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Abstract
Continual learning for named entity recognition
(CL-NER) aims to enable models to continu-
ously learn new entity types while retaining
the ability to recognize previously learned ones.
However, the current strategies fall short of ef-
fectively addressing the catastrophic forgetting
of previously learned entity types. To tackle
this issue, we propose the SKD-NER model,
an efficient continual learning NER model
based on the span-based approach, which in-
novatively incorporates reinforcement learn-
ing strategies to enhance the model’s ability
against catastrophic forgetting. Specifically, we
leverage knowledge distillation (KD) to retain
memory and employ reinforcement learning
strategies during the KD process to optimize
the soft labeling and distillation losses gener-
ated by the teacher model to effectively prevent
catastrophic forgetting during continual learn-
ing. This approach effectively prevents or miti-
gates catastrophic forgetting during continuous
learning, allowing the model to retain previ-
ously learned knowledge while acquiring new
knowledge. Our experiments on two bench-
mark datasets demonstrate that our model sig-
nificantly improves the performance of the CL-
NER task, outperforming state-of-the-art meth-
ods.1

1 Introduction

The introduction of continual learning methods has
enabled systems to continuously learn from new
data and reduce their dependence on initial train-
ing data. Moreover, these methods facilitate model
updates and fine-tuning, enhancing their scalability
(Shin et al., 2017). By combining continual learn-
ing with NER tasks, systems can significantly im-
prove their ability to perceive the constantly chang-
ing real world amidst the emergence of new tasks
and data sources, these functionalities can be for-
mulated as paradigms of continual learning (Jin
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1Code is available at https://github.com/YChen2637/SKD
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Figure 1: An illustration of the sequence labeling
approach in SKD-NER. Assuming a model learns
task1:Per and task2:Loc in OntoNotes5 sequentially,
the left side represents the conventional sequence label-
ing method, while the right side represents the approach
we adopted.

et al., 2022; Parisi et al., 2019). However, continual
learning has always faced catastrophic forgetting,
which has become a pervasive issue for continual
learning NER tasks (McCloskey and Cohen, 1989;
Robins, 1995; Kirkpatrick et al., 2017). Specifi-
cally, simply fine-tuning the NER system based on
new data often results in a significant drop in per-
formance on previously learned tasks, which poses
a major challenge for achieving human-level intel-
ligence in continual learning for NER (CL-NER).
This is in contrast to the natural ability of humans
to learn new entity categories without forgetting
previously learned ones.

In the context of continual learning, the model
training process is typically divided into n CL steps,
with each step being specific to the current task. In
the case of CL-NER, only new entity types are rec-
ognized in each CL step. However, this approach
can lead to a situation that is easily overlooked,
whereby entity types that are not required to be rec-
ognized in the current step (e.g., ORG) may need
to be learned in the future or have been learned in



the past. In traditional sequence labeling methods,
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Figure 2: An illustration of the impact of sequence
labeling methods on OntoNotes5.

an entity that is not a required type in the current
step is assigned a global O tag to indicate that the
model does not need to recognize this type in the
current task(refer to Figure1). However, this can
result in each entity’s category needing frequent
parameter updates in each different CL step, due
to this incoherent optimization. We believe this
exacerbates catastrophic forgetting and label noise
interference. To test this hypothesis, we conducted
experiments, the results of which are presented in
Figure2.

With the goal of addressing the issues of catas-
trophic forgetting and label noise in CL-NER (Le-
cun et al., 1998), we propose SKD-NER. To miti-
gate the adverse effects of frequent parameter up-
dates due to incoherent optimization in continuous
learning, our model first computes an entity clas-
sification matrix for each segment of text to be
processed, inspired by the multi-headed attention
mechanism (Vaswani et al., 2017). This matrix
computes a score for the different entity classes to
be recognized, thereby converting the entity recog-
nition problem into a binary classification problem.
In the CL setting, we enable the model to perform
well in multi-label learning on the span classifica-
tion, while equipping it with knowledge distillation
at the span entity level based on the Bernoulli dis-
tribution it produces. To address the label noise
problem in the incremental learning process, we
introduce a reinforcement learning strategy for the
student model in the knowledge distillation process
(Jiang, 2023), using the most suitable knowledge
distillation method for the current student model.
For model prediction, we introduce a multi-label
classification loss function (Su et al., 2022), which

fits well with our sequence labeling approach. This
approach offers several advantages: 1) It allows for
knowledge distillation and retention of old knowl-
edge during the CL process. 2) The introduction
of reinforcement learning effectively reduces la-
bel noise while also addressing the issue of catas-
trophic forgetting that arises due to frequent weight
updates for the same entity in different steps based
on different categories. 3) The proposed framework
of the model can be used as a reusable framework
for continuous learning knowledge distillation and
applied to other model migration or continuous
learning domains.

We evaluated our model on two Named
Entity Recognition (NER) datasets, namely
OntoNotes5(Hovy et al., 2006), and Fewnerd(Ding
et al., 2021). The experimental results demonstrate
that our proposed SKD-NER model significantly
outperforms existing continuous learning NER
models and achieves a new state-of-the-art (SOTA)
performance. Notably, SKD-NER almost elimi-
nates catastrophic forgetting on relatively simple
OntoNotes, thereby achieving "continuous learn-
ing" in the true sense. Our contributions can be
summarized as follows:

• We propose a Continual Named Entity Recog-
nition model and a reinforcement learning-
based knowledge distillation framework that
ensures the model’s effectiveness for continu-
ous learning, which can be further leveraged
in other fields of continuous learning or knowl-
edge transfer.

• Innovatively introduce reinforcement learning
strategies to support Continual Named Entity
Recognition, while optimizing traditional se-
quence labeling methods and loss functions to
address catastrophic forgetting and label noise
problems in continuous learning.

• Through extensive experiments, we demon-
strate that our approach achieves state-of-the-
art performance in Continual Named Entity
Recognition and can be seamlessly integrated
as a plug-and-play module to further enhance
the performance of other Continual Named
Entity Recognition models.

2 Related Work

2.1 Continual Learning NER

Recent research has expanded the application of
Continual Learning (CL) from Computer Vision
to Natural Language Processing (NLP) tasks, par-



ticularly NER. While most CL-related works in
computer vision focus on accuracy-oriented tasks
like image classification, their direct application
to CL-NER has shown unsatisfactory performance
due to challenges in preserving old knowledge in
Other-class samples.

Chen and Moschitti (2019) pioneered the study
of knowledge transfer in sequence labeling NER
models from source to target domains with new
entities, using a neural adapter module to han-
dle diverse entity distributions. Following this,
AddNER, ExtendNER (Monaikul et al., 2021), and
LR (Xia et al., 2022) were developed under a class-
incremental setting for CL-NER, employing se-
quence labeling methods with knowledge distilla-
tion. AddNER uses a multi-head approach, while
ExtendNER and LR employ single-head layouts
with different strategies for handling O tags and old
entity mentions. However, current methods such as
AddNER and ExtendNER still face forward incom-
patibility issues and require cumbersome coopera-
tion with knowledge distillation. SpanKL(Zhang
and Chen, 2023) explores the potential of span-
based models for solving CL-NER with Excellent
forward compatibility to solve this problem.

In the context of CL-NER, token-noise is also
a very important issue to be concerned about, self-
training (Rosenberg et al., 2005; De Lange et al.,
2019) has been a straightforward solution for learn-
ing old knowledge from Other-class samples. How-
ever, this approach suffers from error propagation
between models. Recently, Das et al. (2022) have
proposed contrastive learning and pretraining tech-
niques to address the problem of token-noise in
few-shot NER. CFNER (Zheng et al., 2022) pro-
poses a causal framework in CL-NER that explic-
itly addresses the challenges posed by token-noise.
In contrast, Our approach utilizes reinforcement
learning strategies to adjust the process of knowl-
edge distillation, optimizing the process and ensur-
ing the forward compatibility of the model, while
also addressing the issue of token-noise to some
extent.

2.2 Reinforcement learning

Reinforcement learning has found wide application
in natural language processing, including machine
translation, dialogue systems, and text summariza-
tion. More recently, researchers have focused on
the potential of RL in the field of continuous learn-
ing for natural language processing, with the aim of

developing models that can learn new tasks while
retaining the memory of previously learned knowl-
edge. For example, Ruder (2019) uses RL to fine-
tune pre-trained models with a combination of dif-
ferent reinforcement learning strategies to adapt
them to new tasks. Bo et al. (2019) leverages a
selector to choose source domain data that is close
to the target and accepts rewards from both the
discriminator and transfer learning module. Rama-
murthy et al. (2022) present NLPO (Natural Lan-
guage Policy Optimization), a policy optimization-
based RL algorithm that dynamically learns task-
specific constraints on language distribution.

Inspired by these studies, in this work, we use
RL to expertly select appropriate distillation tem-
perature and loss weights for knowledge distilla-
tion to support continuous learning. This approach
successfully mitigates the impact of catastrophic
forgetting on model recognition accuracy during
continuous learning.

3 Our Approach

In this section, we will first introduce the task set-
ting for Continual Learning Named Entity Recog-
nition (NER). After presenting the overall structure
of the SKD-NER model, we provide a detailed
explanation of how the model integrates reinforce-
ment learning strategies.

3.1 Problem Formulation

Taking into account the non-overlapping nature
of entity types in continual learning NER tasks,
we follow recent work and propose CL-NER (Xia
et al., 2022) in an incremental setting. Given a se-
ries of tasks T1, T2, ..., Tn and their corresponding
training sets D1, D2, ..., Dn, for each task Tn, a
new entity type to be recognized and its training
set Dn with annotations for the current entity type
are defined.

Specifically, we first define a task T1 and train a
model M1 on the dataset D1 to recognize the en-
tity type E1. Then, task T2 defines the model M2

to recognize a new entity type E2 on the dataset
D2. It is noteworthy that M2 is obtained through
knowledge distillation with reinforcement learning
based on M1 to achieve the ability to recognize
entity type E2 while retaining the ability to rec-
ognize entity type E1. Similarly, in the following
n incremental steps, we train the previous model
Mn − 1 on the dataset Dn to obtain the new model
Mn, while incorporating a reinforcement learning
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Figure 3: Overall architecture of SKD-NER comprises a shared contextual encoder that is applicable to all tasks
and different span representation layers for each entity type in each task. The Bernoulli KL loss and Span loss are
calculated on the corresponding entity-relevant span matrices for previously learned entities and currently learned
entities, respectively. The RL-KD strategy layer is responsible for identifying the critical parameters for knowledge
distillation.

strategy into the knowledge distillation process to
ensure the recognition of all entity types defined
so far and to reduce catastrophic forgetting and the
impact of label noise on the model.

3.2 SKD-NER Model
We have introduced an innovative and effective
SKD-NER model (refer to Fig. 3) that can learn
diverse entity types in a sequential manner for each
task. The model takes an input sentence X compris-
ing n tokens: [x1, x2, ..., xn]. We define a "span"
as a cohesive sequence of tokens that initiate with
xi and culminate with xj , where 1 ≤ i ≤ j ≤ n.
At the l-th incremental step, the SKD-NER model
endeavors to represent each span in a matrix hk.
In this matrix, each span consisting of contiguous
tokens sij is assigned a label corresponding to the
current K-th entity class. The SKD-NER model
consists of the contextual encoder, Span prediction
layer, label loss layer, and the RL-KD (reinforce-
ment learning for knowledge distillation) strategy
layer.
Contextual Encoder. Given an input sentence X
comprising n tokens [x1, x2, ..., xn], to capture the
dependence between tokens within input sentences,
we link each token in X with its corresponding
representation in a pre-training language model
(e.g., BERT). We define E = [e1, e2, . . . , en] ∈
Rn×de to represent the embedded vectors of input
X . After PLM processing, We end up with a new

matrix H ∈ Rn×dh , for each token as:

h1, h2, . . . , hn = PLM(x1, x2, . . . , xn) (1)

Span Prediction Layer. Many scholars have
thoroughly explored the generation of Span Predic-
tion from tokens and have achieved quite effective
results. However, due to the structural bias of Span
Prediction which has not been fully understood, Fu
et al. (2021) treated span prediction as a system
combiner to re-identify named entities from the
outputs of different systems. In order to further
improve the recognition accuracy of NER models
for nested or overlapping discontinuous entities,
Zhang et al. (2021) used text syntax dependency
to guide the construction of a graph convolutional
model to achieve Span Prediction, while Su et al.
(2022) employed a multi-head attention mechanism
to compute the span matrix. We adopted the latter
method, using the starting position token and end-
ing position token of the entity processed by two
feedforward layers for dot product calculation to
obtain the prediction of the span. Now that we have
obtained the representation hn of the sentence, the
process of representing spans can be described as
follows:

s(i, j) = SpanPre[hi, hi+1, . . . , hj ] (2)

sa(i, j) = FFNi,a(hi)
⊤FFNj,a(hj) (3)



Where a represents the a-th type of entity to
be identified, i represents the starting position to-
ken, and j represents the ending position token. In
order to fully utilize boundary information, we in-
troduced the Relative Position Encoding (ROPE)
during the span prediction process Su et al. (2022).
This encoding explicitly injects relative position
information into the model. Specifically, after in-
jecting ROPE position encoding, span sa(i, j) can
be represented as follows:

sa(i, j) = FFNi,a(hiRi)
⊤FFNj,a(hjRj)

= FFNi,a(hi)
⊤R(j−i)FFNj,a(hj)

(4)

Label Loss Layer. Building on the span-based
method, we generated a marked global upper-
triangle matrix for each sentence to be learned. To
address this upper-triangle matrix, we devised a
scoring function to characterize the relationship be-
tween span and the current entity type as follows:

Ωi,j =


1 i ≤ j ∧ (i, j) ∈ Pa

0 i ≤ j ∧ (i, j) /∈ Na

− inf i > j;
(5)

Here, Pa represents the positive set of entities
of type a and Na represents the negative set of
entities of type a. To enhance the ability of contin-
uous learning NER to recognize entities in the cur-
rent task, we introduced a span-based cross-entropy
loss. This loss not only encourages the model to
better learn boundary information but also ensures
forward comparability of the model’s predictions
during the continuous learning process.

Lspan = log

1 +
∑

1≤i≤j≤L

exp
(
(−1)Ωi,j sa(i, j)

) (6)

3.3 RL-KD strategy layer
To preserve the model’s recognition ability for pre-
viously learned entity types, we employ knowledge
distillation (Gupta et al., 2019; Hinton et al., 2015)
to prevent catastrophic forgetting. Specifically, in
the K-th incremental step (K > 1), we first use
the previously learned model Mk (teacher model)
to make a one-pass prediction on the entire current
training set Dl, up to the entity type Ek learned
in the previous step of the current task. During
this process, we introduce a reinforcement learn-
ing strategy to optimize the distillation temperature

(see Fig.4), which will act on the Bernoulli distri-
butions qi of soft distillation labels for each span
of each old entity type. Specifically, during the soft
distillation process, the original probability distri-
bution zi is typically normalized by the softmax
and then multiplied by a temperature factor T to
obtain a smoothed probability distribution:

qi =
exp (zi/T )∑
j exp (zj/T )

(7)

These pseudo-labels are used to compute the
Bernoulli KL divergence loss of the current model
Mk + 1 (student model):

LSKD
KD = KL

(
pMk

Ek , p
Mk+1

Ek

)
(8)

Here, Ek denotes all the learned entity recogni-
tion types up to the current step, pMk represents
the soft distillation labels generated by the teacher
model, and pMk+1 represents the labels produced
by the student model for the previous entity types.
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Figure 4: Overall architecture of RL-KD consists of
three parts: State, Action, and Reward. This module
adjusts the critical parameters of knowledge distillation
to optimize model performance.

As with all knowledge distillation works, after one-
pass prediction at each step, the final knowledge
distillation loss is:

L = αLspan + βLKD (9)

State. Our reinforcement learning approach
maintains a sequence of environment states



s1, s2, ..., sj . They summarize the input instance
and the features of the teacher model, enabling
wise decisions to be made accordingly. We design
sj as a vector of real numbers F (sj), which in-
cludes the concatenation of three features. The first
feature is the vector representation R(xi) ∈ Rd

of the input instance xi. In this paper, we use the
score matrix obtained by the span prediction layer
as the semantic representation input. The second
feature is the prediction by the teacher model Mk

on the current input text sequence xi for all k types
already identified before the (k + 1)-th task. The
third feature is the loss of the student model on the
input text sequence xi, which is the actual loss of
the new entity types that the student model needs
to recognize for the current task.
Action. The soft labels generated by the teacher
model are associated with the distillation temper-
ature and the distillation loss weight during the
knowledge distillation process. The agent adjusts
the distillation temperature and the weight of the
distillation loss for the current teacher model. The
policy function πθ(sj , aj) determines a distribution
over actions on a state, from which an action value
aj ∈ {0, 1} is sampled. θ represents the trainable
parameters in the policy function.

πθ (sj , aj) = [ temp (sj , aj) , klweight (sj , aj)] (10)

temp (sj , aj) = aj [T +AF (sj)] + (1− aj)T (11)

klweight (sj , aj) = min [aj(weight

+BF (sj)) + (1− aj)weight, 0.1]
(12)

where F (sj) ∈ Rd+(C+1) is the state vector and
trainable parameter θ = {A ∈ Rd+(C+1), b ∈ R1}
The result of the above strategy function definition
is an adjusted value assigned to two key parameters
in the knowledge distillation process.
Reward. The reward function is related to the
performance of the student model trained from
the distillation of the teacher model. We define
a batch of training instances, denoted as ξb =
{xi, xi+1, . . . , xi+m−1}, where b represents the
batch ID and m represents the batch size. For
each instance xj(i ≤ j ≤ i + m − 1), we con-
struct a state vector sjk for each teacher model
Mk, and sample an action ajk according to the pol-
icy πθ(s

k
j , a

k
j ) (Eq.10). For all sampled ajk, we

integrate the average of the KL loss (Eq.8) into

the distillation loss KD (Eq.7) to train the student
model. To incentivize better model generalization,
we use the accuracy metric on the development set
D0 and the student model loss as the reward, where
γ is a hyperparameter balancing the reward from
the training set and the development set. Note that
the reward is not given immediately after each step
is taken. Instead, it is deferred until the completion
of the entire batch training.

reward =γ ∗ (−LCE − LDL)

+ (1− γ) ∗ Accuracy on D0
(13)

4 Experiments

4.1 Settings
Datasets. We conduct experiments on two widely
used datasets, i.e., OntoNotes5 (Hovy et al., 2006),
(Ding et al., 2021). Meanwhile, we follow recent
works (Monaikul et al., 2021; Xia et al., 2022) to
convert the widely used standard NER corpora into
separated datasets acting as a series of CL synthetic
tasks in class-incremental setting. Both datasets,
OntoNotes5 and FewNerd, reflect the model’s per-
formance in continual learning tasks to some ex-
tent. OntoNotes5 requires only one entity type
to be learned for each task, which can reflect the
model’s performance in simple continual learning
tasks. FewNerd, on the other hand, requires multi-
ple entity types to be learned for each task, thereby
reflecting the model’s performance in more com-
plex continual learning tasks closer to real-world
scenarios. We placed the more detailed dataset
settings in the appendixA.
Training. We use bert-large-cased (Devlin et al.,
2018) as the contextual encoder for our model. To
split the original training/development set into a
series of CL tasks, we randomly divide the sam-
ples into unrelated tasks, following previous work
(Monaikul et al., 2021). We pre-define a fixed or-
der of classes as the setting for the CL order, as in
previous CL work (Hu et al., 2021). However, to
avoid excessive randomness in the experiments, we
pre-define multiple entity class learning orders for
both datasets, and the final experimental results are
the average of the results under multiple learning
orders. The pre-defined entity class learning orders
and more detailed training settings are listed in the
appendixB.
Metrics. Due to the class imbalance problem in
NER, we use Micro F1 and Macro F1 to measure
the model performance. We report the Micro F1
and Macro F1 of all learned types up to each step,



Method
OntoNotes5

Step1 Step2 Step3 Step4 Step5 Step6 δ
AddNER 82.53 83.65 84.46 85.02 85.43 84.97 2.44
ExtendNER 82.69 83.16 84.34 84.54 85.06 84.83 2.14
L&R 92.06 88.09 85.69 83.79 83.38 83.02 -9.04
SpanKL 85.6 87.97 88.34 88.84 88.63 88.12 2.52
SKD-NER(Ours) 87.33 91.47 92.36 90.76 88.54 88.17 0.84

Table 1: Macro-F1 of different five models at each step on OntoNotes5, and δ represents the degree of forgetting of
the model, which is the difference between the F1 of the final model and the F1 of the first step.

Figure 5: The anti-forgetting performance of four models on various entities in OntoNotes5.

and unless otherwise noted, these results are the
average of the results obtained from all pre-defined
learning orders.

Baselines. We consider five baselines in this
work: ExtendNER and AddNER (Monaikul et al.,
2021), L&R(Xia et al., 2022), CFNER(Zheng et al.,
2022), and SpanKL(Zhang and Chen, 2023). Ex-
tendNER was the previous state-of-the-art method
in CL-NER, and L&R was the recent state-of-the-
art method in CL-NER. CFNER extracts causal
effects in CL-NER tasks and achieves advanced
performance in multi-entity type tasks. SpanKL
also uses a span-level named entity recognition
model for continuous learning, and it performs well
in terms of forgetfulness resistan. It is worth noting
that these baselines use different dataset splitting
methods, and we believe that the dataset splitting
method is an extremely important but easily over-
looked issue in continual learning tasks. To better
approximate real-world scenarios, we randomly
divide the samples into unrelated tasks.

4.2 Results

Comparisons with State-Of-The-Art. We adopt
a more realistic dataset scenario by randomly divid-
ing the samples into unrelated tasks, and we com-
pare our method with previous baselines on these
datasets. The experimental results on OntoNotes5
are summarized in Table 1, and Figure 5 . In most
cases, our method achieves the best performance.
In particular, we use a delta value to quantify the
difference between the final results of each model’s
continual learning and the results of the first step of
learning, which largely represents the model’s anti-
forgetting ability. Our model outperforms the previ-
ous state-of-the-art by a large margin in this metric.
Additionally, in Figure 6, we observe an interesting
phenomenon that for a particular entity, the predic-
tion accuracy of our model on distilled models after
one or even two steps of distillation is higher than
the accuracy on the previous predictions made on
the same entity. We attribute this improvement in
generalization ability to the knowledge distillation



under reinforcement learning, where future distil-
lation labels may be more accurate and consistent
than the originally learned labels. Due to space
constraints, we have included the results on the
Fewnerd dataset in the appendixD.
Ablation Study. We ablate our method, and the
results are summarized in Table 2. To validate the
effectiveness of the proposed reinforcement learn-
ing knowledge distillation method, we also apply
this method to traditional sequence labeling meth-
ods and BCE-loss methods. Specifically, in w/o
SL and w/o SPL, our model still applies the rein-
forcement learning knowledge distillation method,
while in w/o SL RL, we remove both the rein-
forcement learning policy and the span sequence
labeling method. The results show that the rein-
forcement learning policy plays a significant role in
our framework. Additionally, the new sequence la-
beling method also helps the model further combat
catastrophic forgetting. Due to the space limitation
of the article, we put the results of FewNerD into
the appendix D.

Method
OntoNotes5

Step1 Step2 Step3 Step4 Step5 Step6
SKD-NER(Ours) 87.33 91.47 92.36 90.76 88.54 88.17
w/o SL & RL 82.57 82.76 83.45 82.19 83.79 82.67
w/o SL 83.69 83.59 84.17 84.26 84.76 84.43
w/o RL 86.83 86.37 86.38 85.2 85.54 85.38
w/o SPL 86.79 91.13 92.07 90.04 88.43 88.14

Table 2: The ablation study of our method on
OntoNotes5, SL: sequence labeling, RL: reinforcement
learning strategy, w/o SPL:Replace span loss with BCE
loss.

Anti-CF performance analysis. We perform
Anti-CF performance analysis on the model un-
der OntoNotes5, and the results can be seen in
Table 3. For three entities, we track the forgetting
situation after 6 steps compared to the initial state.
In most cases, our model achieves the best perfor-
mance. The experimental results demonstrate that
our model essentially solves the CF problem on
OntoNotes5, which is a relatively simple dataset.
We also put FewNerd’s results in the appendix D,
its results also prove the validity of our method.
Label noise reduction. To validate our hypothe-
sis that SKD-NER alleviates the label noise prob-
lem in continual learning and leads to improve-
ments, we plot the normalized confusion matrix
between different entity types based on the final
predictions (Figure 6). Specifically, we use the
′B−X ′ (X denotes a specific entity type) labels in
the ground truth as the true labels and the ′B −X ′

Method
OntoNotes5

Step1 Step2 Step3 Step4 Step5 Step6 δ

ExtendNER
ORG 83.2 82.32 82.4 82.16 82.14 81.92 -1.28
PER 91.31 90.1 88.38 88.92 89.38 89.43 -1.88
GPE 92.81 91.56 91.91 91.27 91.35 91.34 -1.47

SKD-NER
(Ours)

ORG 87.33 88.62 87.55 87.87 85.76 85.39 -1.94
PER 94.03 93.98 93.51 93.22 92.4 92.3 -1.73
GPE 94.64 94.79 95.16 95.2 94.06 93.4 -1.24

Table 3: The Anti-CF performance analysis, we ana-
lyzed the Anti-CF performance of our model and Ex-
tendNER at each step on three types of entities, and
used δ to represent the total forgetting amount.

labels in the model predictions as the predicted la-
bels. From the figure, we can see that compared
with ExtendNER, SKD-NER has higher values on
the diagonal of the confusion matrix. This indicates
that SKD-NER is less affected by incorrectly prop-
agated labels and has more accurate discrimination
between different entity types than ExtendNER.
These results are consistent with the improvements
shown in Table 1.

Figure 6: The aconfusion matrix of two models on
various entities in OntoNotes5.

5 Conclusion

This paper proposes an effective continual learning
named entity recognition (NER) model, SKD-NER,
aiming to maintain high accuracy for existing en-
tity types while identifying new entity types. We
propose a continual learning NER model based on
the span method, SKD-NER, which combines re-
inforcement learning policy. We use knowledge
distillation (KD) to preserve memories in the con-
tinual learning process and adopt a reinforcement
learning policy with a multi-label classification loss
for prediction, effectively alleviating the impact of
label noise in continual learning. The experimental
results demonstrate that the proposed model not
only outperforms state-of-the-art methods but also
almost solves the catastrophic forgetting problem
on OntoNotes5.



6 Ethics Statement

For ethical considerations, we provide the follow-
ing clarifications: (1) We conduct all experiments
on existing datasets sourced from public scientific
research. (2) We describe the statistical data of
the datasets and the hyperparameter settings of our
method. Our analysis and experimental results are
consistent. (3) Our work does not involve sensitive
data or sensitive tasks.

7 Limitations

Although the proposed model can partially solve
the catastrophic forgetting problem, there is still
significant room for improvement in more complex
dataset testing. Additionally, due to the introduc-
tion of knowledge distillation with a reinforcement
learning policy, the training time of our model is
slightly longer than that of baselines.
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OntoNotes Permutations
1 ORG → PER → GPE → DATE → CARD → NORP
2: DATE → NORP → PER → CARD → ORG → GPE
3: GPE → CARD → ORG → NORP → DATE → PER
4: NORP → ORG → DATE → PER → GPE → CARD
5: CARD → GPE → NORP → ORG → PER → DATE
6: PER → DATE → CARD → GPE → NORP → ORG

Few-NERD Permutations
1: LOC → PER → ORG → OTH → PROD → BUID → ART → EV ET
2: ORG → PROD → ART → EV ET → OTH → PER → LOC → BUID
3: PROD → EV ET → OTH → PER → ART → LOC → BUID → ORG
4: BUID → OTH → PROD → PER → ORG → LOC → ART → EV ET

Table 4: Different permutations of tasks used on OntoNotes and Few-NERD.

the model with the best validation performance for
testing and the next step of learning. For testing,
we retain the labels of all entity types identified
until the current task. The pre-defined entity class
learning orders are showen in the table 4.

C Hyper-parameters

In the experiments, we set the dropout rate to
0.1, and we use do = 50 for all subsequent feed-
forward networks in span predictions. For the ini-
tial model loss, we set α = β = 1, and we set the
initial distillation temperature to 1. All parameters
are fine-tuned using the Adam optimizer (Kingma
and Ba, 2015), with a learning rate (lr) of 5× 10−5

for the bert encoder and 1×10−3 for the remaining
networks. After BPE tokenization widely used in
PLMs, we limit the maximum sentence length to
256, and we only use the representation of the first
subword piece to represent the word after the Bert
contextual encoder.

D Additional Experimental Results
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Figure 7: The anti-forgetting performance of Extend-
NER models on FewNERD.

We conducted comparative experiments, abla-
tion studies, and other key experiments on SKD-
NER model on the FewNERD dataset. The experi-
mental results demonstrate that our model achieves
state-of-the-art performance in mitigating catas-
trophic forgetting and entity recognition accuracy
in CL-NER, outperforming baselines in most cases.
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Figure 8: The anti-forgetting performance of SpanKL
models on FewNERD.
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Figure 9: The anti-forgetting performance of SKD-NER
models on FewNERD.



Method
FewNERD

Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 δ
AddNER 64.01 62.25 61.87 61.16 61.37 62.34 63.88 63.67 -0.34
ExtendNER 64.06 59.02 57.03 55.79 55.65 56.03 56.78 56.09 -7.97
L&R 68.13 66.72 64.51 63.44 60.97 61.23 60.88 60.32 -7.81
SpanKL 67.82 64.04 63.24 62.08 64.13 61.98 63.01 62.04 -5.78
SKD-NER(Ours) 72.09 71.8 68.79 68.13 67.15 66.84 66.88 67.14 -4.95

Table 5: Macro-F1 of different five models at each step on FewNerd, and δ represents the degree of forgetting of the
model, which is the difference between the F1 of the final model and the F1 of the first step.

Method
FewNERD

Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8
SKD_NER(Ours) 72.09 71.8 68.79 68.13 67.15 66.84 66.88 67.14
w/o SL&RL 64.05 59.67 58.68 57.79 56.64 56.03 56.98 57.02
w/o SL 68.63 66.89 64.51 64.32 62.08 61.53 63.05 62.89
w/o RL 67.76 65.23 64.43 63.08 65.19 63.27 64.66 64.07
w/o SPL 72.08 72.01 67.63 67.56 67.02 66.69 66.74 67.03

Table 6: The ablation study of our method on FewNERD, SL: sequence labeling, RL: reinforcement learning
strategy, w/o SPL:Replace span loss with BCE loss.

Method
FewNERD

Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 δ

ExtendNER
LOC 70.95 72.07 72.66 72.92 73.16 73.07 72.76 72.68 1.73
PER 63.23 63.62 63.8 64.13 63.95 62.97 62.57 62.04 -1.19
ORG 57.97 58.16 58.45 58.14 57.11 56.81 56.42 55.96 -2.01

SKD-NER
LOC 75.09 76.02 75.93 76.0 76.14 75.97 75.96 75.95 0.86
PER 66.36 66.26 66.22 65.97 65.95 65.52 65.03 65.18 -1.18
ORG 61.22 61.95 61.96 61.75 61.55 61.01 61.24 61.18 -0.04

Table 7: The Anti-CF performance analysis, we analyzed the Anti-CF performance of our model and ExtendNER at
each step on three types of entities, and used δ to represent the total forgetting amount.


