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ABSTRACT

In collaborative learning systems, significant effort has been devoted to protecting
the privacy of each agent’s local data and gradients. However, the shared model
parameters themselves can also reveal sensitive information about the targets the
network is estimating. To address both risks, we propose a dual-protection frame-
work for decentralized learning. Within this framework, we develop two privacy-
preserving algorithms, named DSG-RMS and EDSG-RMS. Different from ex-
isting privacy distributed learning methods, these algorithms simultaneously ob-
scure the network’s estimated values and local gradients. They do this by adding
a protective perturbation vector at each update and by using randomized matrix-
step-size. Then, we establish convergence guarantees for both algorithms under
convex objectives, and derive error bounds that also explicitly account for the in-
fluence of network topology. In particular, our analysis highlights how the spectral
gap of the mixing matrix and the variance of the randomized matrix-step-sizes af-
fect algorithm performance. Finally, we validate the practical effectiveness of the
proposed algorithms through extensive experiments across diverse applications,
including distributed filtering, distributed learning, and target localization.

1 INTRODUCTION

In decentralized learning, a key task is estimating global parameters from local data across dis-
tributed agents, as in cooperative spectrum sensing, multi-target localization, and bio-inspired sys-
tems Sayed (2022). Agents collaborate via incremental, consensus, or diffusion strategies, exchang-
ing intermediate results or gradients. Such exchanges, however, can compromise privacy, since
gradients may reveal sensitive information Shokri & Shmatikov (2015); Ma et al. (2023).

To address privacy concerns in decentralized learning, various protective mechanisms have been
developed. Cryptographic approaches include secret sharing Li et al. (2019), secure multi-party
computation Mohassel & Zhang (2017), and homomorphic encryption Lu & Zhu (2018); Ruan
et al. (2019); Fu et al. (2024), while system decomposition methods enhance privacy through virtual
agent construction and objective function restructuring Zhang et al. (2018). Differential privacy
mechanisms provide lightweight protection by injecting zero-mean noise He et al. (2018); Wei et al.
(2020) and have been successfully integrated into ADMM-based distributed algorithms and gradient
tracking frameworks for both directed and undirected network topologies Zhang & Zhu (2016);
Huang et al. (2024); Zhu et al. (2018); Lü et al. (2020). Another class of noise-based methods applies
multiplicative noise to modify local measurements, as seen in Harrane et al. (2016). However, its
effectiveness depends on the assumption that local optima are equivalent to global solutions and
the communication burden has increased significantly. Techniques such as variance-decaying noise,
zero-sum noise, and graph-homomorphic noise have been introduced in consensus optimization to
achieve (ϵ, δ)-differential privacy Ding et al. (2021); Rizk et al. (2023). Nevertheless, security risks
remain, as the mean of transmitted data may be exposed through operations like sliding averages.
This concern is particularly critical in wireless sensor localization networks, where shared data often
contain sensitive location information Piperigkos et al. (2021); Shi et al. (2022).

In this paper, we focus on the privacy risks related to the exposure of network estimated values and
local gradients/data during information exchange. To address these concerns, we introduce a novel
dual-protection privacy-enhancing framework that integrates two key components: a non-zero pro-
tection vector and a random matrix-step-sizes (RMS) mechanism. By embedding this framework
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into the decentralized stochastic gradient (DSG) algorithm and exact diffusion variant (EDSG), we
develop two advanced privacy-preserving methods: DSG-RMS and EDSG-RMS. Then, we conduct
a comprehensive convergence analysis of the proposed algorithms under convex objective functions.
The theoretical results demonstrate that both DSG-RMS and EDSG-RMS achieve convergence to
a neighborhood of the optimal solution. Furthermore, we examine the effect of random matrix-
step-sizes and protection vectors on algorithm performance. Notably, higher variance in the random
matrix-step-sizes amplifies sensitivity to data heterogeneity, leading to higher error bounds and re-
duced network estimation accuracy. However, as the parameter γ decreases, the estimation accuracy
improves across the network. Our main contributions are summarized as follows:

• We propose two novel algorithms for decentralized learning that incorporate dual privacy
protection: DSG-RMS and EDSG-RMS. The EDSG-RMS variant is particularly well-
suited for settings with heterogeneous data across devices.

• We provide a rigorous analysis of the convergence behavior of both algorithms under con-
vex and strongly convex objective functions. This analysis reveals how specific design
choices affect the performance of the overall network.

• We conduct comprehensive experiments and the results confirm the effectiveness of our
methods. We further evaluate their ability to preserve privacy, showing that both network
estimates and individual data remain well protected.

2 RELATED WORKS

As discussed earlier, differential privacy offers a way to protect shared gradient information by
adding random noise. However, because this noise typically has a zero mean, it is susceptible to sta-
tistical averaging attacks. Over time, simple techniques like sliding averages can reveal underlying
patterns, undermining privacy guarantees. A recent method using masked diffusion attempts to ad-
dress this issue, but it also employs a zero-mean noise Han et al. (2025). To maintain local gradient
privacy, the method requires adding large amounts of zero-mean noise. This, in turn, forces the use
of a small forgetting factor, which weakens the collaboration between nodes in the network. Our
approach takes a different direction. Instead of relying on zero-mean noise, we introduce nonzero
vectors and, more generally, random matrix-step-sizes. This improves privacy protection while
preserving learning performance. In addition, our EDSG-RMS algorithm reduces communication
costs—each iteration requires only half as many communication rounds as the masked diffusion
primal-dual stochastic gradient algorithm.

3 BACKGROUND AND MOTIVATION

Consider a network optimization problem of the form

min
w∈RL

J(w) =
1

K

K∑
k=1

Jk(w), (1)

where K is the number of networked agents, Jk(w) is the local risk function at agent k.

3.1 DSG AND EDSG ALGORITHMS

To solve the problem in a distributed manner, the following two algorithms has been designed.

3.1.1 DSG ALGORITHM

At agent k, the DSG is executed as Sayed (2022)
ψk(n)=wk(n−1)−γ∇̂Jk(wk(n−1);xk(n)), (local update) (2a)

wk(n) =
∑
ℓ∈Nk

aℓkψℓ(n), (combination) (2b)

for n ≥ 1, where the initial weight wk(0) can be any finite value, γ > 0 is a deterministic step-
size, A = [aℓk] is a symmetric and doubly stochastic combination matrix, ∇̂Jk(wk(n−1);xk(n))
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represents the stochastic gradient using sample xk(n), and Nk denotes the set of neighboring agents
for agent k, including itself. The initial value wk(0) can take any finite value.

3.1.2 EDSG ALGORITHM

At agent k, the update of EDSG is Sayed (2022)
ψ′

k(n) = w
′
k(n−1)−γ∇̂Jk(w

′
k(n−1);xk(n)), (local update) (3a)

ϕ′
k(n) = ψ

′
k(n)+w

′
k(n−1)−ψ′

k(n−1), (correction) (3b)

w′
k(n) =

∑
ℓ∈Nk

aℓkϕ
′
ℓ(n), (combination) (3c)

for n ≥ 1, where A = [aℓk] is another symmetric and doubly stochastic combination matrix1. The
initial values are set as ψ′

k(0) = w
′
k(0), where w′

k(0) can take any finite value.

The study in Sayed (2022) compares the performance of the DSG and EDSG methods. It shows that
EDSG is more effective in settings with heterogeneous data, while DSG tends to perform better in
homogeneous data environments.

3.2 PRIVACY ISSUES DISCUSSION

We consider two types of adversaries: eavesdroppers and honest-but-curious agents. Eavesdroppers
are external threats that intercept communications to infer agents’ estimated values, local gradients,
and training data. Honest-but-curious agents follow the algorithm correctly but may analyze inter-
mediate data to deduce others’ gradients and training data. We assume that the combination matrix
is known to both types of adversaries.

3.2.1 PRIVACY RISKS ASSOCIATED WITH wk(n) AND w′
k(n)

If the sequences {ψℓ(n)} or {ϕ′
ℓ(n)} is accessible to eavesdroppers for n = 1, 2, . . . , N and ℓ =

1, 2, . . . ,K, then the values {wk(n), n = 1, 2, . . . , N} and {w′
k(n), n = 1, 2, . . . , N} can be

derived using (2b) and (3c). This exposure could lead to the unintended disclosure of sensitive
information, such as location data in distributed localization systems.

3.2.2 PRIVACY RISKS IN LOCAL GRADIENT INFORMATION

If eavesdroppers or honest-but-curious agents have access to {ψℓ(n)} or {ϕ′
ℓ(n)} for n =

1, 2, . . . , N and ℓ = 1, 2, . . . ,K, they can infer local gradient information using the relationships
γ∇̂Jℓ(wℓ(n);xℓ(n+1)) = wℓ(n)−ψℓ(n+1) and γ∇̂Jℓ(w

′
ℓ(n);xℓ(n+1)) = w′

ℓ(n)−ψ′
ℓ(n+1)

for n = 2, 3, . . . , N − 1. Honest-but-curious agents, knowing the step-size parameter γ, can accu-
rately reconstruct gradient information from neighboring agents. Eavesdroppers, however, would
obtain gradients with an unknown amplitude scaling.

In distributed least-mean-square (LMS) filtering Sayed (2014), the local gradient at time n is ex-
pressed as γ(dk(n) − x⊤

k (n)w)xk(n), where xk(n) represents the local data. This gradient is a
scaled version of the local data, which means that eavesdroppers can potentially extract sensitive
information about the underlying data by observing the gradient.

3.2.3 PRIVACY RISKS IN LOCAL DATA EXPOSURE

In deep learning, an attacker with access to both gradient ∇̂Jk(wk(n);xk(n + 1)) and model pa-
rameter wk(n) can exploit inference techniques, such as those proposed in Zhu et al. (2019), to
reconstruct the local training data. This vulnerability poses a significant risk to local data privacy in
distributed learning systems.

1The matrix A in (3) is positive-definite, as detailed in Sayed (2022).
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4 PROPOSED METHODS

To address the privacy concerns discussed, this section introduces the DSG-RMS and EDSG-RMS
algorithms. We then present results on their mean-square stability, followed by a discussion of an
efficient approach for selecting matrix step sizes with reduced computational complexity.

4.1 PROPOSED ALGORITHMS

We begin by defining a random matrixMk(n), constructed as follows:

Mk(n)=


µk1(n)

µk2(n)
. . .

Zk(n)

Z ′
k(n) µkL(n)

, L× L (4)

where the blocks Zk(n) and Z ′
k(n) consist of elements with zero mean, while the main diagonal

elements {µkℓ(n), ℓ = 1, 2, ..., L} share a common mean value µ > 0. Each element in the random
matrix may have a different variance.

Using this random matrix, we develop the following algorithms.

• (DSG-RMS)

ψk(n)=wk(n−1)−γMk(n)∇̂Jk(wk(n−1);xk(n)), (local update) (5a)

ψc
k(n) = ψk(n) +

τ√
L
ck(n− 1), (protection) (5b)

wk(n) =
∑
ℓ∈Nk

aℓkψ
c
ℓ(n)−ψc

k(n) +ψk(n), (combination) (5c)

where ck(n− 1) = ∥wk(n− 1)∥ · 1L and τ ̸= 0 is a free parameter.
• (EDSG-RMS)

ψ′
k(n)=w

′
k(n−1)−γMk(n)∇̂Jk(w

′
k(n−1);xk(n)), (local update) (6a)

ϕ′
k(n)=ψ

′
k(n)+w

′
k(n−1)−ψ′

k(n−1), (correction) (6b)

ϕ′c
k (n)=ϕ

′
k(n) +

τ√
L
c′k(n− 2), (protection) (6c)

w′
k(n)=

∑
ℓ∈Nk

aℓkϕ
′c
k (n)− ϕ′c

k (n) + ϕ
′
k(n), (combination) (6d)

where c′k(n) = ∥w′
k(n)∥ · 1L and the initial value c′k(−1) is set to a random vector.

In (5b) and (6c), ck(n−1) and c′k(n−2) serve as data protection vectors, which protect transmission
values ψk(n) and ϕ′

k(n), respectively. Increasing the parameter τ strengthens this protection but
may affect the stability of the algorithm. Theorems 1 and 2 specify the effective range of τ . At each
time step n, γMk(n) works as random matrix-step-sizes, with its expected value given by γµIL.

Remark 1 (Protection mechanisms) During the local update phase, the random matrix Mk(n)
serves as a form of multiplicative noise that modifies the gradient information. This matrix is locally
generated and remains private to each agent, thereby helping to obscure the true stochastic gradient
and reduce the risk of inference attacks. In the protection step, a dynamic non-zero vector is added to
the transmission vector to prevent inference attacks based on statistical analysis, such as estimating
the mean of network updates. Beyond the protection vector form in (5b), alternative formulations
can be employed, such as τerf(0.1wk(n − 1)) and τ tanh(wk(n − 1)), where erf(·) and tanh(·)
denote the error and hyperbolic tangent functions, respectively.2

Remark 2 (Method extension) The multiplicative noiseMk(n) in (5a), protection mechanism (5b),
and combination step (5c) can be integrated into gradient tracking type algorithms to ensure privacy
protection. However, unlike the algorithms (5) and (6), which require only one communication round
per iteration, the gradient tracking algorithm necessitates two rounds per iteration.

2The mean-square error analysis for these alternatives can be conducted using inequalities |erf(0.1x) −
erf(0.1y)∥2 ≤ 0.1|x− y|2 and |tanh(x)− tanh(y)|2 ≤ |x− y|2.
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4.2 CONVERGENCE ANALYSIS IN CONVEX CASE

Assumption 1 (Network model Sayed (2022)) The network is strongly-connected. If agents ℓ and k
are linked, then aℓk > 0; otherwise aℓk = 0, where A is a symmetric and doubly stochastic matrix.

The combination matrix A = A⊗ IL can be decomposed as follows:

A = [KΓ, cXR]

[
IL 0
0 D

] [
ΓT

1
cXL

]
, (7)

where Γ = 1
K1K ⊗ IL, D = diag{λ2, . . . , λK} ⊗ IL, and c > 0. The eigenvalues {λ2, . . . , λK}

exclude 1. For DSG-RMS, −1 < λℓ < 1; for EDSG-RMS, 0 < λℓ < 1 (ℓ = 2, . . . ,K). Here, IL
and 1K denots L× L identity matrix and K × 1 all one vector, respectively.

Assumption 2 (Gradient noise Sayed (2022)) For any agent k and time n, the gradient noise
sk,n(w) = ∇̂Jk(w;xk(n))−∇Jk(w) is temporally and spatially independent, and satisfies

E{sk,n(w)|Fn−1}=0, E{∥sk,n(w)∥2 |Fn−1}≤σ2
s,k, (8)

where w ∈ Fn−1, σ2
s,k ≥ 0, and Fn−1 = filtration{wk(0), · · · ,wk(n− 1), all k}.

Assumption 3 (Random matrix-step-sizes) For each agent k and time n, Mk(n) has mutually
independent entries, independent across time and agents. Its ℓ-th diagonal element µk,ℓ(n) satisfies

E{µk,ℓ(n)}
∆
= µ, E{(µk,ℓ(n)− µ)2} ∆

= σ2
µ,k, (9)

with constants µ > 0, σµ,k > 0. Off-diagonal entries are zero-mean with variances bounded by σ2
z .

It follows that E{Mk(n)} = µIL, E{∥Mk(n)− µIL∥2} ≤ σ2
µ, and E{∥Mk(n)∥2} ≤ θ2µ, where

σ2
µ = max{σ2

µ,k + (L − 1)σ2
z , k = 1, 2, ...,K} and θ2µ = max{µ2 + σ2

µ,k + (L − 1)σ2
z , k =

1, 2, ...,K}. Unlike Zhao & Sayed (2014), the variables {µk,ℓ(n)} may take negative values.

Assumption 4 (Lipschitz continuous gradient Sayed (2022)) Each risk function Jk(w) is δ-
smooth:

∥∇Jk(x)−∇Jk(y)∥ ≤ δ∥x− y∥, ∀x, y ∈ RL (10)

for some positive constant δ. Additionally, the network cost function J(w) = 1
K

∑K
k=1 Jk(w) is

lower bounded, i.e., J(w) ≥ J∗, where J∗ denotes the optimal value of J(w).

Assumption 5 (Convex function Sayed (2022)) Each risk function Jk(w) is convex, meaning that
for any x, y ∈ RL, the following inequality holds:

Jk(x)− Jk(y) +
ν

2
∥x− y∥2 ≤ ⟨∇Jk(x), x− y⟩, (11)

where ν ≥ 0 is a constant. Let w∗ denote an optimal solution. If ν > 0 (i.e., the function is
strongly-convex), the optimal solution w∗ will be unique.

Theorem 1 (Convergence of DSG-RMS) Under Assumptions 1–5, the following results hold.

• For the convex case (ν = 0), if γ and τ satisfy

γ ≤ µ(1− ∥D∥)
14δθ2µ

, (12)

|τ | < 1− ∥D∥√
8∥D − I(K−1)L∥

, (13)

then the following convergence bound holds

1

N

N∑
n=1

(
E{J(wn−1)}−J(w∗)

)
≤ 2E{∥w0 − w∗∥2}

γµN
+

12δE{∥W0∥2}
N(1− ∥D∥)K

5
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+
12γ2θ2µδ∥D∥2

1− ∥D∥

(
8∥∇J (W∗)∥2

(1− ∥D∥)K
+ σ2

s

)
+

γ

µK

(
8σ2

µ∥∇J (W∗)∥2

K
+

θ2µσ
2
s

2

)
, (14)

where wn = ΓT Wn, Wn = col{w1(n),w2(n), ...,wK(n)}, W∗ = 1K ⊗ w∗, and
σ2
s = max{σ2

s,k, k = 1, 2, ...,K}.

• For the strongly-convex case (ν > 0), if τ satisfies the condition (13) and γ satisfies

γ ≤ µν(1− ∥D∥)
64θ2µδ

2

√
ν

δ
, (15)

then the expected squared error is bounded as follows:

E{∥wn − w∗∥2} ≤
(
1− γµν

8

)n (
E{∥w0 − w∗∥2}+ E{∥W0∥2}

K

)
+

8γ

µνK

(
4σ2

µ∥∇J (W∗)∥2

K
+ θ2µσ

2
s

)
+ γ2

48θ2µδ∥D∥2

ν(1− ∥D∥)

(
8∥∇J (W∗)∥2

(1− ∥D∥)K
+ σ2

s

)
. (16)

Proof: This proof is omitted here due to space constraints.

Theorem 2 (Convergence of EDSG-RMS) Under Assumptions 1–5, the following results hold.

• For the convex case (ν = 0), if γ and τ satisfy

γ ≤ min

{
(1− ∥D∥)σ0.5

b

28δ(σµ + µ)
,

µ

2δ(2µ2 + σ2
µ)

}
, (17)

|τ | ≤ (1− ∥D∥)σ0.5
b√

32(1− σb)
, (18)

where σb = min{λi, i = 2, 3, ...,K}, then the following convergence bound holds

1

N

N∑
n=1

(
E{J(w′

n−1)} − J(w∗)
)
≤ 2E{∥w′

0 − w∗∥2}
γµN

+
48δ(3− ∥D∥)E{∥W ′

0∥2}
NK(1− ∥D∥)2

+
96γ2µ2δ

NK

E{∥∇J (W ′
0)∥2}

(1− ∥D∥)2
+
144γ2δ∥D∥2

(1− ∥D∥)

(
3σ2

µ∥∇J (W∗)∥2

(1− ∥D∥)K
+ θ2µσ

2
s

)

+
2γ

µK

(
4σ2

µ

K
∥∇J (W∗)∥2 + θ2µσ

2
s

)
, (19)

where w′
n = ΓT W ′

n and W ′
n = col{w′

1(n),w
′
2(n), ...,w

′
K(n)}.

• For the strongly-convex case (ν > 0), if τ satisfies the condition (18) and γ satisfies

γ ≤min

{
(1− ∥D∥)σ0.5

b

40(σµ + µ)δ

√
ν

δ
,
µν(1− ∥D∥)
64(σ2

µ + µ2)δ2

}
, (20)

then the expected squared error is bounded as follows:

E{∥w′
n − w∗∥2} ≤

(
1− γµν

8

)n (
E{∥w0 − w∗∥2}+ (3− ∥D∥)E{∥W ′

0∥2}
K(1− ∥D∥)

+
2γ2µ2∥∇J (W ′

0)∥2

K(1− ∥D∥)

)
+

8γ

µνK

(
4σ2

µ∥∇J (W∗)∥2

K
+ θ2µσ

2
s

)

+
576γ2δ∥D∥2

ν(1− ∥D∥)

(3σ2
µ∥∇J (W∗)∥2

(1− ∥D∥)K
+ θ2µσ

2
s

)
. (21)

Proof: This proof is omitted here due to space constraints.
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Remark 3 (Impact of protection vector and random matrix-step-sizes) The parameter τ does not
affect steady-state performance, while σ2

µ does. Its impact grows with data heterogeneity (i.e.,
∥∇J (W∗)∥2), making the algorithm’s mean-square behavior more sensitive. Choosing a smaller
γ can improve network estimation accuracy.

Remark 4 (Sparsely connected network) In sparsely connected networks (∥D∥2 → 1), the terms
O(γ2θ2µ∥D∥2/(1 − ∥D∥)2) in DSG-RMS and O(γ2σ2

µ∥D∥2/(1 − ∥D∥)2) in EDSG-RMS strongly
affect steady-state performance. Since θ2µ > σ2

µ, EDSG-RMS can achieve better steady-state per-
formance than DSG-RMS.

4.3 LOW-COMPLEXITY CHOICE OF MATRIX-STEP-SIZE

When all elements of Mk(n) are non-zero, computing Mk(n)∇̂Jk(wk(n−1);xk(n)) requires
O(L2) operations. To reduce this cost, we propose two sparse alternatives forMk(n):

• Upper Triangular Structure: Mk(n) is constrained to an upper triangular form:

Mk(n)=


µk1(n) ⋆1 0 0

0 µk2(n) ⋆2
...

...
...

. . . ⋆L−1

0 0 0 µkL(n)

, (22)

where ⋆ℓ represents non-zero elements;

• Sparse Randomized Structure: In addition to the diagonal elements, L off-diagonal entries
are randomly selected and assigned values drawn from zero-mean random variables.

In both cases, the complexity of computingMk(n)∇̂Jk(wk(n−1);xk(n)) is reduced to O(L).

5 EXPERIMENTAL VERIFICATION

In all algorithms, the initial estimates are drawn uniformly from [−1, 1]. The network in-
cludes five agents with randomly generated links satisfying Assumption 1, and combination ma-
trices are built using the Laplacian rule. Performance is measured by the squared gradient
norm and the mean-square deviation (MSD): ∥∇J∥2(n) = 1

n

∑n
ℓ=1 ∥∇J(wℓ−1)∥2, MSD(n) =

1
K

∑K
k=1 ∥wk(n)− w∗∥2.

5.1 APPLICATION: ADAPTIVE FILTERING

We consider a linear adaptive filtering task where each agent observes streaming data dk(n) =
xT
k (n)w

o
k + vk(n), k = 1, 2, ...,K, with local optimum wo

k and zero-mean noise vk(n). For Gaus-
sian noise, the global optimum of the network MSE cost, min 1

2K

∑K
k=1 E{(dk(n) − xT

k (n)w)
2},

is w∗ = (
∑K

k=1 Rx,k)
−1(
∑K

k=1 Rx,kw
o
k), where Rx,k = E{xk(n)x

T
k (n)}. In the simulation,

xk(n) ∼ N (0, σ2
x,kI5), vk(n) ∼ N (0, σ2

v,k), and wo
k ∼ N (0, I5), with σ2

x,k, σ
2
v,k ∼ U(0, 1). To

test tracking, wo
k changes sign midway through the iterations. Fig. 1 shows convergence curves of

DSG-RMS and EDSG-RMS under homogeneous and heterogeneous networks, using both stochas-
tic and exact gradients. The notations ψk,1(n),wk,1(n − 1), ψc

k,1(n), and w∗
1 refer to the first

elements of ψk(n),wk(n − 1),ψc
k(n), and w∗, respectively. Parameters are set to γ = 0.0004,

µ = 1, τ = 1, and σ2
z = 0.0001 for DSG-RMS/EDSG-RMS. For PD-LMS Rizk et al. (2023) and

PSGT Ding et al. (2021), the protection noise variance are 0.0001 and
√
0.1 · 0.8n, respectively.

As shown in Fig. 1, our algorithms outperform the comparison methods in terms of convergence
performance, and effectively prevent external agents from inferring the network estimate through
sliding averages. In PD-LMS, an eavesdropper can approximate the target via averaging, as seen in
Fig. 1(c). Moreover, under heterogeneous data, EDSG-RMS outperforms DSG-RMS when both use
exact gradients, as illustrated in Fig. 1(b).
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Figure 1: Convergence of DSG-RMS and EDSG-RMS compared with PD-LMS Rizk et al. (2023)
and PSGT Ding et al. (2021). (a) MSD curves (50 runs) on a homogeneous network (wo

1 = ... =
wo

K); (b) MSD curves (50 runs) on a heterogeneous network (wo
1 ̸= ... ̸= wo

K); (c) Convergence
curves (1 run) of ψk,1(n),wk,1(n− 1), and ψc

k,1(n) in Fig. 1(b) at agent k = 1.
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Figure 2: (a) Convergence curves (1 run) of DSG-RMS and EDSG-RMS with γ = 0.02; (b) Infer-
ence results from the DLG.

5.2 APPLICATION: DISTRIBUTED LEARNING

In the second experiment, we evaluate the proposed strategies by collaboratively training a con-
volutional neural network (CNN) over a random network of five agents. The MNIST dataset
is evenly divided among the agents, with each missing two digit classes: agent 1 (0,1), agent
2 (2,3), agent 3 (4,5), agent 4 (6,7), and agent 5 (8,9). The CNN consists of three convolu-
tional layers (each with 5 × 5 kernels, 12 filters, and Sigmoid activations), followed by a fully
connected layer that outputs 10 classes. Training uses cross-entropy loss Zhang & Sabuncu
(2018) min − 1

K

∑K
k=1

1
Nk

∑Nk

n=1

∑10
ℓ=1 ykℓ,n log(ŷkℓ,n), where Nk is the number of samples, and

ykℓ,n, ŷkℓ,n denote the true label and predicted probability for class ℓ of the n-th sample at agent
k. Each agent randomly selects a sample at each iteration to compute a stochastic gradient
for parameter updates.Other settings include protection noise variance σ2

z,k = 10−2 for DSG-
RMS and EDSG-RMS, γ = 0.02, µ = 1, and τ = 0.1. We assume agent 1 is honest-but-
curious: it follows the protocol but attempts to infer agent 2’s local data using the DLG attack
Zhu et al. (2019), leveraging available weight and gradient estimates. For the DSG and DSG-
RMS, the estimated weights and gradient informations are {w2(n− 1), (−ψ2(n)+w2(n− 1))/γ}
and {ŵ2(n − 1), (−ψc

2(n − 1) + τ√
L
∥w1(n − 1)∥ · 1L + ŵ2(n − 1))/γ}, respectively, where

ŵ2(n) ≈
∑

ℓ∈N2
aℓ2ψ

c
ℓ(n) − τ√

L
∥w1(n − 1)∥ · 1L. Due to the interplay between the correction,

protection, and combination steps in the EDSG-RMS, agent 1 is unable to estimate ψ′
2(n) when

the initial values c′2(−1) and w′
2(0) are randomly selected. In this case, the agent lacks access

to the required gradient information. To test the protective role of the random matrix, we applied
w′

2(n−1) andM2(n)∇̂J2(w
′
2(n−1);x2(n)) in DLG diagnosis under the EDSG-RMS. As shown

in Fig. 2(a), the squared gradient norm and prediction accuracy of the proposed methods are compa-
rable to DSG. Fig. 2(b) demonstrates that our methods are more effective at mitigating DLG attacks.
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Figure 3: Convergence curves (100 runs) in target localization task. (a) localization of target and
anchor agents; (b) MSD curves; (c) The changes in specific variables at agent k = 1.

5.3 APPLICATION: TARGET LOCALIZATION

Let the unknown target location in the Cartesian plane be w∗ = [w∗
1 , w

∗
2 ]

⊤. Four anchor agents
at pk = [xk, yk]

⊤, k = 1, 2, 3, 4, obtain noisy measurements of the distance rk(n) and direction
zk(n) to the target at time n. The localization model in Sayed (2014) expresses the relationship as:
dk(n) = rk(n)+z

⊤
k (n)pk = z⊤k (n)w∗+vk(n), k = 1, 2, 3, 4, where vk(n) is zero-mean Gaussian

noise. To estimate w∗, agents share values with neighbors. Direct sharing, however, risks exposing
location information. To address this, EDSG-RMS and DSG-RMS are applied. The results, shown
in Figs. 3(b) and (c), were obtained with parameters γ = 4, µ = 1, τ = 0.8, and σ2

z = 0.001.
As observed, the EDSG-RMS algorithm slightly outperforms the others. The DSG-RMS and PD-
LMS algorithms achieve similar performance, but the DSG-RMS and EDSG-RMS provide better
privacy protection. This is because the sliding average of the transmitted values in PD-LMS can still
approximate the target location information, compromising privacy, shown in Fig. 3(c).

6 CONCLUSION

This paper has introduced two privacy-preserving decentralized learning algorithms, DSG-RMS and
EDSG-RMS, designed to mitigate information leakage in both network-estimated values and local
gradients/data. We analyzed their convergence for convex objectives, providing explicit error bounds
and convergence rates while considering the effects of network topology, non-zero protection vec-
tors, random matrix-step-sizes, and other key parameters. Finally, applications in distributed filter-
ing, learning, and target localization demonstrate the effectiveness of these algorithms, highlighting
their practical value in privacy-sensitive optimization.
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