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ABSTRACT

Transfer learning has become a central paradigm in modern machine learning, yet
it suffers from the long-standing problem of negative transfer, where leveraging
source representations can harm rather than help performance on the target task.
Although empirical remedies have been proposed, there remains little theoretical
understanding of how to reliably avoid negative transfer. In this article, we inves-
tigate a simple yet remarkably effective strategy: augmenting frozen, pretrained
source-side features with a trainable target-side encoder that adapts target features
to capture residual signals overlooked by models pretrained on the source data.
We show this residual feature integration strategy is sufficient to provably prevent
negative transfer, by establishing rigorous theoretical guarantees that it never per-
forms worse than training from scratch on the target data, and that the convergence
rate can transition seamlessly from nonparametric to near-parametric when source
representations are informative. To our knowledge, this is the first theoretical work
that ensures protection against negative transfer. We carry out extensive numeri-
cal experiments across image, text and tabular benchmarks, and empirically verify
that the method consistently safeguards performance under distribution shift, label
noise, semantic perturbation, and class imbalance. Our study thus advances the
theory of safe transfer learning, and provides a principled approach that is simple,
robust, architecture-agnostic, and broadly applicable.

1 INTRODUCTION

Transfer learning provides a fundamental paradigm in modern machine learning, where knowledge
acquired from one task (source domain) is leveraged to enhance performance on another related
task (target domain). It encompasses a wide range of applications, from adapting models across
different sources or domains, to distilling knowledge from large, pretrained models into smaller,
task-specific models. Yet, a critical and persistent challenge is negative transfer: the phenomenon
where transferring knowledge degrades performance compared to simply training on the target data
from scratch. This issue, which arises from mismatches between source and target distributions, has
been documented across numerous scenarios [26; 5; 23; 16; 40; 38; 32]. It is especially concerning
in high-stakes applications such as healthcare, where transferring from broad datasets like ImageNet
to medical imaging can be detrimental [30; 5]. Despite its prevalence, there remains little theoretical
understanding of how to reliably avoid negative transfer.

In this article, we identify and validate a simple yet remarkably effective strategy that provably
prevents negative transfer, i.e., augmenting frozen, pretrained source-side features with a trainable
target-side encoder that adapts target features to capture residual signals overlooked by models pre-
trained on the source data. We call this strategy Residual Feature Integration (REFINE). Its imple-
mentation is straightforward: after obtaining the transferred representation frep(x) from the source
domain, instead of relying solely on frep(x), we further introduce a residual connection with a train-
able feature encoder h(x) that is learned from the target domain. We then combine frep(x) and h(x),
and fit a shallow neural network on the concatenated representation (frep(x), h(x)). Intuitively,
while frep(x) captures transferable features, it may omit target-specific signals that are critical for
accurate prediction in the target domain. The residual connection via h(x) compensates for this
omission, ensuring that key information in the target domain is preserved. Furthermore, because
frep(x) already encodes a substantial portion of the predictive signal, learning from the joint repre-
sentations (frep(x), h(x)) can potentially be achieved with a much simpler class of functions than
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learning from x or h(x) alone. We demonstrate, both theoretically and empirically, that this strategy
is sufficient to prevent negative transfer across a broad range of settings.

Our contributions are threefold. First, we identify the residual connection, a widely adopted struc-
tural component originally devised to address optimization challenges in deep neural networks
[11; 17], as a powerful mechanism for provably avoiding negative transfer. This strategy in turn
offers a lightweight, robust, architecture-agnostic, and broadly applicable enhancement to trans-
fer learning pipelines. Second, we formally justify this simple yet remarkably effective approach
through a rigorous theoretical analysis, which is the main contribution of this article. Specifically,
we show that augmenting any frozen frep with a trainable h(x) guarantees that the resulting predic-
tor achieves a convergence rate of prediction risk that is never worse than that obtained by training
from scratch on the target data alone. In other words, REFINE is inherently robust against negative
transfer in the worst-case scenario. Moreover, our prediction risk bound seamlessly transitions from
a nonparametric convergence rate to a near-parametric rate when source representations are infor-
mative. Finally, we conduct extensive experiments on benchmark datasets spanning image, text, and
tabular domains, and compare REFINE with multiple alternative solutions. We empirically verify
that our method consistently mitigates negative transfer, especially under significant representational
mismatch or task divergence.

2 RELATED WORK

Transfer learning. Linear probing [21], and adapter-based feature extraction [14] are two of the
most widely used transfer learning approaches. Both methods operate by extracting penultimate-
layer features from a pretrained model in the source domain, followed by fine-tuning the final layer
using data in the target domain. The main difference between the two is that linear probing employs
a linear layer, while the adapter method uses a shallow neural network. Both are computation-
ally efficient, but both are vulnerable to negative transfer. Knowledge distillation is another widely
used transfer learning technique, where a large pretrained foundation model (the teacher) transfers
knowledge to a simpler model (the student) that is typically fine-tuned in the target domain with
substantially reduced complexity [12]. However, distillation remains vulnerable to negative trans-
fer, especially when the teacher is poorly aligned with the target domain or when the transferred
knowledge is too complex for the student to absorb effectively [7]. Our approach is applicable not
only to knowledge transfer in foundation models, but also to general transfer learning settings.

Negative transfer mitigation. To mitigate negative transfer, various empirical remedies have been
proposed, most of which focus on developing metrics that estimate similarity between source and
target domains [8; 24; 39; 1]. Yet in practice, such similarity measures are often difficult to quan-
tify, and sometimes require specialized loss functions or architectures, which limits their applicabil-
ity [13]. [22] proposed SAFEW, which constructs an ensemble of source-domain models using a
min–max framework. While theoretically sound, this method is computationally intensive and relies
on the assumption that the optimal predictor can be expressed as a convex combination of source
classifiers. [37] introduced DANN-GATE, a state-of-the-art solution that reduces negative transfer
by combining adversarial training with a gating mechanism to filter out misleading source samples.
While practically effective, this method requires direct access to source data and is primarily em-
pirical, lacking theoretical guarantees. In contrast, our method does not require access to original
training data in the source domain and comes with rigorous theoretical guarantees.

Residual learning, stacking, and parameter-efficient fine-tuning. Several methods are conceptu-
ally related to REFINE, although they do not explicitly target negative transfer in transfer learning.
Residual learning, a core idea in architectures such as ResNet [11] and algorithms like gradient
boosting [17], was originally developed to ease optimization challenges or improve prediction. Its
potential for addressing negative transfer, however, remains unexplored. Stacking is an ensemble
technique that combines predictions from multiple base models through a meta-learner trained on
validation outputs. This approach is generally more robust than simple model averaging [3], but
it assumes that all external models are reliable [6; 9], and requires aligned output spaces, which
restricts its applicability across different types of tasks. Parameter-efficient fine-tuning methods,
such as LoRA [15], insert lightweight, trainable modules into pretrained models to enable domain
adaptation without modifying the original weights. Such an approach is effective and significantly
reduces parameter costs, but struggles when source representations misalign with the target domain.
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Besides, it requires access to pretrained model weights and computational graphs, limiting their
flexibility, particularly in the multi-source transfer setting.

3 PROBLEM FORMULATION AND ALGORITHM

Transfer learning aims to leverage knowledge from a source task to improve performance on a
related target task. A common practice is to use a representation function frep learned from a large
source dataset Ds under a source distribution Ps as an extracted feature for the target task. However,
if frep does not align well with the target distribution Pt, naively reusing it can lead to negative
transfer, resulting in degraded performance compared to using the target data alone.

We formalize the Residual Feature Integration (REFINE) approach. The objective is to construct a
method such that, when frep aligns well with the target distribution, effectively leverage transferred

Figure 1: A schematic overview of REFINE.

knowledge and outperform mod-
els trained from scratch on tar-
get data only, and when frep mis-
aligns with the target distribution,
safeguard against negative transfer
and outperform models that rely
solely on frep(x). We focus on
the supervised learning task. Let
Dt = {(xi, yi)}ni=1 ∼ Pt denote
the labeled dataset from the target
task. Assume access to a frozen
extracted feature frep : X → Rp

trained on an external source data
Ds. Define a class H of trainable
feature encoders h : X → Rq

and a classW of trainable adapters
w : Rp+q → Rk on top of

(frep(x), h(x)). Let wft be the trained adapter on top of the baseline model, and let gsc be the
model trained from scratch on x. We seek to learn both the encoder h and the adapter w, such that

RPt(w ◦ (frep, h)) ≤ min{RPt(wft ◦ frep), RPt(gsc)} (1)

whereRPt denotes the expected loss under the distribution Pt.

Algorithm 1 outlines the REFINE approach. It extracts frep(x) from the penultimate layer of a frozen
pretrained model, and combines it with the residual connection h(x). The concatenated features
(frep(x), h(x)) are passed to a linear classifier for prediction, where only h(x) and the adapter w are
updated, whereas the pretrained model and frep(x) remain unchanged. This design allows REFINE
to efficiently complement transferred knowledge with adapted features from the target data, and thus
recover potentially lost information during the forward pass in the frozen source model. Figure 1
gives a schematic overview of REFINE.

Algorithm 1 The residual feature integration (REFINE) method.

1: Input: Training data Dtrain = (Xi, Yi)i, test data Dtest, pretrained model f , loss function ℓ.
2: Output: Prediction of the label ŷ(x0) for x0 ∈ Dtest.
3: Training Phase:
4: (a) Extract frep(x) from the penultimate-layer of a frozen pretrained model f .
5: (b) Construct the concatenated features Ch(x) := (frep(x), h(x)).
6: (c) Let (ŵ, ĥ) be the minimizer of

∑
i ℓ(w(Ch(Xi)), Yi) while freezing frep.

7: Prediction Phase:
8: (a) Compute Ch(x0) with the frozen f .
9: (b) Obtain the final prediction ŷ(x0) based on ŵ(Cĥ(x0)).
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4 THEORETICAL ANALYSIS

We provide a theoretical analysis to rigorously prove that REFINE is robust to negative transfer. The
intuition and core insight is that the residual connection provides a natural transition: if the external
representation frep is uninformative, the residual network h can still learn the target function from
the raw input, recovering the performance of training from scratch. Conversely, if frep is informative,
h only needs to learn the simpler residual function, reducing the effective complexity of the problem
and accelerating the learning. This allows REFINE to adaptively interpolate between training from
scratch and near-parametric transfer, depending on the quality of external representation.

We formalize this intuition within the framework of nonparametric regression. We consider the
model with a trainable residual feature encoder h:

g(x) = uh(x) + v⊤frep(x),

where h(x) is a (clipped) ReLU network over raw input, combined with a linear probe on the feature
frep(x). We establish the risk bound demonstrating that, for any capacity of h, REFINE’s learning
rate is never worse than the standard nonparametric rate. Furthermore, when the capacity of h is
tuned to the difficulty of the residual task, the rate adapts and improves, showcasing its ability to
effectively leverage useful prior information from frep(x).

Formal Setup. We consider the nonparametric regression setup adopted in the statistical analysis
of deep neural networks [33; 31; 19]. Specifically, we observe n i.i.d. pairs (Xi, Yi)i∈[n] ∼ Pt with
support on [0, 1]d × R following the model

Yi = f∗(Xi) + ϵi,

where f∗ : [0, 1]d → [−1, 1] is the ground-truth regression function, and (ϵi)i∈[n] are i.i.d. Gaussian
with variance σ2 = O(1), independent of (Xi)i∈[n]. We assume the marginal distribution Pt

X of Pt

on X admits a positive continuous density on [0, 1]d upper bounded by an absolute constant. Under
this set-up, the expected loss for a given function g isRPt(g) = E(X,Y )∼Pt [(g(X)− Y )2].

To facilitate the theoretical analysis, following the standard setup of nonparametric regression, we
consider f∗ to be Hölder smooth. Specifically, for a non-integer β > 0, the Hölder norm for f∗ that
are ⌊β⌋-times differentiable on [0, 1]d is

∥f∥Cβ := max
{

max
a∈Nd:∥a∥1≤⌊β⌋

sup
x∈[0,1]d

|∂af(x)|, max
a∈Nd:∥a∥1=⌊β⌋

sup
x̸=x′

|∂af(x)− ∂af(x′)|
∥x− x′∥β−⌊β⌋

}
.

The unit ball is Cβu := {f : [0, 1]d → R : f is ⌊β⌋-times differentiable and ∥f∥Cβ ≤ 1}.
Further, we assume the residual connection h : Rd → R is realized by a ReLU network with width
at most W , depth at most L, and weight magnitude at most B:

h(x) = AL′x(L′−1) + bL′ , x(ℓ) = σ(Aℓx
(ℓ−1) + bℓ) (ℓ ∈ [L′ − 1]), x(0) = x, (2)

for some L′ ≤ L, where d0 = d, dL′ = 1, and dℓ ≤ W . Here σ(z) = max{0, z} is applied
element-wise, Aℓ ∈ [−B,B]dℓ×dℓ−1 , and bℓ ∈ [−B,B]dℓ . The class is Hd(W,L,B), and we use
its clipped counterpart H̄d(W,L,B) := {x 7→ min{1,max{−1, h(x)}} : h ∈ Hd(W,L,B)}.

Empirical risk minimization for REFINE. We consider squared loss ℓ(y, y′) = (y − y′)2. Let
frep : [0, 1]d → Bp(1) be an external representation with Bp(R) = {u ∈ Rp : ∥u∥2 ≤ R}. Define
the REFINE class

Gd,p(W,L,B; frep) =
{
g : [0, 1]d → R

∣∣∣ g(x) = v⊤frep(x) + uh(x), |u| ≤ 1, ∥v∥ ≤ 1, h ∈ H̄d(W,L,B)
}
.

We train ĝ via empirical risk minimization,

ĝ = argmin
g∈Gd,p(W,L,B;frep)

1

n

∑
i∈[n]

ℓ(g(Xi), Yi). (3)
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The effectiveness of REFINE depends on the quality of frep. We quantify this by defining the best
possible linear probe and the corresponding residual. Specifically, for any frep : [0, 1]d → Bp(1),
the best linear probe is defined as

v∗ = argmin
v∈Rp

E
[
{v⊤frep(X1)− f∗(X1)}2

]
.

The difficulty of learning the residual is then captured by its Hölder norm, which we denote as
ρ∗ := ∥v∗⊤frep − f∗∥Cβ . A small ρ∗ indicates that f rep is highly informative for the target task.

Our main theory bounds the excess risk of the REFINE estimator. It shows that the learning rate
depends on both the standard nonparametric complexity and the quality of external representation
ρ∗.
Theorem 4.1 (Generalization Error of REFINE). Suppose ∥v∗∥ ≤ 1 and the residual f∗ − v∗⊤frep

lies in the unit Hölder ball Cβu for a non-integer β > 0. Let ρ > 0 be a tuning parameter, which
serves as a proxy for the residual norm, and choose the network parameters for h as

L = c1, W = c2 max{nd/(2β+d)ρ2d/(2β+d), 1}, B = max{nρ2, 1}c3 , (4)

where c1, c2, c3 > 0 depend on β and d. Let ĝ be the empirical risk minimizer in (3) with the
parameter specified as in (4). Then there exists C > 0, which depends on β, d, such that

E[RPt(ĝ)−RPt(f∗)] ≤ C
{(

ρ2d/(2β+d) log n+ ρ∗2ρ−4β/(2β+d)
)
n−2β/(2β+d) +

p log n

n

}
. (5)

The bound in (5) splits into a parametric term p log n/n for learning v∗ on top of frep, and a non-
parametric term with the standard minimax rate n−2β/(2β+d) for learning the residual modulated
by the tuning parameter ρ and the residual difficulty ρ∗. The tuning radius ρ controls the effective
capacity of h via W and B in (4). That is, a larger ρ increases the approximation power, achieving
a smaller bias, but worsens the estimation, resulting in a larger variance factor ρ2d/(2β+d). On the
other hand, a smaller ρ regularizes h, which is preferable when the residual is genuinely small.

We further discuss two direct implications of Theorem 4.1.
Corollary 4.2 (Fixed ρ). For any fixed choice of ρ > 0, the bound in (5) implies that

E[RPt(ĝ)−RPt(f∗)] = Õ
(
n−2β/(2β+d) +

p

n

)
.

This corollary indicates that, by introducing an additional residual connection h, REFINE never has
a worse rate than n−2β/(2β+d) when p is bounded, which is the standard minimax-optimal rate when
training from scratch on (Xi, Yi)i∈[n] for β-Hölder f∗ [36].
Corollary 4.3 (Tuned ρ). Balancing (5) by choosing ρ = ρ∗ yields

E[RPt(ĝ)−RPt(f∗)] = Õ
(
ρ∗2d/(2β+d)n−2β/(2β+d) +

p

n

)
. (6)

This corollary indicates that, when frep is well aligned with the target, i.e., a small ρ∗, choosing
ρ = ρ∗ effectively regularizes the residual network h via the parameter choice in (4), which shrinks
the nonparametric term so that the bound is dominated by the near-parametric p/n term. Conversely,
when frep is misaligned, i.e., a large ρ∗, the nonparametric component dominates and the rate reverts
to the classical β-Hölder minimax rate n−2β/(2β+d).

Putting together, these two corollaries explain why REFINE avoids negative transfer under proper
regularization: it leverages external source representations whenever they are informative, while
retaining the fallback guarantee of nonparametric learning when they are not. This adaptivity ensures
that external knowledge is never harmful and is properly utilized when it is beneficial.

Proof sketch of Theorem 4.1 For any v, decompose

f∗(x) = f∗(x)− v⊤frep(x)︸ ︷︷ ︸
residual

+ v⊤frep(x)︸ ︷︷ ︸
linear in frep(x)

.

The first term is fit by h and the second by a linear probe on frep. Approximation results for ReLU
networks over Cβ functions give the residual term at rate n−2β/(2β+d) with a capacity-dependent
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multiplier governed by ρ. A standard linear estimation yields the p/n term for v. Choosing
(W,L,B) as in (4) implements this bias-variance trade-off. The full proof is deferred to Appendix A.

We remark that our theoretical results are derived under the squared-loss objective, following a
long line of work that analyzes classification problems through regression surrogates [10; 41]. This
approach aligns with common practice in the machine learning theory community, where regression
surrogates are employed to derive insights for classification algorithms.

5 NUMERICAL EXPERIMENTS

5.1 EXPERIMENT SETUP

We demonstrate that REFINE consistently mitigates negative transfer through extensive numerical
experiments across image, text, and tabular modalities, using benchmark datasets including CIFAR-
10, CIFAR-100 [20], STL [4], Clipart, Sketch [28], USPS, MNIST, Books, Kitchen, DVD, and
Electronics [2]. We evaluate performance using classification accuracy, area under ROC (AUC), F1
score, and minimum class accuracy.

We also compare REFINE with a number of alternative solutions. In particular, NoTrans serves as a
no-transfer baseline, reusing pretrained features without any adaptation. LinearProbe [21] trains
only a linear classifier on top of frozen features, offering a lightweight baseline. Adapter [14]
inserts a small trainable module into pretrained models, enabling efficient adaptation with limited
parameters. Distillation [12] transfers knowledge from a frozen teacher to a student model through a
combination of hard labels and soft predictions. LoRA [15] applies low-rank adaptations to weight
matrices, achieving parameter-efficient fine-tuning. DANN-Gate [37] combines adversarial training
with gating to encourage domain-invariant representations.

We consider a variety of experiment settings. In Section 5.2, we evaluate REFINE on datasets
that exhibit natural distribution shift. In Section 5.3, we deliberately construct more challenging
scenarios to stress-test various transfer learning methods. In Section 5.4, we investigate multi-
source transfer. Furthermore, in Appendix C.2, we consider a tabular data setting with four tabular
benchmark datasets.

In our implementations, we train all models using stochastic gradient descent with a learning rate
0.01 and momentum 0.9, with pretraining for 60 epochs and fine-tuning for 30 epochs. We consider
both CNNs and transformers architectures for pretrain model frep and the encoders h. We also carry
out an ablation study in Appendix C.3 regarding the complexity of the encoder h, showing that
REFINE remains effective across different choices of the model parameters for h.

We provide more details about the experiment setup and implementations in Appendix D.

5.2 SINGLE-SOURCE TRANSFER WITH NATURAL DISTRIBUTION SHIFT

In the first experiment setting, we evaluate REFINE on datasets that exhibit natural distribution
shift. To provide a comprehensive assessment, we consider transfer tasks spanning both image
and language, thereby covering cross-domain as well as cross-modality adaptation. For image,
we include CIFAR-10, CIFAR-100, and STL-10, which offer complementary object recognition
tasks with varying class granularity and image resolution. We further incorporate artistic domains,
specifically, Clipart and Sketch, to capture substantial stylistic diversity, along with digit recogni-
tion benchmarks, USPS and MNIST, which provide structured and well-curated handwritten digits.
For text, we adopt the datasets, Books, DVD, Electronics, and Kitchen, which span heterogeneous
product categories and exhibit rich linguistic variations. We process the image datasets using con-
volutional neural networks (CNNs), and process the text datasets using transformers. This design
allows us to assess transfer across distribution and domain shifts, and also under cross-modality and
cross-models. Collectively, these datasets constitute a broad and rigorous benchmark for evaluating
transfer learning methods.

We use the notation A → B to denote transfer learning from source domain A to target domain
B. Our evaluation covers diverse scenarios. Specifically, CIFAR100→10 and CIFAR10→100
test transfers across datasets with overlapping but non-identical class spaces and label granu-
larity; CIFAR10→STL reflects natural distribution shift due to resolution and dataset construc-
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Dataset Method Accuracy AUC F1 Min CAcc

CIFAR100→10

NoTrans 56.5820± 0.3659 0.9005± 0.0012 0.5634± 0.0046 37.2000± 3.4117
LinearProb 38.9260± 0.5463 0.8284± 0.0017 0.3815± 0.0051 16.9400± 3.7441
Adapter 38.2320± 0.3111 0.8247± 0.0016 0.3754± 0.0071 16.4600± 5.4544
LoRA 43.1360± 0.3239 0.8603± 0.0003 0.4237± 0.0046 20.1400± 4.1020
DANN-Gate 43.2220± 0.1295 0.8605± 0.0005 0.4214± 0.0040 17.4800± 4.7755
REFINE 54.4000± 0.3336 0.8942± 0.0026 0.5406± 0.0051 33.6200± 2.8273

CIFAR10→100

NoTrans 18.3200± 0.5254 0.8140± 0.0050 0.1774± 0.0052 1.0000± 0.8944
LinearProbe 7.0140± 0.3347 0.7489± 0.0011 0.0496± 0.0034 0.0000± 0.0000
Adapter 6.5640± 0.2875 0.7499± 0.0008 0.0459± 0.0026 0.0000± 0.0000
LoRA 6.8240± 0.1037 0.7558± 0.0010 0.0463± 0.0015 0.0000± 0.0000
DANN-Gate 5.1980± 0.3924 0.7341± 0.0055 0.0285± 0.0033 0.0000± 0.0000
REFINE 18.5880± 0.5494 0.8276± 0.0053 0.1787± 0.0057 1.4000± 0.8000

CIFAR10→STL

NoTrans 48.6925± 0.6338 0.8683± 0.0032 0.4831± 0.0089 26.8000± 4.9006
LinearProbe 50.2725± 0.3016 0.8795± 0.0015 0.4955± 0.0067 18.9250± 6.1546
Adapter 49.2900± 0.7344 0.8773± 0.0008 0.4865± 0.0096 15.6750± 6.6340
LoRA 50.7550± 0.3793 0.8813± 0.0016 0.4930± 0.0040 5.6750± 2.6933
DANN-Gate 47.7050± 0.6586 0.8659± 0.0013 0.4712± 0.0104 13.9250± 5.3424
REFINE 53.4175± 0.3628 0.8944± 0.0013 0.5301± 0.0053 25.9750± 3.5693

Clipart→Sketch

NoTrans 18.8804± 1.3709 0.7170± 0.0117 0.1828± 0.0119 0.0000± 0.0000
LinearProbe 18.3430± 0.8649 0.7290± 0.0065 0.1727± 0.0087 0.0000± 0.0000
Adapter 18.2356± 0.5807 0.7369± 0.0059 0.1549± 0.0040 0.0000± 0.0000
LoRA 16.9010± 0.6906 0.6937± 0.0043 0.1671± 0.0069 0.0000± 0.0000
DANN-Gate 16.5786± 0.4868 0.6942± 0.0021 0.1544± 0.0048 0.0000± 0.0000
REFINE 20.3403± 0.4768 0.7338± 0.0043 0.1968± 0.0059 0.5263± 1.0526

USPS→MNIST

NoTrans 62.0740± 8.7771 0.9566± 0.0073 0.5967± 0.0969 9.2863± 12.1512
LinearProbe 66.9960± 1.0095 0.9469± 0.0050 0.6563± 0.0086 9.1576± 3.5478
Adapter 61.8660± 3.0334 0.9375± 0.0085 0.5952± 0.0441 8.8750± 7.2427
LoRA 64.8240± 0.8520 0.9333± 0.0045 0.6435± 0.0135 29.3265± 13.5652
DANN-Gate 52.2080± 3.6669 0.9012± 0.0185 0.4853± 0.0482 0.0198± 0.0396
REFINE 70.0460± 2.1721 0.9582± 0.0053 0.6954± 0.0194 31.6157± 14.5527

Books→Kitchen

NoTrans 71.6600± 1.3632 0.7848± 0.0155 0.7161± 0.0137 68.6000± 2.9719
LinearProbe 66.7400± 3.1455 0.7568± 0.0278 0.6571± 0.0401 51.5600± 9.7336
Adapter 71.3400± 0.1356 0.7839± 0.0008 0.7111± 0.0015 62.8800± 2.9027
LoRA 66.9600± 0.2154 0.7279± 0.0018 0.6695± 0.0022 65.6400± 0.4079
DANN-Gate 66.6000± 0.0894 0.7330± 0.0006 0.6659± 0.0009 64.6800± 0.6997
REFINE 72.7200± 1.6522 0.8147± 0.0133 0.7248± 0.0189 65.5200± 6.4778

DVD→Electronics

NoTrans 68.5200± 2.8979 0.7585± 0.0304 0.6806± 0.0338 59.8000± 9.8298
LinearProbe 66.0600± 0.5122 0.7266± 0.0017 0.6580± 0.0072 58.3600± 4.5579
Adapter 65.8600± 0.3200 0.7206± 0.0008 0.6577± 0.0037 61.4400± 2.5935
LoRA 66.5600± 0.3555 0.7170± 0.0013 0.6656± 0.0036 65.4000± 0.4899
DANN-Gate 66.9000± 0.1897 0.7196± 0.0013 0.6686± 0.0019 63.5600± 0.2653
REFINE 70.3400± 0.9972 0.7886± 0.0115 0.6995± 0.0122 61.7200± 7.5181

Table 1: Single-source transfer learning with natural distribution shift.

tion; Clipart→Sketch represents cross-style adaptation between artistic domains; USPS→MNIST
examines digit recognition under handwriting and design difference; and Books→Kitchen and
DVD→Electronics capture cross-topic sentiment transfer, where vocabulary and linguistic style vary
considerably. We exclude knowledge distillation [12] in this comparison, as it requires identical class
spaces across source and target, which do not apply here.

Table 1 reports the results. REFINE consistently achieves competitive or superior performance com-
pared to alternative methods across all scenarios. On transfers with large label-space difference,
including CIFAR100→10 and CIFAR10→100, REFINE improves accuracy by over 10 − 15% rel-
ative to Adapter, LoRA, and DANN-Gate, substantially narrowing the gap to the no-transfer base-
line while remaining robust to negative transfer. On transfers under natural resolution or stylistic
shift, including CIFAR10→STL, Clipart→Sketch, REFINE achieves 3−4% accuracy gains over the
strongest alternative, along with consistent improvements in AUC and F1. On transfers with digit
benchmarks, including USPS→MNIST, it yields 5 − 10% accuracy gains, and much higher mini-
mum class accuracy, indicating stronger preservation of performance on underrepresented classes.
On transfers with cross-topics, including Books→Kitchen, DVD→Electronics), REFINE delivers
2 − 4% improvements across all metrics. Overall, REFINE not only avoids the severe degradation
observed in other methods, but also provides reliable accuracy lifts of 5 − 15% across image and
text domains under diverse settings of distribution shifts.
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Dataset Setting Method Acc AUC F1 MinCAcc

CIFAR-10

40% flips

NoTrans 56.05± 0.64 0.9037± 0.0028 0.5580± 0.0080 32.40± 5.84
LinearProbe 65.54± 0.06 0.9378± 0.0003 0.6561± 0.0008 42.82± 1.45

Adapter 65.78± 0.19 0.9376± 0.0007 0.6581± 0.0024 45.20± 2.29
Distill 57.01± 0.58 0.9115± 0.0016 0.5674± 0.0032 34.84± 4.53
LoRA 65.47± 0.12 0.9374± 0.0004 0.6545± 0.0018 42.38± 0.89

DANN-Gate 65.40± 0.15 0.9353± 0.0006 0.6539± 0.0016 43.40± 2.22
REFINE 66.23± 0.32 0.9388± 0.0006 0.6625± 0.0036 43.94± 3.78

80% flips

NoTrans 56.57± 0.64 0.9057± 0.0033 0.5622± 0.0055 33.60± 3.04
LinearProbe 19.46± 0.75 0.6895± 0.0011 0.1177± 0.0108 0.00± 0.00

Adapter 18.49± 0.46 0.6906± 0.0006 0.1219± 0.0156 0.00± 0.00
Distill 53.51± 0.79 0.8982± 0.0021 0.5269± 0.0091 26.80± 2.49
LoRA 22.92± 1.73 0.7202± 0.0079 0.1911± 0.0308 0.76± 1.52

DANN-Gate 20.83± 1.32 0.7097± 0.0084 0.1341± 0.0253 0.00± 0.00
REFINE 56.58± 0.33 0.9067± 0.0019 0.5655± 0.0041 36.90± 2.94

Schematic confusion

NoTrans 56.53± 0.77 0.9006± 0.0021 0.5639± 0.0056 35.76± 2.75
LinearProbe 48.54± 0.42 0.8987± 0.0008 0.4757± 0.0046 18.44± 7.89

Adapter 47.17± 0.82 0.8998± 0.0006 0.4479± 0.0148 7.42± 6.47
Distill 57.80± 0.44 0.9068± 0.0009 0.5772± 0.0037 35.92± 3.00
LoRA 49.96± 0.26 0.9039± 0.0005 0.4864± 0.0116 16.34± 9.91

DANN-Gate 49.04± 0.33 0.9028± 0.0006 0.4719± 0.0059 11.40± 1.53
REFINE 58.65± 0.47 0.9034± 0.0011 0.5861± 0.0048 38.40± 3.10

Class imbalance

NoTrans 56.44± 0.48 0.9055± 0.0019 0.5599± 0.0051 32.80± 4.54
LinearProbe 53.15± 1.04 0.8883± 0.0145 0.5238± 0.0215 28.36± 14.04

Adapter 51.64± 0.99 0.8960± 0.0022 0.5130± 0.0150 19.52± 8.32
Distill 54.89± 0.49 0.9063± 0.0013 0.5492± 0.0065 41.96± 3.43
LoRA 53.21± 0.19 0.8975± 0.0005 0.5338± 0.0022 33.76± 5.38

DANN-Gate 53.05± 0.28 0.8964± 0.0009 0.5281± 0.0055 32.62± 3.60
REFINE 56.54± 0.73 0.9103± 0.0012 0.5619± 0.0103 31.58± 10.31

Table 2: Single-source transfer learning with label noise, semantic perturbation, and class imbalance
for CIFAR-10 using CNNs.

5.3 SINGLE-SOURCE TRANSFER UNDER LABEL NOISE, SEMANTIC PERTURBATION, AND
CLASS IMBALANCE

In the second experiment setting, we deliberately construct challenging scenarios to stress-test vari-
ous transfer learning methods. Using CIFAR-10 with CNNs, we introduce four types of challenges
in the pretraining data while keeping the target domain fixed: (i) heavy label noise with 40% random
label flips, (ii) extreme label noise with 80% flips, (iii) semantic perturbation created by paired-class
flipping combined with additive image noise, and (iv) class imbalance induced by resampling to a
long-tailed distribution. In addition, we repeat the experiments on CIFAR-100 and also evaluate both
CIFAR-10 and CIFAR-100 with transformer-based models. We report the corresponding results in
Appendix C.1.

Table 2 summarizes the results. REFINE consistently mitigates severe degradation and outperforms
competing methods across all stress-test scenarios. In the moderate noise setting with 40% label
flips, it achieves the best overall balance, improving accuracy and F1 by about 1% over Adapter
and LoRA, while maintaining competitive minimum class accuracy. In the more extreme noise
setting with 80% flips, most baselines collapse, with LinearProbe, Adapter, and DANN-Gate drop
below 25% accuracy, whereas REFINE remains close to the no-transfer baseline, improving accu-
racy by nearly 35% over the strongest adaptive alternative. In the semantic confusion setting, with
paired-class flips plus image noise, REFINE gains 1-2% in accuracy and F1 over NoTrans, while all
other adaptive baselines perform worse, highlighting the robustness of REFINE to perturbed label
semantics. In the class imbalance setting, it surpasses LinearProbe, Adapter, and LoRA by 3-5%
in accuracy and F1, achieving the strongest overall results aside from a slightly lower minimum
class accuracy than Distillation. Overall, REFINE avoids the catastrophic failures common to exist-
ing transfer strategies under noise, semantic perturbation, and class imbalance, while consistently
delivering performance gains across all stress-test conditions.

We also briefly remark that, an important advantage of REFINE is that its complexity can be flex-
ibly tuned through the choice of the encoder h. Such a design keeps it comparable in parameter
efficiency to methods such as Adapter and Distillation. For instance, in this setting, for REFINE,
the number of trainable parameters is 4.88% of the total number of parameters in the frozen source
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Noisy Acc Noisy AUC Noisy F1

Low lr Acc Low lr AUC Low lr F1

Figure 2: Results of multi-source transfer learning under noisy and low-learning-rate conditions.

model, for Adapter, it is 5.46%, and for Distillation, 4.68%. Thus REFINE achieves a comparable
parameter efficiency, but clearly outperforms in mitigating negative transfer. The ablation study in
Appendix C.3 further shows that the performance of REFINE remains stable across different pa-
rameter choices of h, indicating that the overall parameter complexity has relatively little impact.
By contrast, increasing Adapter’s complexity fails to resolve negative transfer, suggesting that its
limitation stems from design rather than capacity.

5.4 MULTI-SOURCE TRANSFER

In the third experiment setting, we investigate multi-source transfer, an important yet underexplored
setting where knowledge is drawn from multiple heterogeneous sources to achieve better general-
ization than any single source alone. Despite its practical relevance, most existing approaches, such
as LinearProbe, Adapter, and Distillation, are designed for single-source transfer and do not natu-
rally extend to the multi-source case. To provide a fair comparison, we implement a Naive baseline
that assigns each source domain its own feature extractor, concatenates the resulting representa-
tions, and trains a classifier on top of the joint embedding. This straightforward strategy captures
the most natural way of leveraging multiple sources in the absence of specialized methods. For
our experiments, we partition CIFAR-10 into eight disjoint subsets of 2000 samples each, treating
them as distinct source domains and training separate CNNs on each. REFINE then integrates the
corresponding penultimate representations through its modular structure, mimicking multi-source
transfer while keeping inference overhead modest. This setup enables a direct evaluation of princi-
pled multi-source integration against naive concatenation.

Figure 2 reports the results under two stress conditions, a noisy case with 50% label corruption,
testing robustness to unreliable label supervision, and a low learning rate case, testing training sta-
bility and efficiency. In the noisy case, REFINE significantly outperforms both Naive and NoTrans
as more external sources are integrated. With all eight sources, REFINE achieves classification ac-
curacy 52.5%, AUC 0.8962, and F1 0.5242, compared to Naive’s 48.2%, 0.8773, and 0.4744, and
NoTrans’s 49.3%, 0.8803, and 0.4871. Notably, Naive consistently performs worse than NoTrans,
indicating negative transfer when external information is not integrated effectively. In the low learn-
ing rate case, REFINE again improves steadily over NoTrans as the number of sources increases,
while Naive suffers severe degradation. With all eight sources, REFINE reaches 34.09% classifica-
tion accuracy, surpassing NoTrans’s 30.16% and Naive’s 22.53%. Overall, these results demonstrate
that REFINE effectively integrates multiple sources, and remains robust under adverse supervision
and training conditions. It avoids the pitfalls of naive concatenation and provides a stable approach
for multi-source transfer.
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The datasets used are publicly available and widely used in the community. We are not aware of
direct applications of our method that raise ethical concerns. Nevertheless, as with any machine
learning system, there is a potential risk of misuse if deployed in contexts where fairness or bias are
critical. We encourage future work to examine these dimensions before deployment in such settings.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our results. Detailed descriptions of datasets,
preprocessing steps, and hyperparameters, optimizers are provided in Section 5 and Appendix D.
All proofs for theoretical claims are provided in Section 4 and Appendix A. An anonymized version
of our source code is included in the supplementary materials and will be released publicly upon
acceptance.
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[37] Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and avoiding
negative transfer. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 11285–11294, 2019. doi: 10.1109/CVPR.2019.01155.

[38] Dongrui Wu. Online and offline domain adaptation for reducing bci calibration effort. IEEE
Transactions on Human-Machine Systems, 47(4):550–563, 2017. doi: 10.1109/THMS.2016.
2608931.

[39] Ge Xie, Yu Sun, Minlong Lin, and Ke Tang. A selective transfer learning method for concept
drift adaptation. In Fengyu Cong, Andrew Leung, and Qinglai Wei (eds.), Advances in Neural
Networks - ISNN 2017, pp. 353–361, Cham, 2017. Springer International Publishing. ISBN
978-3-319-59081-3.

[40] Wen Zhang, Lingfei Deng, Lei Zhang, and Dongrui Wu. A survey on negative transfer.
IEEE/CAA Journal of Automatica Sinica, 10(2):305–329, 2023. doi: 10.1109/JAS.2022.
106004.

[41] Jinxin Zhou, Xiao Li, Tianyu Ding, Chong You, Qing Qu, and Zhihui Zhu. On the optimization
landscape of neural collapse under mse loss: Global optimality with unconstrained features. In
International Conference on Machine Learning, pp. 27179–27202. PMLR, 2022.

12

https://arxiv.org/abs/2208.05516
https://www.kaggle.com/datasets/rohanparis/credit-score-classification
https://www.kaggle.com/datasets/rohanparis/credit-score-classification
https://www.kaggle.com/code/tedo/students-performance-analysis-and-classification
https://www.kaggle.com/code/tedo/students-performance-analysis-and-classification
https://www.kaggle.com/competitions/diabetes-classification
https://www.kaggle.com/competitions/diabetes-classification
https://books.google.com/books?id=mwB8rUBsbqoC
https://books.google.com/books?id=mwB8rUBsbqoC


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDICES

In the appendices, we provide additional technical and empirical details. Appendix A provides the
proof of the main theorem, supported by auxiliary lemmas in Appendix B. Appendix C expands
the empirical evaluations, including additional results on more benchmark data, tabular data, and
an ablation study. Appendix D documents the experiment setup and implementation details for
reproducibility. Together, they offer a complete account of the theory, validation, and practical
details underlying our work.

A PROOFS OF MAIN RESULTS

In this section, we prove the main results in Section 4.

Additional Notation. Let ∥ · ∥Lq
denote the Lq norm under the probability measure Pt

X for any
q ∈ [1,∞], where Pt

X is the distribution of Xi in the training data. For a, b ∈ R, we define
a ∧ b = min{a, b} and a ∨ b = max{a, b}.
In addition, we would like to recallRPt(g) = E(X,Y )∼Pt [(g(X)− Y )2]. As a result,

RPt(g)−RPt(f∗) = E(X,Y )∼Pt [(g(X)− f∗(X)− ϵ)2]− σ2

= E(X,Y )∼Pt [(g(X)− f∗(X))2] ≍ ∥g − f∗∥2L2
, (S.1)

where the last asymptotic equivalence is due to the fact that we assume X has positive continuous
density on [0, 1]d bounded by an absolute value. As [0, 1]d is a compact space and the density
function of X is continuous, this implies that the density function is both upper and lower bounded
by absolute constants.

We now prove the main theorem on the prediction risk of REFINE. The results of the two corollaries
can be obtained straightforwardly, and we thus omit their proofs.

Proof of Theorem 4.1.

Proof. Recall that v∗ is the optimal linear probe of frep, i.e.,

v∗ = argmin
v∈Rp

E[{f∗(X)− v⊤frep(X)}2].

We begin by observing that the difficulty of the estimation problem is governed by the residual
r∗ := f∗ − v∗⊤frep, since frep is assumed to be known, and v∗⊤frep can be seen as a linear function
of the known quantity. By appropriately choosing the parameters W , L, and B, we control the
complexity of the neural network, and the bias of estimating r∗.

Specifically, choose

L = (2 + ⌈log2 β⌉)
(
11 +

β

d

)
, W = c′1ϵ

−d/β , B = ϵ−c′2 , (S.2)

where c′1, c
′
2 > 0 are constants appearing in Lemma B.2. Define ρ∗ := ∥r∗∥Cβ . Set

ϵ := n−β/(2β+d)ρ−2β/(2β+d) ∧ 1, (S.3)

where ρ > 0 is some tuning parameter. The choices in (4) are realized by taking ϵ =
n−β/(2β+d)ρ−2β/(2β+d) and setting c1 := (2 + ⌈log2 β⌉)(11 + β/d), c2 := c′1, c3 := c′2.

Note that supg∈Gd,p(W,L,B;frep) ∥g∥L∞ ≤ 2. From Lemma B.3 with the choice δ ← 1/n, we have

E[∥ĝ − f∗∥2L2
] ≲

(
inf
g∈G
∥g − f∗∥2L2

+
logN (1/n,Gd,p(W,L,B; frep), ∥ · ∥L∞)

n
+

1

n

)
.

Next we compute the first term and the second term separately.

13
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Part 1: Bounding the first term. Notice that ρ∗ ≤ 1 by assumption r∗ = f∗ − v∗⊤frep ∈ Cβu .
Rescale the residual by noting that (1/ρ∗)r∗ ∈ Cβu . Then, by Lemma B.2, there exists a neural
network rNN ∈ Hd(W,L,B) such that

∥rNN − (1/ρ∗)r∗∥L2
≲ ϵ. (S.4)

This inequality provides the approximation error of the ReLU network class. To translate this result
to the bias term ∥g − f∗∥2L2

, we proceed as follows. Write

rNN = rNN,L ◦ rNN,L−1 ◦ · · · ◦ rNN,1(x),

where rNN,ℓ(x) = σ(Aℓx + bℓ) for ℓ ∈ [L − 1] and rNN,L(x) = ALx + bL. Define r′NN,L(x) =

(ρ∗AL)x+ (ρ∗bL) to approximate ρ∗rNN. Then, it follows that the function

g◦(x) := 1 ∧ ((−1) ∨ r′NN,L ◦ rNN,L−1 ◦ · · · ◦ rNN,1(x)) + v∗⊤frep(x)

belongs to Gd,p(W,L,B; frep) since ρ∗ ≤ 1 and ∥v∗∥ ≤ 1. Moreover, we can write g◦ as

g◦(x) = 1 ∧ ((−1) ∨ ρ∗rNN(x)) + v∗⊤frep(x).

Using (S.4), we have

E[{g◦(X1)− f∗(X1)}2]1/2 = ∥1 ∧ ((−1) ∨ ρ∗rNN) + v∗⊤frep − f∗∥L2

= ρ∗
∥∥∥∥ 1

ρ∗
∧
(
− 1

ρ∗
∨ rNN

)
− 1

ρ∗
r∗
∥∥∥∥
L2

≤ ρ∗
∥∥∥∥rNN −

1

ρ∗
r∗
∥∥∥∥
L2

≲ ρ∗ϵ,

where we used the fact that ∥r∗/ρ∗∥L∞ ≤ ∥r∗/ρ∗∥Cβ ≤ 1/ρ∗. Thus,

inf
g∈Gd,p(W,L,B;frep)

E[∥g − f∗∥2L2
] ≤ E[∥g◦ − f∗∥2L2

] ≲ ρ∗2ϵ2.

Part 2: Bounding the second term. The covering number bound from Lemma B.4 with the
choice of W,L,B in (S.2), we have

logN (1/n,Gd,p(W,L,B; frep), ∥ · ∥L∞)

n
≤ C ′

n
(ϵ−d/β + p) log

(n
ϵ

)
,

where C ′ is a constant depending on d and β.

Part 3: Balancing terms. Finally, we combine the results from part 1 and part 2. Recalling the
choice of ϵ in (S.3), we consider two cases depending on the value of ρ.

When 1/
√
n ≤ ρ, we have ϵ = (nρ2)−β/(2β+d). In this case, the bound becomes

E[∥ĝ − f∗∥2L2
] ≤ ρ∗2ρ−4β/(2β+d)n−2β/(2β+d) + C ′

(
ρ2d/(2β+d)n−2β/(2β+d) +

p

n

)
log n

≤ (C ′ + 1)

(
(ρ∗2ρ−4β/(2β+d) + ρ2d/(2β+d) log n)n−2β/(2β+d) +

p log n

n

)
.

(S.5)

When ρ ≤ 1/
√
n (so that ϵ = 1), the bound becomes

E[∥ĝ − f∗∥2L2
] ≤ ρ∗2 + C ′ p log n

n
≤ (C ′ + 1)

(
ρ∗2ρ−4β/(2β+d)n−2β/(2β+d) +

p log n

n

)
. (S.6)

Combining the bounds in (S.5) and (S.6) with (S.1), we obtain the desired result.

This completes the proof of Theorem 4.1.
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B AUXILIARY LEMMAS

In this section, we provide some auxiliary lemmas.

The next lemma is about the entropy bound forHd(W,L,B).

Lemma B.1 (Lemma 21 from Nakada & Imaizumi [25]). Fix any W , L, and B > 0. Then, we have
the covering number bound

logN (ϵ,Hd(W,L,B), ∥ · ∥L∞) ≤W log

(
2LBL(W + 1)L

ϵ

)
.

The next lemma is modified from Petersen & Voigtlaender [29], adapted to consider L2 approxima-
tion error with respect to the probability measure Pt

X over the domain [0, 1]d, rather than the original
L2 error with a uniform measure on [−1/2, 1/2]d.

Lemma B.2 (Modification of Theorem 3.1 from Petersen & Voigtlaender [29]). Fix d ∈ N+ and
β > 0. Suppose that Pt

X has a density bounded by O(1). Then, there exist constants c′1, c
′
2 > 0,

depending on d and β, such that for any ϵ ∈ (0, 1/2), if one chooses W , L, and B satisfying

L ≤ (2 + ⌈log2 β⌉)
(
11 +

β

d

)
, W ≤ c′1ϵ

−d/β , B ≤ ϵ−c′2 ,

then

sup
f#∈Cβ

u

inf
fNN∈Hd(W,L,B)

∥fNN − f#∥L2
≲ ϵ.

The next lemma provides a bound on the prediction risk of the empirical risk minimizer in terms of
the covering number of the function class and the approximation error.

Lemma B.3 (Modification to Lemma 4 from Schmidt-Hieber [31]). Let G be a function class,
and let ĝ be the minimizer of the empirical risk (1/n)

∑
i∈[n] ℓ(ĝ(Xi), Yi) over G under the data

generating process introduced in Section 4. Suppose that {f∗}∪G ⊂ {[0, 1]d → [−F, F ]} for some
F ≥ 1. Then there exists a universal constant C0 > 0 such that

E[∥ĝ − f∗∥2L2
] ≤ C0

(
inf
g∈G
∥g − f∗∥2L2

+ F 2 logN (δ,G, ∥ · ∥L∞)

n
+ δF

)
.

The next lemma provides a bound on the covering number of the REFINE class Gd,p(W,L,B; frep).

Lemma B.4. Fix W ∈ N+, L ∈ N+, B > 0, and δ > 0. Then, there exists a universal constant
C > 0 such that

logN (δ,Gd,p(W,L,B; frep), ∥ · ∥L∞) ≤ C

{
W log

(
LBL(W + 1)L

δ

)
+ p log

(
1

δ

)}
.

Proof. We next bound the covering number N (δ,Gd,p(W,L,B; frep), ∥ · ∥L∞). Note that for any
δ > 0, we have

logN (δ,Gd,p(W,L,B; frep), ∥ · ∥L∞)

≤ logN
(
δ

2
, {x 7→ uh(x) | u ∈ [−1, 1], h ∈ H̄d(W,L,B)}, ∥ · ∥L∞

)
+ logN

(
δ

2
, {x 7→ v⊤frep(x) | v ∈ Bp(1)}, ∥ · ∥L∞

)
. (S.7)

Recall that frep : [0, 1]d → Bp(1). Since ∥v⊤frep − v′⊤frep∥L∞ ≤ ∥v − v′∥2 for any v, v′ ∈ Bp(1),
a standard argument shows that

N
(
δ

2
, {x 7→ v⊤frep(x) | v ∈ Bp(1)}, ∥ · ∥L∞

)
≤ N

(
δ

2
,Bp(1), ∥ · ∥2

)
≤

(
6

δ

)p

. (S.8)
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Furthermore, since ∥u1h1 − u2h2∥L∞ ≤ ∥h1 − h2∥L∞ + |u1 − u2| for any u1, u2 ∈ [−1, 1] and
h1, h2 ∈ H̄d(W,L,B), we have

N (
δ

2
, {x 7→ uh(x) | u ∈ [−1, 1], h ∈ H̄d(W,L,B)}, ∥ · ∥L∞)

≤ N
(
δ

4
, [−1, 1], | · |

)
N
(
δ

4
, H̄d(W,L,B), ∥ · ∥L∞

)
≲

1

δ
N
(
δ

4
,Hd(W,L,B), ∥ · ∥L∞

)
. (S.9)

Note that clipping does not increase the covering number of mHd(W,L,B). Using (S.7), (S.8) and
(S.9), combined with Lemma B.1, we obtain

logN (δ,Gd,p(W,L,B; frep), ∥ · ∥L∞) ≲ W log

(
LBL(W + 1)L

δ

)
+ p log

(
1

δ

)
.

This completes the proof of Lemma B.4.

C MORE NUMERICAL EXPERIMENTS

In this section, we present additional results that complement Section 5.

C.1 SINGLE-SOURCE TRANSFER UNDER CHALLENGING SCENARIOS

Similar to the setting considered in Section 5.3 for CIFAR-10, we run the experiments on CIFAR-
100. Moreover, in addition to CNNs, we also evaluate both CIFAR-10 and CIFAR-100 with
transformer-based models.

Table S1 reports the results on CIFAR-100 with CNNs. Similar to CIFAR-10, REFINE consis-
tently outperforms the baseline methods under all four stress scenarios. In particular, in the extreme
noise setting with 80% label flips, most competing methods collapse to near-random performance,
whereas REFINE remains stable and comparable to the no-transfer baseline. In the semantic con-
fusion and class imbalance settings, REFINE achieves the strongest improvements in classification
accuracy and F1, highlighting its ability to mitigate negative transfer even when pretraining data is
severely perturbed.

Table S2 and Table S3 report the results on CIFAR-10 and CIFAR-100, respectively, with
transformer-based models. Similar to CNNs, existing adaptation methods degrade sharply under
noisy or imbalanced pretraining, whereas REFINE maintains stable and superior performance in
accuracy, AUC, and F1.

Together, these results demonstrate that the advantages of REFINE are not tied to a specific model
architecture or dataset size. By design, it reliably suppresses negative transfer and delivers consistent
gains under challenging pretraining conditions.

C.2 TABULAR DATA

We demonstrate that REFINE is equally effective in handling tabular data. We consider three binary-
class datasets, Adult [18], Credit [27], Diabetes [35], and one multi-class dataset, Performance [34].
Each raw training data contains K × 100 samples, where K is the number of classes. To assess
model complexity, we design two multilayer perceptron (MLP) architectures: MLP1 with a lower
complexity, and MLP2 with a more complex structure. We also compare to DirectAug, which refers
to directly combining additional data with the raw data to train the classifier.

Table S4 reports the results using the original data, and Table S5 reports the results using the noisy
data with 80% flips of class labels. In both settings, REFINE consistently improves accuracy, AUC,
and F1 over using the raw data alone. Although DirectAug can sometimes perform better through
full data merging, REFINE surpasses it on several datasets, including Credit and Performance, con-
firming its ability to exploit useful auxiliary information without over-relying on data merging. In
the presence of heavy label noise, DirectAug suffers severe degradation, whereas REFINE maintains
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Dataset Setting Method Acc AUC F1 MinCAcc

CIFAR-100

40% flips

NoTrans 17.82± 0.36 0.8259± 0.0068 0.1684± 0.0039 0.60± 0.49
LinearProbe 17.35± 0.27 0.8605± 0.0015 0.1472± 0.0043 0.00± 0.00

Adapter 16.19± 0.33 0.8578± 0.0019 0.1303± 0.0037 0.00± 0.00
Distill 18.73± 0.22 0.8605± 0.0035 0.1631± 0.0024 0.00± 0.00
LoRA 17.24± 0.33 0.8568± 0.0018 0.1463± 0.0053 0.00± 0.00

DANN-Gate 15.02± 0.39 0.8472± 0.0020 0.1239± 0.0041 0.00± 0.00
REFINE 19.28± 0.34 0.8555± 0.0042 0.1805± 0.0043 0.40± 0.80

80% flips

NoTrans 17.52± 0.60 0.8252± 0.0059 0.1663± 0.0047 0.60± 0.49
LinearProbe 1.00± 0.00 0.6740± 0.0019 0.0002± 0.0000 0.00± 0.00

Adapter 1.00± 0.00 0.5250± 0.0058 0.0002± 0.0000 0.00± 0.00
Distill 15.11± 0.49 0.8174± 0.0069 0.1227± 0.0039 0.00± 0.00
LoRA 2.01± 0.18 0.6251± 0.0032 0.0026± 0.0006 0.00± 0.00

DANN-Gate 1.00± 0.00 0.5754± 0.0113 0.0002± 0.0000 0.00± 0.00
REFINE 17.37± 1.09 0.8239± 0.0060 0.1641± 0.0109 0.20± 0.40

Schematic confusion

NoTrans 18.13± 0.74 0.8129± 0.0044 0.1747± 0.0073 1.20± 0.75
LinearProbe 20.81± 0.13 0.8316± 0.0003 0.2006± 0.0038 0.60± 0.80

Adapter 19.99± 0.24 0.8308± 0.0012 0.1895± 0.0052 0.00± 0.00
Distill 20.06± 0.89 0.8361± 0.0077 0.1959± 0.0080 1.00± 0.63
LoRA 20.05± 0.18 0.8246± 0.0017 0.1953± 0.0035 0.60± 0.80

DANN-Gate 17.56± 0.33 0.8122± 0.0023 0.1720± 0.0032 0.00± 0.00
REFINE 21.76± 0.60 0.8308± 0.0072 0.2139± 0.0067 2.00± 1.10

Class imbalance

NoTrans 17.58± 0.24 0.8271± 0.0033 0.1656± 0.0046 1.00± 0.00
LinearProbe 22.41± 0.48 0.8687± 0.0011 0.2133± 0.0048 0.00± 0.00

Adapter 22.66± 0.30 0.8676± 0.0014 0.2102± 0.0025 0.00± 0.00
Distill 19.59± 0.61 0.8659± 0.0034 0.1752± 0.0072 0.00± 0.00
LoRA 22.56± 0.39 0.8535± 0.0009 0.2129± 0.0022 0.00± 0.00

DANN-Gate 20.72± 0.24 0.8432± 0.0021 0.1966± 0.0031 0.00± 0.00
REFINE 23.31± 0.42 0.8719± 0.0010 0.2264± 0.0032 0.40± 0.49

Table S1: Single-source transfer learning with label noise, semantic perturbation, and class imbal-
ance for CIFAR-100 using CNNs.

Dataset Setting Method Acc AUC F1 MinCAcc

CIFAR-10

80% flips

NoTrans 45.17± 1.39 0.8678± 0.0028 0.4391± 0.0183 16.24± 4.52
LinearProbe 20.65± 0.44 0.6826± 0.0025 0.1410± 0.0083 0.00± 0.00

Adapter 17.88± 0.73 0.6682± 0.0066 0.1248± 0.0111 0.00± 0.00
Distill 40.19± 0.57 0.8445± 0.0022 0.3827± 0.0068 8.00± 5.22
LoRA 21.69± 0.49 0.6831± 0.0010 0.1511± 0.0059 0.00± 0.00

DANN-Gate 21.37± 0.27 0.6829± 0.0015 0.1468± 0.0075 0.00± 0.00
REFINE 45.53± 0.95 0.8694± 0.0047 0.4463± 0.0105 18.68± 4.97

Domain mismatch

NoTrans 44.37± 0.74 0.8628± 0.0035 0.4375± 0.0055 20.80± 4.86
LinearProbe 46.04± 0.71 0.8643± 0.0015 0.4544± 0.0080 23.46± 4.74

Adapter 44.87± 0.55 0.8514± 0.0029 0.4445± 0.0059 26.74± 1.89
LoRA 47.74± 0.38 0.8752± 0.0015 0.4750± 0.0032 27.96± 2.61

DANN-Gate 47.79± 0.40 0.8750± 0.0019 0.4733± 0.0036 28.12± 4.52
REFINE 44.85± 0.38 0.8524± 0.0011 0.4474± 0.0035 29.68± 1.78

Schematic confusion

NoTrans 45.36± 0.59 0.8662± 0.0033 0.4455± 0.0081 18.98± 7.49
LinearProbe 53.45± 0.44 0.9090± 0.0002 0.5259± 0.0078 26.28± 6.59

Adapter 52.67± 0.33 0.9089± 0.0008 0.5195± 0.0050 30.84± 4.96
Distill 46.01± 1.11 0.8736± 0.0028 0.4435± 0.0143 14.00± 6.94
LoRA 52.35± 0.42 0.9024± 0.0008 0.5176± 0.0053 32.50± 0.97

DANN-Gate 52.13± 0.35 0.9021± 0.0009 0.5141± 0.0036 33.28± 4.33
REFINE 54.62± 0.45 0.9134± 0.0010 0.5431± 0.0056 33.90± 3.34

Class imbalanace

NoTrans 45.36± 1.39 0.8678± 0.0028 0.4391± 0.0183 16.24± 4.52
LinearProbe 48.44± 0.37 0.8749± 0.0008 0.4805± 0.0052 25.94± 6.98

Adapter 47.57± 0.27 0.8678± 0.0029 0.4689± 0.0045 25.26± 4.53
Distill 42.25± 0.63 0.8650± 0.0035 0.3996± 0.0051 3.86± 0.82
LoRA 48.99± 0.30 0.8759± 0.0007 0.4866± 0.0036 30.92± 3.71

DANN-Gate 48.94± 0.41 0.8766± 0.0009 0.4860± 0.0051 31.62± 1.52
REFINE 47.81± 0.23 0.8691± 0.0007 0.4755± 0.0026 29.44± 3.26

Table S2: Single-source transfer learning with label noise, semantic perturbation, and class imbal-
ance for CIFAR-10 using transformers.

or slightly improves performance. Overall, these results show that REFINE is effective on tabular
data, and offers a safe and reliable mechanism for leveraging additional data compared to direct
augmentation.
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Dataset Setting Method Acc AUC F1 MinCAcc

CIFAR-100

80% flips

NoTrans 15.32± 0.33 0.8449± 0.0021 0.1358± 0.0041 0.00± 0.00
LinearProbe 6.70± 0.27 0.7377± 0.0011 0.0390± 0.0014 0.00± 0.00

Adapter 6.54± 0.16 0.7405± 0.0011 0.0348± 0.0009 0.00± 0.00
Distill 11.83± 0.26 0.8130± 0.0027 0.0835± 0.0024 0.00± 0.00
LoRA 6.97± 0.07 0.7390± 0.0015 0.0428± 0.0014 0.00± 0.00

DANN-Gate 6.91± 0.23 0.7392± 0.0016 0.0429± 0.0014 0.00± 0.00
REFINE 15.50± 0.79 0.8437± 0.0041 0.1378± 0.0067 0.00± 0.00

Domain mismatch

NoTrans 11.28± 0.52 0.8023± 0.0034 0.0984± 0.0033 0.00± 0.00
LinearProbe 13.32± 0.52 0.8186± 0.0015 0.1175± 0.0049 0.00± 0.00

Adapter 12.64± 0.32 0.8267± 0.0006 0.1052± 0.0030 0.00± 0.00
LoRA 14.22± 0.26 0.8466± 0.0010 0.1289± 0.0028 0.00± 0.00

DANN-Gate 14.08± 0.37 0.8465± 0.0012 0.1280± 0.0023 0.00± 0.00
REFINE 14.38± 0.54 0.8291± 0.0032 0.1329± 0.0039 0.00± 0.00

Schematic confusion

NoTrans 16.24± 0.58 0.8471± 0.0036 0.1485± 0.0075 0.00± 0.00
LinearProbe 11.88± 0.28 0.7950± 0.0016 0.1067± 0.0015 0.00± 0.00

Adapter 11.17± 0.43 0.7936± 0.0027 0.0918± 0.0040 0.00± 0.00
Distill 15.01± 0.64 0.8266± 0.0028 0.1260± 0.0081 0.00± 0.00
LoRA 11.36± 0.18 0.7899± 0.0013 0.0991± 0.0015 0.00± 0.00

DANN-Gate 11.46± 0.21 0.7893± 0.0013 0.0989± 0.0017 0.00± 0.00
REFINE 14.94± 0.49 0.8282± 0.0026 0.1402± 0.0026 0.00± 0.00

Class imbalance

NoTrans 15.43± 0.32 0.8474± 0.0025 0.1386± 0.0012 0.00± 0.00
LinearProbe 25.82± 0.28 0.8877± 0.0010 0.2529± 0.0020 3.60± 0.80

Adapter 24.48± 0.32 0.8847± 0.0010 0.2320± 0.0027 0.60± 0.80
Distill 16.01± 0.13 0.8721± 0.0017 0.1252± 0.0021 0.00± 0.00
LoRA 23.52± 0.09 0.8669± 0.0015 0.2250± 0.0023 0.00± 0.00

DANN-Gate 23.48± 0.13 0.8671± 0.0018 0.2264± 0.0019 0.00± 0.00
REFINE 25.54± 0.43 0.8879± 0.0013 0.2524± 0.0039 4.80± 0.75

Table S3: Single-source transfer learning with label noise, semantic perturbation, and class imbal-
ance for CIFAR-100 using transformers.

Dataset Metric
Classifier

MLP1 MLP2

Raw DirectAug REFINE Raw DirectAug REFINE

Adult
Accuracy 0.807 ± 0.008 0.831 ± 0.006 0.821 ± 0.004 0.800 ± 0.011 0.833 ± 0.005 0.814 ± 0.010

AUC 0.832 ± 0.008 0.878 ± 0.006 0.852 ± 0.008 0.833 ± 0.010 0.883 ± 0.005 0.854 ± 0.008
F1 0.547 ± 0.037 0.619 ± 0.015 0.595 ± 0.030 0.570 ± 0.028 0.627 ± 0.021 0.612 ± 0.021

Credit
Accuracy 0.723 ± 0.028 0.735 ± 0.017 0.740 ± 0.022 0.717 ± 0.027 0.732 ± 0.015 0.726 ± 0.020

AUC 0.730 ± 0.024 0.738 ± 0.013 0.745 ± 0.018 0.725 ± 0.025 0.754 ± 0.020 0.736 ± 0.023
F1 0.490 ± 0.043 0.524 ± 0.030 0.520 ± 0.038 0.515 ± 0.041 0.541 ± 0.030 0.535 ± 0.037

Diabetes
Accuracy 0.565 ± 0.015 0.573 ± 0.008 0.571 ± 0.008 0.561 ± 0.015 0.596 ± 0.007 0.572 ± 0.010

AUC 0.582 ± 0.019 0.597 ± 0.008 0.591 ± 0.012 0.576 ± 0.018 0.626 ± 0.008 0.593 ± 0.013
F1 0.505 ± 0.028 0.533 ± 0.014 0.523 ± 0.022 0.501 ± 0.029 0.534 ± 0.017 0.522 ± 0.027

Performance
Accuracy 0.684 ± 0.019 0.724 ± 0.011 0.711 ± 0.014 0.683 ± 0.018 0.668 ± 0.084 0.702 ± 0.022

AUC 0.857 ± 0.011 0.878 ± 0.009 0.869 ± 0.009 0.858 ± 0.011 0.830 ± 0.070 0.865 ± 0.011
F1 0.478 ± 0.025 0.557 ± 0.024 0.521 ± 0.029 0.478 ± 0.027 0.494 ± 0.090 0.507 ± 0.035

Table S4: Single-source transfer learning with original tabular data.

C.3 AN ABLATION STUDY

We conduct an ablation study to investigate the effect of complexity of the encoder h in REFINE, by
varying the width and depth of the neural network models used. Figure S1 reports the performance
of REFINE under five different models with increasing complexity for h. The left panel reports the
total number of trainable parameters, the middle panel reports the classification accuracy using the
original data, and the right panel using the noisy data. On the original data, REFINE consistently
outperforms NoTrans across all levels of complexity by a considerable margin, demonstrating its
ability to leverage useful pretrained features. On the noisy data, REFINE performs on par with
NoTrans regardless of the complexity of h, confirming its robustness to negative transfer. Together,
these results show that REFINE offers robust and reliable safeguarding against negative transfer.
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Dataset Metric
Classifier

MLP1 MLP2

Raw DirectAug REFINE Raw DirectAug REFINE

Adult
Accuracy 0.808 ± 0.007 0.615 ± 0.046 0.805 ± 0.008 0.800 ± 0.010 0.641 ± 0.052 0.791 ± 0.016

AUC 0.834 ± 0.009 0.612 ± 0.051 0.832 ± 0.010 0.834 ± 0.013 0.639 ± 0.052 0.828 ± 0.014
F1 0.549 ± 0.046 0.383 ± 0.039 0.555 ± 0.029 0.564 ± 0.032 0.395 ± 0.047 0.562 ± 0.027

Credit
Accuracy 0.723 ± 0.027 0.581 ± 0.035 0.705 ± 0.028 0.716 ± 0.027 0.599 ± 0.045 0.705 ± 0.028

AUC 0.728 ± 0.027 0.578 ± 0.045 0.705 ± 0.028 0.720 ± 0.026 0.599 ± 0.045 0.687 ± 0.028
F1 0.483 ± 0.049 0.417 ± 0.048 0.481 ± 0.035 0.512 ± 0.041 0.433 ± 0.041 0.493 ± 0.034

Diabetes
Accuracy 0.587 ± 0.007 0.516 ± 0.007 0.575 ± 0.006 0.614 ± 0.006 0.551 ± 0.016 0.609 ± 0.004

AUC 0.580 ± 0.020 0.516 ± 0.014 0.554 ± 0.016 0.577 ± 0.017 0.585 ± 0.019 0.567 ± 0.020
F1 0.503 ± 0.032 0.489 ± 0.025 0.498 ± 0.022 0.503 ± 0.026 0.483 ± 0.037 0.514 ± 0.025

Performance
Accuracy 0.682 ± 0.020 0.637 ± 0.088 0.696 ± 0.023 0.684 ± 0.018 0.650 ± 0.079 0.696 ± 0.023

AUC 0.857 ± 0.011 0.805 ± 0.074 0.862 ± 0.011 0.859 ± 0.010 0.814 ± 0.068 0.863 ± 0.012
F1 0.476 ± 0.028 0.464 ± 0.096 0.499 ± 0.036 0.480 ± 0.029 0.472 ± 0.088 0.500 ± 0.035

Table S5: Single-source transfer learning with noisy tabular data.

Parameter Number Accuracy (Original data) Accuracy (Heavy noise)

Figure S1: Ablation study for the encoder h with varying complexity.

D MORE DETAILS ON EXPERIMENT SETUP AND IMPLEMENTATIONS

We provide additional details on experiment setup and implementations for better reproducibility.
All experiments are conducted on an NVIDIA A10G (Ampere) GPU with 23 GB of GDDR6 mem-
ory, driver version 535.183.01, and CUDA 12.2. For semantic confusion in CIFAR-10 and CIFAR-
100, we construct 4 and 47 pairs of related classes, respectively, and flip 50% of each pair’s samples
to its counterpart, while also injecting white noise into image attributes with σ = 0.2. For class
imbalance, we create each imbalanced pretrained subset by first sampling 10,000 images from the
full training split with a fixed seed (42). In CIFAR-10, classes 0-9 are sampled with proportions
[0.35, 0.30, 0.10, 0.07, 0.06, 0.045, 0.03, 0.02, 0.015, 0.01], yielding 3,500 to 100 images per class.
In CIFAR-100, the first 10 classes are designated as majority, with 400 images each, and the re-
maining 90 as minority, with 100 images each, truncated to a total of 10,000 samples. Table S6
summarizes the experiment settings.

Dataset Pretrain Model Base Model Pretrain Size Fine-tune Size Adapter Para (%) REFINE Para (%)

CIFAR-CNN-related CNN CNN 10000 4000 5.46 4.88
CIFAR-TF-related Transformer Transformer 10000 4000 6.49 4.63
CIFAR-10→STL CNN CNN 10000 4000 5.46 4.88
Clipart→Sketch ResNet18 ResNet10 3000 1000 1.36 44.2
USPS→MNIST CNN CNN 5000 100 5.46 4.88
Books→Kitchen Transformer Transformer 2000 400 2.25 96.58
DVD→Electronics Transformer Transformer 2000 400 2.25 96.58

Table S6: Experiment settings for all data examples.
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