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ABSTRACT

This paper presents MetaTST, a versatile time series Transformer architecture that1

combines standard Transformer components with time series-specific features,2

omitting the traditional token mixer in favor of non-parametric pooling opera-3

tors. The study’s two primary contributions include defining the MetaTST ar-4

chitecture and showcasing its empirical success across forecasting, classification,5

imputation, and anomaly detection tasks. These results establish MetaTST as a6

robust and adaptable foundation for future time series Transformer designs, rais-7

ing important questions about the necessity of attention mechanisms in time series8

analysis.9

1 INTRODUCTION10

Time series analysis techniques is widely used in real world applications. In recent years, deep learn-11

ing for time series analysis has received great interests. Many classical models, such as MLP, CNN12

and RNN, have found their variations for time series analysis. Transformer (Vaswani et al., 2017),13

which is designed for NLP tasks, is now becoming popular in many areas such as CV (Dosovitskiy14

et al., 2021) and time series analysis. Benifits from its self-attention mechanism, Transformers can15

capture dependecies of long sequence. This lead to the success of Transformers in many areas.16

In those time series transformers, Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022) are17

among the best variants successfully applied to time series data. One of the main challenges they18

all trying to solve is the computation/memory bottleneck brought by the quadratic complexity of at-19

tention mechanism. With the insight that attention on time series often turns out to be sparse (Zhou20

et al., 2021), they adopt various substitute attention block specially designed for time series which21

can capture new time series features and have lower complexity. For example, the auto-correlation22

(Wu et al., 2021) replaces self-attention with series-wise connections that can be calculated effi-23

ciently via FFT (Fast Fourier Transform) with O(L logL) complexity. FEDformer use FFT and24

Wavelet Transform to capture the features in frequency demain. Along this line of research, the25

success of these models are mainly attributed to their newly devised attention substitution.26

Although the performance of time series Transformers grows, its effectiveness is questioned by a re-27

cent work (Zeng et al., 2023). The authors demonstrate that a simple linear projection with seasonal-28

trend decomposition can outperform most Transformer variants, putting question on the effective-29

ness of Transformer architecture and attention mechanism for time series analysis, especially in the30

LTSF (Long-term Time Series Forecasting) task. As a fight-back, PatchTST (Nie et al., 2023) im-31

proves the capacity of Transformer architecture by introducing patching and channel-independence.32

Moreover, in CV, Metaformer (Yu et al., 2022a) provides a strong baseline for vision Transformers.33

It uses a simple pooling operator as the token mixer (which is traditionally implemented by attention34

mechanism) to aggregates information among tokens and achieves reasonable performance, thereby35

attributes the model capacity to the Transformer architecture itself.36

With all these observations, this paper aims to explore what is really useful for time series trans-37

formers. We abstract the essential parts of time series Transformers as MetaTST (Meta Time Series38

Transformer). MetaTST contain time series tailored components such as decomposition, instance39

norm as well as patching technique. Meanwhile, it does not specify concrete token mixer. By im-40

plementing the token mixer with simple non-parametric operator pooling, we demonstrate that the41

MetaTST architecture can bring promising performance through extensive experiments on 4 time42

series analysis tasks.43
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The contributions of this paper are two-fold. Firstly, this paper summarize the time series transform-44

ers into a general architecture MetaTST, and empirically demonstrate that general transformer archi-45

tecture plus with time series tailored components can achieve promising performance. Secondly, this46

paper evaluates the proposed MetaTST on different time series tasks including forecasting, classifi-47

cation, imputation and anomaly detection. MetaTST performs on par with other well-acknowledge48

time series Transformers. Thus, MetaTST can serve as a good start base for future time series49

Transformer design.50

2 RELATED WORK51

Transformer (Vaswani et al., 2017) is first proposed for NLP tasks and then rapidly become popular52

in many various tasks such as computer vision (Dosovitskiy et al., 2021) and time series (Li et al.,53

2019; Zhou et al., 2021). Along the line of transformers for time series analysis, the main challenge54

of time series Transformer is the quadratic complexity of dot-product attention in self-attention55

mechanism. In order to tackle this problem, (Zhou et al., 2021) points out that the attention score56

is sparsely distributed, thereby it is possible to reduce the complexity of attention mechanism while57

maintaining most information. For example, Autoformer (Wu et al., 2021) propose auto-correlation58

that can seamlessly replace multi-head attention and be able to capture series-wise dependence of59

time series. Fedformer (Zhou et al., 2022) capture frequency domain information with Fourier60

Transform.61

The other line of research provides methods on how to incoporate insights of time series into deep62

learning models especially for Transformers. Multi-level seasonal-trend decomposition is proposed63

by (Wu et al., 2021) and proved to be a useful design by (Zeng et al., 2023). (Nie et al., 2023)64

proposes patching to enable the model to directly capture series-wise dependense and keep channal65

indenpent. (Kim et al., 2022) and (Liu et al., 2022) notice the problem of distribution shift between66

training and testing dataset. Similar instance normalization is proposed to solve this problem.67

However, as questioned by (Zeng et al., 2023), are Transformers effective for time series forecast-68

ing? They show that a simple linear model with decomposition can beat many complex Transformer-69

based models on long-term time series forecasting task. Metaformer (Yu et al., 2022a;b) points out70

that complex token-mixer (attention) in Transformer can be replaced by a light-weight and simple71

pooling module while maintaining most of performance. What really matters is the Metaformer72

architecture that consists of input-embedding, residual connection, arbitrary token-mixer, channel-73

mixer. This paper, however, aims at verifing is similar hypothesis holds in time series forecasting74

task: Metaformer plus with add-on time series adopted tricks are all you need for time series fore-75

casting.76

3 METHOD77

3.1 THE METATST FRAMEWORK78

Figure.1 shows the overall framework of MetaTST. MetaTST is an abstracted general architecture79

based on transformer with time series related modifications. Note that the token mixer, which is often80

implemented by various attention mechanisms, is not specified, meaning that any token/time-wise81

aggregation modules can be applied. Given the input I steps multivariate time series X ∈ RI×C82

of C variables, the input is first processed by instance norm module to mitigate the influence of83

distribution shift between training and testing sets. Then the positional encoding is added and the84

whole sequence is transformed by patching to make it suitable for Transformers.85

After that, the input time series is decomposed into seasonal part and trend part, then fed into the86

MetaTST encoder stacks. Each stack contains a token mixer to gather time-wise information and a87

feed forward layer module to gather channal-wise information. Two series deocomposition modules88

are also included to gradually decompose the time series so that it can be processed better by next89

module. Note that only the seasonal part goes through these modules, the decomposed trend are90

aggregated together and added with the seasonal part at the end of the encoder stack. Finally, the91

extracted features are fed into the projection head, which could be different between generative tasks92

such as forecasting and identify tasks such as classification. If it is for generative tasks, the output93

has to be denormalized.94
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Figure 1: The overall framework of MetaTST.

3.2 ESSENTIAL COMPONENTS FOR TIME SERIES TRANSFORMER95

Pooling as Token Mixer. Token mixer is often implemented by various attention mechanism, such96

as vanilla attention (Vaswani et al., 2017), autocorrelation (Wu et al., 2021), frequency enhanced97

block (Zhou et al., 2022) and so on. This line of work often attributes their model capacity to the98

elaborately designed attention mechanism. In this paper, we use a simple parameter-free operator,99

i.e. average pooling, to replace the attention. Compared with other attention mechanisms, pooling100

is extremly simple and the computation cost is rather low. As a token mixer, the receptive field of a101

single pooling operator cannot cover the whole sequence. Thus, the pooling size is set to be rather102

large to increase the receptive filed of each pooling layer.103

Decomposition. Time series often consists of components with different dynamics. For example the104

house price may grow with years and fluctuate within a year. Thus it is useful to decompose those105

patterns and process for them respectively. Seasonal-Trend Decomposition Zeng et al. (2023); Wu106

et al. (2021) has been used in several time series forecasting models. And it is of great importance for107

their accurate forecasting. Formally, given the input series X, the decomposition module divide it108

into seasonal part Xs and trend part Xt. This procedure can be implemented simply via AvgPool1d109

in PyTorch. Formally,110

Xt = AvgPool1d(X) (1)
Xs = X−Xt (2)

A time series may contain complicated patterns that cannot be decomposed with only one operation.111

Thus, it is necessary to do multiple decomposition operation. In MetaTST, global decomposition is112

conducted firstly to filter out global trend part, so that the encoders only handle the seasonal part.113

Patching. Patching is first introduced in vision Transformers (Dosovitskiy et al., 2021). It split a114

input 2D image into local patches so that they can be treated as a sequence by Transformer. Back into115

time series, this technique is also useful since it can significantly reduces nominal sequence length116

and eliminate the memory constaints hindering Time Series Transformers to handle long sequences117

(Nie et al., 2023). Given the orginal input series X = {x(1),x(2), ...,x(n)}, for each univariate time118

series x(i), it is splited into 2D patches with patch length P and stride S. Then the patches sequence119

is xi
P ∈ RP×N and N = L−P

S +2 is the number of patches. However, with batches and multivariate120

setting, this prcoess generates a 4D tensor Xp ∈ RB×C×P×N . We merge the first two dimension of121

Xp and then get X′
p ∈ R(B∗C)×P×N so that it can be processed by Transformer models.122

Instance Normlaization. The data distribution between training and test set can be different, lead-123

ing to degradation of a well trained model performance on test set. The instance norm Kim et al.124

(2022); Liu et al. (2022) can tackle this problem to some extend. By normalize each input time125

series instance, and denormalize back the model outputs, it stablizes the value to comply with the126

distirbution of the test set. Thereby increase the performance on generative tasks such as forecasting,127

imputation, and anomaly detection (the observation outliers compared with prediction are regarded128

as anomaly). MetaTST adopts a RevIN layer which makes extra learnable affine transform of the129

normalized data. Formally, for k-th instance, each point x(i)
kt in input series at step t is normalized130

as:131

x̂
(i)
kt = γk

 x
(i)
kt − Et

[
x
(i)
kt

]
√
Var

[
x
(i)
kt

]
+ ϵ

+ βk (3)
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and final prediction is denormalized as:132

ŷ
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where γk and βk can be fixed or learnable parameters.133

4 EXPERIMENTS134

Baselines. Since this paper aims to summarize the effictive components in time series analysis,135

we compare the performance of MetaTST with several well-acknowledged Transformer-based time136

series models, including Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022), Pyraformer137

(Liu et al., 2021). Beside, to verify the effectiveness of MetaTST architecture, vanilla Transformer138

(Vaswani et al., 2017) is taken as baseline as well.139

General Setup. The model is trained with the ADAM (Kingma & Ba, 2014) optimizer with an initial140

learning rate of 10−3. Batch size is set to 32, shrinked if the model runs out of GPU memory under141

large batch size. The training process is early stopped within 10 epochs for generative tasks including142

forecasting, imputation and anomaly detection, implemented in PyTorch Paszke et al. (2019) with143

codebase from (Wu et al., 2022) and conducted on NVIDIA RTX 3090 24GB GPUs. Generally, the144

time series Transformers have 2 encoder layers and 1 decoder layer. Since the MetaTST does not145

contain a decoder, for fair comparison, the number of encoder layer in MetaTST is set to 3.146

4.1 FORECASTING147

Setup. In order to verify the hypothesis, we conduct empirical experiments of long term forecasting148

task on ETTm1, Traffic, Weather and ECL datasets Zhou et al. (2021); Wu et al. (2021), as well as149

short term forecasting task on M4 dataset (Makridakis et al., 2018). Loss function is Mean Squared150

Error (MSE).151

Results. Table. and Table. 2. shows the long-term forecasting results and short-term forecasting re-152

sults respectively. Surprisely, MetaTST achieve most of the best performance on these benchmarks.153

For the M4 dataset, MetaTST outperforms all other models, showing that the proposed framework154

suits the forecasting tasks very well.155

Pooling operator aggregates nearly tokens evenly. Thus it is an extremly simple token mixer. How-156

ever, the experiment results show that with that kind of simple token mixing operator, MetaTST still157

obtain competative performance compared with other Transformer-based model. Fig. 2 gives show158

cases of forecasting results on ECL and ETTm1 dataset. Although they are difference quantatively159

on MSE metric, the actual prediction shows no significant diffrence. This findings conveys that160

the MetaTST is the base-stone for Transformer models to achieve reasonable performance on time161

series forecasting task.162

4.2 IMPUTATION163

Setup. Missing values often appear in real world time series data due to the malfunction of164

data collecter. To facilite down stream tasks, it is necessary to recover the original data with the165

partially missing data. To verify the performance of MetaTST on imputation tast, three typical166

datasets ETTm1, ECL and Weather are selected. In order to compare the model capacity under167

different proportions of missing data, the ratio we randomly masked in the experiment varies in168

12.5%, 25%, 37.5%, 50%.169

Results. As shown in Table. 3, the MetaTST performs on par with other Transformer-based models.170

Revealing that the MetaTST architecture is suitable for imputation task.171

4.3 ANOMALY DETECTION172

Setup. Detecting anomalies from monitoring data is an important application for various areas.173

Since anomalies are often hidden in large amounts of data, it is hard to find those anomalies by peo-174

ple. Here we foucus on unsupervised time series anomaly detection. The experiments are conducted175
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Table 1: Results of the long-term forecasting task

Dataset Length Autoformer FEDformer Pyraformer MetaTST
MSE MAE MSE MAE MSE MAE MSE MAE

ettm1 96 0.438 0.446 0.419 0.452 0.604 0.513 0.329 0.367
192 0.484 0.470 0.447 0.456 0.651 0.559 0.374 0.390
336 0.464 0.475 0.443 0.456 0.779 0.653 0.402 0.409
720 0.464 0.479 0.539 0.508 0.896 0.701 0.463 0.443

traffic 96 0.602 0.384 0.590 0.365 0.867 0.468 0.512 0.336
192 0.605 0.371 0.600 0.369 0.869 0.467 0.509 0.332
336 0.684 0.432 0.643 0.406 0.881 0.469 0.523 0.336
720 0.650 0.395 0.653 0.400 0.896 0.473 0.559 0.353

weather 96 0.270 0.346 0.218 0.304 0.194 0.276 0.186 0.223
192 0.305 0.369 0.275 0.347 0.227 0.312 0.230 0.260
336 0.352 0.395 0.406 0.439 0.304 0.366 0.283 0.298
720 0.456 0.458 0.453 0.462 0.395 0.418 0.344 0.344

electricity 96 0.234 0.342 0.193 0.310 0.386 0.449 0.170 0.259
192 0.215 0.324 0.212 0.326 0.378 0.443 0.178 0.266
336 0.291 0.389 0.233 0.350 0.376 0.443 0.193 0.282
720 0.296 0.391 0.268 0.377 0.376 0.445 0.233 0.315

Table 2: Results of the short-term forecasting task in the M4 dataset.
Period Metric Autoformer FEDformer Pyraformer Transformer PatchTST MetaTST
Year SMAPE 69.522 17.974 13.604 14.694 13.564 13.396

MASE 18.142 4.062 3.075 3.304 3.050 3.005
OWA 4.409 1.061 0.803 0.865 0.799 0.788

Quarterly SMAPE 73.760 14.485 10.610 11.506 10.791 10.805
MASE 13.282 1.872 1.246 1.375 1.299 1.305
OWA 8.192 1.340 0.936 1.024 0.964 0.966

Monthly SMAPE 69.837 18.235 13.887 15.589 14.540 13.262
MASE 11.164 1.592 1.053 1.209 1.139 1.005
OWA 7.670 1.381 0.976 1.109 1.039 0.932

Others SMAPE 106.379 6.721 4.804 5.829 6.350 4.778
MASE 82.033 4.793 3.238 4.034 4.020 3.268
OWA 24.129 1.463 1.016 1.249 1.302 1.018

Average SMAPE 72.533 16.699 12.581 13.915 13.006 12.279
MASE 16.821 2.388 1.674 1.872 1.761 1.650
OWA 7.072 1.240 0.901 1.002 0.940 0.884

on five anomaly detection benchmarks including: SMD, MSL, SMAp, SWaT and PSM, covering176

different applications. Following previous work on this task Xu et al. (2021); Wu et al. (2022),177

the dataset is splited into consecutive non-overlapping segments by sliding window. And only the178

classical reconstruction error is regarded as the shared anomaly criterion for all experiments.179

Results. As shown in Table 4, MetaTST achieves a reasonable performance in anomaly detection180

task with the mose simple token-mixer. The performance can be attributed to the MetaTST archi-181

tecture.182

5 CONCLUSION AND FUTURE WORK183

This paper summarizes recent research on time series Transformers by proposing a abstract model184

architecture called MetaTST. It contains essential components for time series Transformers includ-185

ing the overall architecture, instance normalization, decomposition and patching. Compared with186

other time series Transformers, MetaTST uses a simple pooling operation but can still achieve com-187

petitive results, showing that the capacity of time series Transformers attributes a lot to the whole188

time-series-adopted architecture. Thus, the hypothesis proposed by Metaformer perhaps holds in189

time series analysis area. Our work reveals where the capacity of time series Transformers come190

from. Thus, MetaTST has the potential to be the base model for future model design and serve as191
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Table 3: Imputation results on Weather, ETTm1 and ECL datasets.

Dataset Mask Ratio Transformer Autoformer FEDformer Pyraformer MetaTST
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.125 0.033 0.087 0.357 0.438 0.044 0.107 0.030 0.074 0.031 0.057
0.250 0.035 0.086 0.144 0.252 0.055 0.128 0.036 0.089 0.033 0.057
0.375 0.039 0.097 0.135 0.239 0.076 0.159 0.039 0.091 0.034 0.058
0.500 0.042 0.094 0.180 0.281 0.116 0.211 0.041 0.092 0.038 0.063

ETTm1 0.125 0.023 0.107 0.718 0.699 0.034 0.130 0.032 0.128 0.046 0.143
0.250 0.028 0.117 0.526 0.573 0.053 0.163 0.035 0.132 0.055 0.150
0.375 0.035 0.130 0.350 0.443 0.083 0.202 0.041 0.140 0.060 0.159
0.500 0.044 0.145 0.313 0.402 0.133 0.260 0.048 0.152 0.067 0.167

ECL 0.125 0.150 0.278 0.191 0.328 0.185 0.323 0.190 0.303 0.059 0.163
0.250 0.157 0.282 0.198 0.309 0.207 0.340 0.216 0.346 0.072 0.183
0.375 0.168 0.290 0.216 0.346 0.225 0.355 0.195 0.305 0.088 0.203
0.500 0.180 0.297 0.234 0.360 0.251 0.372 0.207 0.312 0.108 0.227

Table 4: Results of anomaly detection task.
Transformer Autoformer FEDformer Pyraformer PatchTST MetaTST

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
MSL 89.98 73.79 81.09 90.53 74.96 82.01 90.71 75.41 82.35 89.01 70.84 78.90 88.31 70.77 78.57 88.51 71.64 79.19
PSM 99.36 83.20 90.56 99.99 78.96 88.24 99.98 81.94 90.07 98.53 88.36 93.17 98.84 93.54 96.12 98.73 90.91 94.66
SMAP 90.96 62.28 73.94 91.47 67.66 77.79 89.96 55.47 68.62 89.56 54.54 67.80 90.63 55.51 68.85 90.17 53.75 67.35
SMD 78.48 65.27 71.26 78.41 65.06 71.12 78.44 64.98 71.08 79.16 93.54 73.23 87.26 82.12 84.61 87.15 77.53 82.06
SWAT 99.70 66.08 79.48 99.96 65.55 79.18 99.96 65.55 79.18 99.94 65.56 79.18 91.34 83.31 87.14 91.45 84.23 87.69
Avg F1 79.27 79.67 78.26 78.46 83.06 82.19

a baseline for new Transformer-based models. Each part of MetaTST is proven to be effective by192

extensive experiments.193
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