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Abstract

Document Layout Analysis is typically formu-
lated as an object detection task. However,
most existing approaches are adapted from
general-purpose detection frameworks and
overlook the fundamental structural differences
between document and natural images. To meet
the needs of human reading habits, document
images are two-dimensional and free from
occlusion. Based on this observation, we
propose DEtection ENcoder (DEEN), which
reformulates document layout analysis as a
graph connectivity prediction task, thereby
eliminating the need for both Non-Maximum
Suppression (NMS) and confidence threshold-
ing in post-processing. To efficiently model
high-resolution feature maps, DEEN combines
global sparse and local dense attention for
unified representation of overall layout and
fine-grained details. Since DEEN does not
rely on confidence scores, we evaluate it under
two settings: one that favors confidence-based
models, and another that simulates real-world
usage scenarios. DEEN achieves competi-
tive performance on three structurally diverse
datasets, demonstrating strong generalization.

1 Introduction

Document layout analysis (DLA) is often formu-
lated as an object detection task on document
images. It plays a crucial role in enabling down-
stream tasks. For example, in Retrieval-Augmented
Generation workflows, accurately reconstructing
the original layout of a document helps produce
well-structured information units (Ren et al., 2023;
Zhang et al., 2022a). These structured units enable
more precise grounding and context alignment
during retrieval and generation, thereby improving
the performance of large language models (Zhao
et al., 2024a; Gao et al., 2024). Object detec-
tion emphasizes different aspects across domains:
autonomous driving emphasizes speed, medical
imaging focuses on accuracy, while the DLA

(b) Images from documents

Figure 1: A comparison between natural and document
images: overlapping content frequently occurs in
natural scenes, whereas document layouts are typically
designed to avoid such overlap for human readability.

task seeks a balanced trade-off among efficiency,
accuracy, and usability.

Existing DLA methods employ diverse modeling
strategies, such as incorporating layout priors
into general-purpose detectors(Zhao et al., 2024b),
adapting document pre-trained models for detec-
tion tasks(Huang et al., 2022), and leveraging
multimodal features to enhance context-aware
layout representation(Da et al., 2023). However,
they overlook a fundamental structural difference
between document and natural images. As shown
in Figurel, natural images, being 2D projections of
3D scenes, often involve occlusion and overlap,
which constrain the design of object detectors
and necessitate post-processing steps such as
confidence-based ranking and Non-Maximum Sup-
pression (NMS). In contrast, document images are
inherently designed as two-dimensional layouts
to support human reading habits, where layout
elements are generally expected to be spatially
non-overlapping and clearly bounded, except for
background regions. This structural prior motivates
a rethinking of how layout analysis should be
modeled.



To this end, we reformulate the DLA task as
a region connectivity prediction problem, thereby
eliminating the need for confidence thresholds
and non-maximum suppression (NMS). Specif-
ically, the image is divided into regular grids,
and each grid cell is assigned two labels: a
boundary label indicating whether it belongs to the
background, edge, or interior, and a semantic label
representing its category distribution. To capture
fine-grained structural cues while maintaining
computational efficiency, we propose the GSLD
Attention module, which combines Mixture-of-
Experts-based Global Sparse attention (GS) for
modeling diverse spatial patterns and Local Dense
attention (LD) for enhancing boundary continuity
and local perception. Based on the boundary
predictions, we construct a connectivity graph and
then refine the regions using semantic information,
including distinguishing densely distributed and
entangled regions, and adjusting box boundaries
according to semantic distributions. This leads
to more complete structural predictions with
improved boundary precision.

Since DEEN does not rely on confidence scores,
it is incompatible with the standard Average Preci-
sion(Lin et al., 2015). To enable a comprehensive
evaluation, we introduce two complementary set-
tings: one that favors confidence-based models, and
another that better reflects real-world deployment
scenarios. We conduct experiments on three struc-
turally diverse datasets: DocLayNet(Pfitzmann
et al., 2022), PubLayNet(Zhong et al., 2019), and
CDLA(Hang, 2021). While maintaining stable
inference efficiency, DEEN demonstrates strong
competitiveness under the first setting and achieves
the highest number of best and second-best results
under the second. These results confirm the
practical effectiveness of our proposed formulation
and attention mechanism.

Our main contributions are as follows:

* We propose DEEN, a novel framework that
formulates the DLA task as a region connec-
tivity prediction task, eliminating the need for
confidence thresholds and NMS.

* We introduce GSLD Attention to capture
both global structure and local details in
high-resolution features, while maintaining
inference efficiency.

» Extensive experiments on three structurally
diverse datasets demonstrate the effectiveness
and generalization capability of our method.

2 Related Work
2.1 Single-Modality Detection Methods

Most existing approaches adapt general-purpose
detection frameworks such as R-CNN(Girshick
et al.,, 2014; Ren et al., 2016) and the YOLO
series(Redmon et al., 2016; Khanam and Hussain,
2024), relying on anchor boxes, confidence scores,
and NMS for prediction and post-processing.
While effective, manual adjustment of thresholds
is often necessary to ensure reliable outputs.
DETR series(Carion et al., 2020; Zhu et al., 2021;
Zhang et al., 2022b) introduces an end-to-end
paradigm that eliminates anchors and NMS via
global matching, but still depends on a fixed
number of object queries and confidence filtering
at inference. Similar to our approach, Swin-
DocSegmenter(Banerjee et al., 2023) formulates
layout prediction as instance segmentation, yet still
depends on confidence scores during inference.
Notably, DocLayout-YOLO(Zhao et al., 2024b)
incorporates layout-specific designs and high-
quality synthetic pretraining data, achieving a
favorable trade-off between speed and accuracy.

2.2 Multi-modal Detection Methods

Some works draw inspiration from grid-based
methods in vision information extraction(Katti
et al., 2018; Denk and Reisswig, 2019; Lin et al.,
2021), with several methods further constructing a
text grid using textual and layout information(Yang
et al., 2017; Zhang et al., 2021) to support docu-
ment layout analysis. Recent models such as Lay-
outLMv3(Huang et al., 2022) and UniDoc(Feng
et al., 2023) employ unified multimodal encoding
during pretraining, but are typically fine-tuned with
visual backbones. VGT(Da et al., 2023) adopts
a dual-stream architecture that combines visual
features and grid-based textual inputs to enhance
both semantic and boundary modeling.

2.3 Autoregressive Detection Methods

Florence2(Xiao et al., 2023) discretizes continuous
coordinates into tokens, enabling unified modeling
of detection and generation tasks. DocFusion(Chai
et al., 2024) addresses the inherent conflict be-
tween discrete tokens and continuous coordinates
under multi-task training, allowing for accurate
performance on a variety of document parsing
tasks such as layout analysis and table recognition.
However, these autoregressive models suffer from
limited inference speed and error propagation,
which hinder practical deployment.
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Figure 2: Illustration of the proposed DEEN. The input image is first processed into multi-scale feature maps, which
are then refined by structure-aware GSLD Attention. The highest-resolution feature map is passed to two output
heads for boundary and semantic prediction. Each GSLD block combines Global Sparse and Local Dense Attention.

3 DEEN

We describe how open-sourced raw annotations are
converted into grid-level semantic and boundary
labels (Section 3.1), followed by an overview of
the encoder-based architecture that enables layout
understanding (Section 3.2). The core GSLD
attention mechanism is detailed in Section 3.3.
We then outline the post-processing step that
transforms grid predictions into structured outputs
(Section 3.4). For clarity, we omit the batch
dimension in tensor shapes throughout this section.

3.1 Data Construction

To avoid unnecessary annotation effort, we de-
sign automated scripts to convert region-level
annotations from existing public datasets into the
supervision format required by DEEN. Specifically,
for each input image I, we divide it into a spatial
grid of size H, x W,, where the resolution is
dynamically determined by the highest-resolution
feature map produced by the feature extractor. Each
grid cell corresponds to a visual token and serves as
the fundamental unit for token-level classification.
For each cell, we construct two types of supervision
labels: a semantic label, indicating the content
category covered by the region, and a boundary
label, capturing its geometric role (e.g., inside,
edge, or background) within the annotated layout
element.

Semantic labels: For each annotated region (e.g., a
bounding box or segmentation mask), we compute
its overlapping area with each grid cell and assign a
class probability distribution. When a cell overlaps
with multiple labeled regions, its semantic label
becomes a weighted distribution based on the area
proportions of the overlapping classes. This results
in a dense supervision tensor y*™ € RHoxWgxC'
which serves as the target for KL-divergence-based
loss, allowing the model to learn semantic concepts
in a soft and flexible manner.

Boundary labels: To capture structural boundaries,
each grid cell is also assigned a discrete label from
{0, 1,2}, indicating background, edge, or interior.
These labels are determined based on the cell’s
relative position to the annotated region—cells
fully inside are labeled as 2, those near region
boundaries as 1, and the rest as 0. This produces
a label map y®d ¢ RHsxWox3 yged for cross-
entropy supervision. We do not use semantic labels
directly for connectivity prediction for the follow-
ing reasons. First, when the number of classes
is large, constructing class-specific connectivity
graphs significantly increases the complexity of the
task. Second, in dense or closely packed layouts,
it is difficult to separate regions accurately using
only semantic labels. Instead, using boundary
labels simplifies the task and improves robustness
in structurally complex documents.



3.2 Architecture

As illustrated in Figure 2, given an input image
I € RTXW>x3 the model first extracts multi-scale
feature maps F, Fo, ..., F,, using convolutional
operations (or patch-based embedding). Each
feature map at scale n is denoted as F,, €
RHnxWnxCn - After unifying channel dimensions,
the multi-scale features are flattened and concate-
nated into X € RV*P for further modeling.

To capture both long-range dependencies and
local spatial structures in document layouts, we
adopt the GSLD (Global Sparse and Local Dense)
Attention mechanism. The resulting representation
is denoted as X’ € RV*D,

Following the GSLD attention blocks, the tokens
at the highest-resolution level are selected to
form G € RNs*P corresponding to the highest-
resolution feature map, where Ny, = H, x W,,.
Each grid token g; is then processed by two
classification heads:

Semantic classification head W™ ¢ RP*C
which predicts the semantic category distribution
over C classes:

p;t = softmax(WsmlT g) € R (1)

Boundary classification head WP ¢ RDP*3,
which predicts structural boundary:

pd = softmax(WbmlT g) € R? (2

During training, we supervise the semantic
predictions p:*" using KL divergence against
the soft label distribution y:*" constructed in
Section 3.1. For the boundary predictions pE’nd,
we apply a standard cross-entropy loss with the
discrete boundary label y?nd € {0,1,2}. Both
losses are computed only over valid tokens using
spatial masks, and the total loss is a weighted sum

of the two terms:
Liotal = Asem * LKL + Aond - LcE 3)

where A\gem, and Appg control the relative impor-
tance of semantic and boundary supervision.

To convert grid-level predictions into structured
layout elements, we apply a post-processing step
that generates a set of M predicted boxes:

S A AWM

Y = {(z15,y15, 725,925, ¢, 8) }j=1 =~ 4
where (21j,y15,%25,y2;) are the top-left and
bottom-right coordinates of the j-th box, ¢; is the
predicted class, and §; is the associated confidence

score (used to assist in confirming ¢, not for
filtering).

3.3 GSLD Attention

Our goal is to generate bounding boxes and class la-
bels from grid-level classification. However, when
targets are small and densely distributed, accuracy
heavily depends on the spatial resolution of the
feature map. Standard self-attention has quadratic
complexity O(N?), making it impractical for high-
resolution inputs due to memory and computation
Costs.

To address this, we propose GSLD attention,
which combines Global Sparse (GS) attention for
long-range dependencies and Local Dense (LD)
attention for fine-grained local patterns. This
hybrid design balances resolution and efficiency
while improving representation quality.

3.3.1 Global Sparse

To efficiently capture long-range dependencies
on high-resolution feature maps, we extend the
standard multi-scale deformable attention mecha-
nism(Zhu et al., 2021) into a sparse Mixture-of-
Experts (MoE) architecture, referred to as Global
Sparse Attention (GS). This module introduces
token-level expert routing to enhance structural
diversity in attention patterns while maintaining
similar computational complexity to the original
formulation.

In the multi-scale deformable attention module,
each query ¢ with normalized reference point
Py € [0, 1] aggregates features from a sparse set
of sampling locations across multiple feature levels.
The output feature is computed as:

(5)

where m, [, and k index the attention head,
feature level, and sampling point, respectively.
ApPpmigk € R? denotes the sampling offset, and
Apigr is the attention weight normalized such that
> 1k Amig = 1 for each head m. The function
¢1(Py) maps the normalized reference point to the
coordinate system of level [, and x;(-) performs
bilinear interpolation over the [-th feature map.
Wy, and W/ are learnable projection matrices
specific to each head.

However, in the standard formulation, all query
tokens share a single set of linear layers for
predicting offsets and weights, regardless of their
position or semantic context. In practice, we
observe that this shared predictor tends to learn
an averaged sampling pattern biased toward the
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Figure 3: Different layout elements on a document page
exhibit significant differences in shape.
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majority structures in the training data, which
often consist of horizontally elongated regions.
As shown in Figure 3, document pages typically
contain layout elements with significantly diverse
shapes, making it difficult for a unified sampling
strategy to adapt to all regions.

To address this limitation, we replace the shared
sampling projections with expert-specific layers.
Each query token q; is routed to one of E experts
using a Gumbel-Softmax-based gating network
with hard sampling:

7; = GumbelSoftmax(Wyq; + bg; 7, hard=True) (6)

Here, W, and b, are the projection weights
and bias of the gating network, and 7 is the
temperature controlling the softness of the output.
The hard=True setting produces a one-hot vector 7;
in the forward pass, while allowing gradient flow
through a soft distribution during backpropagation
via the straight-through estimator.

The selected expert index e; = arg max(7;)
is used only for grouping tokens in the forward
pass. The corresponding expert-specific layers are
used to generate the full set of sampling offsets and
attention weights:

A; = Linear(ii, (as). )
;= Llnear‘(vel)ght(qz) (8)

The subsequent attention computation follows
the standard deformable attention formulation,
using A; and «; for sampling and aggregation.

GS enables sparse token-level routing, en-
couraging structural specialization across experts
and improving adaptability to diverse layouts,
especially for rare structures. As each token
activates only one expert, the design remains
computationally efficient while retaining strong
representational capacity.

3.3.2 Local Dense

To suppress jagged artifacts in boundary classifica-
tion and improve edge continuity, we introduce the
Local Dense Attention (LD). It operates exclusively
on the highest-resolution feature map (level-0) and
applies gated multi-head attention within fixed 3 x 3
spatial neighborhoods. This enables each token
to aggregate local context in a content-aware and
spatially coherent way, producing smoother and
more plausible boundary predictions.

Let the level-O feature tokens be denoted as
Xy € RYo*D where N, = H, x W, is the
spatial resolution and D is the hidden dimension.
The feature map is first projected to queries,
keys, and values via shared projection matrices
Wo, Wi, Wy € RP*P and reshaped for M
attention heads of dimension d = D/M:

Q = reshape(XoWg), 9)
K = unfoldsxs(reshape(XoWg)),  (10)
V = unfoldsys(reshape(XoWy)) 11
Here, for each head h € {1,..., M} and each

token ¢ € {1,..., Ny}, we denote q(h) 6 Rd as
the query vector, and {k; J)}9 , and {v 4
as the keys and values extracted from the 3 x 3
neighborhood around token .

The attention weights over the local neigh-
borhood are computed via scaled dot-product
attention:

o exp ((af” k() /vd)
zﬁ/zlexp« >k<" )/Va)

The updated token representation is obtained by
aggregating value vectors weighted by attention
coefficients:

(12)

X; = Concath eRP (13)

(h)
Z% Vi

To avoid over-updating and preserve useful
features from the original input, we introduce a
learnable gate g; € (0,1)” to adaptively fuse the
original and refined token representations:

g; = o(MLP(x;))
Xi=gioX+(1—g)ox;

(14)
(15)



After refinement, the updated level-O tokens
{xg}ﬁ\i’l are concatenated with the lower-resolution
features to form the complete sequence for down-
stream processing. By focusing attention on the
most detailed feature map and enabling token-
specific local aggregation, the LD module enhances
the model’s capability to represent fine layout
boundaries and subtle structural variations without
introducing significant overhead.

3.4 Edge-Enhanced Post-processing

To convert grid-level semantic and boundary pre-
dictions into structured layout elements, we adopt
a connectivity-aware post-processing procedure.
Given boundary logits pP¢ € RFXWx3 (with
classes 0 = background, 1 = edge, 2 = interior) and
semantic logits p*™ € RH*XWXC ‘the algorithm
first generates a hard boundary map lA)Z j via argmax,
extracts connected interior regions, and merges
nearby edge pixels. For each region, we compute a
bounding box, aggregate the semantic distribution
within it, and assign a predicted class ¢ with
confidence score 5 (used to assist in confirming
¢, not for filtering).

Algorithm 1: Connectivity Post-processing
bnd c RH XWx3

1 Input: Boundary logits p
semantic logits p*™ € RH*WxC
2 Process: Identify connected regions, merge
edges, predict class, and refine boxes.
¢ Compute hard boundary map:

_ bnd
bij = argmax.p;; .

* Remove isolated class-2 pixels

* Extract connected class-2 components
(8-connectivity)

* Dilate class-2 regions to absorb adjacent
class-1

* Cluster remaining class-1 pixels via BFS

* For each region:

— Get minimum bounding box
— Average p**™ in box — ¢ and §

— Expand non-boundary edges using
adjacent semantic scores

— Clamp and rescale box coordinates

¢ Return: Final boxes

A~

y — {($17@/1>$2>y27 é> §)}

4 Experiments
4.1 Evaluation Metrics

We report FPS (frames per second) to measure
inference speed. Standard mAP (Lin et al., 2015)
evaluates detection by integrating F1 scores over
varying confidence thresholds. However, since
DEEN does not rely on confidence scores during
inference, mAP is not applicable. Instead, we adopt
two F1-based metrics for other methods:

* F1@BestThreshold: Reports the highest F1
score obtained by sweeping over all thresh-
olds, representing upper-bound performance.

* F1@SampledConf: Selects a global thresh-
old based on 50 randomly sampled training
examples and applies it to the entire test set,
simulating real-world deployment.

4.2 Datasets and Comparison DLA methods

To comprehensively evaluate our model, we
use three representative datasets with different
characteristics.  DocLayNet(Pfitzmann et al.,
2022)contains 80,863 manually annotated pages
across 7 document types and 11 layout categories,
and serves as a challenging benchmark for struc-
tural generalization. PubLayNet(Zhong et al.,
2019)includes approximately 340,000 pages with
five common layout types, offering large-scale,
automatically annotated data suitable for pretrain-
ing and scalability evaluation. CDLA (Hang,
2021) provides 5,000 training and 1,000 validation
images. Despite its smaller size, it features high-
quality annotations over diverse layout elements,
making it well-suited for fine-grained modeling
and complementary to larger datasets.

We conduct comparisons with models spanning
multiple architectural paradigms. Multimodal
approaches include LayoutLMv3(Huang et al.,
2022), DiT-Cascade(Li et al., 2022), and VGT(Da
et al., 2023). For unimodal baselines, we consider
DINO(Zhang et al., 2022b) and Deformable-
DETR(Zhu et al., 2021), both based on the DETR
framework, as well as DocLayout-YOLO(Zhao
et al., 2024b), which is specifically designed for
document understanding, and the latest general-
purpose YOLOv12(Tian et al., 2025). Addi-
tionally, we include SwinDocSegmenter(Banerjee
et al., 2023), a recent instance segmentation-based
method for document layout analysis. The imple-
mentation details are provided in Appendix A.



DocLayNet

PubLayNet

CDLA

Model Size FPSt
F17‘3 F175:95 F17‘3 F175:95 F17‘3 F175:95

YOLOvI12m(2025) 20M | 87.1 (86.6) | 83.2 (82.0)| 96.1 (96.0) | 92.4 (92.0)| 92.8 (92.4)| 87.0 (86.6) | 126.7
YOLO-Doc(2024b) 20M | 89.5 (87.8)| 84.4 (82.8)| 969 (96.5)| 91.7 (91.6) | 93.8 (93.5)] 86.1 (859)| 76.3
SwinDoc(2023) 218M | 86.2 (85.7) | 82.4 (82.0)] 96.5 (96.3)| 94.7 (94.6) . . 2.6
DINO(2022b) 46M | 89.5 (89.3)| 843 (84.1)| 96.7 (96.6)| 96.1 (96.0) | 93.7 (93.5)] 92.7 (92.5)| 26.7
LayoutLMv3(2022) 133M | 88.2 (88.0)| 80.3 (80.1)] 96.5 (96.2)| 94.3 (94.1)] 93.6 (93.3)] 91.0 (90.7)| 83
DiT- Cascade(2022) 141M | 89.0 (88.6) | 80.8 (80.4)| 96.5 (96.4)| 94.1 (93.8)| 93.1 (92.9)] 912 (91.0)| 86
VGT(2023) 266M | 89.4 (89.3)| 859 (859)| 96.6 (96.4)| 96.3 (96.0) - -

DEEN-T 21M 81.2 75.3 94.1 91.7 90.5 86.5 28.4
DEEN-S 26M 85.6 79.7 96.5 94.7 93.1 914 23.5
DEEN-B 34M 88.7 85.8 97.2 97.0 93.7 92.6 19.7

Table 1: Each cell reports F1 @BestThreshold (outside the parentheses) as the primary comparison metric, and
F1@SampledConf (inside the parentheses) as a reference for real-world applicability. Here, F;® denotes the F1
score at an IoU threshold of 0.75, while F5%° averages F1 over thresholds from 0.75 to 0.95 (step size 0.05).

Detailed definitions of both metrics are provided in Section 4.1.

Type NMS €Conf OCR Parallel
YOLO X X v v
DETR v X v v
Multi-modal X X X v/
Autoregressive v v v X
DEEN (Ours) v v v v

Table 2: Comparison of types by functional properties.
NMS: no need for Non-Maximum Suppression; €enf:
no confidence-based filtering; Q€R: does not rely
on Optical Character Recognition modules; Parallel:
supports parallel prediction. Note: This table reflects
standard behavior, though exceptions exist. For example,
YOLOv10(2024) is designed without the need for NMS.

4.3 Main Results

4.3.1 Confidence-Free Prediction

The highlighted comparisons in Table 1 use the
F1@BestThreshold metric, which inherently favors
confidence-based models. Under this setting, the
advantages of DEEN are not fully reflected. For
example, on DocLayNet’s F;>, DEEN ranks at a
mid level (see analysis in Appendix B).

However, The advantages of DEEN become
clear when the evaluation metric is switched to
F1 @SampledConf, which more accurately reflects
real-world deployment scenarios. Confidence-
based models typically require extensive threshold
tuning to approach their optimal performance
(as shown in Figure 4), which is impractical in
real applications. For instance, on DocLayNet’s
F7595 even after 50 different confidence threshold
samples (already considered frequent in practice),
the YOLO series still lags over 1% behind theirs
upper bound. In contrast, DEEN achieves the
most best and second-best results across multiple
datasets without any tuning.

and results are highlighted.

4.3.2 Low Sensitivity to IoU Variations

DEEN also exhibits stronger performance under
stricter evaluation metrics. For example, on CDLA,
models in the YOLO series show a significant
performance drop of nearly 5 points when moving
from F® to F7%9, highlighting their sensitivity
to threshold changes and localization precision. In
contrast, DEEN’s performance only drops by only
1.1 points, indicating stronger consistency under
stricter IoU constraints.

This advantage stems from DEEN’s fundamen-
tally different modeling approach. Instead of using
anchor boxes, DEEN classifies visual tokens and
builds connectivity graphs to generate structured
region predictions. This leads to more precise and
layout-consistent outputs.

4.3.3 Deployment Simplicity

Usability and inference efficiency are also critical
factors in real-world deployment. As shown in
Table 2, DEEN demonstrates clear advantages in
terms of system simplicity. For example, while
VGT achieves strong performance, it relies heavily
on external OCR modules. These modules often
require complex adaptation to different deployment
environments, significantly increasing complexity.

DEEN’s overall inference speed ranks in the
middle among current methods. Although it is
slower than the ultra-lightweight YOLO series, it
is comparable to other vision-only models and
significantly faster than multimodal approaches.
Moreover, its post-processing requires no manual
threshold tuning and has a computational cost
that is at least an order of magnitude lower than
the main inference pipeline, making it virtually
negligible.



DocLayNet PubLayNet CDLA
Conv GS LD FPS
F175 F175:95 F175 Ff5:95 F175 F175:95
80.7 78.1 92.4 90.1 87.7 85.6 24.5
v 85.1 82.7 96.1 92.8 91.6 89.7 21.7
v v 87.5 83.9 97.0 934 92.0 90.9 17.2
v v v 88.7 85.8 97.2 97.0 93.7 92.6 19.7

Table 3: Ablation study on the model architecture. Conv denotes using a convolutional backbone instead of patch
embedding; GL indicates replacing odd-numbered attention blocks with Global Sparse Attention; LD replaces
even-numbered attention blocks with Local Dense Attention.

4.4 Ablation Study

4.4.1 Feature Extraction Strategy

Although the final output depends on the highest-
resolution feature map, the DEEN encoder still
requires multi-scale inputs for effective feature
extraction. Unlike traditional object detection
models that predict bounding boxes, our model
directly classifies tokens to construct a connectivity
graph. This motivates the use of attention-based
fusion over fixed convolutional aggregation, which
may introduce redundant or misleading structure
information before encoding.

To test this, we explored a convolution-free
alternative by dividing the image into multi-scale
patches and applying linear projections. This
design aims to reduce redundant receptive fields
with a comparable parameter budget, and leaves
feature integration to the encoder. However, as
shown in Table 3, this patch-based design leads to
a clear performance drop on structurally complex
datasets. For example, there is a 5.1% decrease
in Fl7 > on DocLayNet. These results suggest
that, under our setup, convolution provides more
robust multi-scale representations for structure-
aware modeling.

4.4.2 Effect of GS and LD in GSLD

We compare the two main components of GSLD
module—GS Attention and LD Attention against
the baseline Deformable Attention. The GS is
designed to address the significant variations in
layout element shapes commonly found in complex
documents (as discussed in Section 3.3). By
routing tokens to different experts for diverse
sampling, GS introduces more flexible attention
patterns. As shown by the comparison between the
second and third rows in Table 3, GS has minimal
impact on PubLayNet, where layouts are relatively
uniform, with improvements of less than 1% on

both metrics. In contrast, on the more structurally
complex DocLayNet, GS brings substantial gains
of 2.8% and 1.4% in F° and F%%° respectively,
demonstrating its effectiveness in handling layout
diversity and structural complexity.

The comparison between the third and fourth
rows in Table 3 further shows that introducing the
LD consistently improves DEEN’s performance
across all three datasets. This improvement
primarily stems from the gated local perception
mechanism, which allows each token to dynami-
cally incorporate surrounding information through
attention. This leads to finer-grained feature
updates and is particularly beneficial for boundary
modeling. LD helps eliminate irregular, jagged
artifacts often observed in boundary predictions,
resulting in smoother contours that better align with
the true document structure. The improvement is
particularly pronounced under the stricter IoU cri-
terion of F/%*9°, with gains of 2.2% on DocLayNet
and 1.8% on CDLA.

5 Conclusion

We propose DEEN, which eliminates the need for
confidence filtering and NMS in layout prediction.
To achieve this without compromising inference
speed, we designed the GSLD module to capture
both global and local structural patterns. Compared
to traditional confidence-based methods, DEEN
produces deterministic outputs, offering greater
stability and controllability. While other methods
perform competitively under idealized metrics
(F1 @BestThreshold), their performance drops un-
der more realistic conditions (F1@SampledConf),
highlighting the robustness of DEEN’s design.
Further analysis shows that GS and LD improve
the modeling of layout diversity and boundary
precision, highlighting the value of structure-aware
design for complex document parsing.



Limitations

Although DEEN’s post-processing does not rely
on Non-Maximum Suppression or confidence
thresholds, allowing direct use of model outputs
without additional tuning, its core logic is based
on graph connectivity construction. This makes
it more complex than the post-processing of
many existing methods and requires extra graph
libraries. Nonetheless, as discussed in our main
experiments, even with a Python implementation,
it runs significantly faster than model inference,
typically taking only one-tenth of the inference
time. We therefore consider its overhead negligible
in most practical cases. Still, further optimization
with C or C++ could be beneficial in latency-
sensitive scenarios.
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A Implementation Details

L H P Params
DEEN-T 6 64 4 21M
DEEN-S 9 128 4 26M
DEEN-B 12 256 4 34M

Table 4: Configurations of DEEN variants. L: number
of encoder layers; H: hidden dimension; P: number of
sampling points in the GS attention module.

In all experiments, the largest-scale feature maps
are uniformly downsampled by a factor of 4 across
all datasets, and ResNet-50 is adopted as the
convolutional backbone. The GS attention module
is configured with 4 MoE experts. Model training
is conducted using the AdamW optimizer and
a cosine learning rate scheduler, with an initial
learning rate of 1e-4 and a batch size of 64. Other
configuration details for the three model sizes
are summarized in Table 4. All experiments are
conducted using 8 NVIDIA A100 GPUs.

Training is performed for 60 epochs on Do-
cLayNet, 8 epochs on PubLayNet, and 40 epochs
on CDLA. During the first half of training, the KL
divergence for semantic labels is computed with
uniform token-wise weighting. In the second half,
the weights are dynamically adjusted according to
the class distribution within each sample: the most
frequent class is assigned a weight of 1, while other
classes are scaled proportionally. This strategy
is designed to prevent overrepresented categories
from dominating the gradient updates.

B Data Noise

As shown in the results of Experiment 4.3.1,
DEEN does not exhibit a significant advantage
over traditional state-of-the-art baselines under the
F1@Best Threshold metric, particularly on the
DocLayNet dataset. Further analysis suggests that
this is largely due to label noise introduced during
the automated annotation process.

As described in Section 3.1, we employ a script
to convert bounding box annotations into training
labels for DEEN by computing their intersection
with grid cells. While this automation reduces
manual effort, it implicitly assumes that all pixels
within a bounding box belong to the same semantic
region. In practice, however, many layout ele-
ments—such as titles, tables, and figures—contain
substantial white space or padding, leading to a
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mismatch between the annotated bounding box and
the actual visual content (see Figure 5).

This misalignment introduces two key issues:
(1) it degrades boundary learning by treating
empty regions as foreground, and (2) it distorts
semantic distributions across grids, especially
when blank areas dominate. Together, these factors
compromise label quality and negatively affect
performance, particularly in terms of boundary
precision and semantic consistency.

C Breadth-First Search

To refine boundary predictions during post-
processing, we apply Breadth-First Search (BFS)
to cluster residual edge pixels labeled as class-1.
These pixels typically lie between disconnected or
fragmented semantic regions and are not part of the
interior components extracted earlier.

BFS is a classical graph traversal algorithm that
explores all neighbors of a node before moving to
the next level, ensuring a layer-wise search order.
In our setting, we treat each class-1 pixel as a node
in an 8-connected undirected grid graph. For each
unvisited class-1 pixel, we initiate a BFS traversal
to collect all reachable class-1 pixels into a single
connected component. This process is repeated
until all such pixels have been visited and clustered.

Formally, for a given binary mask M €
{0, 1}7*W indicating class-1 pixels, the algorithm
proceeds as follows:

* Iterate over all (¢, j) where M; ; = 1 and not
yet visited;

e Initialize a queue with (4,5) and mark as
visited;

* While the queue is not empty:

— Pop the front pixel (u,v) and add it to
the current component;
— For each 8-connected neighbor (u/,v")
of (u,v):
* If M ,» = 1 and unvisited, enqueue
and mark as visited;

* Store the full connected component for further
box refinement.

This clustering step allows us to preserve frag-
mented yet semantically meaningful edge regions,
which are subsequently incorporated into bounding
box expansion and class estimation. Compared to
fixed morphological operations, BFS offers more
flexible and content-aware connectivity modeling.



D Fl1@SampledConf

” Impact of Confidence-based Sampling on Reaching Performance Upper Bound
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Figure 4: Average model performance on three datasets
under confidence-based sampling.

This process approximates the way confidence
thresholds are automatically set based on a lim-
ited number of validation samples in real-world
deployments, thereby offering a more objective
evaluation of the model’s adaptability and stability
in practical scenarios. As shown in Figure 4,
as the number of sampled validation examples
increases, the evaluation performance progressively
approaches the model’s upper bound, indicating
that more samples help achieve a more accurate
threshold setting. However, beyond a certain point,
performance gains saturate, and further sampling
yields diminishing returns. This suggests that the
method achieves high stability and practicality even
with a relatively small sampling scale. Neverthe-
less, due to sample diversity and the complexity of
real-world applications, there may still be cases
where the selected threshold does not perfectly
match the true optimal setting. Future work may
explore more robust threshold adjustment strategies
to further improve generalization.
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Figure 8: Example 2
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Figure 9: Example 3
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