
Under review as a conference paper at ICLR 2023

TABULAR DEEP LEARNING WHEN d ≫ n BY USING AN
AUXILIARY KNOWLEDGE GRAPH

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning models exhibit strong performance on datasets with abundant
labeled samples. However, for tabular datasets with extremely high d-dimensional
features but limited n samples (i.e. d ≫ n), machine learning models struggle to
achieve strong performance. Here, our key insight is that even in tabular datasets
with limited labeled data, input features often represent real-world entities about
which there is abundant prior information which can be structured as an auxiliary
knowledge graph (KG). For example, in a tabular medical dataset where every input
feature is the amount of a gene in a patient’s tumor and the label is the patient’s
survival, there is an auxiliary knowledge graph connecting gene names with drug,
disease, and human anatomy nodes. We therefore propose PLATO, a machine
learning model for tabular data with d ≫ n and an auxiliary KG with input features
as nodes. PLATO uses a multilayer perceptron (MLP) to predict the output labels
from the tabular data and the auxiliary KG with two methodological components.
First, PLATO predicts the parameters in the first layer of the MLP from the auxiliary
KG. PLATO thereby reduces the number of trainable parameters in the MLP and
integrates auxiliary information about the input features. Second, PLATO predicts
different parameters in the first layer of the MLP for every input sample, thereby
increasing the MLP’s representational capacity by allowing it to use different prior
information for every input sample. Across 10 state-of-the-art baselines and 6
d ≫ n datasets, PLATO exceeds or matches the prior state-of-the-art, achieving
performance improvements of up to 10.19%. Overall, PLATO uses an auxiliary KG
about input features to enable tabular deep learning prediction when d ≫ n.

1 INTRODUCTION

Machine learning models have reached state-of-the-art performance in domains with abundant
labeled data like computer vision (Wortsman et al., 2022; Deng et al., 2009) and natural language
processing (Wang et al., 2019; Devlin et al., 2019; Ramesh et al., 2022). However, for tabular datasets
in which the number d of features vastly exceeds the number n of samples, machine learning models
struggle to achieve strong performance (Hastie et al., 2009; Liu et al., 2017). Unfortunately, many
high impact domains like chemistry (Guyon et al., 2004), biology (Iorio et al., 2016; Yang et al., 2012;
Garnett et al., 2012; Gao et al., 2015), and physics (Kasieczka et al., 2021) produce datasets with
high-dimensional features but limited labeled samples due to the high time and labor costs associated
with experiments. In chemistry, for example, mass spectrometry datasets can have tens of thousands
of features but only tens or hundreds of samples (Guyon et al., 2004). For these and other tabular
datasets with d ≫ n, the performance of machine learning systems is currently limited.

To date, deep learning approaches for tabular data have focused on data regimes with far more samples
than features (n ≫ d) (Grinsztajn et al., 2022; Gorishniy et al., 2021; Shwartz-Ziv & Armon, 2022).
In the low-data regime with far more features than samples (d ≫ n), the dominant approaches are
classical statistical methods (Hastie et al., 2009). These statistical methods reduce the dimensionality
of the input space(Abdi & Williams, 2010; Liu et al., 2017; Van der Maaten & Hinton, 2008; Van
Der Maaten et al., 2009), select features (Tibshirani, 1996; Climente-González et al., 2019; Freidling
et al., 2021; Meier et al., 2008), impose regularization penalties on parameter magnitudes (Marquardt
& Snee, 1975), or use ensembles of weak tree-based models (Friedman, 2001; Chen & Guestrin,
2016; Ke et al., 2017; Lou & Obukhov, 2017; Prokhorenkova et al., 2018).

1

Under review as a conference paper at ICLR 2023

Here, we present a novel problem setting and framework for tabular deep learning when d ≫ n
(Figure 1). Our key insight is that even in tabular settings with limited labeled data, input features
often represent real-world entities about which there is abundant prior information which can be
structured as an auxiliary knowledge graph (KG). We propose a novel problem setting in which
every input feature of a tabular dataset corresponds to a node in an auxiliary KG (Figure 1a). For
example, consider a tabular medical dataset in which every row is a cancer patient, every column is
a gene, every value is the amount of that gene in the patient’s tumor, and the task is to predict the
patient’s survival. For this tabular dataset, there exists an auxiliary KG which consists of each gene’s
function, the relationships between genes, how a gene affects a part of human anatomy, and how
human anatomy itself is structured. Note that the KG does not capture the relationships between
input data samples but instead captures the relationships between input features.

Within our novel problem setting, we propose PLATO, a deep learning method for tabular data with
d ≫ n and an auxiliary KG with input features as nodes (Figure 1(b)-(e)). PLATO uses a modified
multilayer perceptron (MLP) to predict the output labels from the input samples and the auxiliary KG
with two methodological components. First, the parameters in the first layer of the MLP are predicted
from the auxiliary KG and the input sample rather than learned from just the tabular data. PLATO
thereby integrates prior information about the input features from the auxiliary KG and drastically
reduces the number of trainable parameters in the MLP. Second, the parameters in the first layer of
the MLP are predicted differently for every sample by using the auxiliary KG and the sample values.
PLATO thereby increases the representational capacity of the MLP and enables effective predictions.

We exhibit PLATO’s performance on 6 datasets. We choose computational biology as it is a rich
domain for d ≫ n in which we can construct a single knowledge graph to serve as a unified
backbone for many distinct tabular datasets with distinct input features. We compare PLATO to
10 state-of-the-art baselines spanning dimensionality reduction, feature selection, classic statistical
models, deep tabular learning methods, and parameter-prediction methods. Following a rigorous
evaluation protocol from the tabular deep learning literature (Grinsztajn et al., 2022; Gorishniy
et al., 2021), PLATO achieves or matches the prior state-of-the-art on all 6 datasets, achieving
performance improvements of up to 10.19%. Ablation studies further demonstrate the necessity of
each methodological component of PLATO. Ultimately, PLATO uses an auxiliary KG about input
features to enable tabular deep learning prediction when d ≫ n.

2 RELATED WORK

Tabular deep learning methods. In contrast to PLATO’s setting, tabular deep learning methods
have been developed for settings with far more samples than features (i.e. n ≫ d). Recent tabular
deep learning benchmarks ignore datasets with high numbers of features and low numbers of
samples (Grinsztajn et al., 2022; Gorishniy et al., 2021; Shwartz-Ziv & Armon, 2022). In the
n ≫ d setting, various categories of deep tabular models have been benchmarked. We select the
state-of-the-art models to compare against PLATO. First, decision tree models like NODE (Popov
et al., 2020) make decision trees differentiable to enable gradient-based optimization (Hazimeh et al.,
2020; Kontschieder et al., 2015; Yang et al., 2018). Second, tabular transformer architectures use an
attention mechanism to select and learn interactions among features. These include TabNet (Arik &
Pfister, 2021), TabTransformer (Huang et al., 2020), FT-Transformer (Gorishniy et al., 2021), and
others (Song et al., 2019; Somepalli et al., 2021; Kossen et al., 2021).

d ≫ n methods. For PLATO’s setting in which d ≫ n, various tabular machine learning approaches
exist (Hastie et al., 2009). First, dimensionality reduction techniques like PCA (Abdi & Williams,
2010) aim to reduce the dimensionality of the input data while preserving as much of the the variance
in the data as possible (Liu et al., 2017; Van der Maaten & Hinton, 2008; Van Der Maaten et al.,
2009). Second, feature selection approaches select a parsimonious set of features, leading to a smaller
feature space. Classical feature selection approaches include LASSO (Tibshirani, 1996) and its
variants (Climente-González et al., 2019; Freidling et al., 2021; Meier et al., 2008). For feature
selection with deep learning, Stochastic Gates (Yamada et al., 2020) are among the best performing of
many variants (Balın et al., 2019; Lu et al., 2018). Finally, classical tree-based models like XGBoost
learn ensembles of weak decision trees models to make an overall prediction (Friedman, 2001; Chen
& Guestrin, 2016; Ke et al., 2017; Prokhorenkova et al., 2018).

2

Under review as a conference paper at ICLR 2023

Figure 1: PLATO is a machine learning model for tabular data with d ≫ n and an auxiliary knowledge
graph with input features as nodes. Machine learning models struggle to achieve strong performance on
tabular datasets with far more d features than n samples (i.e. d ≫ n). (a) The key insight of PLATO is that
even in settings with limited labeled samples, input features often represent real-world entities about which
there is abundant prior knowledge. We propose a new problem setting in which every feature in the input matrix
corresponds to a node in an auxiliary knowledge graph (KG) G. (b-e) PLATO uses G to predict the parameters
in the first layer of a modified MLP F . (b) First, PLATO pretrains an embedding Mj ∈ Rc for every feature
node in G using H, a self-supervised KG node embedding approach. (c) Second, PLATO updates each feature
embedding to focus on the feature information that is most relevant to an input sample Xi. PLATO uses a
message passing network Q to produce Qj ∈ Rc. Q uses an attention mechanism which considers the input
sample Xi. Qj thus depends on the input sample (i.e. Qj |Xi). (d, e) Finally, PLATO uses a small neural
network P to predict the parameters in the first layer of a MLP F from Qj . The parameters in the first layer of
F vary for every input sample Xi.

Knowledge graph approaches. Existing knowledge graph approaches are designed for tasks directly
on the graph such as link prediction (Wang et al., 2017; Trouillon et al., 2016; Wang et al., 2014;
Yang et al., 2015; d’Amato et al., 2021). By contrast, PLATO does not make any predictions on
the knowledge graph. Instead, PLATO makes predictions on a separate, tabular dataset by using the
knowledge graph as prior information about the features and domain.

Graph classification approaches. In graph classification models, every input sample is a graph with
node attributes, and a model must make a prediction for that graph. Graph classification models are
not relevant for PLATO’s problem setting. Graph classification models assume that different samples
correspond to different graphs (Ying et al., 2021; Hu et al., 2020b;a). However, in PLATO every input
sample corresponds to the exact same graph. Additional comments are in Appendix B.

Parameter prediction. Using one network to predict the parameters of another has been extensively
studied (Denil et al., 2013; Schmidhuber, 1992; Bengio et al., 1991). For example, Ha et al. (2016)
predicts the weights in all layers of a sequential model (i.e. RNN, LSTM) by using information
about the structure of the weights. Another approach, Diet Networks (Romero et al., 2017) predicts
parameters by hand-crafting prior information about the input features or using random projections.
By contrast, PLATO predicts parameters in a network by leveraging prior information about the input
features in an auxiliary KG. PLATO systematically constructs an embedding for each input feature
which contains the prior information about the feature that is most relevant to a given sample.

3 PLATO

PLATO is a machine learning method for tabular datasets with d ≫ n and an auxiliary KG with input
features as nodes (Section 3.1). The key insight of PLATO is that even in tabular datasets with limited
labeled samples, input features often represent real world entities about which there is abundant
prior information which can be structured as an auxiliary knowledge graph (KG) G (Figure 1(a)).

3

Under review as a conference paper at ICLR 2023

PLATO uses a modified MLP to predict the output labels from the input samples and the auxiliary
KG. PLATO’s modified MLP has two key methodological components. First, the parameters in the
first layer of the MLP are predicted from the auxiliary KG and the input sample rather than learned
from just the tabular data (Figure 1(b-e)). PLATO thereby integrates prior information about the input
features from the auxiliary KG and drastically reduces the number of trainable parameters in the MLP.
Second, the parameters in the first layer of the MLP are predicted differently for every sample by
using the auxiliary KG and the sample values. PLATO thereby increases the representational capacity
of the MLP and enables effective predictions. The full PLATO Algorithm is given in Algorithm 1.

3.1 PROBLEM SETTING

Consider a tabular dataset X ∈ Rn×d with labels y ∈ Rn and far more features than samples such that
d ≫ n. The goal is to train a machine learning model F to predict labels ŷ from the input X. PLATO
assumes the existence of an auxiliary knowledge graph G = (V,E) with |V | nodes and |E| edges such
that every input feature j corresponds to a node in G. Formally, ∀j ∈ {1, . . . , d}, ∃v ∈ V s.t. j 7→ v,
as shown in Figure 1(a). G also contains additional nodes which represent broader knowledge about
the domain. The edges in G are (head node, relation type, tail node) triplets.

3.2 THE PLATO MLP F

Consider a standard MLP ŷ = T (X;Θ) with L layers, h hidden units in the first layer, and trainable
parameters Θ = {Θ[1],Θ[2], . . . ,Θ[L]}. The PLATO MLP F differs from T in two key ways.

First, the parameters in the first layer of PLATO’s MLP F are predicted from prior information
rather than learned only from the tabular data. We observe that every parameter in the first layer
of T is associated with an input feature j. In particular, Θ[1] ∈ Rd×h such that Θ[1]

j ∈ Rh is a
vector of parameters connecting input feature j to every hidden unit in the first layer of the MLP
(Figure 1e). Typically, T learns the parameters Θ[1]

j and Θ
[1]
k associated with two features j and k

independently by gradient backpropagation. In PLATO, we propose that if two input features j and
k represent real-world entities that are related, then their corresponding parameters Θ[1]

j and Θ
[1]
k

should be related too. To capture the intuition that related input features j and k should have related
parameters, PLATO’s MLP F predicts Θ̂[1]

j and Θ̂
[1]
k from prior information known about j and k. If

input features j and k are related, then the parameter prediction module produces related Θ̂
[1]
j and

Θ̂
[1]
k . Parameter prediction details are in Section 3.3. For now, note that the parameters in the first

layer of PLATO’s MLP F are predicted such that Θ̂[1] ∈ Rd×h. The parameters Θ[2], . . . ,Θ[L] in
the remaining layers of PLATO’s MLP F are learned normally.

Second, the parameters in the first layer of PLATO’s MLP are allowed to vary for every input
sample. In the standard MLP T , all parameters Θ[1], . . . ,Θ[L] are the same for every input sample
Xi. In the first layer of PLATO’s MLP F , however, the parameters Θ̂[1] are being predicted from
prior information about the input features. We observe that for each input sample Xi, the most
relevant prior information about each input feature j might differ. Therefore for each sample Xi,
PLATO uses different prior information about each input feature j to predict the parameters Θ̂[1]

j . As
a result, the parameters Θ̂[1] in the first layer of F vary with each input sample Xi, increasing the
representational capacity of F . How PLATO uses different prior information for parameter prediction
is left to Section 3.3. For now, note that PLATO predicts Θ̂[1]

j from prior information about feature j.
The prior information about feature j that is used depends on the input sample Xi. As a result, Θ̂[1]

is conditional on Xi according to Θ̂[1]|Xi.

Formal Notation. Overall, PLATO’s MLP F takes the form

ŷi = F(Xi; Θ̂|Xi). (1)

F has parameters Θ̂ = {Θ̂[1]|Xi} ∪ {Θ[2], . . . ,Θ[L]} where L is the number of layers in F . The
parameters Θ̂[1]|Xi in the first layer of F are predicted from the input sample Xi via message-passing
on the KG according to Section 3.3. For every sample i, a new Θ̂[1] is predicted such that Θ̂[1]

4

Under review as a conference paper at ICLR 2023

is conditional on Xi at both training and inference time. The dimensionality of Θ̂[1] ∈ Rd×h is
the same as in a normal MLP where h is the number of hidden units in the first layer of F . The
parameters in the remaining layers of PLATO’s MLP Θ[2], . . . ,Θ[L] are the same as in a standard
MLP: they are learned normally, are the same for every sample at both training and inference time,
and are thus not conditional on Xi.

3.3 PREDICTING THE PARAMETERS IN THE FIRST LAYER OF PLATO’S MLP F

PLATO uses prior information about the input features to predict the parameters in the first layer of
PLATO’s MLP F . PLATO predicts these parameters in three steps. First, PLATO uses self-supervision
on the auxiliary KG to pretrain an embedding for every input feature (Section 3.3.1, Figure 1(b)).
Second, since different input samples might rely on different prior information about each input
feature, PLATO updates each feature embedding to contain the most relevant prior information about
the input feature for the given input sample (Section 3.3.2, Figure 1(c)). Finally, PLATO predicts the
parameters in the first layer of F from the updated feature embeddings with a small neural network
that is shared across input features (Section 3.3.3, Figure 1(d)(e)).

3.3.1 PRETRAINING FEATURE EMBEDDINGS WITH SELF-SUPERVISION

First, PLATO learns general prior information about each input feature j from the auxiliary KG
G (Figure 1b). PLATO represents the general prior information about each input feature j as a
low-dimensional embedding Mj ∈ Rc. Since every input feature j corresponds to a specific node in
G, PLATO can learn Mj by learning an embedding for the corresponding feature node in G. Any
self-supervised node embedding method on G can be used within PLATO’s framework.

Formal notation. Formally, PLATO uses self-supervision on G to pretrain an embedding for every
input feature according to

M = H(G). (2)

M ∈ Rd×c is the matrix of all feature embeddings. H is a self-supervised node embedding method.

We refer to Eq. (2) as pretraining since only the auxiliary KG G is used but the tabular data X, y is
ignored. After pretraining, the feature embeddings M are fixed.

Implementation. For H, we choose ComplEx as it is prominent and highly scalable KG node
embedding method (Trouillon et al., 2016). ComplEx uses a self-supervised objective which learn
an embedding for every node in G by classifying whether a proposed edge exists in G. ComplEx’s
proposed edges include both feature nodes and other nodes in G, thereby integrating prior information
about the input features and the broader domain.

3.3.2 UPDATING FEATURE EMBEDDINGS TO CONTAIN THE MOST RELEVANT INFORMATION
FOR AN INPUT SAMPLE

Since different input samples might rely on different prior information about each input feature,
PLATO next updates each feature embedding Mj ∈ Rd×c to Qj ∈ Rd×c, a feature embedding which
contain the most relevant prior information about feature j for a given input sample Xi (Figure 1(c)).
PLATO uses a message-passing network Q on the KG to update the feature embeddings in a way that
minimizes the number of additional trainable parameters.

Q = Q(Xi,M, G;Π). (3)

The message-passing network in Q uses an attention mechanism which considers the sample values
Xi to update the feature embeddings. The attention mechanism has a small number of trainable
parameters Π.

The message passing network Q. Let Q[r]
j be the embedding of input feature j after round

r ∈ {1, ..., R} of message passing. For every input feature j, Q first initializes the updated feature
embedding to the pretrained feature embedding.

Q
[0]
j = Mj . (3a)

5

Under review as a conference paper at ICLR 2023

Q then conducts R rounds of message passing. In each round of message passing, the feature
embedding Q

[r]
j is updated from the feature embedding of each neighbor k in the prior round Q

[r−1]
k

and its own feature embedding in the prior round Q
[r−1]
j . The “message” being passed is the

embedding of each feature from the prior round.

Q
[r]
j = σ

[Weighted messages from neighbors︷ ︸︸ ︷
β(

∑
k∈Nj

AijkQ
[r−1]
k) + (1− β)Q

[r−1]
j︸ ︷︷ ︸

Weighted message from self

]
. (3b)

Qj = σ

[
β(

∑
k∈Nj

AijkMk) + (1− β)Mj

]
. (3c)

σ is an optional nonlinearity. Nj are the neighbors of feature node j in G.

During message-passing, Q uses two scalar values β ∈ R and Aijk ∈ R to control the weights of
messages. First, Q uses hyperparameter β to control the weight of the messages aggregated from all
neighbors vs. the message from the feature node j itself. Second, Q calculates an attention score
Aijk to control the weight of the specific message between feature j and neighbor k. The attention
score is different for every sample i and is calculated by a shallow neural network A with a small
number of trainable parameters Π. The attention score Aijk thus enables Q to update the information
in the feature embedding in a way that is most relevant for the input sample i. Formally:

Aijk =
exp (A(Xij ,Xik;Π))∑

t∈Nj
exp (A(Xij ,Xit;Π))

. (3d)

The number of trainable parameters in Π is small since the input of A is R2 and the output of A is a
scalar R. A and its parameters Π are shared for all samples and features.

Finally, the updated feature embeddings Qj are set after R rounds of message-passing.

Qj = Q
[R]
j . (3e)

3.3.3 PREDICTING THE FIRST LAYER OF PARAMETERS IN F FROM THE UPDATED FEATURE
EMBEDDINGS

Finally, PLATO predicts the parameters in the first layer of F from each updated feature embedding
(Figure 1(d)(e)). Every parameter in the first layer of F is associated with a feature j. PLATO thus
predicts Θ̂j , the parameters associated with the feature j, from Qj , the prior information about j.

Formal notation. PLATO predicts the parameters associated with every input feature j in the first
layer of F according to

Θ̂
[1]
j = P(Qj |Xi;Φ). (4)

P is a shallow neural network parameterized by Φ. Qj is the updated feature embedding of j which
is conditional on the specific input sample Xi. Φ are the parameters of P . P and its parameters Φ
are shared for every feature j ∈ {1, . . . , d}.

PLATO drastically reduces the number of trainable parameters compared to a standard MLP.
The sharing of P and Φ across all input features enables a drastic reduction in the number of trainable
parameters compared to a standard MLP. For a high-dimensional tabular dataset (i.e. d ≫ n),
a standard MLP T with h hidden units has a large number of trainable parameters in the first
layer since Θ[1] ∈ Rd×h. A standard MLP T must learn all dh of these trainable parameters
independently. By contrast, P uses a shared set of trainable parameters Φ to predict Θ̂j from Qj

for every j ∈ {1, . . . , d}. The number of trainable parameters in Φ is small compared to dh since P
need only transform every Qj ∈ Rc to Θ̂[1] ∈ Rh. Thus, |Φ| = ch (assuming that P is a single layer
neural network). c, the dimensionality of the feature embedding, is much less than d the number of
input features. As a result, |Φ| = ch ≪ dh and PLATO drastically reduces the number of trainable
parameters in the first layer of a MLP.

6

Under review as a conference paper at ICLR 2023

Algorithm 1: The PLATO Algorithm.

Input: a data sample Xi ∈ Rd, a knowledge graph (KG) G = (V,E)
Output: predicted label ŷi ∈ R

1 Pretrain KG embedding for every feature: M = H(G)

2 Initialize feature embedding for feature j: Q[0]
j = Mj

3 Compute sample i-specific attention weight: Aijk =
exp (A(Xij ,Xik;Π))∑

t∈Nj
exp (A(Xij ,Xit;Π)) , ∀ features j, k,

where A is a NN parameterized by Π
4 for r = 1; r ≤ R do
5 Update feature embedding with message passing neural network at layer r:

Q
[r]
j = σ

[
β(

∑
k∈Nj

AijkQ
[r−1]
k) + (1− β)Q

[r−1]
j

]
6 end
7 Obtain feature j embedding from GNN last layer R: Qj = Q

[R]
j

8 Predict the parameter of first layer of a MLP from the feature embedding: Θ̂[1] = P(Q|Xi;Φ),
where P is a NN parameterized by Φ

9 Concatenate the first layer predicted parameters with the parameters from the rest of layers:
Θ̂ = {Θ̂[1]} ∪ {Θ[2], . . . ,Θ[L]}

10 Predict label: ŷi = F(X; Θ̂|Xi), where F is an MLP parameterized by Θ̂

Table 1: PLATO outperforms statistical and deep baselines when d ≫ n. For every dataset, the best overall
model is in bold and the second best model is underlined.

Dataset MNSCLC CM PDAC BRCA CRC CH

D 15,390 13,183 12,932 12,693 18,206 19,902

N 295 286 321 476 562 924

D/N 52.2 46.1 40.3 28.2 22.6 19.7

Classic Stat ML Ridge 0.153±0.000 0.390±0.000 0.344±0.000 0.538±0.000 0.376±0.000 0.546±0.000

Dim. Reduct. PCA 0.156±0.113 0.070±0.000 0.232±0.121 0.452±0.000 0.193±0.163 0.237±0.232

Feat. Select. LASSO 0.168±0.000 0.431±0.000 0.346±0.000 0.470±0.000 0.400±0.000 0.547±0.000

STG 0.132±0.130 0.366±0.043 0.258±0.055 0.485±0.037 0.301±0.010 0.262±0.076

Decision Tree XGBoost -0.02±0.000 0.225±0.000 0.363±0.000 0.347±0.000 0.354±0.000 0.728±0.000

Param. Pred. Diet -0.04±0.205 0.054±0.149 0.309±0.096 0.213±0.036 0.087±0.112 0.148±0.008

Tabular DL

MLP 0.128±0.126 0.322±0.043 0.289±0.047 0.240±0.067 0.355±0.022 0.044±0.039

NODE 0.003±0.000 0.150±0.000 0.190±0.000 0.512±0.000 0.344±0.000 0.181±0.000

TabTransformer 0.265±0.000 0.072±0.000 0.029±0.000 0.202±0.000 0.238±0.000 0.020±0.000

TabNet 0.085±0.028 0.010±0.068 0.088±0.037 0.055±0.037 0.018±0.016 0.039±0.026

Ours PLATO 0.272±0.130 0.435±0.022 0.400±0.021 0.583±0.019 0.401±0.019 0.770±0.003

4 EXPERIMENTS

We evaluate PLATO against 10 statistical and deep baselines on 6 tabular datasets with d ≫ n.

Datasets. We use 6 tabular d ≫ n datasets in biomedicine compiled from prior studies (Gao et al.,
2015; Garnett et al., 2012; Iorio et al., 2016; Yang et al., 2012). We focus on biomedicine because
it is a rich domain for d ≫ n in which a single KG can be used as a unified knowledge backbone
across many datasets. Additional data descriptions are in Appendix E.

Auxiliary Knowledge Graph. As a unified knowledge backbone for the datasets, we compile a
general biomedical knowledge graph from prior studies (et al., 2020; 2016; Kuhn et al., 2015; Ruiz
et al., 2021; Szklarczyk et al., 2020; Wishart et al., 2017a;b). Our knowledge graph contains 108,447
nodes, 3,066,156 edges, and 99 relation types. All datasets include features which map to a subset
of nodes in the knowledge graph. The remaining nodes serve as broader domain knowledge. The
same KG is used across all datasets even though all datasets have distinct feature sets with distinct
cardinalities. PLATO thus allows a single KG to serve as a unified knowledge backbone for different
datasets in a domain. Additional KG details are in Appendix F.

7

Under review as a conference paper at ICLR 2023

Table 2: PLATO’s performance depends on updat-
ing feature embeddings to contain information that
is specific to a given sample.

Parameter Pred. P Input Feature Sample PearsonRInformation Specific

Updated feat. embed. Q " " 0.583±0.019

General feat. embed M " ✗ 0.522±0.030

None ✗ ✗ 0.240±0.067

Table 3: PLATO’s performance depends on both
feature nodes in G and other nodes which represent
broader domain knowledge.

Auxiliary KG Feature-only Broader PearsonRKnowledge Knowledge

Full KG " " 0.583±0.019

Feature-only KG " ✗ 0.539±0.038

No KG ✗ ✗ 0.240±0.067

Table 4: PLATO’s performance is competitive with baselines when d ∼ n. For every dataset, the best overall
model is in bold and the second best model is underlined.

Dataset ME BC SCLC NSCLC

D 19,902 10,101 10,712 16,730

N 19,902 18,261 18,437 18,308

D/N 2.0 1.8 1.7 1.1

Classic Stat ML Ridge 0.566±0.008 0.483±0.008 0.604±0.057 0.679±0.008

Dim. Reduct. PCA 0.239±0.310 0.233±0.294 0.284±0.274 0.645±0.000

Feat. Select. LASSO 0.667±0.000 0.633±0.000 0.669±0.000 0.637±0.000

STG 0.676±0.000 0.643±0.000 0.668±0.000 0.646±0.000

Decision Tree XGBoost 0.875±0.000 0.826±0.000 0.878±0.000 0.843±0.000

Param. Pred. Diet 0.105±0.000 0.037±0.000 -0.05±0.000 0.002±0.000

Tabular DL

MLP 0.487±0.131 0.508±0.061 0.537±0.061 0.573±0.005

NODE 0.870±0.000 0.420±0.169 0.801±0.102 0.487±0.197

TabTransformer 0.305±0.028 0.010±0.000 0.288±0.203 0.503±0.187

TabNet 0.667±0.002 0.624±0.001 0.657±0.004 0.647±0.000

Ours PLATO 0.875±0.004 0.844±0.003 0.883±0.002 0.839±0.000

Baselines. We compare PLATO to 10 state-of-the art statistical and deep baselines. We consider
classic regularization with Ridge Regression (Marquardt & Snee, 1975), dimensionality reduction with
PCA (Abdi & Williams, 2010), feature selection with LASSO (Tibshirani, 1996) deep feature selection
with Stochastic Gates (Yamada et al., 2020), and gradient boosted decision trees with XGBoost (Chen
& Guestrin, 2016). We also consider deep tabular learning methods including a standard MLP,
self-attention-based tabular methods with TabTransformer (Huang et al., 2020) and TabNet (Arik &
Pfister, 2021), differentiable decision trees with NODE (Popov et al., 2020), and parameter-prediction
with Diet Networks (Romero et al., 2017). We also attempted FT-Transformer (Gorishniy et al.,
2021), but it experienced out of memory issues on all datasets due to the large number of features.

Fair Comparison of PLATO with Baselines. To ensure a fair comparison with baselines, we follow
evaluation protocols in tabular benchmarks (Grinsztajn et al., 2022; Gorishniy et al., 2021). We
conduct a random search with 500 configurations of every model (including PLATO) on every dataset
across a broad range of hyperparameters (Appendix A). We split data with a 60/20/20 training,
validation, test split. All results are computed across 3 data splits and 3 runs of each model in each
data split. We report the mean and standard deviation of the Pearson correlation (PearsonR) between
y and ŷ across runs and splits on the test set. Each model is run on a GeForce RTX 2080 TI GPU.

4.1 RESULTS

PLATO outperforms statistical and deep baselines when d ≫ n. PLATO outperforms all baselines
across all 6 datasets with d ≫ n (Table 1). PLATO achieves the largest relative improvement on the
PDAC dataset, improving by 10.19% vs. XGBoost, the best baseline for PDAC (0.400 vs. 0.363).
While PLATO achieves the strongest performance across all 6 datasets, the best performing baseline
varies with different datasets. Ridge Regression is the strongest baseline for BRCA, LASSO for
CM and CRC, XGBoost for PDAC and CH, and TabTransformer for MNSCLC. The remaining
baselines (PCA, STG, Diet Networks, MLP, NODE, and TabNet) are not the strongest baseline for
any dataset. We also find that the performance of a specific baseline depends largely on the specific
dataset. TabTransformer, for example, is the best baseline for the MNSCLC dataset but the worst
baseline for the CH dataset. The rank order of all models on all datasets is Appendix C.

8

Under review as a conference paper at ICLR 2023

PLATO’s performance depends on updating feature embeddings to contain information relevant
to a sample. PLATO predicts the parameters Θ̂[1] in the first layer of a modified MLP F by using
feature embeddings which contain prior information about the input features. PLATO first pretrains
general feature embeddings M ∈ Rd×c. PLATO then updates the feature embeddings to Q ∈ Rd×c

which contains information about the input features that is most relevant to a given sample Xi. We
test whether updating the feature embeddings based on a given Xi is necessary by evaluating PLATO
on the BRCA dataset in three configurations (Table 2). The default configuration uses the updated
feature embeddings Q to predict Θ̂[1] according to Θ̂[1] = P(Q|Xi). The second configuration uses
the general feature embeddings M instead of Q to predict Θ̂[1] according to Θ̂[1] = P(M). The
third configuration does not use feature embeddings and thus reduces to a standard MLP.

We compare PLATO’s performance when it uses feature embeddings which contain the relevant
information for a given sample Xi (i.e. Θ̂[1] = P(Q|Xi)) vs. the pretrained feature embeddings M
which contain general information about the input features that is not specific to a given sample (i.e.
Θ̂[1] = P(M)). Using general feature embeddings M improves over not using feature embeddings
at all (0.522 vs. 0.240). Using feature embeddings Q that are specific to a given input sample further
improves performance (0.583 vs. 0.522). Therefore, updating the feature embeddings to Q such that
they contain the information specific to a given sample is critical to PLATO’s performance.

PLATO’s performance depends on both feature nodes and broader knowledge nodes in the
auxiliary KG. PLATO relies on an auxiliary KG G which contains information about input features
and information about the broader domain. Information about input features is represented as feature
nodes while information about the broader domain is represented as other nodes in G (Methods 3.1).
To test the relative importance of the feature information in G vs. the broader domain information, we
measured the performance of PLATO on the BRCA dataset in two KG configurations: PLATO with the
full KG (i.e. both the feature nodes and the broader domain nodes) and PLATO with a “feature-only
KG” (i.e. an induced subgraph on only the feature nodes) (Table 3). We also compare to a “No KG”
configuration in which PLATO does not have access to the KG. Without auxiliary information about
the input features or the broader domain, PLATO is ablated to become a standard MLP.

We find that both the feature nodes and the broader knowledge nodes are important for PLATO’s
performance. Using the “feature-only KG” configuration of PLATO improves performance vs the “no
KG” configuration of PLATO (0.539 vs 0.240). Using the “full KG” configuration further improves
performance vs the “feature-only KG” configuration (0.583 vs 0.539). PLATO’s performance thus
relies on both the feature information and the broader domain information in the KG.

For datasets with d ∼ n, PLATO is competitive with baselines. Finally, we test PLATO’s perfor-
mance for datasets with d ∼ n. We test 4 datasets with d ∼ n ranging from d

n = 1.1 to d
n = 2.0

(Table 4). We find that on 4 datasets with d ∼ n, PLATO is competitive with the best performing
baseline, XGBoost, but does not improve performance substantially. PLATO’s stronger performance
for datasets with d ≫ n than for datasets with d ∼ n is justified. PLATO’s key idea is to include
auxiliary information about the input features. Auxiliary information is likely to help performance
the most in settings with the least labeled data (i.e. d ≫ n). When d ∼ n, auxiliary information is
less helpful since the tabular dataset may already have enough information to train a strong predictive
model. We further find that XGBoost is consistently the strongest baseline for datasets with d ∼ n, in
contrast to the varied performance of XGBoost on the datasets with d ≫ n (Table 1).

5 DISCUSSION

PLATO is a machine learning model for tabular data with d ≫ n and an auxiliary KG with input
features as nodes. Across 6 datasets and 10 baselines, PLATO achieves state-of-the-art performance,
including relative performance improvements of up to 10.19%. Ablation studies also confirm the
importance of each component of PLATO. PLATO has several limitations. First, PLATO matches but
does not substantially improve the performance of baselines for high-dimensional datasets with more
samples (i.e. d ∼ n). Second, PLATO relies on the coverage of prior information. Datasets with input
features that have little prior information in the KG are less likely to benefit from PLATO. Overall,
PLATO uses an auxiliary KG about input features to enable tabular deep learning when d ≫ n.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Hervé Abdi and Lynne J Williams. Principal Component Analysis. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(4):433–459, 2010.

Sercan Ö Arik and Tomas Pfister. TabNet: Attentive interpretable tabular learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 6679–6687, 2021.

Muhammed Fatih Balın, Abubakar Abid, and James Zou. Concrete autoencoders: Differentiable
feature selection and reconstruction. In International Conference on Machine Learning, pp.
444–453. Proceedings of Machine Learning Research, 2019.

Anna Bauer-Mehren, Michael Rautschka, Ferran Sanz, and Laura I Furlong. DisGeNET: a cytoscape
plugin to visualize, integrate, search and analyze gene–disease networks. Bioinformatics, 26(22):
2924–2926, 2010.

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. In Interna-
tional Joint Conference on Neural Networks, volume 2, pp. 969–975. IEEE, 1991.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 785–794, 2016.

Héctor Climente-González, Chloé-Agathe Azencott, Samuel Kaski, and Makoto Yamada. Block
HSIC lasso: model-free biomarker detection for ultra-high dimensional data. Bioinformatics, 35
(14):i427–i435, 2019.

Gene Ontology Consortium. The Gene Ontology resource: 20 years and still GOing strong. Nucleic
Acids Research, 47(D1):D330–D338, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
248–255. IEEE, 2009.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas. Predicting
parameters in deep learning. In Advances in Neural Information Processing Systems, volume 26,
pp. 2148–2156, 2013.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics, 2019.

Claudia d’Amato, Nicola Flavio Quatraro, and Nicola Fanizzi. Injecting background knowledge
into embedding models for predictive tasks on knowledge graphs. In European Semantic Web
Conference, pp. 441–457. Springer, 2021.

Katja Luck et al. A reference map of the human binary protein interactome. Nature, 580(7803):
402–408, April 2020. doi: 10.1038/s41586-020-2188-x. URL https://doi.org/10.1038/
s41586-020-2188-x.

Sebastian Köhler et al. The Human Phenotype Ontology in 2017. Nucleic Acids Research, 45
(D1):D865–D876, November 2016. doi: 10.1093/nar/gkw1039. URL https://doi.org/10.
1093/nar/gkw1039.

Tobias Freidling, Benjamin Poignard, Héctor Climente-González, and Makoto Yamada. Post-selection
inference with HSIC-Lasso. In International Conference on Machine Learning, pp. 3439–3448.
PMLR, 2021.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
Statistics, pp. 1189–1232, 2001.

Hui Gao, Joshua M Korn, Stéphane Ferretti, John E Monahan, Youzhen Wang, Mallika Singh,
Chao Zhang, Christian Schnell, Guizhi Yang, Yun Zhang, et al. High-throughput screening using
patient-derived tumor xenografts to predict clinical trial drug response. Nature Medicine, 21(11):
1318–1325, 2015.

10

https://doi.org/10.1038/s41586-020-2188-x
https://doi.org/10.1038/s41586-020-2188-x
https://doi.org/10.1093/nar/gkw1039
https://doi.org/10.1093/nar/gkw1039

Under review as a conference paper at ICLR 2023

Mathew J Garnett, Elena J Edelman, Sonja J Heidorn, Chris D Greenman, Anahita Dastur, King Wai
Lau, Patricia Greninger, I Richard Thompson, Xi Luo, Jorge Soares, et al. Systematic identification
of genomic markers of drug sensitivity in cancer cells. Nature, 483(7391):570–575, 2012.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. In Advances in Neural Information Processing Systems, volume 34, pp.
18932–18943, 2021.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? In Advances in Neural Information Processing Systems,
Datasets and Benchmarks Track, 2022.

Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis of the NIPS 2003
feature selection challenge. In Advances in Neural Information Processing Systems, volume 17,
pp. 545–552, 2004.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. In International Conference on Learning
Representations, 2016.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. The tree
ensemble layer: Differentiability meets conditional computation. In International Conference on
Machine Learning, pp. 4138–4148. PMLR, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open Graph Benchmark: Datasets for machine learning on graphs. In Advances
in Neural Information Processing Systems, volume 33, pp. 22118–22133, 2020a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning
Representations, 2020b.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. TabTransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Francesco Iorio, Theo A Knijnenburg, Daniel J Vis, Graham R Bignell, Michael P Menden, Michael
Schubert, Nanne Aben, Emanuel Gonçalves, Syd Barthorpe, Howard Lightfoot, et al. A landscape
of pharmacogenomic interactions in cancer. Cell, 166(3):740–754, 2016.

Gregor Kasieczka, Benjamin Nachman, David Shih, Oz Amram, Anders Andreassen, Kees Benk-
endorder, Blaz Bortolato, Gustaaf Broojimans, Florencia Canelli, Jack Collins, et al. The LHC
Olympics 2020: a community challenge for anomaly detection in high energy physics. Reports on
Progress in Physics, 84:124201, 2021.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. LightGBM: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems, volume 30, pp. 3146–3154, 2017.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo. Deep neural
decision forests. In Proceedings of the IEEE International Conference on Computer Vision, pp.
1467–1475, 2015.

Jannik Kossen, Neil Band, Clare Lyle, Aidan N Gomez, Thomas Rainforth, and Yarin Gal. Self-
attention between datapoints: Going beyond individual input-output pairs in deep learning. In
Advances in Neural Information Processing Systems, volume 34, pp. 28742–28756, 2021.

Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. The SIDER database of drugs and side
effects. Nucleic Acids Research, 44(D1):D1075–D1079, October 2015. doi: 10.1093/nar/gkv1075.
URL https://doi.org/10.1093/nar/gkv1075.

11

https://doi.org/10.1093/nar/gkv1075

Under review as a conference paper at ICLR 2023

Bo Liu, Ying Wei, Yu Zhang, and Qiang Yang. Deep neural networks for high dimension, low sample
size data. In International Joint Conference on Artificial Intelligence Organization, pp. 2287–2293,
2017.

Yin Lou and Mikhail Obukhov. BDT: Gradient boosted decision tables for high accuracy and scoring
efficiency. In Proceedings of the SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 1893–1901, 2017.

Yang Lu, Yingying Fan, Jinchi Lv, and William Stafford Noble. DeepPINK: reproducible feature
selection in deep neural networks. In Advances in Neural Information Processing Systems,
volume 31, pp. 8690–8700, 2018.

Donald W Marquardt and Ronald D Snee. Ridge regression in practice. The American Statistician,
29(1):3–20, 1975.

Lukas Meier, Sara Van De Geer, and Peter Bühlmann. The group LASSO for logistic regression.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):53–71, 2008.

Jörg Menche, Amitabh Sharma, Maksim Kitsak, Susan Dina Ghiassian, Marc Vidal, Joseph Loscalzo,
and Albert-László Barabási. Uncovering disease-disease relationships through the incomplete
interactome. Science, 347(6224):1257601, 2015.

Soufiane MC Mourragui, Marco Loog, Daniel J Vis, Kat Moore, Anna G Manjon, Mark A van de
Wiel, Marcel JT Reinders, and Lodewyk FA Wessels. Predicting patient response with models
trained on cell lines and patient-derived xenografts by nonlinear transfer learning. Proceedings of
the National Academy of Sciences, 118(49):e2106682118, 2021.

Rose Oughtred, Chris Stark, Bobby-Joe Breitkreutz, Jennifer Rust, Lorrie Boucher, Christie Chang,
Nadine Kolas, Lara O’Donnell, Genie Leung, Rochelle McAdam, et al. The BioGRID interaction
database: 2019 update. Nucleic Acids Research, 47(D1):D529–D541, 2019.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for deep
learning on tabular data. In International Conference on Learning Representations, 2020.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. CatBoost: unbiased boosting with categorical features. In Advances in Neural Information
Processing Systems, volume 31, pp. 6639–6649, 2018.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv:2204.06125, 2022.

Thomas Rolland, Murat Taşan, Benoit Charloteaux, Samuel J Pevzner, Quan Zhong, Nidhi Sahni,
Song Yi, Irma Lemmens, Celia Fontanillo, Roberto Mosca, et al. A proteome-scale map of the
human interactome network. Cell, 159(5):1212–1226, 2014.

Adriana Romero, Pierre Luc Carrier, Akram Erraqabi, Tristan Sylvain, Alex Auvolat, Etienne Dejoie,
Marc-André Legault, Marie-Pierre Dubé, Julie G Hussin, and Yoshua Bengio. Diet networks: thin
parameters for fat genomics. In International Conference on Learning Representations, 2017.

Jean-François Rual, Kavitha Venkatesan, Tong Hao, Tomoko Hirozane-Kishikawa, Amélie Dricot,
Ning Li, Gabriel F Berriz, Francis D Gibbons, Matija Dreze, Nono Ayivi-Guedehoussou, et al.
Towards a proteome-scale map of the human protein–protein interaction network. Nature, 437
(7062):1173–1178, 2005.

Camilo Ruiz, Marinka Zitnik, and Jure Leskovec. Identification of disease treatment mechanisms
through the multiscale interactome. Nature Communications, 12(1):1–15, 2021.

Lukasz Salwinski, Christopher S Miller, Adam J Smith, Frank K Pettit, James U Bowie, and David
Eisenberg. The Database of Interacting Proteins: 2004 update. Nucleic Acids Research, 32
(suppl_1):D449–D451, 2004.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992.

12

Under review as a conference paper at ICLR 2023

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
SAINT: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In Proceedings
of the 28th ACM International Conference on Information and Knowledge Management, pp.
1161–1170, 2019.

Damian Szklarczyk, Annika L Gable, Katerina C Nastou, David Lyon, Rebecca Kirsch, Sampo
Pyysalo, Nadezhda T Doncheva, Marc Legeay, Tao Fang, Peer Bork, Lars J Jensen, and Christian
von Mering. The STRING database in 2021: customizable protein–protein networks, and functional
characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1):D605–
D612, November 2020. doi: 10.1093/nar/gkaa1074. URL https://doi.org/10.1093/
nar/gkaa1074.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In International Conference on Machine Learning, pp.
2071–2080. PMLR, 2016.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9(11):2579–2605, 2008.

Laurens Van Der Maaten, Eric Postma, Jaap Van den Herik, et al. Dimensionality reduction: a
comparative. Journal of Machine Learning Research, 10(66-71):13, 2009.

Kavitha Venkatesan, Jean-Francois Rual, Alexei Vazquez, Ulrich Stelzl, Irma Lemmens, Tomoko
Hirozane-Kishikawa, Tong Hao, Martina Zenkner, Xiaofeng Xin, Kwang-Il Goh, et al. An
empirical framework for binary interactome mapping. Nature Methods, 6(1):83–90, 2009.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 29(12):
2724–2743, 2017.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 28, pp. 1112–1119, 2014.

David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant, Tanvir
Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, Nazanin Assempour, Ithayavani Iynkkaran, Yifeng
Liu, Adam Maciejewski, Nicola Gale, Alex Wilson, Lucy Chin, Ryan Cummings, Diana Le,
Allison Pon, Craig Knox, and Michael Wilson. DrugBank 5.0: a major update to the DrugBank
database for 2018. Nucleic Acids Research, 46(D1):D1074–D1082, November 2017a. doi:
10.1093/nar/gkx1037. URL https://doi.org/10.1093/nar/gkx1037.

David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant, Tanvir
Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, et al. DrugBank 5.0: a major update to the
DrugBank database for 2018. Nucleic Acids Research, 46(D1):D1074–D1082, 2017b. doi:
10.1093/nar/gkx1037.

13

https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1093/nar/gkx1037

Under review as a conference paper at ICLR 2023

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International Conference on Machine Learning, pp. 23965–23998. PMLR,
2022.

Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. Feature selection using
stochastic gates. In International Conference on Machine Learning, pp. 10648–10659. PMLR,
2020.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In International Conference on Learning
Representations, 2015.

Wanjuan Yang, Jorge Soares, Patricia Greninger, Elena J Edelman, Howard Lightfoot, Simon Forbes,
Nidhi Bindal, Dave Beare, James A Smith, I Richard Thompson, et al. Genomics of Drug
Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells.
Nucleic Acids Research, 41(D1):D955–D961, 2012.

Yongxin Yang, Irene Garcia Morillo, and Timothy M Hospedales. Deep neural decision trees. In
International Conference on Machine Learning, Workshop on Human Interpretability in Machine
Learning (WHI), 2018.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances in
Neural Information Processing Systems, volume 34, pp. 28877–28888, 2021.

Haiyuan Yu, Leah Tardivo, Stanley Tam, Evan Weiner, Fana Gebreab, Changyu Fan, Nenad Svrzikapa,
Tomoko Hirozane-Kishikawa, Edward Rietman, Xinping Yang, et al. Next-generation sequencing
to generate interactome datasets. Nature Methods, 8(6):478–480, 2011.

14

Under review as a conference paper at ICLR 2023

Appendix
A EVALUATION PROTOCOL AND HYPERPARAMETER RANGES

To ensure a fair comparison with baselines, we follow evaluation protocols outlined in tabular
benchmarks (Grinsztajn et al., 2022; Gorishniy et al., 2021). We conduct a random search with
500 configurations of every model (including PLATO) on every dataset across a broad range of
hyperparameters. We base the hyperparameter ranges on the ranges used in prior tabular learning
benchmarks (Grinsztajn et al., 2022; Gorishniy et al., 2021) and the ranges mentioned in the original
papers of the methods. Hyperparameter ranges for PLATO are given in Supplementary Table 1.
Hyperparameter ranges for baseline methods are given in Supplementary Table 2.

Module in PLATO Hyperparameter Range

General
Learning rate LogUniform(1e-4, 5e-3)
Batch size [16, 32, 64]
L2 0, LogUniform(1e-5, 1e-2)

KG H Embedding dimension c 200
Embedding model ComplEx

Message Passing (MP) Q
MP layers R 2
Beta LogUniform(1e-4, 1e-1)
Hidden dimension in A UniformInt(16, 512)

Param Prediction P # Layers R UniformInt(2, 6)
Hidden dimension in h UniformInt(16, 512)

Supplementary Table 1: Hyperparameter ranges used for PLATO.

15

Under review as a conference paper at ICLR 2023

Model Hyperparameter Range

LASSO L1 LogUniform(1E-4, 10)

Ridge L2 LogUniform(1E-4, 10)

XGBoost

n-estimators UniformInt(1,2000)
Max depth UniformInt(3, 10)
Min weight LogUniform(1E-8,1E5)
Subsample Uniform(0.5, 1)
Learning rate LogUniform(1E-5,1)
Col sample by level Uniform(0.5, 1)
Col sample by tree Uniform(0.5, 1)
Gamma 0, LogUniform(1E-8, 1E2)
Lambda 0, LogUniform(1E-8, 1E2)
Alpha 0, LogUniform(1E-8, 1E2)
Booster "gbtree"
Early-stopping-rounds 50
Iterations 100

PCA Number of PCA Components UniformInt(2,1000)

STG

Hidden dimension UniformInt(10, 500)
Number of layers UniformInt(1, 5)
Activation [Tanh, Relu, Sigmoid]
Learning rate LogUniform(1e-4, 1e-1)
Sigma Uniform(0.001, 2)
Lambda LogUniform(1e-3, 10)

MLP

Number of layers UniformInt(1, 8)
Hidden dimension UniformInt(1, 512)
Dropout 0, Uniform([0,0.5])
Learning rate LogUniform(1e-5, 1e-2)
L2 0, LogUniform(1e-6, 1e-3)

TabNet

Decision Steps UniformInt(3, 10)
Layer size 2, 4, 8, 16, 32, 64
Relaxation factor Uniform[1, 2]
Sparsity loss weight LogUniform[1e-6, 1e-1]
Decay rate Uniform[0.4, 0.95]
Decay steps 100, 500, 2000
Learning rate Uniform(1e-3, 1e-2)
Iterations 100

TabTransformer

Embedding dimension 4, 8, 16, 32, 64, 128
Number of heads UniformInt(1, 10)
Number of attention blocks UniformInt(1, 12)
Attention dropout rate Uniform(0, 0.5)
Add norm dropout Uniform(0, 0.5)
Transformation activation [Tanh, Relu, LeakyReLU]
L2 LogUniform(1e-6, 1e-1)
Learning rate LogUniform(1e-6, 1e-3)
FF dropout Uniform(0, 0.5)
FF hidden multiplier 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Out FF activation [Tanh, Relu, LeakyReLU]
Out FF dropout Uniform(0, 0.5)

NODE

Learning rate LogUniform(1e-5, 1)
Number of layers UniformInt(1, 10)
Number of trees UniformInt(2, 2048)
Depth UniformInt(1, 10)

Diet Network

Embedding choice XT , random
Number of layers UniformInt(1, 8)
Hidden dimension UniformInt(1, 512)
Dropout 0, Uniform([0,0.5])
Learning rate LogUniform(1e-5, 1e-2)
L2 0, LogUniform(1e-6, 1e-3)

Supplementary Table 2: Hyperparameter range for all baselines.

16

Under review as a conference paper at ICLR 2023

B GRAPH CLASSIFICATION APPROACHES

Graph classification models are not relevant for PLATO’s setting. In graph classification models,
every input sample is a graph with node attributes, and a model must make a prediction for that graph.
The PLATO problem setting breaks fundamental assumptions made by graph classification models,
rendering them not applicable. First, graph classification models assume that different samples
correspond to different graphs (Ying et al., 2021; Hu et al., 2020b;a). However, in PLATO every
sample corresponds to the exact same graph. There is a single background knowledge graph for all
samples, and every sample has input features that correspond to the exact same nodes within the
knowledge graph. Second, graph classification approaches typically assume that every node in an
input graph has a node attribute (Ying et al., 2021; Hu et al., 2020b;a). However, in PLATO only
a small subset of the nodes in the knowledge graph have measured feature values. Finally, graph
classification approaches typically assume small graphs: the largest graph classification task in the
Open Graph Benchmark has only 244 nodes (Hu et al., 2020a). However in PLATO, the knowledge
graph contains 108,447 and the smallest dataset has 12,932 features corresponding to nodes.

C RANK ORDERING OF METHODS FOR DATASETS WITH d ≫ n

In Supplementary Table 3, we show the rank order performance of all models on all d ≫ n datasets.
We find that PLATO exhibits consistent and strong performance while the performance of the baselines
depends on the specific d ≫ n dataset. For example, TabTransformer is the second best performing
of all models on the MNSCLC dataset but the worst performing of all models on the PDAC and CH
datasets. Similarly, XGBoost is the second best performing of all models on PDAC but only the
seventh best performing of all models on BRCA. The baselines with the most stable performance
are LASSO and Ridge Regression which rank consistently between the second and fifth best of all
models.

Supplementary Table 3: For datasets with d ≫ n, PLATO exhibits consistent and strong performance.
By contrast, the performance of the baselines varies with each dataset. For every dataset, the rank order of
performance from Table 1 is shown. The best overall model is in bold and the second best model is underlined.

Dataset MNSCLC CM PDAC BRCA CRC CH

D/N 52.2 46.1 40.3 28.2 22.6 19.7

Classic Stat ML Ridge 5 3 4 2 3 4

Dim. Reduct. PCA 4 9 8 6 9 6

Feat. Select. LASSO 3 2 3 5 2 3
STG 6 4 7 4 7 5

Decision Tree XGBoost 11 6 2 7 5 2

Param. Pred. Diet 10 10 5 9 10 8

Tabular DL

MLP 7 5 6 8 4 9
NODE 9 7 9 3 6 7
TabTransformer 2 8 11 10 8 11
TabNet 8 11 10 11 11 10

Ours PLATO 1 1 1 1 1 1

17

Under review as a conference paper at ICLR 2023

Supplementary Table 4: For datasets with d ∼ n, PLATO is competitive with baselines. For XGBoost is
consistently the strongest baseline. For every dataset, the rank order of performance from Table 4 is shown. The
best overall model is in bold and the second best model is underlined.

Dataset ME BC SCLC NSCLC

D/N 2.0 1.8 1.7 1.1

Classic Stat ML Ridge 7 7 7 3

Dim. Reduct. PCA 10 9 10 6

Feat. Select. LASSO 6 4 4 7
STG 4 3 5 5

Decision Tree XGBoost 2 2 2 1
Param. Pred. Diet 11 10 11 11

Tabular DL

MLP 8 6 8 8
NODE 3 8 3 10
TabTransformer 9 11 9 9
TabNet 5 5 6 4

Ours PLATO 1 1 1 2

18

Under review as a conference paper at ICLR 2023

D CODE DETAILS

Code to run PLATO will be included as a supplementary file in the final version of the manuscript.

E DATASET DETAILS

We compiled 6 datasets with d ≫ n and 4 datasets with d ∼ n. In all datasets, a machine learning
model must predict the response of a cell or mouse to a drug. In the tabular data, every row
corresponds to a specific cell or mouse. Every column corresponds to a gene name. Every value
corresponds to the amount of that gene in the tumor of the specific cell or mouse. The label is the
response of the cell or mouse. All genes are nodes in the knowledge graph. In practice, the number
of genes is large for all tasks and the number of samples is comparatively small making the drug
response setting appropriate for d ≫ n.

Dataset statistics, names, and sources are given below. Dataset pre-processing followed a standard
process described in (Mourragui et al., 2021). Briefly, gene expression values underwent TMM
normalization and log transformation (i.e. log(x + 1)). Values were made to have zero mean and
unit standard deviation. As labels, we used ln-ic50 for datasets from (Iorio et al., 2016; Yang et al.,
2012; Garnett et al., 2012) and the minimum average percent tumor growth (i.e. “min-avg-pct-
tumor-growth”) for datasets from (Gao et al., 2015). For all datasets, we use a 200-dimensional
ComplEx (Trouillon et al., 2016) embedding of the drug as the input feature vector. All datasets will
be released in the final version of the manuscript.

Dataset Name Source

MNSCLC Non-small cell lung carcinoma (Gao et al., 2015)
CM Cutaneous melanoma (Gao et al., 2015)

PDAC Pancreatic ductal carcinoma (Gao et al., 2015)
BRCA Breast carcinoma (Gao et al., 2015)
CRC Colorectal cancer (Gao et al., 2015)
CH Chondrosarcoma (Iorio et al., 2016; Yang et al., 2012; Garnett et al., 2012)
ME Melanoma (Iorio et al., 2016; Yang et al., 2012; Garnett et al., 2012)
BC Breast carcinoma (Iorio et al., 2016; Yang et al., 2012; Garnett et al., 2012)

SCLC Small cell lung carcinoma (Iorio et al., 2016; Yang et al., 2012; Garnett et al., 2012)
NSCLC Non-small cell lung carcinoma (Iorio et al., 2016; Yang et al., 2012; Garnett et al., 2012)

19

Under review as a conference paper at ICLR 2023

F KNOWLEDGE GRAPH DETAILS

As a unified knowledge backbone for the datasets, we compile a general biomedical knowledge graph
from prior studies (et al., 2020; 2016; Kuhn et al., 2015; Ruiz et al., 2021; Szklarczyk et al., 2020;
Wishart et al., 2017a;b). A schematic of the KG is in Supplementary Figure 2. A detailed breakdown
of relation types is in Supplementary Table 5.

Our knowledge graph contains 108,447 total nodes, including 7,975 drugs, 18,370 diseases, 11,447
phenotypes, 22,319 genes, 11,153 molecular functions, 28,748 biological processes, and 4,184
cellular components. Our knowledge graph contains 3,066,156 edges with 99 distinct relation types.
All datasets include features which map to a subset of nodes in the knowledge graph, primarily genes
and drugs. The remaining node types and their relationships serve as broader domain knowledge.

Edges between drug nodes and gene/protein nodes were derived from Drugbank (Wishart et al.,
2017b), Gao (Gao et al., 2015), and the Genomics of Drug Sensitivity in Cancer (Yang et al., 2012;
Iorio et al., 2016; Garnett et al., 2012). Edges between diseases and genes/proteins were derived
from DisGeNet (Bauer-Mehren et al., 2010). Edges between diseases and phenotypes were derived
from the Human Phenotype Ontology (et al., 2016). Edges between drugs and diseases were derived
from the Multiscale Interactome (Ruiz et al., 2021). Edges between drugs and side effects were
derived from SIDER (Kuhn et al., 2015). Edges between genes/proteins and other genes/proteins
were derived from BioGRID (Oughtred et al., 2019), (Rual et al., 2005), the Database of Interacting
Proteins (Salwinski et al., 2004), (et al., 2020), (Menche et al., 2015), (Rolland et al., 2014), (Yu
et al., 2011), (Venkatesan et al., 2009), and STRING (Szklarczyk et al., 2020). Finally, edges from
genes/proteins to molecular functions, biological processes, and cellular components as well as edges
between molecular functions, biological processes, and cellular components were derived from the
Gene Ontology (Consortium, 2018). The full knowledge graph will be included as a supplementary
file in the final version of the manuscript.

Supplementary Figure 2: Knowledge graph as a unified knowledge backbone. We constructed a knowledge
graph as a unified knowledge backbone across all 6 datasets. (a) Legend. For each node type, the number of
nodes is given in parentheses. Between node types, the number of edges and the number of relation types are
given. (b) Number of total nodes and edges across entire knowledge graph. (c) Visual schematic of knowledge
graph across each node type.

20

Under review as a conference paper at ICLR 2023

Head type Relation Tail type #
edges

BiologicalProcess EndsDuring BiologicalProcess 1
BiologicalProcess HappensDuring BiologicalProcess 8
BiologicalProcess HasPart BiologicalProcess 229
BiologicalProcess IsA BiologicalProcess 53015
BiologicalProcess NegativelyRegulates BiologicalProcess 2768
BiologicalProcess PartOf BiologicalProcess 5193
BiologicalProcess PositivelyRegulates BiologicalProcess 2756
BiologicalProcess Regulates BiologicalProcess 3216
BiologicalProcess OccursIn CellularComponent 149
BiologicalProcess HasPart MolecularFunction 173
BiologicalProcess NegativelyRegulates MolecularFunction 269
BiologicalProcess PositivelyRegulates MolecularFunction 274
BiologicalProcess Regulates MolecularFunction 301

CellularComponent HasPart CellularComponent 179
CellularComponent IsA CellularComponent 4863
CellularComponent PartOf CellularComponent 1990

Disease AlteredExpression Gene 7157
Disease Biomarker Gene 107160
Disease ChromosomalRearrangement Gene 162
Disease FusionGene Gene 166
Disease GeneticVariation Gene 15076
Disease GermlineCausalMutation Gene 4677
Disease ModifyingMutation Gene 10
Disease SomaticCausalMutation Gene 130
Disease SusceptibilityMutation Gene 441
Disease Therapeutic Gene 1793
Disease Has Phenotype 195402

Drug Treats Disease 5926
Drug Carries Gene 866
Drug Enzymes Gene 5382
Drug Targets Gene 19817
Drug Transports Gene 3124
Drug Has Phenotype 140764

Gene Associates BiologicalProcess 43857
Gene NotAssociates BiologicalProcess 470
Gene Associates CellularComponent 35306
Gene Colocalizes CellularComponent 914
Gene NotAssociates CellularComponent 160
Gene NotColocalizes CellularComponent 11
Gene Acetylation Gene 9
Gene Activation Gene 58502
Gene AdpRibosylation Gene 2
Gene Ampylation Gene 5
Gene Association Gene 18
Gene Binary Gene 56565
Gene Binding Gene 287641
Gene Catalysis Gene 344801
Gene Cleavage Gene 22
Gene Complexes Gene 62552
Gene CovalentBinding Gene 52
Gene Deacetylation Gene 8
Gene Demethylation Gene 6
Gene Dephosphorylation Gene 26

21

Under review as a conference paper at ICLR 2023

Gene Deubiquitination Gene 18
Gene DirectInteraction Gene 2904
Gene DisulfideBond Gene 5
Gene DosageGrowthDefect Gene 9
Gene DosageLethality Gene 112
Gene DosageRescue Gene 63
Gene Enzymatic Gene 2
Gene Expression Gene 188
Gene GeneticInterference Gene 32
Gene Hydroxylation Gene 26
Gene Inhibition Gene 20108
Gene Kinase Gene 11960
Gene Literature Gene 174162
Gene Metabolic Gene 10646
Gene Methylation Gene 25
Gene NegativeGenetic Gene 3449
Gene OxidoreductaseActivityElectronTransferAssay Gene 2
Gene PhenotypicEnhancement Gene 209
Gene PhenotypicSuppression Gene 214
Gene Phosphorylation Gene 166
Gene Phosphotransfer Gene 1
Gene PhysicalAssociation Gene 824164
Gene PositiveGenetic Gene 2331
Gene PostTranslationalModification Gene 5306
Gene ProteinCleavage Gene 48
Gene PutativeSelfInteraction Gene 3
Gene Reaction Gene 400658
Gene Regulation Gene 2650
Gene Signaling Gene 65412
Gene SyntheticGrowthDefect Gene 407
Gene SyntheticLethality Gene 816
Gene SyntheticRescue Gene 91
Gene Associates MolecularFunction 35012
Gene Contributes MolecularFunction 596
Gene NotAssociates MolecularFunction 285
Gene NotContributes MolecularFunction 4

MolecularFunction PartOf BiologicalProcess 1068
MolecularFunction Regulates BiologicalProcess 2
MolecularFunction OccursIn CellularComponent 43
MolecularFunction HasPart MolecularFunction 204
MolecularFunction IsA MolecularFunction 13631
MolecularFunction NegativelyRegulates MolecularFunction 42
MolecularFunction PartOf MolecularFunction 11
MolecularFunction PositivelyRegulates MolecularFunction 27
MolecularFunction Regulates MolecularFunction 30

Phenotype IsA Phenotype 14650

Supplementary Table 5: Knowledge graph relations between node types.

22

	Introduction
	Related Work
	Plato
	Problem Setting
	The Plato MLP F
	Predicting the parameters in the first layer of Plato's MLP F
	Pretraining feature embeddings with self-supervision
	Updating feature embeddings to contain the most relevant information for an input sample
	Predicting the first layer of parameters in F from the updated feature embeddings

	Experiments
	Results

	Discussion
	Evaluation Protocol and Hyperparameter Ranges
	Graph classification approaches
	Rank ordering of methods for datasets with d n
	Code Details
	Dataset Details
	Knowledge Graph Details

