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ABSTRACT

In decentralized learning systems, significant effort has been devoted to protecting
the privacy of each agent’s local data or gradients. However, the shared model pa-
rameters themselves can also reveal sensitive information about the targets, which
the network is estimating. While differential privacy-based decentralized learning
can protect network estimates, using excessively large privacy noise variance will
significantly reduce the accuracy of network estimates. To this end, we propose a
dual-protection framework for decentralized learning. Within this framework, we
develop two privacy-preserving algorithms, named DSG-RMS and EDSG-RMS.
Different from existing differential privacy distributed learning methods, the de-
signed algorithms simultaneously obscure the network’s estimated values and lo-
cal gradients, by adding a protective perturbation vector at each update and by
using random matrix-step-sizes. Then, we establish convergence guarantees for
both algorithms under convex objectives. In particular, our error bound and pri-
vacy analysis highlight how the variance of the random matrix-step-sizes affects
both algorithmic performance and the privacy of local gradients. Despite using
large-variance random step-sizes for stronger gradient privacy, the network’s esti-
mation accuracy in our algorithms can still be improved by choosing a sufficiently
small algorithmic parameter . Finally, we validate the practical effectiveness
of the proposed algorithms through extensive experiments across diverse applica-
tions, including distributed filtering, distributed learning, and target localization.

1 INTRODUCTION

In decentralized learning, a key task is estimating global parameters from local data across dis-
tributed agents, as in cooperative spectrum sensing, multi-target localization, and bio-inspired sys-
tems Sayed| (2022). Agents collaborate via incremental, consensus, or diffusion strategies, exchang-
ing intermediate results or gradients. Such exchanges, however, can compromise privacy, since
gradients may reveal sensitive local training dataShokri & Shmatikov| (2015); Ma et al.[(2023).

To address privacy concerns in decentralized learning, various protective mechanisms have been
developed. Cryptographic approaches—such as secret sharing [Li et al.| (2019a)), secure multi-party
computation Mohassel & Zhang|(2017), and homomorphic encryption|Lu & Zhu|(2018); Ruan et al.
(2019); [Fu et al.| (2024)—offer strong privacy guarantees, but incur substantial computational and
communication overhead. System decomposition methods enhance privacy by constructing virtual
agent and restructuring local objective; however, they introduce additional computational complex-
ityZhang et al.|(2018)). Differential privacy (DP) provides a lightweight alternative by injecting zero-
mean noise into shared quantitiesHe et al.| (2018)); [Wei et al.| (2020); Hu et al.| (2024). It has been
successfully integrated into ADMM-based distributed algorithms and gradient tracking frameworks
across both directed and undirected network topologiesZhang & Zhu| (2016)); Huang et al.| (2024);
Zhu et al.[(2018); Lii et al.|(2020). Another class of noise-based methods applies multiplicative noise
to modify local measurements, as seen in [Harrane et al.| (2016); however, its effectiveness relies on
the restrictive assumption that local optima coincide with the global solution, and it significantly
increases communication overhead. The fundamental challenge of DP-based decentralized learning
algorithms lies in the inherent trade-off between privacy and network accuracy: stronger privacy
requires more noise, which in turn degrades the quality of network estimated parameters. Recent
work has sought to improve this trade-off through techniques such as variance-decaying noise, zero-
sum noise, and graph-homomorphic noise, while achieving (¢, ¢)-differential privacy Ding et al.
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(2021); Rizk et al.| (2023)). However, in distributed consensus learning settings, it faces a critical
phenomenon: As the iteration proceeds, the transmitted signals become nearly identical—for exam-
ple, in decentralized stochastic gradient algorithm. When the added noise has a small variance—but
sufficient to preserve gradient—an adversary may still recover the mean value of transmitted data
by applying statistical operations such as sliding-window averaging. This privacy risk is particularly
acute in wireless sensor localization networks, where the shared data typically contains sensitive
location information [Piperigkos et al.|(2021); Shi et al.| (2022).

In this paper, we focus on the privacy risks related to the exposure of network estimated values
and local gradients/data during information exchange. To address these concerns, we introduce a
novel dual-protection privacy-enhancing framework that integrates two key components: a non-zero
protection vector and a random matrix-step-sizes (RMS) mechanism. By embedding this framework
into the decentralized stochastic gradient (DSG) algorithm and exact diffusion variant (EDSG), we
develop two advanced privacy-preserving methods: DSG-RMS and EDSG-RMS. Then, we conduct
a comprehensive convergence analysis of the proposed algorithms under convex objective functions.
The theoretical results demonstrate that both DSG-RMS and EDSG-RMS achieve convergence to
a neighborhood of the optimal solution. Furthermore, we examine the effect of random matrix-
step-sizes and protection vectors on algorithmic performance. Notably, increasing the variance of
the random step-sizes enhances gradient privacy but simultaneously amplifies sensitivity to data
heterogeneity, resulting in looser error bounds and degraded network estimation accuracy. Our main
contributions are summarized as follows:

* We propose two novel algorithms for decentralized learning: DSG-RMS and EDSG-RMS.
The EDSG-RMS variant is particularly well-suited for settings with heterogeneous data
across devices.

* We provide rigorous convergence analyses for both algorithms under convex and strongly
convex objective functions. This analysis reveals how specific parameter choices influence
the overall network performance. Even when a large variance in the random matrix-step-
sizes is used to ensure strong privacy of the gradient, the proposed algorithms can improve
the network’s estimation accuracy by reducing the parameter ~.

* We conduct comprehensive experiments, and the results confirm the effectiveness of our
methods. We further evaluate their ability to preserve privacy, showing that both network
estimates and individual data remain well protected.

2 RELATED WORKS

As discussed earlier, the PD offers a way to protect shared gradient information by adding random
noise. When this noise typically has a zero mean and and insufficient variance, an adversary can
recover the underlying model parameters using simple techniques such as sliding-window averag-
ing. A recent method using masked diffusion attempts to address this issue, but it also employs a
zero-mean noise Han et al.|(2025)). When more zero-mean noise is injected, a small forgetting factor
becomes necessary to mitigate its adverse effects, which inevitably weakens the collaborative per-
formance among nodes over network. Our approach takes a different direction. Instead of relying
on zero-mean noise, we introduce nonzero perturbation vectors into transmission values and, more
generally, employ random matrix-step-sizes for local gradients. This approach enhances privacy
protection while preserving learning performance. In addition, our EDSG-RMS algorithm reduces
communication overhead—each iteration requires only half as many communication rounds as the
masked diffusion primal-dual stochastic gradient algorithm.

In L1 et al.| (2019b), the NIDS algorithm employs heterogeneous step-sizes that vary only across
agents; however, each agent uses a fixed step-size over time. In contrast, our proposed algorithms
introduce random matrix-valued step-sizes that vary both across agents (in space) and across iter-
ations (in time). Consequently, every agent utilizes a distinct step-size at each iteration, ensuring
that even if the average step-size used by an agent is disclosed, the actual gradient information re-
mains protected. While the work in|Wan et al.| (2023)) also leverages random step-sizes for gradient
protection, it operates within a federated learning framework—a centralized setting—and does not
provide convergence analysis. Our work focuses on a fully decentralized setting (in both homoge-
neous and heterogeneous networks) and includes rigorous convergence guarantees for both convex
and strongly convex objectives.
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3 BACKGROUND AND MOTIVATION

Consider the following distributed optimization problem over an undirected network:
. 1 &
min J(w) = = ; T (w), ()
where K is the number of networked agents, Ji (w) is the convex local risk function at agent k.

3.1 DSG AND EDSG ALGORITHMS

To solve the problem in a distributed manner, we consider the following two algorithms.

3.1.1 DSG ALGORITHM

At agent k, the DSG is executed as

Pr(n) =wi(n—1) —Wﬁk (wr(n—1);xr(n)), (local update) (2a)
wi(n) = Z agpWe(n), (combination) (2b)
ZENIC

for n > 1, where the initial weight wy(0) can be any finite value, v > 0 is a deterministic step-

size, A = [agy] is a symmetric and doubly stochastic combination matrix, ﬁk(wk(n —1);2,(n))
represents the stochastic gradient using sample @ (n), and N, denotes the set of neighboring agents
for agent k, including itself.

3.1.2 EDSG ALGORITHM

At agent k, the update of EDSG is

P1(n) = wi(n—1) =7V Jx(wj,(n—1); z(n)), (local update) (3a)

@) (n) = ¥y (n)+wy(n—1)—(n—1), (correction) (3b)

wi(n) = Z agkPy(n), (combination) (3o)
LeENE

for n > 1, where A = [ayy] is another symmetric and doubly stochastic combination matrixﬂ The
initial values are set as 1)}, (0) = wj,(0), where w,(0) can take any finite value.

The DSG and EDSG algorithms belong to the well-established classes of primal and primal-dual
methods, respectively. Compared to gradient tracking algorithms, both exhibit lower communication
overhead, as each iteration entails only a single round of variable exchange among agents. This
communication efficiency motivates our focus on these two algorithms. Moreover, as demonstrated
in Sayed| (2022), EDSG generally outperforms DSG in heterogeneous data settings, whereas DSG
tends to be more effective when the data across agents is homogeneous.

3.2 PRIVACY ISSUES DISCUSSION

We now examine the privacy issues of these two algorithms under two types of adversaries: external
eavesdroppers and honest-but-curious internal agents. External eavesdroppers are passive adver-
saries located outside the network who intercept communication links to infer agents’ estimated
parameters, local gradients, and potentially their private training data. Honest-but-curious agents
faithfully execute the algorithm but may misuse the information received during collaboration to
infer sensitive data—such as gradients or training samples—belonging to their neighbors. In both
cases, we assume that both types of adversaries have full knowledge of the combination matrix used
in the consensus step.

"The matrix A in is positive-definite, as detailed in|Sayed| (2022).
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3.2.1 PRIVACY RISKS ASSOCIATED WITH wy(n) AND wj,(n)

If the sequences {tp¢(n)} or {¢}(n)} is accessible to external eavesdroppers forn = 1,2,..., N
and ¢ = 1,2,..., K, then the values {wy(n),n = 1,2,...,N} and {w},(n),n = 1,2,...,N}
can be derived using (Zp) and (3f). This exposure could lead to the unintended disclosure of sensi-
tive network estimation, for instance, the leakage of location information in distributed localization
systems.

3.2.2 PRIVACY RISKS IN LOCAL GRADIENT INFORMATION

If honest-but-curious agents have access to {¢,(n)} or {¢,(n)} forn = 1,2,...,N and { =
1,2,..., K, they can infer local gradient information using the relationships YV Jy(we(n); xe(n +
1)) = we(n)—r(n+1) and yVJ o (wy(n); ze(n+1)) = wy(n)—1py(n+1) forn =2,3,..., N-1.
Then, honest-but-curious agents, knowing the step-size parameter -, can accurately reconstruct gra-
dient information from neighboring agents. External eavesdroppers, however, would obtain gradi-
ents with an unknown amplitude scaling.

In distributed least-mean-square (LMS) filtering Sayed| (2014), the local gradient at time n is ex-

pressed as y(di(n) — x; (n)w)xy(n), where zx(n) represents the local data. This gradient is

a scaled version of the local data, which means that external eavesdroppers may extract sensitive
information about the underlying data.

3.2.3 PRIVACY RISKS IN LOCAL DATA EXPOSURE

In deep learning, a honest-but-curious agent who has access to both the gradient

Vi (wg(n); zk(n + 1)) and model parameter wy (n) can leverage model inversion inference tech-
niques, such as those proposed in [Zhu et al. (2019), to reconstruct the local training data. Conse-
quently, in the standard DSG and EDSG algorithms, local training data may be inadvertently leaked.

4 PROPOSED METHODS

To address the privacy concerns discussed, this section introduces the DSG-RMS and EDSG-RMS
algorithms. We then present their mean-square stability and privacy analysis, followed by a discus-
sion of an efficient approach for selecting matrix step-sizes with reduced computational complexity.

4.1 PROPOSED ALGORITHMS

We begin by defining a random matrix My (n), constructed as follows:

Mg (n)
n Zp(n
M (n)= maln) () L LxL @)

Zy(n) i)

where the blocks Zj(n) and Zj (n) consist of elements with zero mean, while the main diagonal
elements {pge(n), ¢ = 1,2, ..., L} share a common mean value i > 0. Each element in the random
matrix may have a different variance.

Using this random matrix, we develop the following algorithms.

« (DSG-RMS)
1bk(n)z'wk(n—1)—7Mk(n)§7k('wk(n—1);.’I:k(n)), (local update) (5a)
W (n) = y(n) + \%ck(n —1), (protection) (5b)
wi(n) = Z a i (n) — Yi(n) + ¢r(n), (combination)  (5¢)

LEN

where ¢ (n — 1) = ||lwik(n — 1)|| - 11, and 7 # 0 is a free parameter.
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* (EDSG-RMS)

Pl (n)=w)(n—1) =y My (n)VJ (w),(n—1); x(n)), (local update)  (6a)
@) (n) =1y (n)+w)(n—1)—(n—1), (correction) (6b)
Y(n)=¢(n) + TL w(n—2), (protection) (6¢)
wy,(n)= Z ap @y’ (n) — @i(n) + ¢k (n), (combination)  (6d)
LEN
where ¢}, (n) = ||w},(n)|| - 11 and the initial value ¢j,(—1) is set to a random vector.

In (5] .) and (6¢), cx(n—1) and ¢}, (n—2) serve as data protection vectors, which protect transmission
values v (n) and @) (n), respectively. Increasing the parameter 7 strengthens this protection but
may affect the stability of the algorithm. Theorems|[T]and [2]specify the effective range of 7. At each
time step n, M} (n) works as random matrix-step-sizes, with its expected value given by yuly,.
In the EDSG-RMS algorithm, we use ¢, (n — 2) instead of ¢} (n — 1), primarily to facilitate the
theoretical analysis of the algorithm.

Remark 1 (Protection mechanisms) During the local update phase, the random matrix My (n)
serves as a form of multiplicative noise that modifies the gradient information. This matrix is locally
generated and remains private to each agent, thereby helping to obscure the true stochastic gradient
and reduce the risk of model inversion attacks. In the protection step, a dynamic non-zero vector
is added to the transmission vector to prevent inference attacks based on statistical analysis, such
as estimating the mean of network updates. Beyond the protection vector form in (3p), alternative
Sformulations can be employed, such as Terf(0.1wy(n — 1)) and T tanh(wg(n — 1)), where erf(-)
and tanh(-) denote the error and hyperbolic tangent functions, respectively)

Remark 2 (Method extension) The multiplicative noise My, (n) in (In a), protection mechanism (|5} (' )
and combination step (Ok) can be integrated into gradient tracklng type algorithms to ensure privacy
protection. However, unlike the algorithms (3)) and (6), which require only one communication round
per iteration, the gradient tracking algorithm necessitates two rounds per iteration.

4.2 CONVERGENCE AND PRIVACY ANALYSIS

Assumption 1 (Network topology) The undirected network is strongly-connected. If agents £ and k
are linked, then ag, > 0; otherwise ag, = 0, where A is a symmetric and doubly stochastic matrix.

Strong connectedness means that, for any pair of agents, there exists an undirected path with positive
edge weights connecting them, and moreover, at least one agent has a positive self-loop (i.e., axi >
0, for some k). The combination matrix A = A ® I, can be decomposed as followsiSayed, (2022)

B I, o|[1"
A=[KT, cXg] {0 D] [iXL} (7)
v Y x-1

where I' = %IIK ® I, D = diag{)z2,..., Ak} ® I, and ¢ > 0. The eigenvalues {\a,...,  \x}
exclude 1. For DSG-RMS, —1 < Ay < 1; for EDSG-RMS, 0 < Ay < 1 (¢ = 2,...,K). Here, I,
and 1y denotes L x L identity matrix and K x 1 all one vector, respectively.

Assumption 2 (Gradient noise) For any agent k and time n, the gradient noise sy ,(w) =
VJ(w;xk(n)) — VJi(w) is temporally and spatially independent, and satisfies

E {s1,0(w)|Fu-1}=0, E{||spn(w)]”|Fua} <ol (®)

where w € F, _1, Uik >0, and F,,_; = filtration{w(0), - - ,wr(n — 1),all k}.

The mean-square error analysis for these alternatives can be conducted using inequalities |erf(0.1z) —
erf(0.1y) > < 0.1|z — y|? and [tanh(z) — tanh(y)|* < |z — y|>.
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Assumption 3 (Random matrix-step-sizes) For each agent k and time n, My,(n) has mutually
independent entries, which are also independent across both time and agents. Its {-th diagonal
element py, ¢(n) satisfies

E{pie(n)} 2 u E{(pre(n) — p)?} 202, )

with constants |1 > 0, 0, > 0. Off-diagonal entries are zero-mean with variances bounded by a2,
It follows that E{Mj.(n)} = pIr, E{||My(n) — pIL|*} < o7, and E{||Mj.(n)||*} < 02, where

o’ = max{ai}k + (L —1)o2,k = 1,2,..,K} and 0% = max{y® + Ui,k + (L —1)o? k =

1,2, ..., K}. Unlike [Zhao & Sayed (2014); |Han et al.| (2025), the variables {jy ¢(n)} may take
negative values.

Assumption 4 (Lipschitz continuous gradient) Each risk function Jy(w) is §-smooth:
IVIk(2) = V)] < 8llz —yl, Va,y e R (10)

for some positive constant 8. Additionally, the network cost function J(w) = + 2521 Jr(w) is
lower bounded, i.e., J(w) > J*, where J* denotes the optimal value of J(w).

Assumption 5 (Convex function) Each risk function Ji,(w) is convex, meaning that for any z, y €
RE, the following inequality holds:

Je(@) = Ji(y) + 5l =yl < (VJi(@),2 — ), an

where v > 0 is a constant. Let w* denote an optimal solution. If v > 0 (i.e., the function is
strongly-convex), the optimal solution w* will be unique.

Theorem 1 (Convergence of DSG-RMS) Under Assumptions [TH3] the following convergence
guarantees hold.

* For the convex case (v = 0), if v and 7 satisfy

_ u(—|p])

12
<mE (12)
1 [P
7| < , (13)
VB|ID = Tk 1yl
then the time-averaged expected cost function satisfies
N _
1 - oy < 2E{J[wo —w*|?} | 120E{|[Wol*}
_ — <
w2 B =) < T N1~ DK
1229262)2 #1112 82v W*2 922
PORADE (SIVTOVIE | o), v (SSEIVTOVIE | et -
1—|D] (1—=IPIHK kK K 2

where w,, = I"W,,, W,, = col{w;(n), wz(n), ..., wr(n)}, W* = lg ® w*, and
0} =max{o? ,k=1,2,..,K}.

s =

* For the strongly-convex case (v > 0), if 7 satisfies the condition and y satisfies

w1 —||D|) [v
<= 15

then the expected squared error is bounded as follows:

— % n o . E{|W 9
{1, v} < (1 222)" (B gfmy — w2} + )
8y (AT INTOVIIP o, ) | o 4868]D| <8||VJ(W*)”2 2)
+90 + +o2). (16
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Proof: The proof is provided in the Appendix.

Theorem 2 (Convergence of EDSG-RMS) Under Assumptions [TH3] the following results hold.

* For the convex case (v = 0), if v and 7 satisfy

) (=D}, 1
7<mm{ Bo(o, + 1) 22 102 [ (17)
_ 0.5
32(1 —oy)

where o, = min{)\;,i = 2,3, ..., K}, then the following convergence bound holds

2E {|[wp, — w*[*} | 480(3 — [[DDE{|[Wo|*}

EE“ D) S TN T MR- DI
967**0 E{[VTOW)I} | 1449°0|DI (BT VT VI s
TTNK - a—io ( a—opk )

2y 403 (12 4 9252

where @), = IT W/,, W, = col{w}(n), wh(n), ..., wi(n)}, and W, = (L1515 ®
IL)W'IIL'

* For the strongly-convex case (v > 0), if 7 satisfies the condition (T8) and ~y satisfies

A= |Dl)ap?® \/7 pv (1 —||ID)
< —
v mm{ 10(7, + 108 \ 5 64(02 + 2)5? [’ 20)

then the expected squared error is bounded as follows:

(3 — IDINE{[Woll*}

— * YRV — *
E{w, - w'?} < (1= 282" (B {Jlwo - w?} +

K(1—Dl)
2u2w<wg>|2> 87 (4AIVTOVII® | o
K(1—|Dl)) pK K o
576720\ D2 (302 VT OWVIHI2
0 21)
u(l—HDH)( (1 - DIHK ) (

Proof: The detailed proof can be found in the Appendix.

Remark 3 (Impact of protection vector and random matrix-step-sizes) The parameter T does not
affect steady-state performance, while ai does. The impact grows with data heterogeneity (caused

by |[VI (W*)||? in the bounds). Choosing a smaller ~y can improve network estimation accuracy.

Remark 4 (Sparsely connected network) In sparsely connected networks (| D||* — 1), the terms
O(?02||D|?/(1 — | D|))?) in DSG-RMS and O(’y a|D|?/(1 — ||D||)?) in EDSG-RMS strongly
affect steady-state performance. Since 93 > 0 , EDSG-RMS can achieve better steady-state per-
formance than DSG-RMS.

Define the mutual information I (X; Y), which measures the amount of information learned about X
by observing Y|Cover| (1999); [Li et al.| (2020). Then, we have privacy-preserving results for network
estimation and gradients.

Theorem 3 (Privacy of Network Estimates and Gradients) Consider the setting where all ran-

dom step-sizes share the same variance ai. Then, limgﬁﬁwl(Sk;(n);Zk(n)) = 0, where
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Sp(n) = Vg (we(n — 1);25(n)), Zi(n) = My(n) VJy(wg(n — 1);2x(n)), and My(n) de-
notes the random step-size applied by agent k at time n. In addition, for an external eavesdropper,
even upon observing a large number of intermediate variables 1, (n), the eavesdropper remains
unable to reconstruct the network’s estimate without knowledge of T.

Proof: By computing the mutual information between the private gradient and the observed signal
under multiplicative noise, the desired result follows directly. The proof proceeds analogously to the
analysis of additive noise perturbation in|Li et al.|(2020).

Remark 5 (Trade-off between privacy and algorithm convergence speed) According to Theorem 3,
gradient information leakage can be effectively suppressed by choosing a sufficiently large variance
for the random step-sizes. However, Theorems I and 2 indicate that increasing the variance de-
grades the network’s estimation accuracy. Fortunately, this degradation can be alleviated by re-
ducing the parameter . Nevertheless, a smaller v leads to slower convergence of the algorithm,
revealing an inherent trade-off between privacy preservation and algorithm convergence speed. The
trade-off can be alleviated, by adopting a time-varying strategy (k) that gradually decreases over
iterations.

4.3 Low-COMPLEXITY CHOICE OF MATRIX-STEP-SIZE

When all elements of Mj(n) are non-zero, computing M), (n)ﬁk (wr(n—1);xk(n)) requires
O(L?) operations. To reduce this cost, we propose two sparse alternatives for My (n):

* Upper Triangular Structure: M}, (n) is constrained to the following upper triangular form:

w1 (n) *1 0 0

0 n) x
Mim)=| O ) x , (22)
. . . *r—1
0 0 0 prr(n)
where *¢ represents non-zero elements;

 Sparse Randomized Structure: In addition to the diagonal elements, L off-diagonal entries
are randomly selected and assigned values drawn from zero-mean random variables.

In both cases, the complexity of computing M, (n)ﬁk(wk(n— 1); xk(n)) is reduced to O(L).

5 EXPERIMENTAL VERIFICATION

In all algorithms, the initial estimates are drawn uniformly from [—1,1]. The network in-
cludes five agents with randomly generated links satisfying Assumption 1, and combination ma-
trices are built using the Laplacian rule. Performance is measured by the mean-square devia-
tion (MSD) and the squared gradient norm: MSD(n) = + 22{:1 wg(n) —w*|?, [VJI]2(n) =
& = IV (@)

5.1 APPLICATION: ADAPTIVE FILTERING

We consider a linear adaptive filtering task where each agent observes streaming data dy(n) =
zl (n)wg + vi(n), k = 1,2,..., K, with local optimum w and zero-mean noise vy (n). For
Gaussian noise vy, (n), the global optimum of the network MSE cost, min Zszl E{(dr(n) —
2} (mw)}. is w* = (4, Res) ™ (4, Regwf), where Ry i = E {@i(n)a) (n)}. In the
simulation, (n) ~ N(0,02 . Is), vi(n) ~ N(0,07 ), and wp ~ N(0,I5), with 02 , 02, ~
U(0,1). To test the tracking, w, changes sign during intermediate iterations. Fig. |I| shows con-
vergence curves of DSG-RMS and EDSG-RMS under homogeneous and heterogeneous networks,
using both stochastic and exact gradients. In Fig.(I(c), the notations 1 (n), wi,1(n — 1), ¥y, (n),

and wj refer to the first elements of 1y (n), wi(n — 1), 45 (n), and w*, respectively. Parameters are
settoy = 0.0001, . =1,7 =1, and crf = 0.0001 for DSG-RMS/EDSG-RMS. For PD-LMSRizk:
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Figure 1: Convergence of DSG-RMS and EDSG-RMS compared with PD-LMS [Rizk et al.| (2023),
PSGT Ding et al.[(2021), and MDSGHan et al.|(2025)). (a) MSD curves (10 runs) on a homogeneous
network (w{ = ... = w%); (b) MSD curves (10 runs) on a heterogeneous network (w§ # ... # w%);
(c) Convergence curves (1 run) of ¢y, 1(n), wy 1(n — 1), and ¢1§,1(”) in Fig. b) atagent k = 1.

et al.| (2023)), PSGT |Ding et al.|(2021), and MDSGHan et al.| (2025)), the protection noise variances
are 0.0001, /0.1 - 0.8", and 0.0001, respectively As a comparison, the MSD curve of PD-LMS us-
ing a protection noise variance 10~° is included. As shown in Fig. [1} our algorithms outperform the
comparison methods in terms of convergence performance, and effectively prevent external agents
from inferring the network estimate through sliding averages. For PD-LMS with protection noise
variance 107°, an eavesdropper can approximate the target parameters via averaging, as seen in
Fig. c). When the protection noise variance is increased to 10, the PD-LMS fails to estimate
the model parameters, under the network parameter settings. Moreover, under heterogeneous data,
EDSG-RMS outperforms DSG-RMS when both use exact gradients, as illustrated in Fig.[T[b).

5.2 APPLICATION: DISTRIBUTED LEARNING

In the second experiment, we evaluate the proposed strategies by collaboratively training a con-
volutional neural network (CNN) over a random network of five agents. The MNIST dataset
is evenly divided among the agents, with each missing two digit classes: agent 1 (0, 1), agent
2 (2, 3), agent 3 (4, 5), agent 4 (6, 7), and agent 5 (8, 9). The CNN consists of three con-
volutional layers (each with 5 x 5 kernels, 12 filters, and Sigmoid activations), followed by a
fully connected layer that outputs 10 classes. Training uses cross-entropy loss [Zhang & Sabuncu
(2018), min —+ Zszl Nik ZnNi1 Zjil Yke,n 108(Jke,n), Where Ny is the number of samples,
and Yxe n, Yke,n denote the true label and predicted probability for class ¢ of the n-th sample at
agent k. Each agent randomly selects a sample at each iteration to compute a stochastic gradi-
ent for parameter updates.Other settings include protection noise variance ai x = 1072 for DSG-
RMS and EDSG-RMS, v = 0.02, o = 1, and 7 = 0.1. We assume agent 1 is honest-but-
curious: it follows the protocol but attempts to infer agent 2’s local data using the DLG attack
Zhu et al. (2019), leveraging available weight and gradient estimates. For the DSG and DSG-
RMS, the estimated weights and gradient informations are {wz(n — 1), (—t2(n) + w2(n—1))/v}
and {wy(n — 1), (—¢5(n — 1) + ﬁ”wl(n —1)|| - 1 + wa(n — 1))/v}, respectively, where
Wa(n) & Y cp, aatpi(n) — ﬁ”wl(n —1)|| - 1. Due to the interplay between the correction,

protection, and combination steps in the EDSG-RMS, agent 1 is unable to estimate 5(n) when
the initial values ¢5(—1) and w)(0) are randomly selected. In this case, the agent lacks access
to the required gradient information. To test the protective role of the random matrix, we applied
wh(n—1) and Mz (n)VJ2(wh(n—1); z2(n)) in DLG diagnosis under the EDSG-RMS. As shown
in Fig. 2Ja), the squared gradient norm and prediction accuracy of the proposed methods are compa-
rable to DSG. Fig.[2(b) demonstrates that our methods are more effective at mitigating DLG attacks.

5.3 APPLICATION: TARGET LOCALIZATION

Let the unknown target location in the Cartesian plane be w* = [w},w3]T. Four anchor agents
at pr = [rx,yr] ", k = 1,2, 3,4, obtain noisy measurements of the distance r4(n) and direction

3PD-LMS here is a local differential privacy version, where the noise is added to each agent.
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Figure 2: (a) Convergence curves (1 run) of DSG-RMS and EDSG-RMS with v = 0.02; (b) Infer-
ence results from the DLG.
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Figure 3: Convergence curves (100 runs) in target localization task. (a) localization of target and
anchor agents; (b) MSD curves; (c) The changes in specific variables at agent k = 1.

zj;(n) to the target at time n. The localization model in[Sayed| expresses the relationship as:
di(n) = re(n)+z;] (n)pr = 2, (n)w* +vi(n),k = 1,2,3, 4, where vy (n) is zero-mean Gaussian
noise. To estimate w*, agents share the estimated values with neighbors. Direct sharing, however,
risks exposing location information. To address this, EDSG-RMS and DSG-RMS are applied. The
results, shown in Figs. [3[b) and (c), were obtained with parameters v = 4, p = 1, 7 = 0.8, and
02 = 0.001. As observed, the EDSG-RMS algorithm slightly outperforms the others. The DSG-
RMS and PD-LMS algorithms achieve similar performance, but the DSG-RMS and EDSG-RMS
provide better privacy protection. This is because the sliding average result of the transmitted values
in the PD-LMS can approximate the target location information, shown in Fig. [3[c).

6 CONCLUSION

This paper has introduced two privacy-preserving decentralized learning algorithms, DSG-RMS and
EDSG-RMS, designed to mitigate information leakage in both network-estimated values and local

10
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gradients/data. We have also established their convergence guarantees for convex objectives, explicit
accounting for the network estimation accuracy and privacy-preserving effects of non-zero protec-
tion vectors and random matrix-step-sizes. Our analysis reveals a fundamental trade-off: while in-
creasing the variance of the step-size enhances gradient privacy, it inevitably degrades network esti-
mation accuracy. However, this degradation can be effectively mitigated by reducing the algorithmic
parameter . Finally, applications in distributed filtering, learning, and target localization demon-
strate the effectiveness of these algorithms, highlighting their practical value in privacy-sensitive
optimization.
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