning performance. In addition, our EDSG-RMS algorithm reduces communication costs—each iteration requires only half as many communication rounds as the masked diffusion primal-dual stochastic gradient algorithm.

3 BACKGROUND AND MOTIVATION

Consider a network optimization problem of the form

$$\min_{w \in \mathbb{R}^L} J(w) = \frac{1}{K} \sum_{k=1}^K J_k(w), \tag{1}$$

where K is the number of networked agents, $J_k(w)$ is the local risk function at agent k.

3.1 DSG AND EDSG ALGORITHMS

To solve the problem in a distributed manner, the following two algorithms has been designed.

3.1.1 DSG ALGORITHM

At agent k, the DSG is executed as Sayed (2022)

$$\begin{cases} \boldsymbol{\psi}_{k}(n) = \boldsymbol{w}_{k}(n-1) - \gamma \widehat{\nabla} \widehat{J}_{k}(\boldsymbol{w}_{k}(n-1); \boldsymbol{x}_{k}(n)), \text{ (local update)} \\ \boldsymbol{w}_{k}(n) = \sum_{\ell \in \mathcal{N}_{k}} a_{\ell k} \boldsymbol{\psi}_{\ell}(n), \text{ (combination)} \end{cases}$$
(2a)

for $n \geq 1$, where the initial weight $w_k(0)$ can be any finite value, $\gamma > 0$ is a deterministic stepsize, $A = [a_{\ell k}]$ is a symmetric and doubly stochastic combination matrix, $\widehat{\nabla J}_k(w_k(n-1); x_k(n))$ represents the stochastic gradient using sample $x_k(n)$, and \mathcal{N}_k denotes the set of neighboring agents for agent k, including itself. The initial value $w_k(0)$ can take any finite value.

3.1.2 EDSG ALGORITHM

 At agent k, the update of EDSG is Sayed (2022)

$$\begin{cases} \boldsymbol{\psi}_k'(n) = \boldsymbol{w}_k'(n-1) - \gamma \widehat{\nabla J}_k(\boldsymbol{w}_k'(n-1); \boldsymbol{x}_k(n)), & \text{(local update)} \\ \boldsymbol{\phi}_k'(n) = \boldsymbol{\psi}_k'(n) + \boldsymbol{w}_k'(n-1) - \boldsymbol{\psi}_k'(n-1), & \text{(correction)} \\ \boldsymbol{w}_k'(n) = \sum_{\ell \in \mathcal{N}_k} a_{\ell k} \boldsymbol{\phi}_\ell'(n), & \text{(combination)} \end{cases}$$
(3a)
$$(3b)$$

for $n \ge 1$, where $A = [a_{\ell k}]$ is another symmetric and doubly stochastic combination matrix¹. The initial values are set as $\psi'_k(0) = w'_k(0)$, where $w'_k(0)$ can take any finite value.

The study in Sayed (2022) compares the performance of the DSG and EDSG methods. It shows that EDSG is more effective in settings with heterogeneous data, while DSG tends to perform better in homogeneous data environments.

3.2 PRIVACY ISSUES DISCUSSION

We consider two types of adversaries: eavesdroppers and honest-but-curious agents. Eavesdroppers are external threats that intercept communications to infer agents' estimated values, local gradients, and training data. Honest-but-curious agents follow the algorithm correctly but may analyze intermediate data to deduce others' gradients and training data. We assume that the combination matrix is known to both types of adversaries.

3.2.1 PRIVACY RISKS ASSOCIATED WITH $w_k(n)$ AND $w'_k(n)$

If the sequences $\{\psi_\ell(n)\}$ or $\{\phi'_\ell(n)\}$ is accessible to eavesdroppers for $n=1,2,\ldots,N$ and $\ell=1,2,\ldots,K$, then the values $\{\boldsymbol{w}_k(n),n=1,2,\ldots,N\}$ and $\{\boldsymbol{w}_k'(n),n=1,2,\ldots,N\}$ can be derived using (2b) and (3c). This exposure could lead to the unintended disclosure of sensitive information, such as location data in distributed localization systems.

3.2.2 PRIVACY RISKS IN LOCAL GRADIENT INFORMATION

If eavesdroppers or honest-but-curious agents have access to $\{\psi_\ell(n)\}$ or $\{\phi'_\ell(n)\}$ for $n=1,2,\ldots,N$ and $\ell=1,2,\ldots,K$, they can infer local gradient information using the relationships $\gamma\widehat{\nabla J}_\ell(\boldsymbol{w}_\ell(n);\boldsymbol{x}_\ell(n+1))=\boldsymbol{w}_\ell(n)-\psi_\ell(n+1)$ and $\gamma\widehat{\nabla J}_\ell(\boldsymbol{w}'_\ell(n);\boldsymbol{x}_\ell(n+1))=\boldsymbol{w}'_\ell(n)-\psi'_\ell(n+1)$ for $n=2,3,\ldots,N-1$. Honest-but-curious agents, knowing the step-size parameter γ , can accurately reconstruct gradient information from neighboring agents. Eavesdroppers, however, would obtain gradients with an unknown amplitude scaling.

In distributed least-mean-square (LMS) filtering Sayed (2014), the local gradient at time n is expressed as $\gamma(\boldsymbol{d}_k(n) - \boldsymbol{x}_k^\top(n)w)\boldsymbol{x}_k(n)$, where $\boldsymbol{x}_k(n)$ represents the local data. This gradient is a scaled version of the local data, which means that eavesdroppers can potentially extract sensitive information about the underlying data by observing the gradient.

3.2.3 PRIVACY RISKS IN LOCAL DATA EXPOSURE

In deep learning, an attacker with access to both gradient $\widehat{\nabla J}_k(\boldsymbol{w}_k(n);\boldsymbol{x}_k(n+1))$ and model parameter $\boldsymbol{w}_k(n)$ can exploit inference techniques, such as those proposed in Zhu et al. (2019), to reconstruct the local training data. This vulnerability poses a significant risk to local data privacy in distributed learning systems.

¹The matrix A in (3) is positive-definite, as detailed in Sayed (2022).

PROPOSED METHODS

163 164

166

167 168

170

171 172

173 174 175

176

177

178

179

181

182

183

185

187

188

189

190 191

192

193 194

195 196

197

199

200

201 202

203

204

205

206

207

208

209

210

211

212

213

214

215

To address the privacy concerns discussed, this section introduces the DSG-RMS and EDSG-RMS algorithms. We then present results on their mean-square stability, followed by a discussion of an efficient approach for selecting matrix step sizes with reduced computational complexity.

4.1 PROPOSED ALGORITHMS

We begin by defining a random matrix $M_k(n)$, constructed as follows:

$$\mathbf{M}_{k}(n) = \begin{bmatrix} \boldsymbol{\mu}_{k1}(n) & \boldsymbol{Z}_{k}(n) \\ \boldsymbol{Z}_{k}'(n) & \ddots & \\ & \boldsymbol{\mu}_{kL}(n) \end{bmatrix}, L \times L$$
(4)

where the blocks $Z_k(n)$ and $Z'_k(n)$ consist of elements with zero mean, while the main diagonal elements $\{\mu_{k\ell}(n), \ell=1,2,...,\tilde{L}\}$ share a common mean value $\mu>0$. Each element in the random matrix may have a different variance.

Using this random matrix, we develop the following algorithms.

• (DSG-RMS)

$$(\boldsymbol{\psi}_k(n) = \boldsymbol{w}_k(n-1) - \gamma \boldsymbol{M}_k(n) \widehat{\nabla J}_k(\boldsymbol{w}_k(n-1); \boldsymbol{x}_k(n)), \text{ (local update)}$$
(5a)

$$\psi_k^c(n) = \psi_k(n) + \frac{\tau}{\sqrt{L}} c_k(n-1),$$
 (protection)

$$\begin{cases} \boldsymbol{\psi}_{k}^{c}(n) = \boldsymbol{w}_{k}(n-1) - \gamma_{\ell} \boldsymbol{u}_{k}(n) \vee \boldsymbol{J}_{k}(\boldsymbol{w}_{k}(n-1), \boldsymbol{x}_{k}(n)), \text{ (local update)} & \text{(3a)} \\ \boldsymbol{\psi}_{k}^{c}(n) = \boldsymbol{\psi}_{k}(n) + \frac{\tau}{\sqrt{L}} \boldsymbol{c}_{k}(n-1), & \text{(protection)} & \text{(5b)} \\ \boldsymbol{w}_{k}(n) = \sum_{\ell \in \mathcal{N}_{k}} a_{\ell k} \boldsymbol{\psi}_{\ell}^{c}(n) - \boldsymbol{\psi}_{k}^{c}(n) + \boldsymbol{\psi}_{k}(n), & \text{(combination)} & \text{(5c)} \end{cases}$$

where $c_k(n-1) = \|\boldsymbol{w}_k(n-1)\| \cdot \mathbb{1}_L$ and $\tau \neq 0$ is a free parameter.

• (EDSG-RMS)

$$(\boldsymbol{\psi}_{k}'(n) = \boldsymbol{w}_{k}'(n-1) - \gamma \boldsymbol{M}_{k}(n)\widehat{\nabla J}_{k}(\boldsymbol{w}_{k}'(n-1); \boldsymbol{x}_{k}(n)), \text{ (local update)}$$
 (6a)

$$\phi'_k(n) = \psi'_k(n) + w'_k(n-1) - \psi'_k(n-1), \qquad \text{(correction)}$$

$$\phi_k^{\prime c}(n) = \phi_k^{\prime}(n) + \frac{\iota}{\sqrt{L}} c_k^{\prime}(n-2), \qquad \text{(protection)}$$

$$\begin{cases}
\psi'_{k}(n) = \boldsymbol{w}'_{k}(n-1) - \gamma \boldsymbol{M}_{k}(n) \widehat{\nabla J}_{k}(\boldsymbol{w}'_{k}(n-1); \boldsymbol{x}_{k}(n)), & \text{(local update)} \\
\phi'_{k}(n) = \psi'_{k}(n) + \boldsymbol{w}'_{k}(n-1) - \psi'_{k}(n-1), & \text{(correction)} \\
\phi^{\prime c}_{k}(n) = \phi'_{k}(n) + \frac{\tau}{\sqrt{L}} \boldsymbol{c}'_{k}(n-2), & \text{(protection)} \\
\boldsymbol{w}'_{k}(n) = \sum_{\ell \in \mathcal{N}_{k}} a_{\ell k} \phi^{\prime c}_{k}(n) - \phi^{\prime c}_{k}(n) + \phi'_{k}(n), & \text{(combination)}
\end{cases} (6d)$$

where $c_k'(n) = \|w_k'(n)\| \cdot \mathbb{1}_L$ and the initial value $c_k'(-1)$ is set to a random vector.

In (5b) and (6c), $c_k(n-1)$ and $c'_k(n-2)$ serve as data protection vectors, which protect transmission values $\psi_k(n)$ and $\phi'_k(n)$, respectively. Increasing the parameter τ strengthens this protection but may affect the stability of the algorithm. Theorems 1 and 2 specify the effective range of τ . At each time step $n, \gamma M_k(n)$ works as random matrix-step-sizes, with its expected value given by $\gamma \mu I_L$.

Remark 1 (Protection mechanisms) During the local update phase, the random matrix $M_k(n)$ serves as a form of multiplicative noise that modifies the gradient information. This matrix is locally generated and remains private to each agent, thereby helping to obscure the true stochastic gradient and reduce the risk of inference attacks. In the protection step, a dynamic non-zero vector is added to the transmission vector to prevent inference attacks based on statistical analysis, such as estimating the mean of network updates. Beyond the protection vector form in (5b), alternative formulations can be employed, such as $\tau \operatorname{erf}(0.1\mathbf{w}_k(n-1))$ and $\tau \tanh(\mathbf{w}_k(n-1))$, where $\operatorname{erf}(\cdot)$ and $\tanh(\cdot)$ denote the error and hyperbolic tangent functions, respectively.

Remark 2 (*Method extension*) The multiplicative noise $M_k(n)$ in (5a), protection mechanism (5b), and combination step (5c) can be integrated into gradient tracking type algorithms to ensure privacy protection. However, unlike the algorithms (5) and (6), which require only one communication round per iteration, the gradient tracking algorithm necessitates two rounds per iteration.

²The mean-square error analysis for these alternatives can be conducted using inequalities |erf(0.1x)| $||ert(0.1y)||^2 \le 0.1|x-y|^2$ and $|tanh(x)-tanh(y)|^2 \le |x-y|^2$.

CONVERGENCE ANALYSIS IN CONVEX CASE

Assumption 1 (Network model Sayed (2022)) The network is strongly-connected. If agents ℓ and kare linked, then $a_{\ell k} > 0$; otherwise $a_{\ell k} = 0$, where A is a symmetric and doubly stochastic matrix.

The combination matrix $A = A \otimes I_L$ can be decomposed as follows:

$$\mathcal{A} = \begin{bmatrix} K\Gamma, & c\mathcal{X}_R \end{bmatrix} \begin{bmatrix} \mathbf{I}_L & \mathbf{0} \\ \mathbf{0} & \mathcal{D} \end{bmatrix} \begin{bmatrix} \Gamma^{\mathsf{T}} \\ \frac{1}{c}\mathcal{X}_L \end{bmatrix}, \tag{7}$$

where $\Gamma = \frac{1}{K} \mathbb{1}_K \otimes I_L$, $\mathcal{D} = \text{diag}\{\lambda_2, \dots, \lambda_K\} \otimes I_L$, and c > 0. The eigenvalues $\{\lambda_2, \dots, \lambda_K\}$ exclude 1. For DSG-RMS, $-1 < \lambda_\ell < 1$; for EDSG-RMS, $0 < \lambda_\ell < 1$ ($\ell = 2, \dots, K$). Here, I_L and $\mathbb{1}_K$ denots $L \times L$ identity matrix and $K \times 1$ all one vector, respectively.

Assumption 2 (Gradient noise Sayed (2022)) For any agent k and time n, the gradient noise $s_{k,n}(w) = \nabla \tilde{J}_k(w; x_k(n)) - \nabla J_k(w)$ is temporally and spatially independent, and satisfies

$$\mathbb{E}\left\{\boldsymbol{s}_{k,n}(\boldsymbol{w})|\boldsymbol{\mathcal{F}}_{n-1}\right\} = \boldsymbol{0}, \ \mathbb{E}\left\{\left\|\boldsymbol{s}_{k,n}(\boldsymbol{w})\right\|^{2}|\boldsymbol{\mathcal{F}}_{n-1}\right\} \le \sigma_{s,k}^{2}, \tag{8}$$

where
$$\mathbf{w} \in \mathcal{F}_{n-1}$$
, $\sigma_{s,k}^2 \geq 0$, and $\mathcal{F}_{n-1} = \text{filtration}\{\mathbf{w}_k(0), \cdots, \mathbf{w}_k(n-1), \text{all } k\}$.

Assumption 3 (Random matrix-step-sizes) For each agent k and time n, $M_k(n)$ has mutually independent entries, independent across time and agents. Its ℓ -th diagonal element $\mu_{k,\ell}(n)$ satisfies

$$\mathbb{E}\left\{\boldsymbol{\mu}_{k,\ell}(n)\right\} \stackrel{\triangle}{=} \mu, \quad \mathbb{E}\left\{\left(\boldsymbol{\mu}_{k,\ell}(n) - \mu\right)^2\right\} \stackrel{\triangle}{=} \sigma_{\mu,k}^2, \tag{9}$$

with constants $\mu > 0$, $\sigma_{\mu,k} > 0$. Off-diagonal entries are zero-mean with variances bounded by σ_z^2 .

It follows that
$$\mathbb{E}\{M_k(n)\} = \mu I_L$$
, $\mathbb{E}\{\|M_k(n) - \mu I_L\|^2\} \le \sigma_{\mu}^2$, and $\mathbb{E}\{\|M_k(n)\|^2\} \le \theta_{\mu}^2$, where $\sigma_{\mu}^2 = \max\{\sigma_{\mu,k}^2 + (L-1)\sigma_z^2, k = 1, 2, ..., K\}$ and $\theta_{\mu}^2 = \max\{\mu^2 + \sigma_{\mu,k}^2 + (L-1)\sigma_z^2, k = 1, 2, ..., K\}$. Unlike Zhao & Sayed (2014), the variables $\{\mu_{k,\ell}(n)\}$ may take negative values.

Assumption 4 (Lipschitz continuous gradient Sayed (2022)) Each risk function $J_k(w)$ is δ smooth:

$$\|\nabla J_k(x) - \nabla J_k(y)\| \le \delta \|x - y\|, \ \forall x, y \in \mathbb{R}^L$$
(10)

for some positive constant δ . Additionally, the network cost function $J(w) = \frac{1}{K} \sum_{k=1}^{K} J_k(w)$ is lower bounded, i.e., $J(w) \geq J^*$, where J^* denotes the optimal value of J(w).

Assumption 5 (Convex function Sayed (2022)) Each risk function $J_k(w)$ is convex, meaning that for any $x, y \in \mathbb{R}^L$, the following inequality holds:

$$J_k(x) - J_k(y) + \frac{\nu}{2} ||x - y||^2 \le \langle \nabla J_k(x), x - y \rangle,$$
 (11)

where $\nu \geq 0$ is a constant. Let w^* denote an optimal solution. If $\nu > 0$ (i.e., the function is strongly-convex), the optimal solution w^* will be unique.

Theorem 1 (Convergence of DSG-RMS) Under Assumptions 1–5, the following results hold.

• For the convex case ($\nu = 0$), if γ and τ satisfy

$$\gamma \le \frac{\mu(1 - \|\mathcal{D}\|)}{14\delta\theta_{\mu}^2},\tag{12}$$

$$|\tau| < \frac{1 - \|\mathcal{D}\|}{\sqrt{8}\|\mathcal{D} - \mathbf{I}_{(K-1)L}\|},$$
 (13)

then the following convergence bound holds

$$\frac{1}{N}\sum_{n=1}^{N}\left(\mathbb{E}\left\{J(\overline{\boldsymbol{w}}_{n-1})\right\}-J(\boldsymbol{w}^{*})\right)\leq\frac{2\mathbb{E}\left\{\|\overline{\boldsymbol{w}}_{0}-\boldsymbol{w}^{*}\|^{2}\right\}}{\gamma\mu N}+\frac{12\delta\mathbb{E}\left\{\|\boldsymbol{\mathcal{W}}_{0}\|^{2}\right\}}{N(1-\|\boldsymbol{\mathcal{D}}\|)K}$$

$$+\frac{12\gamma^{2}\theta_{\mu}^{2}\delta\|\mathcal{D}\|^{2}}{1-\|\mathcal{D}\|}\left(\frac{8\|\nabla\mathcal{J}(\mathcal{W}^{*})\|^{2}}{(1-\|\mathcal{D}\|)K}+\sigma_{s}^{2}\right)+\frac{\gamma}{\mu K}\left(\frac{8\sigma_{\mu}^{2}\|\nabla\mathcal{J}(\mathcal{W}^{*})\|^{2}}{K}+\frac{\theta_{\mu}^{2}\sigma_{s}^{2}}{2}\right), (14)$$

where $\overline{\boldsymbol{w}}_n = \Gamma^{\mathsf{T}} \boldsymbol{\mathcal{W}}_n$, $\boldsymbol{\mathcal{W}}_n = \operatorname{col}\{\boldsymbol{w}_1(n), \boldsymbol{w}_2(n), ..., \boldsymbol{w}_K(n)\}$, $\mathcal{W}^* = \mathbbm{1}_K \otimes w^*$, and $\sigma_s^2 = \max\{\sigma_{s,k}^2, k=1,2,...,K\}$.

• For the strongly-convex case ($\nu > 0$), if τ satisfies the condition (13) and γ satisfies

$$\gamma \le \frac{\mu\nu(1 - \|\mathcal{D}\|)}{64\theta_{\mu}^2 \delta^2} \sqrt{\frac{\nu}{\delta}},\tag{15}$$

then the expected squared error is bounded as follows:

$$\mathbb{E}\{\|\overline{\boldsymbol{w}}_{n} - w^{*}\|^{2}\} \leq \left(1 - \frac{\gamma\mu\nu}{8}\right)^{n} \left(\mathbb{E}\{\|\overline{\boldsymbol{w}}_{0} - w^{*}\|^{2}\} + \frac{\mathbb{E}\{\|\boldsymbol{\mathcal{W}}_{0}\|^{2}\}}{K}\right) \\
+ \frac{8\gamma}{\mu\nu K} \left(\frac{4\sigma_{\mu}^{2}\|\nabla\mathcal{J}(\mathcal{W}^{*})\|^{2}}{K} + \theta_{\mu}^{2}\sigma_{s}^{2}\right) + \gamma^{2} \frac{48\theta_{\mu}^{2}\delta\|\mathcal{D}\|^{2}}{\nu(1 - \|\mathcal{D}\|)} \left(\frac{8\|\nabla\mathcal{J}(\mathcal{W}^{*})\|^{2}}{(1 - \|\mathcal{D}\|)K} + \sigma_{s}^{2}\right). (16)$$

Proof: This proof is omitted here due to space constraints.

Theorem 2 (Convergence of EDSG-RMS) Under Assumptions 1–5, the following results hold.

• For the convex case ($\nu = 0$), if γ and τ satisfy

$$\gamma \le \min \left\{ \frac{(1 - \|\mathcal{D}\|)\sigma_b^{0.5}}{28\delta(\sigma_\mu + \mu)}, \frac{\mu}{2\delta(2\mu^2 + \sigma_\mu^2)} \right\},\tag{17}$$

$$|\tau| \le \frac{(1 - \|\mathcal{D}\|)\sigma_b^{0.5}}{\sqrt{32(1 - \sigma_b)}},$$
(18)

where $\sigma_b = \min\{\lambda_i, i = 2, 3, ..., K\}$, then the following convergence bound holds

$$\frac{1}{N} \sum_{n=1}^{N} \left(\mathbb{E} \left\{ J(\overline{\boldsymbol{w}}'_{n-1}) \right\} - J(\boldsymbol{w}^*) \right) \leq \frac{2\mathbb{E} \left\{ \|\overline{\boldsymbol{w}}'_0 - \boldsymbol{w}^*\|^2 \right\}}{\gamma \mu N} + \frac{48\delta(3 - \|\mathcal{D}\|) \mathbb{E} \left\{ \|\boldsymbol{\mathcal{W}}'_0\|^2 \right\}}{NK(1 - \|\mathcal{D}\|)^2} + \frac{96\gamma^2 \mu^2 \delta}{NK} \frac{\mathbb{E} \left\{ \|\nabla \mathcal{J}(\overline{\boldsymbol{\mathcal{W}}}'_0)\|^2 \right\}}{(1 - \|\mathcal{D}\|)^2} + \frac{144\gamma^2 \delta \|\mathcal{D}\|^2}{(1 - \|\mathcal{D}\|)} \left(\frac{3\sigma_{\mu}^2 \|\nabla \mathcal{J}(\mathcal{W}^*)\|^2}{(1 - \|\mathcal{D}\|)K} + \theta_{\mu}^2 \sigma_s^2 \right) + \frac{2\gamma}{\mu K} \left(\frac{4\sigma_{\mu}^2}{K} \|\nabla \mathcal{J}(\mathcal{W}^*)\|^2 + \theta_{\mu}^2 \sigma_s^2 \right), \tag{19}$$

where $\overline{m{w}}_n' = \Gamma^{\mathsf{T}} \, m{\mathcal{W}}_n'$ and $m{\mathcal{W}}_n' = \mathrm{col} \{ m{w}_1'(n), m{w}_2'(n), ..., m{w}_K'(n) \}.$

• For the strongly-convex case ($\nu > 0$), if τ satisfies the condition (18) and γ satisfies

$$\gamma \le \min \left\{ \frac{(1 - \|\mathcal{D}\|)\sigma_b^{0.5}}{40(\sigma_\mu + \mu)\delta} \sqrt{\frac{\nu}{\delta}}, \frac{\mu\nu(1 - \|\mathcal{D}\|)}{64(\sigma_\mu^2 + \mu^2)\delta^2} \right\},\tag{20}$$

then the expected squared error is bounded as follows:

$$\mathbb{E}\left\{\|\overline{\boldsymbol{w}}_{n}' - w^{*}\|^{2}\right\} \leq \left(1 - \frac{\gamma\mu\nu}{8}\right)^{n} \left(\mathbb{E}\left\{\|\overline{\boldsymbol{w}}_{0} - w^{*}\|^{2}\right\} + \frac{(3 - \|\mathcal{D}\|)\mathbb{E}\left\{\|\boldsymbol{\mathcal{W}}_{0}'\|^{2}\right\}}{K(1 - \|\mathcal{D}\|)} + \frac{2\gamma^{2}\mu^{2}\|\nabla\mathcal{J}(\overline{\boldsymbol{\mathcal{W}}}_{0}')\|^{2}}{K(1 - \|\mathcal{D}\|)} + \frac{8\gamma}{\mu\nu K} \left(\frac{4\sigma_{\mu}^{2}\|\nabla\mathcal{J}(\mathcal{W}^{*})\|^{2}}{K} + \theta_{\mu}^{2}\sigma_{s}^{2}\right) + \frac{576\gamma^{2}\delta\|\mathcal{D}\|^{2}}{\nu(1 - \|\mathcal{D}\|)} \left(\frac{3\sigma_{\mu}^{2}\|\nabla\mathcal{J}(\mathcal{W}^{*})\|^{2}}{(1 - \|\mathcal{D}\|)K} + \theta_{\mu}^{2}\sigma_{s}^{2}\right). \tag{21}$$

Proof: This proof is omitted here due to space constraints.

Remark 3 (Impact of protection vector and random matrix-step-sizes) The parameter τ does not affect steady-state performance, while σ_{μ}^2 does. Its impact grows with data heterogeneity (i.e., $\|\nabla \mathcal{J}(\mathcal{W}^*)\|^2$), making the algorithm's mean-square behavior more sensitive. Choosing a smaller γ can improve network estimation accuracy.

Remark 4 (Sparsely connected network) In sparsely connected networks ($\|\mathcal{D}\|^2 \to 1$), the terms $O(\gamma^2 \theta_{\mu}^2 \|\mathcal{D}\|^2/(1-\|\mathcal{D}\|)^2)$ in DSG-RMS and $O(\gamma^2 \sigma_{\mu}^2 \|\mathcal{D}\|^2/(1-\|\mathcal{D}\|)^2)$ in EDSG-RMS strongly affect steady-state performance. Since $\theta_{\mu}^2 > \sigma_{\mu}^2$, EDSG-RMS can achieve better steady-state performance than DSG-RMS.

4.3 LOW-COMPLEXITY CHOICE OF MATRIX-STEP-SIZE

When all elements of $M_k(n)$ are non-zero, computing $M_k(n)\widehat{\nabla J}_k(\boldsymbol{w}_k(n-1);\boldsymbol{x}_k(n))$ requires $O(L^2)$ operations. To reduce this cost, we propose two sparse alternatives for $M_k(n)$:

• Upper Triangular Structure: $M_k(n)$ is constrained to an upper triangular form:

$$\mathbf{M}_{k}(n) = \begin{bmatrix} \boldsymbol{\mu}_{k1}(n) & \star_{1} & 0 & 0 \\ 0 & \boldsymbol{\mu}_{k2}(n) & \star_{2} & \vdots \\ \vdots & \vdots & \ddots & \star_{L-1} \\ 0 & 0 & 0 & \boldsymbol{\mu}_{kL}(n) \end{bmatrix},$$
(22)

where \star_{ℓ} represents non-zero elements;

Sparse Randomized Structure: In addition to the diagonal elements, L off-diagonal entries
are randomly selected and assigned values drawn from zero-mean random variables.

In both cases, the complexity of computing $M_k(n)\widehat{\nabla}\widehat{J}_k(\boldsymbol{w}_k(n-1);\boldsymbol{x}_k(n))$ is reduced to O(L).

5 EXPERIMENTAL VERIFICATION

In all algorithms, the initial estimates are drawn uniformly from [-1,1]. The network includes five agents with randomly generated links satisfying Assumption 1, and combination matrices are built using the Laplacian rule. Performance is measured by the squared gradient norm and the mean-square deviation (MSD): $\overline{\|\nabla J\|^2}(n) = \frac{1}{n} \sum_{\ell=1}^n \|\nabla J(\overline{w}_{\ell-1})\|^2$, $\mathrm{MSD}(n) = \frac{1}{K} \sum_{k=1}^K \|w_k(n) - w^*\|^2$.

5.1 APPLICATION: ADAPTIVE FILTERING

We consider a linear adaptive filtering task where each agent observes streaming data $d_k(n) = x_k^T(n)w_k^\circ + v_k(n)$, k = 1, 2, ..., K, with local optimum w_k° and zero-mean noise $v_k(n)$. For Gaussian noise, the global optimum of the network MSE cost, $\min \frac{1}{2K} \sum_{k=1}^K \mathbb{E}\left\{(d_k(n) - x_k^T(n)w)^2\right\}$, is $w^* = (\sum_{k=1}^K R_{x,k})^{-1}(\sum_{k=1}^K R_{x,k}w_k^\circ)$, where $R_{x,k} = \mathbb{E}\left\{x_k(n)x_k^T(n)\right\}$. In the simulation, $x_k(n) \sim \mathcal{N}(0, \sigma_{x,k}^2 I_5)$, $v_k(n) \sim \mathcal{N}(0, \sigma_{v,k}^2)$, and $w_k^\circ \sim \mathcal{N}(0, I_5)$, with $\sigma_{x,k}^2 \sigma_{v,k}^2 \sim \mathcal{U}(0,1)$. To test tracking, w_k° changes sign midway through the iterations. Fig. 1 shows convergence curves of DSG-RMS and EDSG-RMS under homogeneous and heterogeneous networks, using both stochastic and exact gradients. The notations $\psi_{k,1}(n), w_{k,1}(n-1), \psi_{k,1}^c(n)$, and w_1^* refer to the first elements of $\psi_k(n), w_k(n-1), \psi_k^c(n)$, and w_k^* , respectively. Parameters are set to $\gamma = 0.0004$, $\mu = 1, \tau = 1$, and $\sigma_z^2 = 0.0001$ for DSG-RMS/EDSG-RMS. For PD-LMS Rizk et al. (2023) and PSGT Ding et al. (2021), the protection noise variance are 0.0001 and $\sqrt{0.1 \cdot 0.8^n}$, respectively. As shown in Fig. 1, our algorithms outperform the comparison methods in terms of convergence performance, and effectively prevent external agents from inferring the network estimate through sliding averages. In PD-LMS, an eavesdropper can approximate the target via averaging, as seen in Fig. 1(c). Moreover, under heterogeneous data, EDSG-RMS outperforms DSG-RMS when both use exact gradients, as illustrated in Fig. 1(b).

Figure 1: Convergence of DSG-RMS and EDSG-RMS compared with PD-LMS Rizk et al. (2023) and PSGT Ding et al. (2021). (a) MSD curves (50 runs) on a homogeneous network ($w_1^{\rm o}=\ldots=w_K^{\rm o}$); (b) MSD curves (50 runs) on a heterogeneous network ($w_1^{\rm o}\neq\ldots\neq w_K^{\rm o}$); (c) Convergence curves (1 run) of $\psi_{k,1}(n)$, $w_{k,1}(n-1)$, and $\psi_{k,1}^{\rm c}(n)$ in Fig. 1(b) at agent k=1.

Figure 2: (a) Convergence curves (1 run) of DSG-RMS and EDSG-RMS with $\gamma=0.02$; (b) Inference results from the DLG.

5.2 APPLICATION: DISTRIBUTED LEARNING

In the second experiment, we evaluate the proposed strategies by collaboratively training a convolutional neural network (CNN) over a random network of five agents. The MNIST dataset is evenly divided among the agents, with each missing two digit classes: agent 1 (0,1), agent 2 (2,3), agent 3 (4,5), agent 4 (6,7), and agent 5 (8,9). The CNN consists of three convolutional layers (each with 5×5 kernels, 12 filters, and Sigmoid activations), followed by a fully connected layer that outputs 10 classes. Training uses cross-entropy loss Zhang & Sabuncu (2018) min $-\frac{1}{K} \sum_{k=1}^{K} \frac{1}{N_k} \sum_{n=1}^{N_k} \sum_{\ell=1}^{N_k} y_{k\ell,n} \log(\hat{y}_{k\ell,n})$, where N_k is the number of samples, and $y_{k\ell,n}, \hat{y}_{k\ell,n}$ denote the true label and predicted probability for class ℓ of the n-th sample at agent k. Each agent randomly selects a sample at each iteration to compute a stochastic gradient for parameter updates. Other settings include protection noise variance $\sigma_{z,k}^2 = 10^{-2}$ for DSG-RMS and EDSG-RMS, $\gamma=0.02, \mu=1$, and $\tau=0.1$. We assume agent 1 is honest-butcurious: it follows the protocol but attempts to infer agent 2's local data using the DLG attack Zhu et al. (2019), leveraging available weight and gradient estimates. For the DSG and DSG-RMS, the estimated weights and gradient informations are $\{w_2(n-1), (-\psi_2(n) + w_2(n-1))/\gamma\}$ and $\{\hat{w}_2(n-1), (-\psi_2^c(n-1) + \frac{\tau}{\sqrt{L}} \| w_1(n-1) \| \cdot \mathbb{1}_L + \hat{w}_2(n-1))/\gamma \}$, respectively, where $\hat{\boldsymbol{w}}_2(n) \approx \sum_{\ell \in \mathcal{N}_2} a_{\ell 2} \boldsymbol{\psi}_{\ell}^c(n) - \frac{\tau}{\sqrt{L}} \| \hat{\boldsymbol{w}}_1(n-1) \| \cdot \mathbb{1}_L$. Due to the interplay between the correction, protection, and combination steps in the EDSG-RMS, agent 1 is unable to estimate $\psi_2'(n)$ when the initial values $c'_2(-1)$ and $w'_2(0)$ are randomly selected. In this case, the agent lacks access to the required gradient information. To test the protective role of the random matrix, we applied $w_2'(n-1)$ and $M_2(n)\nabla J_2(w_2'(n-1);x_2(n))$ in DLG diagnosis under the EDSG-RMS. As shown in Fig. 2(a), the squared gradient norm and prediction accuracy of the proposed methods are comparable to DSG. Fig. 2(b) demonstrates that our methods are more effective at mitigating DLG attacks.

Figure 3: Convergence curves (100 runs) in target localization task. (a) localization of target and anchor agents; (b) MSD curves; (c) The changes in specific variables at agent k = 1.

5.3 APPLICATION: TARGET LOCALIZATION

Let the unknown target location in the Cartesian plane be $w^* = [w_1^*, w_2^*]^{\top}$. Four anchor agents at $p_k = [x_k, y_k]^{\top}$, k = 1, 2, 3, 4, obtain noisy measurements of the distance $r_k(n)$ and direction $z_k(n)$ to the target at time n. The localization model in Sayed (2014) expresses the relationship as: $d_k(n) = r_k(n) + z_k^{\top}(n)p_k = z_k^{\top}(n)w^* + v_k(n), k = 1, 2, 3, 4$, where $v_k(n)$ is zero-mean Gaussian noise. To estimate w^* , agents share values with neighbors. Direct sharing, however, risks exposing location information. To address this, EDSG-RMS and DSG-RMS are applied. The results, shown in Figs. 3(b) and (c), were obtained with parameters $\gamma = 4$, $\mu = 1$, $\tau = 0.8$, and $\sigma_z^2 = 0.001$. As observed, the EDSG-RMS algorithm slightly outperforms the others. The DSG-RMS and PD-LMS algorithms achieve similar performance, but the DSG-RMS and EDSG-RMS provide better privacy protection. This is because the sliding average of the transmitted values in PD-LMS can still approximate the target location information, compromising privacy, shown in Fig. 3(c).

6 Conclusion

This paper has introduced two privacy-preserving decentralized learning algorithms, DSG-RMS and EDSG-RMS, designed to mitigate information leakage in both network-estimated values and local gradients/data. We analyzed their convergence for convex objectives, providing explicit error bounds and convergence rates while considering the effects of network topology, non-zero protection vectors, random matrix-step-sizes, and other key parameters. Finally, applications in distributed filtering, learning, and target localization demonstrate the effectiveness of these algorithms, highlighting their practical value in privacy-sensitive optimization.

REFERENCES

Tie Ding, Shanying Zhu, Jianping He, Cailian Chen, and Xinping Guan. Differentially private distributed optimization via state and direction perturbation in multiagent systems. *IEEE Transactions on Automatic Control*, 67(2):722–737, 2021.

- Xingquan Fu, Guanghui Wen, Mengfei Niu, and Wei Xing Zheng. Distributed secure filtering against eavesdropping attacks in sinr-based sensor networks. *IEEE Transactions on Information Forensics and Security*, 19:3483–3494, 2024.
 - Hongyu Han, Sheng Zhang, Hongyang Chen, and Ali H Sayed. Masked diffusion strategy for privacy-preserving distributed learning. *IEEE Transactions on Information Forensics and Security*, 2025.
 - Ibrahim El Khalil Harrane, Rémi Flamary, and Cédric Richard. Toward privacy-preserving diffusion strategies for adaptation and learning over networks. In 2016 24th European Signal Processing Conference (EUSIPCO), pp. 1513–1517. IEEE, 2016.
 - Jianping He, Lin Cai, and Xinping Guan. Preserving data-privacy with added noises: Optimal estimation and privacy analysis. *IEEE Transactions on Information Theory*, 64(8):5677–5690, 2018.
 - Lingying Huang, Junfeng Wu, Dawei Shi, Subhrakanti Dey, and Ling Shi. Differential privacy in distributed optimization with gradient tracking. *IEEE Transactions on Automatic Control*, 69(9): 5727–5742, 2024.
 - Qiongxiu Li, Ignacio Cascudo, and Mads Græsbøll Christensen. Privacy-preserving distributed average consensus based on additive secret sharing. In 2019 27th European Signal Processing Conference (EUSIPCO), pp. 1–5. IEEE, 2019.
 - Qingguo Lü, Xiaofeng Liao, Tao Xiang, Huaqing Li, and Tingwen Huang. Privacy masking stochastic subgradient-push algorithm for distributed online optimization. *IEEE transactions on cybernetics*, 51(6):3224–3237, 2020.
 - Yang Lu and Minghui Zhu. Privacy preserving distributed optimization using homomorphic encryption. Automatica, 96:314–325, 2018.
 - Chuan Ma, Jun Li, Kang Wei, Bo Liu, Ming Ding, Long Yuan, Zhu Han, and H Vincent Poor. Trusted ai in multiagent systems: An overview of privacy and security for distributed learning. *Proceedings of the IEEE*, 111(9):1097–1132, 2023.
 - Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine learning. In 2017 IEEE symposium on security and privacy (SP), pp. 19–38. IEEE, 2017.
 - Nikos Piperigkos, Aris S Lalos, and Kostas Berberidis. Graph laplacian diffusion localization of connected and automated vehicles. *IEEE Transactions on Intelligent Transportation Systems*, 23 (8):12176–12190, 2021.
 - Elsa Rizk, Stefan Vlaski, and Ali H Sayed. Enforcing privacy in distributed learning with performance guarantees. *IEEE Transactions on Signal Processing*, 71:3385–3398, 2023.
 - Minghao Ruan, Huan Gao, and Yongqiang Wang. Secure and privacy-preserving consensus. *IEEE Transactions on Automatic Control*, 64(10):4035–4049, 2019.
 - Ali H Sayed. Diffusion adaptation over networks. In *Academic Press Library in Signal Processing*, volume 3, pp. 323–453. Elsevier, 2014.
 - Ali H Sayed. *Inference and Learning from Data: Inference*, volume 2. Cambridge University Press, 2022.
 - Lei Shi, Wei Xing Zheng, Qingchen Liu, Yang Liu, and Jinliang Shao. Privacy-preserving distributed iterative localization for wireless sensor networks. *IEEE Transactions on Industrial Electronics*, 70(11):11628–11638, 2022.
 - Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In *Proceedings of the 22nd ACM SIGSAC conference on computer and communications security*, pp. 1310–1321, 2015.
 - Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek, and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance analysis. *IEEE transactions on information forensics and security*, 15:3454–3469, 2020.

Chunlei Zhang, Huan Gao, and Yongqiang Wang. Privacy-preserving decentralized optimization via decomposition. arXiv preprint arXiv:1808.09566, 2018. Tao Zhang and Quanyan Zhu. Dynamic differential privacy for admm-based distributed classification learning. IEEE Transactions on Information Forensics and Security, 12(1):172–187, 2016. Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks with noisy labels. Advances in neural information processing systems, 31, 2018. Xiaochuan Zhao and Ali H Sayed. Asynchronous adaptation and learning over networks—part i: Modeling and stability analysis. *IEEE Transactions on Signal Processing*, 63(4):811–826, 2014. Junlong Zhu, Changqiao Xu, Jianfeng Guan, and Dapeng Oliver Wu. Differentially private dis-tributed online algorithms over time-varying directed networks. IEEE Transactions on Signal and Information Processing over Networks, 4(1):4–17, 2018. Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural infor-*mation processing systems*, 32, 2019.