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ABSTRACT

Transfer learning has become a central paradigm in modern machine learning, yet
it suffers from the long-standing problem of negative transfer, where leveraging
source representations can harm rather than help performance on the target task.
Although empirical remedies have been proposed, there remains little theoretical
understanding of how to reliably avoid negative transfer. In this paper, we inves-
tigate a simple yet remarkably effective strategy: augmenting frozen, pretrained
source-side features with a trainable target-side encoder that adapts target features
to capture residual signals overlooked by models pretrained on the source data.
We show this residual feature integration strategy is sufficient to provably prevent
negative transfer, by establishing theoretical guarantees that it has no worse con-
vergence rate than training from scratch under the informative class of target dis-
tributions up to logarithmic factors, and that the convergence rate can transition
seamlessly from nonparametric to near-parametric when source representations
are informative. To our knowledge, this is the first theoretical work that ensures
protection against negative transfer. We carry out extensive numerical experiments
across image, text and tabular benchmarks, and empirically verify that the method
consistently safeguards performance under distribution shift, label noise, seman-
tic perturbation, and class imbalance. We additionally demonstrate that this resid-
ual integration mechanism uniquely supports adapt-time multimodality extension,
enabling a pretrained single-cell foundation model to incorporate spatial signals
for lymph-node anatomical classification despite the source model being trained
without them. Our study thus advances the theory of safe transfer learning, and
provides a principled approach that is simple, robust, architecture-agnostic, and
broadly applicable.

1 INTRODUCTION

Transfer learning provides a fundamental paradigm in modern machine learning, where knowledge
acquired from one task (source domain) is leveraged to enhance performance on another related
task (target domain). It encompasses a wide range of applications, from adapting models across
different sources or domains, to distilling knowledge from large, pretrained models into smaller,
task-specific models. Yet, a critical and persistent challenge is negative transfer: the phenomenon
where transferring knowledge degrades performance compared to simply training on the target data
from scratch. This issue, which arises from mismatches between source and target distributions, has
been documented across numerous scenarios [34} 65 28} [20; 49; 1465 140]. It is especially concerning
in high-stakes applications such as healthcare, where transferring from broad datasets like ImageNet
to medical imaging can be detrimental [38;|6]. Despite its prevalence, there remains little theoretical
understanding of how to reliably avoid negative transfer.
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In this article, we identify and validate a simple yet remarkably effective strategy that provably
prevents negative transfer, i.e., augmenting frozen, pretrained source-side features with a trainable
target-side encoder that adapts target features to capture residual signals overlooked by models pre-
trained on the source data. We call this strategy Residual Feature Integration (REFINE). Its imple-
mentation is straightforward: after obtaining the transferred representation fre,() from the source
domain, instead of relying solely on fr., (), we further introduce a residual connection with a train-
able feature encoder h(x) that is learned from the target domain. We then combine frep(2) and h(x),
and fit a shallow neural network on the concatenated representation (fiep(z), h(x)). Intuitively,
while fiop(2) captures transferable features, it may omit target-specific signals that are critical for
accurate prediction in the target domain. The residual connection via h(x) compensates for this
omission, ensuring that key information in the target domain is preserved. Furthermore, because
frep(2) already encodes a substantial portion of the predictive signal, learning from the joint repre-
sentations (fiep(2), h(2)) can potentially be achieved with a much simpler class of functions than
learning from x or h(z) alone. We demonstrate, both theoretically and empirically, that this strategy
is sufficient to prevent negative transfer across a broad range of settings.

Our contributions are threefold. First, we identify the residual connection, a widely adopted struc-
tural component originally devised to address optimization challenges in deep neural networks
[L55 22]], as a powerful mechanism for provably avoiding negative transfer. This strategy in turn
offers a lightweight, robust, architecture-agnostic, and broadly applicable enhancement to trans-
fer learning pipelines. We further identify an under-explored form of negative transfer that arises
when source models lack modalities available only at adaptation time, and demonstrate that RE-
FINE uniquely enables such adapt-time multi-modality extension on a single-cell foundation model
for lymph-node domain classification. Second, we formally justify this simple yet remarkably effec-
tive approach through a rigorous theoretical analysis, which is the main contribution of this article.
Specifically, we show that augmenting any frozen fr, with a trainable h(z) guarantees that the
resulting predictor achieves a convergence rate of prediction risk that is never worse than that ob-
tained by training from scratch on the target data alone. In other words, REFINE is inherently robust
against negative transfer in the worst-case scenario. Moreover, our prediction risk bound seamlessly
transitions from a nonparametric convergence rate to a near-parametric rate when source represen-
tations are informative. Finally, we conduct extensive experiments on benchmark datasets spanning
image, text, and tabular domains, and compare REFINE with multiple alternative solutions. We em-
pirically verify that our method consistently mitigates negative transfer, especially under significant
representational mismatch or task divergence.

2 RELATED WORK

Transfer learning. Linear probing [26] and adapter-based feature extraction [18] are two of the
most widely used transfer learning approaches. Both methods operate by extracting penultimate-
layer features from a pretrained model in the source domain, followed by fine-tuning the final layer
using data in the target domain. The main difference between the two is that linear probing employs
a linear layer, while the adapter method uses a shallow neural network. Both are computation-
ally efficient, but both are vulnerable to negative transfer. Knowledge distillation is another widely
used transfer learning technique, where a large pretrained foundation model (the teacher) transfers
knowledge to a simpler model (the student) that is typically fine-tuned in the target domain with
substantially reduced complexity [16]. However, distillation remains vulnerable to negative trans-
fer, especially when the teacher is poorly aligned with the target domain or when the transferred
knowledge is too complex for the student to absorb effectively [[10]. Our approach is applicable not
only to knowledge transfer in foundation models, but also to general transfer learning settings.

Negative transfer mitigation. To mitigate negative transfer, various empirical remedies have been
proposed, most of which focus on developing metrics that estimate similarity between source and
target domains [115 29 147 [1]]. Yet in practice, such similarity measures are often difficult to quan-
tify, and sometimes require specialized loss functions or architectures, which limits their applicabil-
ity [17]]. [27] proposed SAFEW, which constructs an ensemble of source-domain models using a
min-max framework. While theoretically sound, this method is computationally intensive and relies
on the assumption that the optimal predictor can be expressed as a convex combination of source
classifiers. [45] introduced DANN-GATE, a state-of-the-art solution that reduces negative transfer
by combining adversarial training with a gating mechanism to filter out misleading source samples.
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While practically effective, this method requires direct access to source data and is primarily em-
pirical, lacking theoretical guarantees. In contrast, our method does not require access to original
training data in the source domain and comes with rigorous theoretical guarantees. We also exam-
ine a largely overlooked form of negative transfer in which the source model lacks modalities that
become available only at adaptation time. This setting is seldom discussed in multimodal learning
[2], where it is typically assumed that all modalities are present during source-model training. Exist-
ing approaches cannot exploit such missing-modality information without retraining on source data.
REFINE uniquely enables adapt-time multimodality extension without access to source data.

Residual learning, stacking, and parameter-efficient fine-tuning. Several methods are conceptu-
ally related to REFINE, although they do not explicitly target negative transfer in transfer learning.
Residual learning, a core idea in architectures such as ResNet [15]] and algorithms like gradient
boosting [22]], was originally developed to ease optimization challenges or improve prediction. Its
potential for addressing negative transfer, however, remains unexplored. Stacking is an ensemble
technique that combines predictions from multiple base models through a meta-learner trained on
validation outputs. This approach is generally more robust than simple model averaging [4], but
it assumes that all external models are reliable [9; [12]], and requires aligned output spaces, which
restricts its applicability across different types of tasks. Parameter-efficient fine-tuning methods,
such as LoRA [19], insert lightweight, trainable modules into pretrained models to enable domain
adaptation without modifying the original weights. Such approaches are effective and significantly
reduces parameter costs, but struggles when source representations misalign with the target domain.
Besides, it requires access to pretrained model weights and computational graphs, limiting their
flexibility, particularly in the multi-source transfer setting.

3 PROBLEM FORMULATION AND ALGORITHM

Transfer learning aims to leverage knowledge from a source task to improve performance on a
related target task. A common practice is to use a representation function fr., learned from a large
source dataset D® under a source distribution P as an extracted feature for the target task. However,
if frep does not align well with the target distribution ', naively reusing it can lead to negative
transfer, resulting in degraded performance compared to using the target data alone.

We formalize the Residual Feature Integration (REFINE) approach.

The objective is to construct a method such that, when  fr, aligns

well with the target distribution, we effectively leverage transferred

knowledge and outperform mod-

i i Is trained from scratch on tar-
LinearProbing/Adapter “ Finetune ReFine els trained from scratch on ta

get data only, and when frp mis-
aligns with the target distribution,
safeguard against negative transfer
h(z){ ) i ; and outperform models that rely

’)zj ) solely on fiep(z). We focus on
the supervised learning task. Let
D' = {(z;,y:)}~, ~ P! denote
the labeled dataset from the target
task. Assume access to a frozen

extracted feature frp, : X — RP
trained on an external source data

Frozen

x ———& D?. Define a class A of trainable
feature encoders h : X — RY
Figure 1: A schematic overview of REFINE. and a class YV of trainable adapters
w : RPFY — RF on top of

(frep(x), h(x)). Let g be the trained adapter on top of the baseline model, and let g, be the
model trained from scratch on z. We seek to learn both the encoder 4 and the adapter w, such that
the expected excess risk of w o ( frep, i) over the target distribution is bounded by the minimum of
the excess risks of the two baselines: Wy o frep and gsc.

A]gorithmE]outlines the REFINE approach. It extracts frep(2) from the penultimate layer of a frozen
pretrained model, and combines it with the residual connection h(x). The concatenated features
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(frep(), h(x)) are passed to a linear classifier for prediction, where only h(x) and the adapter w are
updated, whereas the pretrained model and fp(2) remain unchanged. This design allows REFINE
to efficiently complement transferred knowledge with adapted features from the target data, and thus
recover potentially lost information during the forward pass in the frozen source model. Figure []
gives a schematic overview of REFINE.

4 THEORETICAL ANALYSIS

We provide a theoretical analysis to prove that REFINE is robust to negative transfer. The intuition
and core insight is that the residual connection provides a natural transition: if the external repre-
sentation f, is uninformative, the residual network h can still learn the target function from the
raw input, recovering the performance of training from scratch. Conversely, if f, is informative, h
only needs to learn the simpler residual function, reducing the effective complexity of the problem
and accelerating the learning. This intuition is formalized in two ways: a no-negative-transfer guar-
antee showing that, under mild growth conditions on model capacity, REFINE is never worse than
either training from scratch or using a linear probe on fr.,, and a risk bound showing that its con-
vergence rate smoothly interpolates between the standard nonparametric rate and a near-parametric
rate depending on the quality of the external representation.

We formalize this intuition within the framework of nonparametric regression. We consider the
model with a trainable residual feature encoder h:
g(z) = uh(z) + v fep(2),

where h(x) is a (clipped) ReLU network over raw input, combined with a linear probe on the feature
frep(:v). We establish the risk bound demonstrating that, for moderate capacity of h, REFINE’s
excess risk is no worse than the excess risk of the model trained from scratch or the linear probe
on frep(2). Furthermore, when the capacity of & is tuned to the difficulty of the residual task, the
rate adapts and improves, showcasing its ability to effectively leverage useful prior information from

frep(x)~

Formal Setup. We consider the nonparametric regression setup adopted in the statistical analysis
of deep neural networks [42}39; 24]. Specifically, we observe n i.i.d. pairs (X;, Y;)ien) ~ P' with
support on [0, 1]¢ x R following the model

Y, = f5(Xi) + e, (1)
where f* : [0,1]% — [—1,1] is the ground-truth regression function, (X;);e[, are i.i.d. samples
from the marginal distribution P'y on X, and (¢;);c[n are i.i.d. Gaussian with variance 0 = ©(1),

independent of (X;);c,). We assume P!y admits a positive continuous density on [0, 1]% upper
bounded by an absolute constant. Under this set-up, the expected loss for a given function g is

Ri(9) = Ex,yyoml(9(X) = Y)?].

To facilitate the theoretical analysis, following the standard setup of nonparametric regression, we
consider f* to be Holder smooth. Specifically, for a non-integer 5 > 0, the Holder norm for f* that
are | 3|-times differentiable on [0, 1]¢ is

||f||cﬁ = max{ max sup \8“f(x)| |(9“f(x) —0°f(x >| }

, a
aeNd:|lal1<B) zef0,1) aeNd:|lali=|8) zrar ||z — 2'||P~ LA

Algorithm 1 The residual feature integration (REFINE) method.

1: Input: Training data Dy, = (X;,Y;);, test data Dy, pretrained model f, loss function /.
2: Output: Prediction of the label §(x) for zg € Dieg-

3. Training Phase:

(a) Extract fiep(«) from the penultimate-layer of a frozen pretrained model f.

(b) Construct the concatenated features C, (x) := (frep(2), h(2)).

(c) Let (i, h) be the minimizer of 3, £(w(Cy,(X;)), Y;) while freezing frep.

: Prediction Phase:

(a) Compute C,(x) with the frozen f.

(b) Obtain the final prediction §(xo) based on w(Cj (x0)).

WeR Nk
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The unit ball is C; := {f : [0,1]¢ — R : f is | 3]-times differentiable and || f]|cs < 1}.

Further, we assume the residual connection h : R — R is realized by a ReLU network with width
at most W, depth at most L, and weight magnitude at most B:

h(z) = ApzP' =Y 1o, 20 = o(AzD +b) (L eI —1)), 2@ =q, (2)
for some L’ < L, where dy = d, dy = 1, and dy < W. Here o(z) = max{0, z} is applied

element-wise, Ay € [—B, B]%*d¢-1 and b, € [-B, B]%. The class is Hq4(W, L, B), and we use
its clipped counterpart H4(W, L, B) := {x — min{l, max{—1,h(z)}} : h € Hq(W, L, B)}.

Empirical risk minimization for REFINE. We consider squared loss £(y,y') = (y — y')%. Let

frep : [0,1]% — B,(1) be an external representation with B,(R) = {u € R? : |u|| < R}. Define
the REFINE class

gdﬁp(W7L7B;freP) = {g : [07 1]d —R g(x) = /UTfreP(x) +Uh(fl?), |’LL‘ S 15 HUH S 17 h € ,}:‘d(WvL?B)}

We train ¢ via empirical risk minimization,

. . 1

g= arg min — Z (g9(X;),Ys). 3)
9€Gap (WL Bifup) ™ [y

The effectiveness of REFINE depends on the quality of f..,. We quantify this by defining the best

possible linear probe and the corresponding residual. Specifically, for any fep : [0, 1]¢ — B, (1),
the best linear probe is defined as

v* = al"iggnE[{UTfrep(Xl) - f*(Xl)}Q]

The difficulty of learning the residual is then captured by its Holder norm, which we denote as
p* = ||[v*T frep — f*[lcs. A small p* indicates that frp is highly informative for the target task.

We state a theorem that provides an upper bound on the generalization error of the empirical risk
minimizer in equation 3] when the model capacity is chosen appropriately.

Theorem 4.1 (Generalization Error of REFINE). Assume v* frep— f7 € CP. Let p > 0 be a tuning
parameter, which serves as a proxy for the residual norm, and choose the network parameters for h
as

L=ci, W =cymax{n¥/CHD2/CHD 1} B = (p*v1)max{np® 1}, (4)

where ¢1,c2,c3 > 0 depend on (3, d and ~y. Let § be the empirical risk minimizer in (3) with the
parameter specified as in ({)). Then there exists C > 0, which depends on 3, d, such that

E[Rer(9) — Rer(f")] < Of (/@) logn + 7249/ 2340) =25/ 2+0) | PIOETY — )
n
The bound in (5) splits into a parametric term plogn/n for learning v* on top of fp, and a non-

parametric term with the standard minimax rate n~2%/(2#+%) for learning the residual modulated
by the tuning parameter p and the residual difficulty p*. The tuning radius p controls the effective
capacity of h via W and B in (). That is, a larger p increases the approximation power, achieving
a smaller bias, but worsens the estimation, resulting in a larger variance factor p>#/ 26+ On the
other hand, a smaller p regularizes h, which is preferable when the residual is genuinely small.

Proof sketch of Theorem[d.1] For any v, decompose
[ (@)= f"(z) - UTfrep(CC) + UTfrep(x) .
—_————

residual linear in frep ()

The first term is fit by / and the second by a linear probe on f.p. Approximation results for ReLU
networks over C? functions give the residual term at rate n~2%/(26+4) with a capacity-dependent
multiplier governed by p. A standard linear estimation yields the p/n term for v. Choosing
(W, L, B) as in (4) implements this bias-variance trade-off. The full proof is deferred to Appendix|[A]
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We remark that our theoretical results are derived under the squared-loss objective, following a
long line of work that analyzes classification problems through regression surrogates [[145|50]]. This
approach aligns with common practice in the machine learning theory community, where regression
surrogates are employed to derive insights for classification algorithms.

We further discuss two direct implications of Theorem

Corollary 4.2 (Fixed p). Under the same conditions as in Theorem for any fixed choice of
p > 0, the bound in () implies that

E[Rp(§) — Re:(f*)] = O(n*QB/(Qﬁer) n % )

This corollary indicates that, by introducing an additional residual connection h, REFINE never has

a worse rate than n~28/(28+4) for fixed p, which is the standard minimax-optimal rate when training
from scratch on (X, Y; )¢y, for -Holder f* (See, for example, Theorem 3.2 in Gyorfi et al. [13]).

Corollary 4.3 (Tuned p). Under the same conditions as in Theoremd.1| balancing ([3) by choosing
p |l p* yields

E[Re(9) — Re(f*)] = O(p*2d/ (26+d),,~26/(26+d) %) (6)

This corollary indicates that, when f., is well aligned with the target, i.e., a small p*, choosing
p = p* effectively regularizes the residual network & via the parameter choice in (4]), which shrinks
the nonparametric term so that the bound is dominated by the near-parametric p/n term. Conversely,
when fi., is misaligned, i.e., a large p*, the nonparametric component dominates and the rate reverts

to the classical 5-Holder minimax rate n—28/(26+d),

We now provide a corollary for no-negative-transfer guarantee. The key idea is to define a class of
functions that can be approximated in the 3-Holder norm by a linear combination of fp up to an
error vy > 0:
T
Ffrp ) = {S7 (0,1 > R| min o7 frep = flles <7}

This class captures the functions that can be learned from the residual connection A and the linear
probe on f.p, and thus serves as a target for the empirical risk minimization in equation (3| In a
special case where frp is not informative, i.e., frep = 0, the class reduces to the standard Holder ball

with radius y: {f*[[[f*llcs <7}
Corollary 4.4 (No -negative-transfer guarantee). Fix d,p € Ny and 8 > 0. Also fix frp : [0,1]¢ —

RP satisfying v f,e,, € CP for any unit vector v € SP~Y. Consider the model trained from scratch
and the linear probe on f,,, with comparable capacity:

1
Jse = argmin — Z 0g(X;),Y;), wp = argmin — Z U(w' frep(X5),Y5).
geHa(W,L,B) T ey weRr T i)

Then,

sup  E[Rp(9) — Re(f7)]
F*EFB (fup)

=0 (min { sup E[Rp (Gse) — Re(f7)], sup [RIP”(wfz frep) — R (f")] })

f*e]:ﬁ(frrpv’)’) f*EfB(fm[)77)

holds for any v € [0,1).

Specifically, when v = 0, i.e., when f* lies exactly in the linear span of fi., the excess risk of RE-
FINE is, up to logarithmic factors, no worse than that of the linear probe on fi.,. When v > 0, RE-
FINE attains the standard nonparametric rate for estimating S-Holder functions; this rate improves
upon that of the linear probe on fr,, which suffers from bias due to representational misalignment.
Hence REFINE provably avoids negative transfer for this class of target functions.

We also provide the asymptotic no-negative-transfer guarantee for a fixed f* under any mild model
capacity in Appendix
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5 NUMERICAL EXPERIMENTS

5.1 EXPERIMENT SETUP

We demonstrate that REFINE consistently mitigates negative transfer through extensive numerical
experiments across image, text, and tabular modalities, using benchmark datasets including CIFAR-
10, CIFAR-100 [25], STL [5], Clipart, Sketch [36], USPS, MNIST, Books, Kitchen, DVD, and
Electronics [3]]. We evaluate performance using classification accuracy, area under ROC (AUC), F1
score, and minimum class accuracy.

We also compare REFINE with a number of alternative solutions. In particular, NoTrans serves as a
no-transfer baseline, reusing pretrained features without any adaptation. LinearProbe [26] trains
only a linear classifier on top of frozen features, offering a lightweight baseline. Adapter [18]]
inserts a small trainable module into pretrained models, enabling efficient adaptation with limited
parameters. Distillation [16] transfers knowledge from a frozen teacher to a student model through a
combination of hard labels and soft predictions. LoRA [19] applies low-rank adaptations to weight
matrices, achieving parameter-efficient fine-tuning. DANN-Gate [45]] combines adversarial training
with gating to encourage domain-invariant representations.

We consider a variety of experimental settings. In Section we evaluate REFINE on datasets
exhibiting natural distribution shift. In Section[5.3] we construct challenging scenarios to stress-test
robustness under controlled perturbations. In Section we examine an adapt-time multimodality
extension setting based on spatial transcriptomics, where a new modality becomes available only
after pretraining. Finally, in the Appendix, we include additional studies on source-free multi-source
transfer (Appendix and tabular benchmark evaluations (Appendix [C.4).

In our implementations, we train all models using stochastic gradient descent with a learning rate
0.01 and momentum 0.9, with pretraining for 60 epochs and fine-tuning for 30 epochs. We consider
both CNNs and transformer architectures for the pretrained model f, and the encoders /. We also
carry out an ablation study in Appendix|[C.3|regarding the complexity of the encoder h, showing that
REFINE remains effective across different choices of the model parameters for h.

We provide more details about the experiment setup and implementations in Appendix [D}

5.2 SINGLE-SOURCE TRANSFER WITH NATURAL DISTRIBUTION SHIFT

In the first experiment setting, we evaluate REFINE on datasets that exhibit natural distribution
shift. To provide a comprehensive assessment, we consider transfer tasks spanning both image
and language, thereby covering cross-domain as well as cross-modality adaptation. For image,
we include CIFAR-10, CIFAR-100, and STL-10, which offer complementary object recognition
tasks with varying class granularity and image resolution. We further incorporate artistic domains,
specifically, Clipart and Sketch, to capture substantial stylistic diversity, along with digit recogni-
tion benchmarks, USPS and MNIST, which provide structured and well-curated handwritten digits.
For text, we adopt the datasets, Books, DVD, Electronics, and Kitchen, which span heterogeneous
product categories and exhibit rich linguistic variations. We process the image datasets using con-
volutional neural networks (CNNs), and process the text datasets using transformers. This design
allows us to assess transfer across distribution and domain shifts, and also under cross-modality and
cross-model settings. Collectively, these datasets constitute a broad and rigorous benchmark for
evaluating transfer learning methods.

We use the notation A — B to denote transfer learning from source domain A to target domain
B. Our evaluation covers diverse scenarios. Specifically, CIFAR100—10 and CIFAR10—100
test transfers across datasets with overlapping but non-identical class spaces and label granu-
larity; CIFAR10—STL reflects natural distribution shift due to resolution and dataset construc-
tion; Clipart— Sketch represents cross-style adaptation between artistic domains; USPS—MNIST
examines digit recognition under handwriting and design difference; and Books—Kitchen and
DVD—Electronics capture cross-topic sentiment transfer, where vocabulary and linguistic style vary
considerably. We exclude knowledge distillation [[16] in this comparison, as it requires identical class
spaces across source and target, which do not apply here.
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Dataset Method Accuracy AUC F1 Min CAcc
NoTrans 56.5820 £0.3659 0.9005+0.0012 0.5634+0.0046 37.2000 & 3.4117
LinearProb 38.9260 = 0.5463 0.8284 £ 0.0017 0.3815 +0.0051 16.9400 £ 3.7441
CIFAR100—10 Adapter 38.2320 = 0.3111 0.8247 £ 0.0016 0.3754 +0.0071 16.4600 £ 5.4544
LoRA 43.1360 + 0.3239 0.8603 £ 0.0003 0.4237 £ 0.0046 20.1400 =+ 4.1020
DANN-Gate  43.2220 & 0.1295 0.8605 =+ 0.0005 0.4214 £ 0.0040 17.4800 £ 4.7755
REFINE 54.4000 = 0.3336 0.8942 + 0.0026 0.5406 =+ 0.0051 33.6200 + 2.8273
NoTrans 18.3200 £ 0.5254 0.8140 + 0.0050 0.1774 4+ 0.0052 1.0000 + 0.8944
LinearProbe 7.0140 £ 0.3347 0.7489 £ 0.0011 0.0496 + 0.0034 0.0000 £ 0.0000
CIFAR10—100 Adapter 6.5640 % 0.2875 0.7499 £ 0.0008 0.0459 + 0.0026 0.0000 £ 0.0000
LoRA 6.8240 4+ 0.1037 0.7558 £ 0.0010 0.0463 £ 0.0015 0.0000 £ 0.0000
DANN-Gate  5.1980 =+ 0.3924 0.7341 £ 0.0055 0.0285 + 0.0033 0.0000 % 0.0000
REFINE 18.5880 +0.5494 0.8276 +0.0053 0.1787 £0.0057  1.4000 £ 0.8000
NoTrans 48.6925 + 0.6338 0.8683 £ 0.0032 0.4831 +0.0089 26.8000 + 4.9006
LinearProbe  50.2725 4 0.3016 0.8795 £ 0.0015 0.4955 + 0.0067 18.9250 £ 6.1546
CIFAR10—STL Adapter 49.2900 + 0.7344 0.8773 £ 0.0008 0.4865 + 0.0096 15.6750 £ 6.6340
LoRA 50.7550 = 0.3793 0.8813 £ 0.0016 0.4930 =+ 0.0040 5.6750 = 2.6933
DANN-Gate  47.7050 & 0.6586 0.8659 £ 0.0013 0.4712 £ 0.0104 13.9250 + 5.3424
REFINE 53.4175+0.3628 0.8944 +0.0013 0.5301 &+ 0.0053 25.9750 + 3.5693
NoTrans 18.8804 £+ 1.3709 0.7170 £ 0.0117 0.1828 £0.0119 0.0000 £ 0.0000
LinearProbe  18.3430 £ 0.8649 0.7290 £ 0.0065 0.1727 £ 0.0087 0.0000 £ 0.0000
Clipart—Sketch Adapter 18.2356 £0.5807  0.7369 &+ 0.0059  0.1549 £ 0.0040 0.0000 £ 0.0000
LoRA 16.9010 £ 0.6906 0.6937 £ 0.0043 0.1671 £ 0.0069 0.0000 % 0.0000
DANN-Gate  16.5786 4 0.4868 0.6942 £ 0.0021 0.1544 +0.0048 0.0000 % 0.0000
REFINE 20.3403 £0.4768  0.7338+0.0043 0.1968 0.0059  0.5263 +1.0526
NoTrans 62.0740 = 8.7771 0.9566 + 0.0073 0.5967 = 0.0969 9.2863 + 12.1512
LinearProbe  66.9960 4 1.0095 0.9469 + 0.0050 0.6563 =+ 0.0086 9.1576 & 3.5478
USPS—sMNIST Adapter 61.8660 =+ 3.0334 0.9375 £ 0.0085 0.5952 + 0.0441 8.8750 & 7.2427
LoRA 64.8240 =+ 0.8520 0.9333 £ 0.0045 0.6435 + 0.0135 29.3265 + 13.5652
DANN-Gate  52.2080 =+ 3.6669 0.9012 £ 0.0185 0.4853 £ 0.0482 0.0198 + 0.0396
REFINE 70.0460 +£2.1721 0.9582+0.0053 0.6954 +£0.0194 31.6157 +14.5527
NoTrans 71.6600 £ 1.3632 0.7848 + 0.0155 0.7161 +0.0137 68.6000 + 2.9719
LinearProbe  66.7400 £ 3.1455 0.7568 £ 0.0278 0.6571 +0.0401 51.5600 % 9.7336
Books—sKitchen Adapter 71.3400 £ 0.1356 0.7839 £ 0.0008 0.7111 +£0.0015 62.8800 + 2.9027
LoRA 66.9600 + 0.2154 0.7279 £ 0.0018 0.6695 + 0.0022 65.6400 % 0.4079
DANN-Gate  66.6000 & 0.0894 0.7330 £ 0.0006 0.6659 =+ 0.0009 64.6800 + 0.6997
REFINE 72.7200 £1.6522 0.8147 +£0.0133 0.7248 +0.0189 65.5200 & 6.4778
NoTrans 68.5200 = 2.8979 0.7585 £ 0.0304 0.6806 = 0.0338 59.8000 % 9.8298
LinearProbe  66.0600 & 0.5122 0.7266 + 0.0017 0.6580 = 0.0072 58.3600 % 4.5579
DVD—sElectronics Adapter 65.8600 = 0.3200 0.7206 £ 0.0008 0.6577 £ 0.0037 61.4400 =+ 2.5935
” LoRA 66.5600 = 0.3555 0.7170 £ 0.0013 0.6656 + 0.0036 65.4000 + 0.4899
DANN-Gate  66.9000 £ 0.1897 0.7196 £ 0.0013 0.6686 = 0.0019 63.5600 & 0.2653
REFINE 70.3400 £0.9972 0.7886 +0.0115 0.6995 + 0.0122 61.7200 + 7.5181

Table 1: Single-source transfer learning with natural distribution shift.

Table[T]reports the results. REFINE consistently achieves competitive or superior performance com-
pared to alternative methods across all scenarios. On transfers with large label-space difference,
including CIFAR100— 10 and CIFAR10— 100, REFINE improves accuracy by over 10 — 15% rel-
ative to Adapter, LoRA, and DANN-Gate, substantially narrowing the gap to the no-transfer base-
line while remaining robust to negative transfer. On transfers under natural resolution or stylistic
shift, including CIFAR10—STL, Clipart—Sketch, REFINE achieves 3 — 4% accuracy gains over the
strongest alternative, along with consistent improvements in AUC and F1. On transfers with digit
benchmarks, including USPS—MNIST, it yields 5 — 10% accuracy gains, and much higher mini-
mum class accuracy, indicating stronger preservation of performance on underrepresented classes.
On transfers with cross-topics, including Books—Kitchen, DVD—Electronics, REFINE delivers
2 — 4% improvements across all metrics. Overall, REFINE not only avoids the severe degradation
observed in other methods, but also provides reliable accuracy lifts of 5 — 15% across image and
text domains under diverse settings of distribution shifts.

5.3 SINGLE-SOURCE TRANSFER UNDER LABEL NOISE, SEMANTIC PERTURBATION, AND
CLASS IMBALANCE

In the second experiment setting, we deliberately construct challenging scenarios to stress-test vari-
ous transfer learning methods. Using CIFAR-10 with CNNs, we introduce four types of challenges
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Dataset Setting Method Acc AUC F1 MinCAcc

NoTrans 56.05 £ 0.64 0.9037 £ 0.0028 0.5580 £ 0.0080 32.40 £ 5.84

LinearProbe  65.54 + 0.06 0.9378 £+ 0.0003 0.6561 £ 0.0008 42.82 +1.45
Adapter 65.78 £0.19 0.9376 £ 0.0007 0.6581 +£0.0024  45.20 + 2.29

40% flips Distill 57.01 £0.58 0.9115 £ 0.0016 0.5674 £ 0.0032 34.84 +£4.53
LoRA 65.47 £0.12 0.9374 £ 0.0004 0.6545 + 0.0018 42.38 +0.89

DANN-Gate  65.40 +0.15 0.9353 £ 0.0006 0.6539 £ 0.0016 43.40 £2.22

REFINE 66.23 £ 0.32 0.9388 +£0.0006 0.6625+ 0.0036 43.94 +3.78

NoTrans 56.57 £ 0.64 0.9057 £ 0.0033 0.5622 £ 0.0055 33.60 + 3.04

LinearProbe  19.46 +0.75 0.6895 + 0.0011 0.1177 £0.0108 0.00 £ 0.00

Adapter 18.49 4+ 0.46 0.6906 + 0.0006 0.1219 £+ 0.0156 0.00 £ 0.00

80% flips Distill 53.51 £0.79 0.8982 + 0.0021 0.5269 + 0.0091 26.80 + 2.49

LoRA 22.92 £1.73 0.7202 £ 0.0079 0.1911 £ 0.0308 0.76 £ 1.52

DANN-Gate  20.83 +1.32 0.7097 £ 0.0084 0.1341 £ 0.0253 0.00 £ 0.00
REFINE 56.58 £0.33 0.9067 +£0.0019 0.5655 + 0.0041 36.90 + 2.94

NoTrans 56.53 £0.77 0.9006 + 0.0021 0.5639 £ 0.0056 35.76 £ 2.75

LinearProbe  48.54 +0.42 0.8987 + 0.0008 0.4757 £ 0.0046 18.44 £ 7.89

CIFAR-10 Adapter 47.17+£0.82 0.8998 + 0.0006 0.4479 £0.0148 7.42 +6.47
Schematic confusion Distill 57.80+0.44 0.9068 £ 0.0009 0.5772 £+ 0.0037 35.92 + 3.00
LoRA 49.96 £ 0.26 0.9039 + 0.0005 0.4864 £ 0.0116 16.34 £9.91

DANN-Gate  49.04 4 0.33 0.9028 + 0.0006 0.4719 £ 0.0059 11.40 £1.53
REFINE 58.65 +£0.47 0.9034 £0.0011 0.5861 +0.0048 38.40 + 3.10

NoTrans 56.44 +0.48 0.9055 £ 0.0019 0.5599 + 0.0051 32.80 + 4.54
LinearProbe  53.15 £+ 1.04 0.8883 £ 0.0145 0.5238 £0.0215  28.36 + 14.04

Adapter 51.64 £ 0.99 0.8960 + 0.0022 0.5130 £ 0.0150 19.52 + 8.32
Class imbalance Distill 54.89 £ 0.49 0.9063 £ 0.0013 0.5492 £ 0.0065 41.96 + 3.43
LoRA 53.21+£0.19 0.8975 + 0.0005 0.5338 £ 0.0022 33.76 £ 5.38

DANN-Gate  53.05 4 0.28 0.8964 + 0.0009 0.5281 + 0.0055 32.62 + 3.60

REFINE 56.54 +£0.73 0.9103 £0.0012 0.5619 +0.0103 31.58 +10.31

Table 2: Single-source transfer learning with label noise, semantic perturbation, and class imbalance
for CIFAR-10 using CNNss.

in the pretraining data while keeping the target domain fixed: (i) heavy label noise with 40% random
label flips, (ii) extreme label noise with 80% flips, (iii) semantic perturbation created by paired-class
flipping combined with additive image noise, and (iv) class imbalance induced by resampling to
a long-tailed distribution. In addition, we repeat the experiments on CIFAR-100 and also evalu-
ate both CIFAR-10 and CIFAR-100 with transformer-based models. We report the corresponding
results in Appendix [C.3]

Table 2] summarizes the results. REFINE consistently mitigates severe degradation and outperforms
competing methods across all stress-test scenarios. In the moderate noise setting with 40% label
flips, it achieves the best overall balance, improving accuracy and F1 by about 1% over Adapter
and LoRA, while maintaining competitive minimum class accuracy. In the more extreme noise
setting with 80% flips, most baselines collapse, with LinearProbe, Adapter, and DANN-Gate drop
below 25% accuracy, whereas REFINE remains close to the no-transfer baseline, improving accu-
racy by nearly 35% over the strongest adaptive alternative. In the semantic confusion setting, with
paired-class flips plus image noise, REFINE gains 1-2% in accuracy and F1 over NoTrans, while all
other adaptive baselines perform worse, highlighting the robustness of REFINE to perturbed label
semantics. In the class imbalance setting, it surpasses LinearProbe, Adapter, and LoRA by 3-5%
in accuracy and F1, achieving the strongest overall results aside from a slightly lower minimum
class accuracy than Distillation. Overall, REFINE avoids the catastrophic failures common to exist-
ing transfer strategies under noise, semantic perturbation, and class imbalance, while consistently
delivering performance gains across all stress-test conditions.

We also briefly remark that, an important advantage of REFINE is that its complexity can be flex-
ibly tuned through the choice of the encoder h. Such a design keeps it comparable in parameter
efficiency to methods such as Adapter and Distillation. For instance, in this setting, for REFINE,
the number of trainable parameters is 4.88% of the total number of parameters in the frozen source
model, for Adapter, it is 5.46%, and for Distillation, 4.68%. Thus REFINE achieves a compara-
ble parameter efficiency, but clearly outperforms in mitigating negative transfer. The ablation study
in Appendix [C.5]further shows that the performance of REFINE remains stable across different pa-
rameter choices of h, indicating that the overall parameter complexity has relatively little impact.
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Figure 2: Metric comparison across labeled target sizes for Adapter, LinearProbe, NoTrans, and
REFINE.
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By contrast, increasing Adapter’s complexity fails to resolve negative transfer, suggesting that its
limitation stems from design rather than capacity.

5.4 ADAPT-TIME MULTI-MODALITY EXTENSION: SPATIAL-OMICS EXAMPLE

Spatial transcriptomics provides a clean setting to study a phenomenon that is becoming increas-
ingly common in biological data analysis: a pretrained model is strong, but a crucial modality
appears only at adaptation time. In the SpatialGlue human lymph node dataset [30], cells come
with both transcriptomes and spatial coordinates, and the major anatomical domains cortex, medulla
cords, follicles, capsule, pericapsular adipose tissue, and others form well structured spatial patterns.
Because expert annotation of these domains is costly, only a small subset of cells typically receives
labels. Importantly, scGPT [[7], like most foundation models for single cell data, is pretrained purely
on dissociated RNA and therefore never observes spatial information. This naturally creates what
we refer to as an adapt-time multimodality extension problem, where the model must incorporate
a modality that was entirely absent during pretraining. Conventional fine-tuning or PEFT cannot
reliably supply information the pretrained model has never learned.

The empirical results reflect this challenge. As shown in Figure 2] both LinearProbe and Adapter
exhibit negative transfer when applied directly to scGPT representations. With 1000 labeled cells,
their F1 scores remain near 0.24 to 0.29, far below a simple GNN trained from scratch, denoted as
NoTrans, which already reaches about 0.47 by leveraging spatial structure directly. Even with more
labeled data, their AUC and F1 improvements stagnate. In contrast, REFINE adds a lightweight
residual spatial encoder that complements the frozen scGPT features without modifying the back-
bone. This allows the model to integrate the missing spatial modality at adaptation time. The gains
are substantial: at 1000 labels, REFINE raises F1 to roughly 0.52, and surpasses 0.70 by 3000 labels,
with consistently stronger AUC across all training sizes.

Figure[S2illustrates the qualitative impact of this adapt-time modality gap. LinearProbe and Adapter
compress the cortical region, miss several follicular and trabeculae regions. REFINE reconstructs
these domains much more faithfully, recovering cortical extent, follicle structure, and peripheral
regions that the other approaches systematically miss. These results suggest a broader message.
When a modality is entirely missing during pretraining, fine-tuning alone is insufficient, but a resid-
ual mechanism that injects the missing information at adaptation time can bridge the gap effectively
and without imposing additional engineering burdens on practitioners.

ETHICS STATEMENT

This research does not involve human subjects, personally identifiable information, or sensitive data.
The datasets used are publicly available and widely used in the community. We are not aware of
direct applications of our method that raise ethical concerns. Nevertheless, as with any machine
learning system, there is a potential risk of misuse if deployed in contexts where fairness or bias are
critical. We encourage future work to examine these dimensions before deployment in such settings.
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All proofs for theoretical claims are provided in Section[d]and Appendix [A] An anonymized version
of our source code is included in the supplementary materials and will be released publicly upon
acceptance.
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APPENDICES

In the appendices, we provide additional technical and empirical details. Appendix |A|provides the
proof of the main theorem, supported by auxiliary lemmas in Appendix [Bl Appendix |C| expands
the empirical evaluations, including additional results on more benchmark data, tabular data, and
an ablation study. Appendix [D] documents the experiment setup and implementation details for
reproducibility. Together, they offer a complete account of the theory, validation, and practical
details underlying our work.

A PROOFS OF MAIN RESULTS
In this section, we prove the main results in Section 4]

Additional Notation. Let || - ||z, denote the L, norm under the probability measure Py for any
g € [1,00], where P, is the distribution of X; in the training data. For a,b € R, we define
a A'b=min{a,b} and a V b = max{a, b}.

In addition, we would like to recall Ry (g) = E(x,y)~m[(9(X) — Y)?]. As aresult,

Re(9) = Re(f*) = Exyyeml(9(X) — F1(X) = €)*] = 0®
= E(xy)~r[(9(X) = (X)) < llg = fI12,. (8.1

where the last equivalence < is due to the fact that we assume X has positive continuous density
on [0, 1]¢ bounded by an absolute value. As [0, 1]¢ is a compact space and the density function of
X is continuous, this implies that the density function is both upper and lower bounded by absolute
constants.

A.1 GENERALIZATION ERROR UPPER BOUND

‘We now prove the main theorem on the prediction risk of REFINE. The results of the two corollaries
can be obtained straightforwardly, and we thus omit their proofs.

Proof of Theorem Recall that v* is defined as the optimal linear probe of frep, i.e.,

v = argmin B[{"(X) =" fip(X)}

We begin by observing that the difficulty of the estimation problem is governed by the residual
r* = — U*Tfrep, since fp is assumed to be known, and 'U*Tfrep can be seen as a linear function
of the known quantity. By appropriately choosing the parameters W, L, and B, we control the
complexity of the neural network, and the bias of estimating *.

Specifically, choose

L= (2+ [log, 5])(11 + 5) W=ce ¥ B=(p*V1)e, (S.2)
where ¢}, ¢4 > 0 are constants appearing in Lemma [B.2] Define p* := ||r*||¢s. Set

¢ 1= n—B/(2B+d) =28/ (26+d) p | (S.3)

where p > 0 is some tuning parameter. The choices in (4) are realized by taking ¢ =
n~P/(2B+d) ,=26/(28+d) and setting ¢; := (2 + [log, B])(11 + B/d), ¢z := ¢}, c3 := cb.

Note that Supyeg, (w.r,B; ) 19l Lo < 2. From Lemmawith the choice § +— 1/n, we have
lOgN(l/nagd,p(WL7B;frep)aH : ||LOQ) 1)

+

Ellg - 112,05 (inf lo - 12, + : .

Next we compute the first term and the second term separately.
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Part 1: Bounding the first term. Slﬁse for now that p* > 0. Rescale the residual by noting

that (1/p*)r* € Cf. Then, by Lemma there exists a neural network rny € Hq(W, L, B) such
that

[l = (1/p%)r" (|, S e (S4)

This inequality provides the approximation error of the ReL.U network class. To translate this result
to the bias term ||g — f*||7_, we proceed as follows. Write

NN = T'NN,L ©TNN,L—-1© ***©O TNN,l(I)a

where rnn () = o(Agz + by) for £ € [L — 1] and ran, () = Az + by. Define myy 1 (z) =
(p*AL)x + (p*br) to approximate p*ryn. Then, it follows that the function

9°(@) == LA((=1) Vrwp o -1 0 - 0 w1 (7)) + 0™ frep(2)
belongs to Gg,, (W, L, B; frep) since |[v*|| < 1. Moreover, we can write g° as
9°(@) = 1A ((=1) V pran()) + 0" frep(2).
Using (S-4), we have
E[{g°(X1) — f*(X)Y]2 = LA (1) V p"rw) + 0" fuep = f7 |1

=p A~V | -
p p Lo
< pfllraw — —=7r*
Lo
SP'e

where we used the fact that ||r*/p*||L_. < ||7*/p*|lcs < 1/p*. Thus,

inf E (|2 <E o pr*x|2 < %2 2. S5
o, Ellg— I, < Ellg” - 51 S 5% 5

If instead p* = 0, then we can simply choose a ReLU network in H4(W, L, B) with all weights and
biases set to zero. By taking g° = 0 + v* T frep, the bound in equationtrivially holds.

Part 2: Bounding the second term. The covering number bound from Lemma [B4] with the
choice of W, L, B in (S.2), we have
logN(l/n,gd,p(WLyBQ frep)7|| ) HLoc) ¢’

n n

where C” is a constant depending on d and £.

Part 3: Balancing terms. Finally, we combine the results from part 1 and part 2. Recalling the
choice of € in (S.3)), we consider two cases depending on the value of p.

When 1/y/n < p, we have € = (np?)~#/(26+4) _1n this case, the bound becomes
E[l|g — f*[|2,] < p2p~ 40/ @B+d)n~26/Ch%d) 4 o ( 24/ (28+d) =26/ (26+d) | % ) log
<(C'+1) <( 728/ @) | 20/B+d) 1o 1)y =28/(264+d) Plog”)
! (S.6)
When p < 1/4/n (so that € = 1), the bound becomes

Ellg— f*2.] < p™ + CJM <(C'+1) <p*2p4ﬁ/(2ﬁ+d)n2ﬁ/(26+d) + plog”) (S.7)
. n - n

Combining the bounds in (S.6) and (S.7) with (S-I)), we obtain the desired result.
This completes the proof of Theorem .1} O
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A.2 WORST CASE NO-NEGATIVE-TRANSFER GUARANTEE

Proof of Corollary[d.4} By a similar argument as in the proof of Theorem [4.1] given any f, satis-
fying v frep € 2 for all unit vector v € SP~1, the prediction risk can be upper bounded as

2 1
sup  E[Rp(§) — Re(f*)] S yFtan~ 774 logn + 2 ‘;g", (S.8)

FHEFP (frepsy)

For the linear adapter, for any estimator w, the prediction risk with respect to f* satisfies
E[(w" X1 — f(X1))*] =E[(w* T X1 — f*(X1))?] + E[(&0 — w*) "E[X1 X (& — w")],
where w* = arg min,, cg» E[(w' X — f*(X))?]. This follows by the normal equation
E[X(f*(X) —wTX)] =0,

which imply that the cross term vanishes. Under the model in equation[I] the estimation term is of
order ©(p/n). Hence we have

N * . * p

sup  E[Rp (g frp) =R ()] 2 sup inf Ef|jv’ frep(X1) = F* (X)) + .

f*e}—ﬁ(frcrn'}’) f*efﬂ(frcpﬁ) ve n
(S.9)

For the training from scratch, note that ’ny c FP( freps). By Theorem 3.2 in Gydrfi et al. [13],
we have

sup  E[Re () — Ri(f*)] > inf sup E[(§(X1) — r*(X1))?] Z 7> D20/ (20d),
F*E€FB(frepsy) g rreycf
(S.10)

Therefore, combining equation [S.9]and equation [S.10| with equation [S.8]concludes the proof. O

A.3 ASYMPTOTIC NO-NEGATIVE-TRANSFER GUARANTEE

Here we compare the performance of REFINE with two natural baselines: training from scratch with
comparable model capacity, and fitting a linear probe on f.,, without any parameter tuning.

Proposition A.1 (Asymptotic No-negative-transfer Guarantee). Assume v*" fo,, — f* € ChP. Sup-
pose that the parameters (W, L, B) satisfy W log(nLBY(W + 1)) = o(n) and that plogn =
o(n) as n — oo. Consider the model trained from scratch and the linear probe on f,,, with compa-
rable capacity:
. . 1 . .1
Jse = argmin — Z 0(9(X;),Y;), wp= argmin —
g€Ha(W,L,B)

3t frp(X), V). (S11)
€[n]

WERP,[Jw][<1 T

1€[n] i
Then,
E[Rp:(§) — Re(£*)] < (1 + o(1)) min{E[Re: (4c) — Ree(f*)], B[R (4 frep) — R ()]} + (1),
(S.12)
as n — oQ.

Proposition[A.T|shows that, provided the model capacity increases slowly enough with n so that the
estimation error vanishes, the excess risk of REFINE is bounded, up to multiplicative and an additive
o(1) term, by the smaller of the two alternatives: training a comparable model from scratch or fitting
a linear probe on fp. In particular, REFINE is asymptotically no worse than either baseline for any
moderate choice of (W, L, B). We also note that the choice of (W, L, B) in the following theorem
satisfies the conditions of Proposition[A.T]

We now prove the proposition that REFINE avoids negative transfer asymptotically, which provides
a result when either Rp: (] frep) O Rpt(sc) is bounded from below as n — oc.
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Proof of Proposition[A.]] Consider the hypothesis classes for training from scratch and linear prob-
ing:

Gse(W,L,B) :={x+ h(z): h € Ha(W,L,B)},  Gn:={x v fiep(z): |lv] < 1}.

Let gy and gy be the empirical risk minimizers over Gi.(W, L, B) and Gy, respectively. To ease
notation, we write G = G4 ,(W, L, B; fp). By construction, we have Gy U G C G. Hence

inf Rp(g) S mln{ inf Rpt(g), inf Rpl(g)} S min{]E[R]px(gsc)], E[Rpt(gft)]} (513)
geg 9E€Gsc 9EGn

By assumption, ||f*|[r.. < 1and supyeg [|gllz.. < 2. Lemma[B.3|with the choice § - 1/n and
F « 4 gives ‘

log N'(1/n,G, | - 1
og N(1/n, G, | - llz..) +7)’
nk n
(S.14)
for some universal constant C; > 0, where we used Ry (g) — R (f*) = E[(9(X1) — f*(X1))?].

Lemmawith the choice 0 + 1/n gives
log N'(1/n,G, || - l2..) < Cz{Wlog(nLBL(W + 1)L) +plogn}, (S.15)

for some universal constant C > 0. Combining equation and equation [S.T3]into the right hand
side of equation [S.14] yields

E[Rp(9) — Re(f)] < (14 #)? min{E[Rp(gsc)] — Re(f*), E[Re(91)] — R (f*)}
. 0{1 <Wlog(nLBL(W +1)5) . p1ogn> . 1},

B[R (3) = R ()] < (14 )*(inf Rex(g) ~ Ren(/)) + Ca

K n n n

where C' > 0 is some universal constant. Since W log(nLB*(W + 1)) = o(n) and that plogn =
o(n) as n — oo, we have

~ * . ~ * ~ * R
E[Re(9) = Re ()] < (1+ 1)* min{E[Re: (9sc)] — Rer(f7), E[Ree(r)] = R (F)} + —,
where R = o(1) as n — oco. Since x € (0,1] is arbitrary, we choose k = VR A 1(= o(1)) to
conclude the proof. O

B AUXILIARY LEMMAS

In this section, we provide some auxiliary lemmas.

The next lemma is about the entropy bound for H4(W, L, B).

Lemma B.1 (Lemma 21 from Nakada & Imaizumi [33]). Fix any W, L, and B > 0. Then, we have
the covering number bound

2LBY(W + 1)F
log N'(e, Ha(W, L, B), | - £..) < W log <()>
The next lemma is modified from Petersen & Voigtlaender [37]], adapted to consider Lo approxima-
tion error with respect to the probability measure Py over the domain [0, 1] 4 rather than the original
L, error with a uniform measure on [—1/2,1/2]<.
Lemma B.2 (Modification of Theorem 3.1 from Petersen & Voigtlaender [37]]). Fix d € N and
B > 0. Suppose that P’y has a density bounded by O(1). Then, there exist constants c},ch > 0,
depending on d and B, such that for any ¢ € (0,1/2), if one chooses W, L, and B satisfying

L<(2+ [1og2,31)<11+ 5) W <de¥P B<e,

then

sup I fuw = [, Se

inf
f# EC,? fNNeHd(WaLvB)
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The next lemma provides a bound on the prediction risk of the empirical risk minimizer in terms of
the covering number of the function class and the approximation error.

Lemma B.3 (Modification to Lemma 4 from Schmidt-Hieber [39]])). Let G be a function class,
and let § be the minimizer of the empirical risk (1/n) 3, c(, €(9(Xi),Y;) over G under the data

generating process introduced in Section Suppose that { f*}UG C {[0,1]¢ — [—F, F]} for some
F > 1. Then there exists a universal constant Cy > 0 such that

Ellg - 12,0 < 0+ wP{ing g - 5013, + o (P B0 L)y ) |
9€g nKk

forall k,0 € (0,1].

The next lemma provides a bound on the covering number of the REFINE class Gq ,(W, L, B; fiep).

Lemma B4. Fix W € N, L € Ny, B > 0, and § > 0. Then, there exists a universal constant
C > 0 such that

LBE(W + 1)L 1
108 A0 Gy L. B o |- 11.0) < f o (EEUEE0) g ()

Proof. We next bound the covering number N (8, Gg,,(W, L, B; frep), || - | ). Note that for any
0 > 0, we have

10gN(5, gd,p(VVv L7Ba frep)7 || : ”Lx)
< 108N ( 5. o uh(a) [ w € [-L AL € HaW. L BIL] - 1. )

1)
10N (5, (0 0T fugli) [0 € BOL o ). (5.16)

Recall that frep : [0,1]¢ = By(1). Since |07 frep — v’ frepllz.. < [l — 0’| forany v,0’ € B,(1),a
standard argument shows that

N (5t e i) v LI e ) < N (BB1-) < () s

Furthermore, since ||uih; — ughal||n., < ||h1 — hallL., + |u1 — ue| for any uq,us € [—1,1] and
hi,ho € Hq(W, L, B), we have

) _
N s uh(a) [n e [1,1] 0 € HaW, LB |- 1)
] 0 -
< (§lenan O (R
1 )
<V (G Ham LB i) 5.19)

Note that clipping does not increase the covering number of mHy(W, L, B). Using (S.16)), (S.17)
and (S:18)), combined with Lemma[B.T} we obtain

LBE(W + 1)L 1
1088, Gy OV, L, B g, - [1.0) 5 Wiog (“2-U5E0) g (5.
This completes the proof of Lemma[B.4] O

C MORE NUMERICAL EXPERIMENTS

In this section, we present additional results that complement Section 3}
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Figure S1: Results of multi-source transfer learning under noisy and low-learning-rate conditions.

C.1 MULTI-SOURCE TRANSFER

In the third experiment setting, we investigate multi-source transfer, an important yet underexplored
setting where knowledge is drawn from multiple heterogeneous sources to achieve better general-
ization than any single source alone. Despite its practical relevance, most existing approaches, such
as LinearProbe, Adapter, and Distillation, are designed for single-source transfer and do not natu-
rally extend to the multi-source case. To provide a fair comparison, we implement a Naive baseline
that assigns each source domain its own feature extractor, concatenates the resulting representa-
tions, and trains a classifier on top of the joint embedding. This straightforward strategy captures
the most natural way of leveraging multiple sources in the absence of specialized methods. For
our experiments, we partition CIFAR-10 into eight disjoint subsets of 2000 samples each, treating
them as distinct source domains and training separate CNNs on each. REFINE then integrates the
corresponding penultimate representations through its modular structure, mimicking multi-source
transfer while keeping inference overhead modest. This setup enables a direct evaluation of princi-
pled multi-source integration against naive concatenation.

Figure [S1| reports the results under two stress conditions, a noisy case with 50% label corruption,
testing robustness to unreliable label supervision, and a low learning rate case, testing training sta-
bility and efficiency. In the noisy case, REFINE significantly outperforms both Naive and NoTrans
as more external sources are integrated. With all eight sources, REFINE achieves classification ac-
curacy 52.5%, AUC 0.8962, and F1 0.5242, compared to Naive’s 48.2%, 0.8773, and 0.4744, and
NoTrans’s 49.3%, 0.8803, and 0.4871. Notably, Naive consistently performs worse than NoTrans,
indicating negative transfer when external information is not integrated effectively. In the low learn-
ing rate case, REFINE again improves steadily over NoTrans as the number of sources increases,
while Naive suffers severe degradation. With all eight sources, REFINE reaches 34.09% classifica-
tion accuracy, surpassing NoTrans’s 30.16% and Naive’s 22.53%. Overall, these results demonstrate
that REFINE effectively integrates multiple sources, and remains robust under adverse supervision
and training conditions. It avoids the pitfalls of naive concatenation and provides a stable approach
for multi-source transfer.

C.2 DISCUSSION ABOUT MULTIMODALITY EXTENSION

Baltrusaitis et al. [2] survey multimodal machine learning from a general taxonomy perspective,
organizing existing methods into representation, translation, alignment, fusion, and co-learning
paradigms. Gao et al. [8] focus specifically on deep multimodal learning techniques that emphasize
neural joint representation learning and fusion strategies, assuming that all participating modalities
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Figure S2: Spatial predictions at target cell.

are known and available during training. Stahlschmidt et al. [41] review biomedical multimodal
fusion approaches that similarly rely on paired multimodal data and end-to-end or coordinated train-
ing with all modalities present beforehand. In contrast to these settings, we define an adapt-time
multimodality extension regime in which a foundation model is pretrained on a single modality, the
backbone remains fixed, upstream data are inaccessible, and a previously unseen modality becomes
available only at adaptation time; to our knowledge, this problem formulation is not explicitly iden-
tified or studied in prior multi-source transfer or multimodal learning literature.

Figure [S2] provides additional qualitative comparisons of spatial domain predictions on the human
lymph node dataset, showing ground truth alongside results from LinearProbe, Adapter, and RE-
FINE, as discussed in Section[5.4]

C.3 SINGLE-SOURCE TRANSFER UNDER CHALLENGING SCENARIOS

Similar to the setting considered in Section [5.3| for CIFAR-10, we run the experiments on CIFAR-
100. Moreover, in addition to CNNs, we also evaluate both CIFAR-10 and CIFAR-100 with
transformer-based models.

Table |'S_T| reports the results on CIFAR-100 with CNNs. Similar to CIFAR-10, REFINE consis-
tently outperforms the baseline methods under all four stress scenarios. In particular, in the extreme
noise setting with 80% label flips, most competing methods collapse to near-random performance,
whereas REFINE remains stable and comparable to the no-transfer baseline. In the semantic con-
fusion and class imbalance settings, REFINE achieves the strongest improvements in classification
accuracy and F1, highlighting its ability to mitigate negative transfer even when pretraining data is
severely perturbed.

Table [S2] and Table [S3| report the results on CIFAR-10 and CIFAR-100, respectively, with
transformer-based models. Similar to CNNSs, existing adaptation methods degrade sharply under
noisy or imbalanced pretraining, whereas REFINE maintains stable and superior performance in
accuracy, AUC, and F1.

Together, these results demonstrate that the advantages of REFINE are not tied to a specific model
architecture or dataset size. By design, it reliably suppresses negative transfer and delivers consistent
gains under challenging pretraining conditions.

21



Published as a conference paper at ICLR 2026

Dataset Setting Method Acc AUC F1 MinCAcc
NoTrans 17.82 +0.36 0.8259 + 0.0068 0.1684 +£0.0039  0.60 +0.49
LinearProbe  17.35 £0.27 0.8605 + 0.0015  0.1472 4+ 0.0043  0.00 £ 0.00
Adapter 16.19 £ 0.33 0.8578 £+ 0.0019 0.1303 £ 0.0037  0.00 £ 0.00
40% flips Distill 18.73 £0.22 0.8605 +0.0035 0.1631 4+ 0.0024  0.00 & 0.00
LoRA 17.24 +0.33 0.8568 £+ 0.0018 0.1463 £ 0.0053  0.00 £ 0.00
DANN-Gate  15.02 4+ 0.39 0.8472 £ 0.0020 0.1239 £ 0.0041 0.00 £ 0.00
REFINE 19.28 +0.34  0.8555+0.0042 0.1805 +0.0043 0.40 £ 0.80
NoTrans 17.52+0.60 0.8252+0.0059 0.1663 +0.0047 0.60 + 0.49
LinearProbe 1.00 £ 0.00 0.6740 £ 0.0019 0.0002 £ 0.0000  0.00 £ 0.00
Adapter 1.00 £ 0.00 0.5250 + 0.0058 0.0002 £+ 0.0000  0.00 £ 0.00
80% flips Distill 15.11 +£0.49 0.8174 £ 0.0069 0.1227 £0.0039  0.00 £ 0.00
LoRA 2.01+0.18 0.6251 £ 0.0032 0.0026 £+ 0.0006  0.00 £ 0.00
DANN-Gate  1.00 £ 0.00 0.5754 £0.0113 0.0002 £ 0.0000  0.00 £ 0.00
REFINE 17.37 £1.09 0.8239 + 0.0060 0.1641 +£0.0109  0.20 £+ 0.40
NoTrans 18.13 +£0.74 0.8129 + 0.0044 0.1747 £ 0.0073 1.20+0.75
LinearProbe ~ 20.81 +0.13 0.8316 + 0.0003 0.2006 £+ 0.0038  0.60 & 0.80
CIFAR-100 Adapter 19.99 +£0.24 0.8308 £ 0.0012 0.1895 £ 0.0052 0.00 £ 0.00
Schematic confusion Distill 20.06 +£0.89 0.8361 £ 0.0077  0.1959 4+ 0.0080 1.00 £ 0.63
LoRA 20.05+0.18 0.8246 £+ 0.0017 0.1953 £ 0.0035 0.60 £ 0.80
DANN-Gate  17.56 +0.33 0.8122 + 0.0023 0.1720 £ 0.0032 0.00 £ 0.00
REFINE 21.76 £0.60 0.8308 £0.0072 0.2139+0.0067 2.00+1.10
NoTrans 17.58 £0.24 0.8271 £ 0.0033 0.1656 = 0.0046  1.00 £ 0.00
LinearProbe  22.41 £ 0.48 0.8687 £ 0.0011 0.2133 £0.0048  0.00 £ 0.00
Adapter 22.66 + 0.30 0.8676 + 0.0014 0.2102 £ 0.0025 0.00 £ 0.00
Class imbalance Distill 19.59 + 0.61 0.8659 + 0.0034 0.1752 £ 0.0072 0.00 £ 0.00
LoRA 22.56 + 0.39 0.8535 + 0.0009 0.2129 £ 0.0022 0.00 £ 0.00
DANN-Gate  20.72+0.24 0.8432 £ 0.0021 0.1966 £ 0.0031 0.00 £ 0.00
REFINE 23.31+0.42 0.8719+0.0010 0.2264 +0.0032 0.40 +0.49

Table S1: Single-source transfer learning with label noise, semantic perturbation, and class imbal-
ance for CIFAR-100 using CNNss.

Dataset Setting Method Acc AUC F1 MinCAcc
NoTrans  45.17+1.39  0.8678 = 0.0028  0.4301 +0.0183  16.24 + 4.52
LinearProbe  20.65+0.44  0.6826+0.0025  0.1410+0.0083  0.00 = 0.00
Adapter  17.88+0.73  0.6682+0.0066  0.1248+£0.0111  0.00 % 0.00
80% flips Distill 4019+ 0.57  0.8445+0.0022  0.3827+0.0068  8.00 % 5.22
LoRA 21.60+£0.49  0.6831+0.0010  0.1511+0.0059  0.00 £ 0.00
DANN-Gate  21.37+0.27  0.6829+0.0015  0.1468 £ 0.0075  0.00 % 0.00
REFINE 4553+ 0.95 0.8694+0.0047 0.4463 +0.0105 18.68 +4.97
NoTrans ~ 44.37+0.74  0.8628 = 0.0035  0.4375+0.0055  20.80 = 4.86
LinearProbe  46.04+0.71  0.8643+0.0015  0.4544 +0.0080  23.46 + 4.74
Adapter  44.87+0.55  0.8514+0.0029  0.4445+0.0059  26.74 = 1.89
Domain mismatch LoRA 47.74+0.38 0.8752+0.0015 0.4750 + 0.0032  27.96 + 2.61
DANN-Gate 47.79+0.40  0.8750+£0.0019  0.4733+0.0036  28.12 +4.52
REFINE  44.85+0.38  0.8524+0.0011  0.4474+0.0035 29.68 + 1.78
CIFAR-10 NoTrans 4536 +£0.59  0.8662+0.0033  0.4455+0.0081  18.98  7.49
LinearProbe  53.45+0.44  0.9090 +0.0002  0.5259 +0.0078  26.28 - 6.59
Adapter  52.67+0.33  0.9089+0.0008  0.5195+0.0050  30.84 = 4.96
Schematic confusion  Distill 46.01+1.11  0.8736+£0.0028  0.4435+0.0143  14.00  6.94
LoRA 52354042  0.9024+0.0008  0.5176+0.0053  32.50 +0.97
DANN-Gate  52.13+0.35  0.9021+0.0009  0.5141+0.0036  33.28 + 4.33
REFINE  54.62+0.45 0.9134+0.0010 0.5431+0.0056 33.90 + 3.34
NoTrans ~ 45.36+1.39  0.8678+0.0028  0.4391 +0.0183  16.24 = 4.52
LinearProbe ~ 48.44 +0.37  0.8749+0.0008  0.4805+0.0052  25.94+ 6.98
Adapter 4757 +0.27  0.8678£0.0029  0.4689 +0.0045  25.26 + 4.53
Class imbalanace Distill 42.254£0.63  0.8650 =0.0035  0.3996+0.0051  3.86 £ 0.82
LoRA  48.99+0.30 0.8759 =0.0007 0.4866 = 0.0036 30.92 % 3.71
DANN-Gate  48.94+0.41 0.8766 & 0.0009  0.4860 + 0.0051  31.62 + 1.52
REFINE  47.81+0.23  0.8691+0.0007  0.4755+0.0026  29.44 + 3.26

Table S2: Single-source transfer learning with label noise, semantic perturbation, and class imbal-
ance for CIFAR-10 using transformers.

C.4 TABULAR DATA

We demonstrate that REFINE is equally effective in handling tabular data. We consider three binary-
class datasets, Adult [23]], Credit [35]], Diabetes [44], and one multi-class dataset, Performance [43]].
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Dataset Setting Method Acc AUC F1 MinCAcc
NoTrans 15.32+£0.33 0.8449 + 0.0021 0.1358 £ 0.0041 0.00 £ 0.00
LinearProbe ~ 6.70 £ 0.27 0.7377 £ 0.0011 0.0390 +0.0014  0.00 £ 0.00
Adapter 6.54 £ 0.16 0.7405 £ 0.0011 0.0348 £ 0.0009 0.00 £ 0.00
80% flips Distill 11.83 +0.26 0.8130 + 0.0027 0.0835 +0.0024  0.00 £ 0.00
LoRA 6.97 £ 0.07 0.7390 £ 0.0015 0.0428 + 0.0014 0.00 £ 0.00
DANN-Gate  6.91 4+ 0.23 0.7392 £+ 0.0016 0.0429 +0.0014  0.00 £ 0.00
REFINE 15.50 £ 0.79 0.8437 £ 0.0041 0.1378 +£0.0067  0.00 & 0.00
NoTrans 11.28 +0.52 0.8023 £ 0.0034 0.0984 +0.0033  0.00 & 0.00
LinearProbe  13.32 + 0.52 0.8186 £ 0.0015 0.1175 £ 0.0049 0.00 £+ 0.00
Adapter 12.64 +0.32 0.8267 £ 0.0006 0.1052 +0.0030  0.00 & 0.00
Domain mismatch LoRA 14.22 +0.26 0.8466 + 0.0010 0.1289 + 0.0028 0.00 + 0.00
DANN-Gate  14.08 +0.37 0.8465 + 0.0012 0.1280 +0.0023  0.00 & 0.00
REFINE 14.38 £ 0.54 0.8291 +£0.0032 0.1329 +0.0039 0.00 £ 0.00
CIFAR-100 NoTrans  16.24+0.58 0.8471 +0.0036 0.1485 £ 0.0075 0.0 & 0.00
LinearProbe  11.88 +0.28 0.7950 + 0.0016 0.1067 £ 0.0015 0.00 £ 0.00
Adapter 11.17 4+ 0.43 0.7936 + 0.0027 0.0918 +0.0040  0.00 & 0.00
Schematic confusion Distill 15.01 £ 0.64 0.8266 + 0.0028 0.1260 + 0.0081 0.00 £ 0.00
LoRA 11.36 £ 0.18 0.7899 + 0.0013 0.0991 £ 0.0015 0.00 £ 0.00
DANN-Gate  11.46 +0.21 0.7893 £+ 0.0013 0.0989 +0.0017  0.00 £ 0.00
REFINE 14.94 + 0.49 0.8282 + 0.0026 0.1402 £ 0.0026 0.00 £ 0.00
NoTrans 15.43 £0.32 0.8474 £ 0.0025 0.1386 £ 0.0012 0.00 £ 0.00
LinearProbe 25.82 + 0.28 0.8877 £ 0.0010 0.2529 +£0.0020 3.60 £ 0.80
Adapter 24.48 +0.32 0.8847 £ 0.0010 0.2320 £ 0.0027 0.60 £+ 0.80
Class imbalance Distill 16.01 £ 0.13 0.8721 £ 0.0017 0.1252 4+ 0.0021 0.00 £ 0.00
LoRA 23.52 £+ 0.09 0.8669 + 0.0015 0.2250 £ 0.0023  0.00 £ 0.00
DANN-Gate 23.48 +£0.13 0.8671 £ 0.0018 0.2264 £ 0.0019 0.00 £ 0.00
REFINE 25.54+0.43 0.8879 +0.0013 0.2524 £0.0039 4.80+0.75

Table S3: Single-source transfer learning with label noise, semantic perturbation, and class imbal-

ance for CIFAR-100 using transformers.

| Classifier
Dataset Metric ‘ MLP1 ‘ MLP2
| Raw DirectAug REFINE | Raw DirectAug REFINE
Accuracy | 0.807 +0.008 0.831 +0.006 0.821 +0.004 | 0.800 = 0.011 0.833 £ 0.005 0.814 £+ 0.010
Adult AUC 0.832 +0.008 0.878 +0.006 0.852 + 0.008 | 0.833 £ 0.010 0.883 +0.005 0.854 4+ 0.008
F1 0.547 +0.037 0.619 +0.015 0.595 £+ 0.030 | 0.570 £ 0.028 0.627 = 0.021 0.612 + 0.021
Accuracy | 0.723 £0.028 0.735 £0.017 0.740 £ 0.022 | 0.717 £ 0.027 0.732 £0.015 0.726 £ 0.020
Credit AUC 0.730 +0.024 0.738 £ 0.013  0.745 £+ 0.018 | 0.725 £ 0.025 0.754 +£0.020 0.736 £+ 0.023
F1 0.490 +0.043 0.524 +0.030 0.520 +0.038 | 0.515 £ 0.041 0.541 +£0.030 0.535 4+ 0.037
Accuracy | 0.565 +0.015 0.573 £0.008 0.571 £0.008 | 0.561 £ 0.015 0.596 £ 0.007 0.572 £+ 0.010
Diabetes AUC 0.582 +0.019 0.597 +£0.008 0.591 +0.012 | 0.576 = 0.018 0.626 &+ 0.008 0.593 £+ 0.013
F1 0.505 £0.028 0.533 £0.014 0.523 £0.022 | 0.501 +0.029 0.534 +0.017  0.522 £ 0.027
Accuracy | 0.684 £0.019 0.724 £0.011 0.711 £0.014 | 0.683 £ 0.018 0.668 £ 0.084 0.702 £ 0.022
Performance AUC 0.857 £0.011  0.878 £0.009 0.869 + 0.009 | 0.858 £ 0.011 0.830 £ 0.070  0.865 £ 0.011
Fl1 0.478 £0.025 0.557 £0.024 0.521 £0.029 | 0.478 £ 0.027 0.494 £ 0.090 0.507 £ 0.035

Table S4: Single-source transfer learning with original tabular data.

Each raw training data contains K x 100 samples, where K is the number of classes. To assess
model complexity, we design two multilayer perceptron (MLP) architectures: MLP1 with a lower
complexity, and MLP2 with a more complex structure. We also compare to DirectAug, which refers
to directly combining additional data with the raw data to train the classifier.

Table [S4] reports the results using the original data, and Table [S3|reports the results using the noisy
data with 80% flips of class labels. In both settings, REFINE consistently improves accuracy, AUC,
and F1 over using the raw data alone. Although DirectAug can sometimes perform better through
full data merging, REFINE surpasses it on several datasets, including Credit and Performance, con-
firming its ability to exploit useful auxiliary information without over-relying on data merging. In
the presence of heavy label noise, DirectAug suffers severe degradation, whereas REFINE maintains
or slightly improves performance. Overall, these results show that REFINE is effective on tabular
data, and offers a safe and reliable mechanism for leveraging additional data compared to direct
augmentation.
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| Classifier
Dataset Metric ‘ MLP1 ‘ MLP2
| Raw DirectAug REFINE | Raw DirectAug REFINE
Accuracy | 0.808 +0.007 0.615+0.046 0.805+0.008 | 0.800 £+ 0.010 0.641 +£0.052 0.791 £+ 0.016
Adult AUC 0.834 +0.009 0.612 +0.051 0.832+0.010 | 0.834 £0.013 0.639 +0.052 0.828 +0.014

F1 0.549 £0.046  0.383 £0.039 0.555£0.029 | 0.564 +0.032 0.395 +0.047 0.562 £ 0.027
Accuracy | 0.723 £0.027 0.581 +0.035 0.705 £0.028 | 0.716 & 0.027  0.599 + 0.045 0.705 £ 0.028

Credit AUC 0.728 £0.027 0.578 +0.045 0.705 4+ 0.028 | 0.720 £ 0.026 0.599 +0.045 0.687 + 0.028
F1 0.483 £0.049 0417 £0.048 0.481 £0.035 | 0.512+:0.041 0.433 £0.041 0.493 £ 0.034

Accuracy | 0.587 £0.007 0.516 +0.007 0.575 £0.006 | 0.614 +0.006 0.551 £0.016 0.609 £ 0.004

Diabetes AUC 0.580 £0.020 0.516 £0.014 0.554 +£0.016 | 0.577 £0.017 0.585 £ 0.019 0.567 &+ 0.020
Fl1 0.503 £0.032  0.489 £0.025 0.498 £0.022 | 0.503 +0.026 0.483 +0.037 0.514 £ 0.025

Accuracy | 0.682 £ 0.020 0.637 +0.088 0.696 £ 0.023 | 0.684 4 0.018 0.650 = 0.079  0.696 £ 0.023
Performance AUC 0.857 £0.011 0.805£0.074 0.862 £0.011 | 0.859 +0.010 0.814 +0.068 0.863 £ 0.012
Fl1 0.476 £0.028 0.464 £ 0.096 0.499 4 0.036 | 0.480 £0.029 0.472 £ 0.088 0.500 % 0.035

Table S5: Single-source transfer learning with noisy tabular data.

C.5 ABLATION STUDIES

We conduct an ablation study to investigate the effect of complexity of the encoder h in REFINE, by
varying the width and depth of the neural network models used. Figure [S3|reports the performance
of REFINE under five different models with increasing complexity for h. The left panel reports the
total number of trainable parameters, the middle panel reports the classification accuracy using the
original data, and the right panel using the noisy data. On the original data, REFINE consistently
outperforms NoTrans across all levels of complexity by a considerable margin, demonstrating its
ability to leverage useful pretrained features. On the noisy data, REFINE performs on par with
NoTrans regardless of the complexity of h, confirming its robustness to negative transfer. Together,
these results show that REFINE offers robust and reliable safeguarding against negative transfer.
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Figure S3: Ablation study for the encoder h with varying complexity.

A related ablation on adapter size further confirms that negative transfer is not due to insufficient
parameter count. Here, 1x corresponds to the same adapter size used in the main experiment in
Table[I] As shown in Fig.[S4] enlarging the adapter from 1x to 500x yields only minor fluctuations
around 65-66 percent accuracy, 0.72 AUC, and 0.65 F1, and never approaches the NoTrans baseline
at 68.5 percent accuracy or 0.76 AUC. In contrast, REFINE reaches 70.3 percent accuracy and 0.79
AUC, clearly surpassing both NoTrans and all adapter scales. These results show that increasing
capacity alone cannot overcome the source—target mismatch responsible for negative transfer, while
REFINE remains the only mechanism that reliably corrects it.

D MORE DETAILS ON EXPERIMENT SETUP AND IMPLEMENTATIONS

We provide additional details on experiment setup and implementations for better reproducibility.
All experiments are conducted on an NVIDIA A10G (Ampere) GPU with 23 GB of GDDR6 mem-
ory, driver version 535.183.01, and CUDA 12.2. For semantic confusion in CIFAR-10 and CIFAR-
100, we construct 4 and 47 pairs of related classes, respectively, and flip 50% of each pair’s samples
to its counterpart, while also injecting white noise into image attributes with ¢ = 0.2. For class

24



Published as a conference paper at ICLR 2026

Accuracy vs Adapter size Auc vs Adapter size F1 vs Adapter size

0.7
0.6
05
0.3

~= NoTrans mean ~- NoTrans mean
-- Refine mean -- Refine mean
I Adapter mean * std EEm Adapter mean + std

Au
°
=

024 ---- NoTrans mean
-- Refine mean
Bl Adapter mean + std

25% 50% 100x 500 1x 25% 50% 100x 500 25% 50% 100x 500
Adapter size multiplier Adapter size multiplier Adapter size multiplier

Accuracy AUC F1

Figure S4: Performance of Adapter under varying parameter count multipliers.

imbalance, we create each imbalanced pretrained subset by first sampling 10,000 images from the
full training split with a fixed seed (42). In CIFAR-10, classes 0-9 are sampled with proportions
[0.35,0.30,0.10,0.07,0.06, 0.045,0.03, 0.02,0.015, 0.01], yielding 3,500 to 100 images per class.
In CIFAR-100, the first 10 classes are designated as majority, with 400 images each, and the re-
maining 90 as minority, with 100 images each, truncated to a total of 10,000 samples. Table [S6]
summarizes the experiment settings.

Dataset Pretrained Model Base Model  Pretrain Size Fine-tune Size = Adapter Para (%) REFINE Para (%)
CIFAR-CNN-related CNN CNN 10000 4000 5.46 4.88
CIFAR-TF-related Transformer Transformer 10000 4000 6.49 4.63
CIFAR-10—STL CNN CNN 10000 4000 5.46 4.88
Clipart— Sketch ResNet18 ResNet10 3000 1000 1.36 44.2
USPS—MNIST CNN CNN 5000 100 5.46 4.88
Books—Kitchen Transformer Transformer 2000 400 2.25 96.58
DVD—Electronics Transformer Transformer 2000 400 2.25 96.58

Table S6: Experiment settings for all data examples.

We clarify the exact model architectures used. For CNN experiments, the finetuned model is a
standard three-block convolutional network with channels {32, 64,64}, where each block consists
of a 3 x 3 convolution (padding 1), ReLU activation, and 2 x 2 max pooling, followed by a 512-
dimensional fully connected layer and a linear classifier. The pretrained CNN is a larger backbone
with convolutional stages {80, 160, 320, 640, 640, 768}, followed by a 2560-dimensional projection
layer and a linear classifier. For transformer experiments, the finetuned model is a lightweight vision
transformer with patch size 4, embedding dimension 128, two encoder layers, a 512-dimensional
MLP head, and a linear classifier. The pretrained transformer uses patch size 2, embedding dimen-
sion 512, six encoder layers, a 2560-dimensional projection head, and a linear classifier. For the
DomainNet experiments, following standard practice, we use ResNet-10 as the finetuned model and
ResNet-18 (from torchvision) as the pretrained model.

E FURTHER DISCUSSION ABOUT RELATED WORK

Transfer learning. The affine model transformation (AMT) approach is fundamentally dif-
ferent from our setting. AMT only applies an output-level update of the form fr(xz) = a- fs(x)+0,
which corresponds to a global scale and bias correction on the pretrained model. Such a transfor-
mation cannot address representation-level mismatch, nonlinear domain shift, or structured encoder
errors, nor can it introduce new features or modalities. In contrast, REFINE modifies adaptation at
the representation level by keeping the pretrained encoder fixed and introducing an additive resid-
ual encoder that corrects the internal representation. This allows the predictor to change its entire
functional form rather than merely rescale outputs. The residual structure also provides a natural
safety property: when the pretrained model is helpful, the residual remains small; when it is harm-
ful, the residual can override it, yielding performance no worse than training from scratch. AMT
does not provide this fallback guarantee and cannot accommodate new modalities, whereas REFINE
can incorporate additional sources of information at adaptation time (e.g., spatial encoders added
atop scGPT in our spatial-omics experiments).
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While the deep transfer learning (DTL) framework [21] also introduces an auxiliary component be-
yond the base representation, its goals and assumptions differ substantially from ours. DTL retrains
the representation using all upstream domains jointly with Wasserstein and distance-covariance
penalties, requiring full access to multi-domain source data and a fixed set of domains and modalities
during pretraining. Only after this upstream retraining is completed is the target-domain predictor
then fitted under an independence constraint. In contrast, REFINE assumes a fixed pretrained model
from the outset and introduces a residual encoder only at adaptation time to correct the frozen rep-
resentation on the target distribution. This design enables our no-negative-transfer guarantee and
fallback to the target-only estimator—properties not provided by DTL. Moreover, because DTL
assumes that no new modalities appear after upstream training, it cannot handle scenarios such as
spatial-omics where new sources of information become available exclusively at adaptation time,
precisely the regime targeted by REFINE.

Baseline selection for negative-transfer evaluation. Our selection of baselines follows re-
cent recommendations from studies on negative transfer (NT) and parameter-efficient fine-tuning
(PEFT). Importantly, our goal is not to benchmark raw target accuracy against the newest domain-
alignment algorithms, but to evaluate robustness to negative transfer, for which the modern literature
identifies only a small set of meaningful baselines. Recent PEFT analyses [31] show that most con-
temporary PEFT variants behave similarly under distribution shift and provide little or no protection
against negative transfer; thus, LoRA serves as a representative and widely used PEFT baseline
for NT evaluation. Likewise, the NT survey literature emphasizes that very few modern transfer-
learning methods are explicitly designed with safety objectives in mind; accordingly, adversarial
domain adaptation approaches such as DANN remain the standard benchmarks used in NT studies
[49]. Many newer transfer-learning methods primarily target domain alignment or feature matching
but lack any mechanism for safety or fallback, so including additional variants would not meaning-
fully strengthen the evaluation. Consistent with the NT literature [49], we therefore adopt a baseline
set that directly probes safety: NoTrans, feature-based adaptation (LinearProbe and Adapter), ad-
versarial DA (DANN), and one representative PEFT method (LoRA). These baselines provide the
appropriate lens for assessing whether REFINE achieves its intended property of avoiding negative
transfer rather than merely improving average accuracy.

Source-free multi-source transfer. Our multi-source experiment operates under a source-free,
adaptation-time setting in which the pretrained model is fixed and no upstream source data are ac-
cessible during adaptation. Under this constraint, classical multi-source transfer algorithms that rely
on joint training over all source domains, full access to source datasets, re-optimization of a shared
encoder, or traditional boosting [48] cannot be applied, including multi-source domain alignment
methods, mixture-of-experts training frameworks, and multi-source adversarial domain adaptation
approaches. These methods fundamentally assume retraining with all sources present and therefore
fall outside the feasible operation regime of our setting. At adaptation time, we only receive a small
number of target-like auxiliary sources, often with mismatched structure, and have no ability to re-
visit any upstream data. Consequently, the only baselines that are valid in this source-free scenario
are NoTrans and simple data concatenation. These baselines reflect the operations that a practitioner
can realistically perform when upstream data cannot be accessed and isolate the negative-transfer
phenomenon that we aim to study, namely how to safely incorporate multiple heterogeneous sources
without degrading downstream performance.
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