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Abstract001

Document Layout Analysis is typically formu-002
lated as an object detection task. However,003
most existing approaches are adapted from004
general-purpose detection frameworks and005
overlook the fundamental structural differences006
between document and natural images. To meet007
the needs of human reading habits, document008
images are two-dimensional and free from009
occlusion. Based on this observation, we010
propose DEtection ENcoder (DEEN), which011
reformulates document layout analysis as a012
graph connectivity prediction task, thereby013
eliminating the need for both Non-Maximum014
Suppression (NMS) and confidence threshold-015
ing in post-processing. To efficiently model016
high-resolution feature maps, DEEN combines017
global sparse and local dense attention for018
unified representation of overall layout and019
fine-grained details. Since DEEN does not020
rely on confidence scores, we evaluate it under021
two settings: one that favors confidence-based022
models, and another that simulates real-world023
usage scenarios. DEEN achieves competi-024
tive performance on three structurally diverse025
datasets, demonstrating strong generalization.026

1 Introduction027

Document layout analysis (DLA) is often formu-028

lated as an object detection task on document029

images. It plays a crucial role in enabling down-030

stream tasks. For example, in Retrieval-Augmented031

Generation workflows, accurately reconstructing032

the original layout of a document helps produce033

well-structured information units (Ren et al., 2023;034

Zhang et al., 2022a). These structured units enable035

more precise grounding and context alignment036

during retrieval and generation, thereby improving037

the performance of large language models (Zhao038

et al., 2024a; Gao et al., 2024). Object detec-039

tion emphasizes different aspects across domains:040

autonomous driving emphasizes speed, medical041

imaging focuses on accuracy, while the DLA042

(a) Images from natural scenes

(b) Images from documents

Figure 1: A comparison between natural and document
images: overlapping content frequently occurs in
natural scenes, whereas document layouts are typically
designed to avoid such overlap for human readability.

task seeks a balanced trade-off among efficiency, 043

accuracy, and usability. 044

Existing DLA methods employ diverse modeling 045

strategies, such as incorporating layout priors 046

into general-purpose detectors(Zhao et al., 2024b), 047

adapting document pre-trained models for detec- 048

tion tasks(Huang et al., 2022), and leveraging 049

multimodal features to enhance context-aware 050

layout representation(Da et al., 2023). However, 051

they overlook a fundamental structural difference 052

between document and natural images. As shown 053

in Figure1, natural images, being 2D projections of 054

3D scenes, often involve occlusion and overlap, 055

which constrain the design of object detectors 056

and necessitate post-processing steps such as 057

confidence-based ranking and Non-Maximum Sup- 058

pression (NMS). In contrast, document images are 059

inherently designed as two-dimensional layouts 060

to support human reading habits, where layout 061

elements are generally expected to be spatially 062

non-overlapping and clearly bounded, except for 063

background regions. This structural prior motivates 064

a rethinking of how layout analysis should be 065

modeled. 066
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To this end, we reformulate the DLA task as067

a region connectivity prediction problem, thereby068

eliminating the need for confidence thresholds069

and non-maximum suppression (NMS). Specif-070

ically, the image is divided into regular grids,071

and each grid cell is assigned two labels: a072

boundary label indicating whether it belongs to the073

background, edge, or interior, and a semantic label074

representing its category distribution. To capture075

fine-grained structural cues while maintaining076

computational efficiency, we propose the GSLD077

Attention module, which combines Mixture-of-078

Experts-based Global Sparse attention (GS) for079

modeling diverse spatial patterns and Local Dense080

attention (LD) for enhancing boundary continuity081

and local perception. Based on the boundary082

predictions, we construct a connectivity graph and083

then refine the regions using semantic information,084

including distinguishing densely distributed and085

entangled regions, and adjusting box boundaries086

according to semantic distributions. This leads087

to more complete structural predictions with088

improved boundary precision.089

Since DEEN does not rely on confidence scores,090

it is incompatible with the standard Average Preci-091

sion(Lin et al., 2015). To enable a comprehensive092

evaluation, we introduce two complementary set-093

tings: one that favors confidence-based models, and094

another that better reflects real-world deployment095

scenarios. We conduct experiments on three struc-096

turally diverse datasets: DocLayNet(Pfitzmann097

et al., 2022), PubLayNet(Zhong et al., 2019), and098

CDLA(Hang, 2021). While maintaining stable099

inference efficiency, DEEN demonstrates strong100

competitiveness under the first setting and achieves101

the highest number of best and second-best results102

under the second. These results confirm the103

practical effectiveness of our proposed formulation104

and attention mechanism.105

Our main contributions are as follows:106

• We propose DEEN, a novel framework that107

formulates the DLA task as a region connec-108

tivity prediction task, eliminating the need for109

confidence thresholds and NMS.110

• We introduce GSLD Attention to capture111

both global structure and local details in112

high-resolution features, while maintaining113

inference efficiency.114

• Extensive experiments on three structurally115

diverse datasets demonstrate the effectiveness116

and generalization capability of our method.117

2 Related Work 118

2.1 Single-Modality Detection Methods 119

Most existing approaches adapt general-purpose 120

detection frameworks such as R-CNN(Girshick 121

et al., 2014; Ren et al., 2016) and the YOLO 122

series(Redmon et al., 2016; Khanam and Hussain, 123

2024), relying on anchor boxes, confidence scores, 124

and NMS for prediction and post-processing. 125

While effective, manual adjustment of thresholds 126

is often necessary to ensure reliable outputs. 127

DETR series(Carion et al., 2020; Zhu et al., 2021; 128

Zhang et al., 2022b) introduces an end-to-end 129

paradigm that eliminates anchors and NMS via 130

global matching, but still depends on a fixed 131

number of object queries and confidence filtering 132

at inference. Similar to our approach, Swin- 133

DocSegmenter(Banerjee et al., 2023) formulates 134

layout prediction as instance segmentation, yet still 135

depends on confidence scores during inference. 136

Notably, DocLayout-YOLO(Zhao et al., 2024b) 137

incorporates layout-specific designs and high- 138

quality synthetic pretraining data, achieving a 139

favorable trade-off between speed and accuracy. 140

2.2 Multi-modal Detection Methods 141

Some works draw inspiration from grid-based 142

methods in vision information extraction(Katti 143

et al., 2018; Denk and Reisswig, 2019; Lin et al., 144

2021), with several methods further constructing a 145

text grid using textual and layout information(Yang 146

et al., 2017; Zhang et al., 2021) to support docu- 147

ment layout analysis. Recent models such as Lay- 148

outLMv3(Huang et al., 2022) and UniDoc(Feng 149

et al., 2023) employ unified multimodal encoding 150

during pretraining, but are typically fine-tuned with 151

visual backbones. VGT(Da et al., 2023) adopts 152

a dual-stream architecture that combines visual 153

features and grid-based textual inputs to enhance 154

both semantic and boundary modeling. 155

2.3 Autoregressive Detection Methods 156

Florence2(Xiao et al., 2023) discretizes continuous 157

coordinates into tokens, enabling unified modeling 158

of detection and generation tasks. DocFusion(Chai 159

et al., 2024) addresses the inherent conflict be- 160

tween discrete tokens and continuous coordinates 161

under multi-task training, allowing for accurate 162

performance on a variety of document parsing 163

tasks such as layout analysis and table recognition. 164

However, these autoregressive models suffer from 165

limited inference speed and error propagation, 166

which hinder practical deployment. 167
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Figure 2: Illustration of the proposed DEEN. The input image is first processed into multi-scale feature maps, which
are then refined by structure-aware GSLD Attention. The highest-resolution feature map is passed to two output
heads for boundary and semantic prediction. Each GSLD block combines Global Sparse and Local Dense Attention.

3 DEEN168

We describe how open-sourced raw annotations are169

converted into grid-level semantic and boundary170

labels (Section 3.1), followed by an overview of171

the encoder-based architecture that enables layout172

understanding (Section 3.2). The core GSLD173

attention mechanism is detailed in Section 3.3.174

We then outline the post-processing step that175

transforms grid predictions into structured outputs176

(Section 3.4). For clarity, we omit the batch177

dimension in tensor shapes throughout this section.178

3.1 Data Construction179

To avoid unnecessary annotation effort, we de-180

sign automated scripts to convert region-level181

annotations from existing public datasets into the182

supervision format required by DEEN. Specifically,183

for each input image I, we divide it into a spatial184

grid of size Hg × Wg, where the resolution is185

dynamically determined by the highest-resolution186

feature map produced by the feature extractor. Each187

grid cell corresponds to a visual token and serves as188

the fundamental unit for token-level classification.189

For each cell, we construct two types of supervision190

labels: a semantic label, indicating the content191

category covered by the region, and a boundary192

label, capturing its geometric role (e.g., inside,193

edge, or background) within the annotated layout194

element.195

Semantic labels: For each annotated region (e.g., a 196

bounding box or segmentation mask), we compute 197

its overlapping area with each grid cell and assign a 198

class probability distribution. When a cell overlaps 199

with multiple labeled regions, its semantic label 200

becomes a weighted distribution based on the area 201

proportions of the overlapping classes. This results 202

in a dense supervision tensor ysem ∈ RHg×Wg×C , 203

which serves as the target for KL-divergence-based 204

loss, allowing the model to learn semantic concepts 205

in a soft and flexible manner. 206

Boundary labels: To capture structural boundaries, 207

each grid cell is also assigned a discrete label from 208

{0, 1, 2}, indicating background, edge, or interior. 209

These labels are determined based on the cell’s 210

relative position to the annotated region—cells 211

fully inside are labeled as 2, those near region 212

boundaries as 1, and the rest as 0. This produces 213

a label map ybnd ∈ RHg×Wg×3 used for cross- 214

entropy supervision. We do not use semantic labels 215

directly for connectivity prediction for the follow- 216

ing reasons. First, when the number of classes 217

is large, constructing class-specific connectivity 218

graphs significantly increases the complexity of the 219

task. Second, in dense or closely packed layouts, 220

it is difficult to separate regions accurately using 221

only semantic labels. Instead, using boundary 222

labels simplifies the task and improves robustness 223

in structurally complex documents. 224
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3.2 Architecture225

As illustrated in Figure 2, given an input image226

I ∈ RH×W×3, the model first extracts multi-scale227

feature maps F1,F2, . . . ,Fn using convolutional228

operations (or patch-based embedding). Each229

feature map at scale n is denoted as Fn ∈230

RHn×Wn×Cn . After unifying channel dimensions,231

the multi-scale features are flattened and concate-232

nated into X ∈ RN×D for further modeling.233

To capture both long-range dependencies and234

local spatial structures in document layouts, we235

adopt the GSLD (Global Sparse and Local Dense)236

Attention mechanism. The resulting representation237

is denoted as X′ ∈ RN×D.238

Following the GSLD attention blocks, the tokens239

at the highest-resolution level are selected to240

form G ∈ RNg×D corresponding to the highest-241

resolution feature map, where Ng = Hg × Wg.242

Each grid token gi is then processed by two243

classification heads:244

Semantic classification head Wsem ∈ RD×C ,245

which predicts the semantic category distribution246

over C classes:247

psem
i = softmax(Wsem⊤

gi) ∈ RC (1)248

Boundary classification head Wbnd ∈ RD×3,249

which predicts structural boundary:250

pbnd
i = softmax(Wbnd⊤gi) ∈ R3 (2)251

During training, we supervise the semantic252

predictions psem
i using KL divergence against253

the soft label distribution ysem
i constructed in254

Section 3.1. For the boundary predictions pbnd
i ,255

we apply a standard cross-entropy loss with the256

discrete boundary label ybnd
i ∈ {0, 1, 2}. Both257

losses are computed only over valid tokens using258

spatial masks, and the total loss is a weighted sum259

of the two terms:260

Ltotal = λsem · LKL + λbnd · LCE (3)261

where λsem and λbnd control the relative impor-262

tance of semantic and boundary supervision.263

To convert grid-level predictions into structured264

layout elements, we apply a post-processing step265

that generates a set of M predicted boxes:266

Ŷ = {(x1j , y1j , x2j , y2j , ĉj , ŝj)}Mj=1 (4)267

where (x1j , y1j , x2j , y2j) are the top-left and268

bottom-right coordinates of the j-th box, ĉj is the269

predicted class, and ŝj is the associated confidence270

score (used to assist in confirming ĉ, not for271

filtering).272

3.3 GSLD Attention 273

Our goal is to generate bounding boxes and class la- 274

bels from grid-level classification. However, when 275

targets are small and densely distributed, accuracy 276

heavily depends on the spatial resolution of the 277

feature map. Standard self-attention has quadratic 278

complexity O(N2), making it impractical for high- 279

resolution inputs due to memory and computation 280

costs. 281

To address this, we propose GSLD attention, 282

which combines Global Sparse (GS) attention for 283

long-range dependencies and Local Dense (LD) 284

attention for fine-grained local patterns. This 285

hybrid design balances resolution and efficiency 286

while improving representation quality. 287

3.3.1 Global Sparse 288

To efficiently capture long-range dependencies 289

on high-resolution feature maps, we extend the 290

standard multi-scale deformable attention mecha- 291

nism(Zhu et al., 2021) into a sparse Mixture-of- 292

Experts (MoE) architecture, referred to as Global 293

Sparse Attention (GS). This module introduces 294

token-level expert routing to enhance structural 295

diversity in attention patterns while maintaining 296

similar computational complexity to the original 297

formulation. 298

In the multi-scale deformable attention module, 299

each query q with normalized reference point 300

p̂q ∈ [0, 1]2 aggregates features from a sparse set 301

of sampling locations across multiple feature levels. 302

The output feature is computed as: 303

yq =

M∑
m=1

Wm

[
L∑

l=1

K∑
k=1

Amlqk · W ′
m xl

(
ϕl(p̂q) + ∆pmlqk

)]
(5)

304

where m, l, and k index the attention head, 305

feature level, and sampling point, respectively. 306

∆pmlqk ∈ R2 denotes the sampling offset, and 307

Amlqk is the attention weight normalized such that 308∑
l,k Amlqk = 1 for each head m. The function 309

ϕl(p̂q) maps the normalized reference point to the 310

coordinate system of level l, and xl(·) performs 311

bilinear interpolation over the l-th feature map. 312

Wm and W ′
m are learnable projection matrices 313

specific to each head. 314

However, in the standard formulation, all query 315

tokens share a single set of linear layers for 316

predicting offsets and weights, regardless of their 317

position or semantic context. In practice, we 318

observe that this shared predictor tends to learn 319

an averaged sampling pattern biased toward the 320
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Figure 3: Different layout elements on a document page
exhibit significant differences in shape.

majority structures in the training data, which321

often consist of horizontally elongated regions.322

As shown in Figure 3, document pages typically323

contain layout elements with significantly diverse324

shapes, making it difficult for a unified sampling325

strategy to adapt to all regions.326

To address this limitation, we replace the shared327

sampling projections with expert-specific layers.328

Each query token qi is routed to one of E experts329

using a Gumbel-Softmax-based gating network330

with hard sampling:331

πi = GumbelSoftmax(Wgqi + bg; τ, hard=True) (6)332

Here, Wg and bg are the projection weights333

and bias of the gating network, and τ is the334

temperature controlling the softness of the output.335

The hard=True setting produces a one-hot vector πi336

in the forward pass, while allowing gradient flow337

through a soft distribution during backpropagation338

via the straight-through estimator.339

The selected expert index ei = argmax(πi)340

is used only for grouping tokens in the forward341

pass. The corresponding expert-specific layers are342

used to generate the full set of sampling offsets and343

attention weights:344

∆i = Linear(ei)offset(qi), (7)345

αi = Linear(ei)weight(qi) (8)346

The subsequent attention computation follows347

the standard deformable attention formulation,348

using ∆i and αi for sampling and aggregation.349

GS enables sparse token-level routing, en-350

couraging structural specialization across experts351

and improving adaptability to diverse layouts,352

especially for rare structures. As each token353

activates only one expert, the design remains354

computationally efficient while retaining strong355

representational capacity.356

3.3.2 Local Dense 357

To suppress jagged artifacts in boundary classifica- 358

tion and improve edge continuity, we introduce the 359

Local Dense Attention (LD). It operates exclusively 360

on the highest-resolution feature map (level-0) and 361

applies gated multi-head attention within fixed 3×3 362

spatial neighborhoods. This enables each token 363

to aggregate local context in a content-aware and 364

spatially coherent way, producing smoother and 365

more plausible boundary predictions. 366

Let the level-0 feature tokens be denoted as 367

X0 ∈ RNg×D, where Ng = Hg × Wg is the 368

spatial resolution and D is the hidden dimension. 369

The feature map is first projected to queries, 370

keys, and values via shared projection matrices 371

WQ,WK ,WV ∈ RD×D and reshaped for M 372

attention heads of dimension d = D/M : 373

Q = reshape(X0WQ), (9) 374

K = unfold3×3(reshape(X0WK)), (10) 375

V = unfold3×3(reshape(X0WV )) (11) 376

Here, for each head h ∈ {1, . . . ,M} and each 377

token i ∈ {1, . . . , Ng}, we denote q
(h)
i ∈ Rd as 378

the query vector, and {k(h)
i,j }9j=1 and {v(h)

i,j }9j=1 379

as the keys and values extracted from the 3 × 3 380

neighborhood around token i. 381

The attention weights over the local neigh- 382

borhood are computed via scaled dot-product 383

attention: 384

α
(h)
i,j =

exp
(
⟨q(h)

i ,k
(h)
i,j ⟩/

√
d
)

∑9
j′=1 exp

(
⟨q(h)

i ,k
(h)
i,j′⟩/

√
d
) (12) 385

The updated token representation is obtained by 386

aggregating value vectors weighted by attention 387

coefficients: 388

x̃i = ConcatMh=1

 9∑
j=1

α
(h)
i,j v

(h)
i,j

 ∈ RD (13) 389

To avoid over-updating and preserve useful 390

features from the original input, we introduce a 391

learnable gate gi ∈ (0, 1)D to adaptively fuse the 392

original and refined token representations: 393

gi = σ(MLP(xi)) (14) 394

x′
i = gi ⊙ x̃i + (1− gi)⊙ xi (15) 395
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After refinement, the updated level-0 tokens396

{x′
i}

Ng

i=1 are concatenated with the lower-resolution397

features to form the complete sequence for down-398

stream processing. By focusing attention on the399

most detailed feature map and enabling token-400

specific local aggregation, the LD module enhances401

the model’s capability to represent fine layout402

boundaries and subtle structural variations without403

introducing significant overhead.404

3.4 Edge-Enhanced Post-processing405

To convert grid-level semantic and boundary pre-406

dictions into structured layout elements, we adopt407

a connectivity-aware post-processing procedure.408

Given boundary logits pbnd ∈ RH×W×3 (with409

classes 0 = background, 1 = edge, 2 = interior) and410

semantic logits psem ∈ RH×W×C , the algorithm411

first generates a hard boundary map b̂i,j via argmax,412

extracts connected interior regions, and merges413

nearby edge pixels. For each region, we compute a414

bounding box, aggregate the semantic distribution415

within it, and assign a predicted class ĉ with416

confidence score ŝ (used to assist in confirming417

ĉ, not for filtering).418

Algorithm 1: Connectivity Post-processing

1 Input: Boundary logits pbnd ∈ RH×W×3,
semantic logits psem ∈ RH×W×C

2 Process: Identify connected regions, merge
edges, predict class, and refine boxes.

• Compute hard boundary map:
b̂i,j = argmaxc p

bnd
i,j,c

• Remove isolated class-2 pixels

• Extract connected class-2 components
(8-connectivity)

• Dilate class-2 regions to absorb adjacent
class-1

• Cluster remaining class-1 pixels via BFS

• For each region:

– Get minimum bounding box
– Average psem in box → ĉ and ŝ

– Expand non-boundary edges using
adjacent semantic scores

– Clamp and rescale box coordinates

• Return: Final boxes
Ŷ = {(x1, y1, x2, y2, ĉ, ŝ)}

4 Experiments 419

4.1 Evaluation Metrics 420

We report FPS (frames per second) to measure 421

inference speed. Standard mAP (Lin et al., 2015) 422

evaluates detection by integrating F1 scores over 423

varying confidence thresholds. However, since 424

DEEN does not rely on confidence scores during 425

inference, mAP is not applicable. Instead, we adopt 426

two F1-based metrics for other methods: 427

• F1@BestThreshold: Reports the highest F1 428

score obtained by sweeping over all thresh- 429

olds, representing upper-bound performance. 430

431
• F1@SampledConf: Selects a global thresh- 432

old based on 50 randomly sampled training 433

examples and applies it to the entire test set, 434

simulating real-world deployment. 435

4.2 Datasets and Comparison DLA methods 436

To comprehensively evaluate our model, we 437

use three representative datasets with different 438

characteristics. DocLayNet(Pfitzmann et al., 439

2022)contains 80,863 manually annotated pages 440

across 7 document types and 11 layout categories, 441

and serves as a challenging benchmark for struc- 442

tural generalization. PubLayNet(Zhong et al., 443

2019)includes approximately 340,000 pages with 444

five common layout types, offering large-scale, 445

automatically annotated data suitable for pretrain- 446

ing and scalability evaluation. CDLA (Hang, 447

2021) provides 5,000 training and 1,000 validation 448

images. Despite its smaller size, it features high- 449

quality annotations over diverse layout elements, 450

making it well-suited for fine-grained modeling 451

and complementary to larger datasets. 452

We conduct comparisons with models spanning 453

multiple architectural paradigms. Multimodal 454

approaches include LayoutLMv3(Huang et al., 455

2022), DiT-Cascade(Li et al., 2022), and VGT(Da 456

et al., 2023). For unimodal baselines, we consider 457

DINO(Zhang et al., 2022b) and Deformable- 458

DETR(Zhu et al., 2021), both based on the DETR 459

framework, as well as DocLayout-YOLO(Zhao 460

et al., 2024b), which is specifically designed for 461

document understanding, and the latest general- 462

purpose YOLOv12(Tian et al., 2025). Addi- 463

tionally, we include SwinDocSegmenter(Banerjee 464

et al., 2023), a recent instance segmentation-based 465

method for document layout analysis. The imple- 466

mentation details are provided in Appendix A. 467
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Model Size DocLayNet PubLayNet CDLA
FPS↑

F 75
1 F 75:95

1 F 75
1 F 75:95

1 F 75
1 F 75:95

1

YOLOv12m(2025) 20M 87.1 ( 86.6 ) 83.2 ( 82.0 ) 96.1 ( 96.0 ) 92.4 ( 92.0 ) 92.8 ( 92.4 ) 87.0 ( 86.6 ) 126.7
YOLO-Doc(2024b) 20M 89.5 ( 87.8 ) 84.4 ( 82.8 ) 96.9 ( 96.5 ) 91.7 ( 91.6 ) 93.8 ( 93.5 ) 86.1 ( 85.9 ) 76.3
SwinDoc(2023) 218M 86.2 ( 85.7 ) 82.4 ( 82.0 ) 96.5 ( 96.3 ) 94.7 ( 94.6 ) - - 2.6
DINO(2022b) 46M 89.5 ( 89.3 ) 84.3 ( 84.1 ) 96.7 ( 96.6 ) 96.1 ( 96.0 ) 93.7 ( 93.5 ) 92.7 ( 92.5 ) 26.7

LayoutLMv3(2022) 133M 88.2 ( 88.0 ) 80.3 ( 80.1 ) 96.5 ( 96.2 ) 94.3 ( 94.1 ) 93.6 ( 93.3 ) 91.0 ( 90.7 ) 8.3
DiT- Cascade(2022) 141M 89.0 ( 88.6 ) 80.8 ( 80.4 ) 96.5 ( 96.4 ) 94.1 ( 93.8 ) 93.1 ( 92.9 ) 91.2 ( 91.0 ) 8.6
VGT(2023) 266M 89.4 ( 89.3 ) 85.9 ( 85.9 ) 96.6 ( 96.4 ) 96.3 ( 96.0 ) - - -

DEEN-T 21M 81.2 75.3 94.1 91.7 90.5 86.5 28.4
DEEN-S 26M 85.6 79.7 96.5 94.7 93.1 91.4 23.5
DEEN-B 34M 88.7 85.8 97.2 97.0 93.7 92.6 19.7

Table 1: Each cell reports F1@BestThreshold (outside the parentheses) as the primary comparison metric, and
F1@SampledConf (inside the parentheses) as a reference for real-world applicability. Here, F 75

1 denotes the F1
score at an IoU threshold of 0.75, while F 75:95

1 averages F1 over thresholds from 0.75 to 0.95 (step size 0.05).
Detailed definitions of both metrics are provided in Section 4.1. Best and second best results are highlighted.

Type NMS Conf OCR Parallel
YOLO ✗ ✗ ✓ ✓
DETR ✓ ✗ ✓ ✓
Multi-modal ✗ ✗ ✗ ✓
Autoregressive ✓ ✓ ✓ ✗

DEEN (Ours) ✓ ✓ ✓ ✓

Table 2: Comparison of types by functional properties.
NMS: no need for Non-Maximum Suppression; Conf:
no confidence-based filtering; OCR: does not rely
on Optical Character Recognition modules; Parallel:
supports parallel prediction. Note: This table reflects
standard behavior, though exceptions exist. For example,
YOLOv10(2024) is designed without the need for NMS.

4.3 Main Results468

4.3.1 Confidence-Free Prediction469

The highlighted comparisons in Table 1 use the470

F1@BestThreshold metric, which inherently favors471

confidence-based models. Under this setting, the472

advantages of DEEN are not fully reflected. For473

example, on DocLayNet’s F 75
1 , DEEN ranks at a474

mid level (see analysis in Appendix B).475

However, The advantages of DEEN become476

clear when the evaluation metric is switched to477

F1@SampledConf, which more accurately reflects478

real-world deployment scenarios. Confidence-479

based models typically require extensive threshold480

tuning to approach their optimal performance481

(as shown in Figure 4), which is impractical in482

real applications. For instance, on DocLayNet’s483

F 75:95
1 , even after 50 different confidence threshold484

samples (already considered frequent in practice),485

the YOLO series still lags over 1% behind theirs486

upper bound. In contrast, DEEN achieves the487

most best and second-best results across multiple488

datasets without any tuning.489

4.3.2 Low Sensitivity to IoU Variations 490

DEEN also exhibits stronger performance under 491

stricter evaluation metrics. For example, on CDLA, 492

models in the YOLO series show a significant 493

performance drop of nearly 5 points when moving 494

from F 75
1 to F 75:95

1 , highlighting their sensitivity 495

to threshold changes and localization precision. In 496

contrast, DEEN’s performance only drops by only 497

1.1 points, indicating stronger consistency under 498

stricter IoU constraints. 499

This advantage stems from DEEN’s fundamen- 500

tally different modeling approach. Instead of using 501

anchor boxes, DEEN classifies visual tokens and 502

builds connectivity graphs to generate structured 503

region predictions. This leads to more precise and 504

layout-consistent outputs. 505

4.3.3 Deployment Simplicity 506

Usability and inference efficiency are also critical 507

factors in real-world deployment. As shown in 508

Table 2, DEEN demonstrates clear advantages in 509

terms of system simplicity. For example, while 510

VGT achieves strong performance, it relies heavily 511

on external OCR modules. These modules often 512

require complex adaptation to different deployment 513

environments, significantly increasing complexity. 514

DEEN’s overall inference speed ranks in the 515

middle among current methods. Although it is 516

slower than the ultra-lightweight YOLO series, it 517

is comparable to other vision-only models and 518

significantly faster than multimodal approaches. 519

Moreover, its post-processing requires no manual 520

threshold tuning and has a computational cost 521

that is at least an order of magnitude lower than 522

the main inference pipeline, making it virtually 523

negligible. 524
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Conv GS LD
DocLayNet PubLayNet CDLA

FPS
F 75
1 F 75:95

1 F 75
1 F 75:95

1 F 75
1 F 75:95

1

80.7 78.1 92.4 90.1 87.7 85.6 24.5

✓ 85.1 82.7 96.1 92.8 91.6 89.7 21.7

✓ ✓ 87.5 83.9 97.0 93.4 92.0 90.9 17.2

✓ ✓ ✓ 88.7 85.8 97.2 97.0 93.7 92.6 19.7

Table 3: Ablation study on the model architecture. Conv denotes using a convolutional backbone instead of patch
embedding; GL indicates replacing odd-numbered attention blocks with Global Sparse Attention; LD replaces
even-numbered attention blocks with Local Dense Attention.

4.4 Ablation Study525

4.4.1 Feature Extraction Strategy526

Although the final output depends on the highest-527

resolution feature map, the DEEN encoder still528

requires multi-scale inputs for effective feature529

extraction. Unlike traditional object detection530

models that predict bounding boxes, our model531

directly classifies tokens to construct a connectivity532

graph. This motivates the use of attention-based533

fusion over fixed convolutional aggregation, which534

may introduce redundant or misleading structure535

information before encoding.536

To test this, we explored a convolution-free537

alternative by dividing the image into multi-scale538

patches and applying linear projections. This539

design aims to reduce redundant receptive fields540

with a comparable parameter budget, and leaves541

feature integration to the encoder. However, as542

shown in Table 3, this patch-based design leads to543

a clear performance drop on structurally complex544

datasets. For example, there is a 5.1% decrease545

in F 75
1 on DocLayNet. These results suggest546

that, under our setup, convolution provides more547

robust multi-scale representations for structure-548

aware modeling.549

4.4.2 Effect of GS and LD in GSLD550

We compare the two main components of GSLD551

module—GS Attention and LD Attention against552

the baseline Deformable Attention. The GS is553

designed to address the significant variations in554

layout element shapes commonly found in complex555

documents (as discussed in Section 3.3). By556

routing tokens to different experts for diverse557

sampling, GS introduces more flexible attention558

patterns. As shown by the comparison between the559

second and third rows in Table 3, GS has minimal560

impact on PubLayNet, where layouts are relatively561

uniform, with improvements of less than 1% on562

both metrics. In contrast, on the more structurally 563

complex DocLayNet, GS brings substantial gains 564

of 2.8% and 1.4% in F 75
1 and F 75:95

1 respectively, 565

demonstrating its effectiveness in handling layout 566

diversity and structural complexity. 567

The comparison between the third and fourth 568

rows in Table 3 further shows that introducing the 569

LD consistently improves DEEN’s performance 570

across all three datasets. This improvement 571

primarily stems from the gated local perception 572

mechanism, which allows each token to dynami- 573

cally incorporate surrounding information through 574

attention. This leads to finer-grained feature 575

updates and is particularly beneficial for boundary 576

modeling. LD helps eliminate irregular, jagged 577

artifacts often observed in boundary predictions, 578

resulting in smoother contours that better align with 579

the true document structure. The improvement is 580

particularly pronounced under the stricter IoU cri- 581

terion of F 75:95
1 , with gains of 2.2% on DocLayNet 582

and 1.8% on CDLA. 583

5 Conclusion 584

We propose DEEN, which eliminates the need for 585

confidence filtering and NMS in layout prediction. 586

To achieve this without compromising inference 587

speed, we designed the GSLD module to capture 588

both global and local structural patterns. Compared 589

to traditional confidence-based methods, DEEN 590

produces deterministic outputs, offering greater 591

stability and controllability.While other methods 592

perform competitively under idealized metrics 593

(F1@BestThreshold), their performance drops un- 594

der more realistic conditions (F1@SampledConf), 595

highlighting the robustness of DEEN’s design. 596

Further analysis shows that GS and LD improve 597

the modeling of layout diversity and boundary 598

precision, highlighting the value of structure-aware 599

design for complex document parsing. 600
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Limitations601

Although DEEN’s post-processing does not rely602

on Non-Maximum Suppression or confidence603

thresholds, allowing direct use of model outputs604

without additional tuning, its core logic is based605

on graph connectivity construction. This makes606

it more complex than the post-processing of607

many existing methods and requires extra graph608

libraries. Nonetheless, as discussed in our main609

experiments, even with a Python implementation,610

it runs significantly faster than model inference,611

typically taking only one-tenth of the inference612

time. We therefore consider its overhead negligible613

in most practical cases. Still, further optimization614

with C or C++ could be beneficial in latency-615

sensitive scenarios.616
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A Implementation Details748

L H P Params

DEEN-T 6 64 4 21M
DEEN-S 9 128 4 26M
DEEN-B 12 256 4 34M

Table 4: Configurations of DEEN variants. L: number
of encoder layers; H: hidden dimension; P: number of
sampling points in the GS attention module.

In all experiments, the largest-scale feature maps749

are uniformly downsampled by a factor of 4 across750

all datasets, and ResNet-50 is adopted as the751

convolutional backbone. The GS attention module752

is configured with 4 MoE experts. Model training753

is conducted using the AdamW optimizer and754

a cosine learning rate scheduler, with an initial755

learning rate of 1e-4 and a batch size of 64. Other756

configuration details for the three model sizes757

are summarized in Table 4. All experiments are758

conducted using 8 NVIDIA A100 GPUs.759

Training is performed for 60 epochs on Do-760

cLayNet, 8 epochs on PubLayNet, and 40 epochs761

on CDLA. During the first half of training, the KL762

divergence for semantic labels is computed with763

uniform token-wise weighting. In the second half,764

the weights are dynamically adjusted according to765

the class distribution within each sample: the most766

frequent class is assigned a weight of 1, while other767

classes are scaled proportionally. This strategy768

is designed to prevent overrepresented categories769

from dominating the gradient updates.770

B Data Noise771

As shown in the results of Experiment 4.3.1,772

DEEN does not exhibit a significant advantage773

over traditional state-of-the-art baselines under the774

F1@Best Threshold metric, particularly on the775

DocLayNet dataset. Further analysis suggests that776

this is largely due to label noise introduced during777

the automated annotation process.778

As described in Section 3.1, we employ a script779

to convert bounding box annotations into training780

labels for DEEN by computing their intersection781

with grid cells. While this automation reduces782

manual effort, it implicitly assumes that all pixels783

within a bounding box belong to the same semantic784

region. In practice, however, many layout ele-785

ments—such as titles, tables, and figures—contain786

substantial white space or padding, leading to a787

mismatch between the annotated bounding box and 788

the actual visual content (see Figure 5). 789

This misalignment introduces two key issues: 790

(1) it degrades boundary learning by treating 791

empty regions as foreground, and (2) it distorts 792

semantic distributions across grids, especially 793

when blank areas dominate. Together, these factors 794

compromise label quality and negatively affect 795

performance, particularly in terms of boundary 796

precision and semantic consistency. 797

C Breadth-First Search 798

To refine boundary predictions during post- 799

processing, we apply Breadth-First Search (BFS) 800

to cluster residual edge pixels labeled as class-1. 801

These pixels typically lie between disconnected or 802

fragmented semantic regions and are not part of the 803

interior components extracted earlier. 804

BFS is a classical graph traversal algorithm that 805

explores all neighbors of a node before moving to 806

the next level, ensuring a layer-wise search order. 807

In our setting, we treat each class-1 pixel as a node 808

in an 8-connected undirected grid graph. For each 809

unvisited class-1 pixel, we initiate a BFS traversal 810

to collect all reachable class-1 pixels into a single 811

connected component. This process is repeated 812

until all such pixels have been visited and clustered. 813

Formally, for a given binary mask M ∈ 814

{0, 1}H×W indicating class-1 pixels, the algorithm 815

proceeds as follows: 816

• Iterate over all (i, j) where Mi,j = 1 and not 817

yet visited; 818

• Initialize a queue with (i, j) and mark as 819

visited; 820

• While the queue is not empty: 821

– Pop the front pixel (u, v) and add it to 822

the current component; 823

– For each 8-connected neighbor (u′, v′) 824

of (u, v): 825

* If Mu′,v′ = 1 and unvisited, enqueue 826

and mark as visited; 827

• Store the full connected component for further 828

box refinement. 829

This clustering step allows us to preserve frag- 830

mented yet semantically meaningful edge regions, 831

which are subsequently incorporated into bounding 832

box expansion and class estimation. Compared to 833

fixed morphological operations, BFS offers more 834

flexible and content-aware connectivity modeling. 835
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D F1@SampledConf836

Figure 4: Average model performance on three datasets
under confidence-based sampling.

This process approximates the way confidence837

thresholds are automatically set based on a lim-838

ited number of validation samples in real-world839

deployments, thereby offering a more objective840

evaluation of the model’s adaptability and stability841

in practical scenarios. As shown in Figure 4,842

as the number of sampled validation examples843

increases, the evaluation performance progressively844

approaches the model’s upper bound, indicating845

that more samples help achieve a more accurate846

threshold setting. However, beyond a certain point,847

performance gains saturate, and further sampling848

yields diminishing returns. This suggests that the849

method achieves high stability and practicality even850

with a relatively small sampling scale. Neverthe-851

less, due to sample diversity and the complexity of852

real-world applications, there may still be cases853

where the selected threshold does not perfectly854

match the true optimal setting. Future work may855

explore more robust threshold adjustment strategies856

to further improve generalization.857
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Figure 5: Labeling inconsistencies may lead to unexpected behaviors.
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Figure 6: Potential noise introduced by automatic annotation

14



Figure 7: Example 1
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Figure 8: Example 2
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Figure 9: Example 3

17


	Introduction
	Related Work
	Single-Modality Detection Methods
	Multi-modal Detection Methods
	Autoregressive Detection Methods

	DEEN
	Data Construction
	Architecture
	GSLD Attention
	Global Sparse
	Local Dense

	Edge-Enhanced Post-processing

	Experiments
	Evaluation Metrics
	Datasets and Comparison DLA methods
	Main Results
	Confidence-Free Prediction
	Low Sensitivity to IoU Variations
	Deployment Simplicity

	Ablation Study
	Feature Extraction Strategy
	Effect of GS and LD in GSLD


	Conclusion
	Implementation Details
	Data Noise
	Breadth-First Search
	F1@SampledConf

