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Abstract

Recent studies indicate a preference for sum-001
maries generated using large language mod-002
els (LLMs) over those using classical models,003
highlighting a performance discrepancy. This004
study explores strategies to narrow the gap be-005
tween the summaries generated through these006
two models. To address this, we introduce007
a novel framework that uses LLM-generated008
summaries to train classical models, adopt-009
ing a two-stage training approach to enhance010
their summary quality. Although classical mod-011
els are relatively smaller in size than LLMs,012
through automatic metrics and human eval-013
uations, we can demonstrate that the perfor-014
mances of classical models, trained using LLM-015
generated references can catch up with LLMs.016
Our findings create a simple yet potential way017
to improve classical summarization models by018
leveraging LLMs. Additionally, we contribute019
a new dataset GXSum1, enabling further re-020
search and promoting development progress in021
this subject.022

1 Introduction023

Text summarization plays a pivotal role in the field024

of natural language processing by condensing ar-025

ticles into concise versions that capture the main026

information. With the rapid development of deep027

learning, automatic text summarization systems028

have made significant progress. (Nallapati et al.,029

2016a; Vaswani et al., 2017; Li et al., 2018; Shi030

et al., 2021). More recently, large language mod-031

els (LLMs) have revolutionized the field of nat-032

ural language processing. These models exhibit033

remarkable results in summarization accuracy, par-034

ticularly under zero-shot and few-shot fine-tuning035

scenarios (Wang et al., 2023; Basyal and Sanghvi,036

2023; Ahmed and Devanbu, 2023). Unlike classi-037

cal models, LLMs leverage reinforcement learning038

from human feedback (RLHF) (Kirk et al., 2023),039

*Equal contribution.
1https://github.com/anonymous

fine-tuning their outputs to align more closely with 040

human preferences, thereby widening the perfor- 041

mance gap with classical models (Wang et al., 042

2023; Zhang et al., 2024; Fabbri et al., 2021). Some 043

studies even indicate that humans might prefer 044

LLM-generated summaries to those written (or se- 045

lected) by humans (Liu et al., 2023b,a). 046

Sweeping over previous research on text sum- 047

marization, most studies mainly concentrated on 048

developing novel model architectures (Dou et al., 049

2021; Wang et al., 2022a; Liu et al., 2022) or train- 050

ing method (Stiennon et al., 2020). These efforts 051

improve performance on specific benchmarks, yet 052

they often increase model complexity or compro- 053

mise training efficiency. However, these efforts still 054

do not bridge the performance gap with LLMs. 055

Knowledge distillation is a simple and straight- 056

forward way to transfer model capabilities from 057

one model to another. To move beyond LLMs in 058

a simple and cost-effective way, we present a two- 059

stage training framework that is expected to allow 060

classical summarization models to rival the perfor- 061

mance of LLMs based on the fundamental philoso- 062

phy of knowledge distillation in this study. More 063

specifically, in the first stage, we leverage LLMs 064

to generate summaries and form a new dataset. 065

Next, we train classical models referring to the new 066

ground truths with the traditional maximum likeli- 067

hood objective. By doing so, the classical model 068

is expected to not only inherit the advantages of 069

LLMs but also retain the abilities of original de- 070

signs, delivering better results than LLMs. 071

In sum, our key contributions are at least three- 072

fold. First, we propose a simple yet efficient frame- 073

work to enhance the performance of classical mod- 074

els and catch up with LLMs. Second, a series of 075

experiments were used to show that significant per- 076

formance gains are achievable even with limited 077

data for fine-tuning. Of course, as always, more 078

data yields better results. Third, a new dataset 079

GXSum is released to facilitate further research, 080
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perform fair comparisons, make results producible,081

and promote research progress in the line of re-082

search.083

2 Related Work084

Previous research has demonstrated the exceptional085

proficiency of LLMs in generating summaries, out-086

performing classical models in both automated087

evaluation metrics and human assessments. Ad-088

ditionally, summaries generated using LLMs, es-089

pecially in the news domain, have been shown to090

be at par with, or even superior to, those crafted by091

humans. These results reveal significant potential092

for LLMs on the text summarization task (Victor093

et al., 2022; Wang et al., 2022b; Goyal et al., 2022).094

Some studies further emphasize that the field of095

summarization is undergoing significant changes,096

suggesting a pivotal moment in summarization re-097

search. A thought-provoking question is whether098

those human-generated ground truths bound the099

performances of classical summarization models100

(Pu et al., 2023; Zhang et al., 2024).101

The feasibility of using LLMs for generating102

source data has been extensively explored. Some re-103

search has introduced methods for distilling LLMs104

and employing them in data augmentation tasks105

(Wang et al., 2021; Ding et al., 2023; Kang et al.,106

2023). Specifically, these methods focus on extract-107

ing the most relevant information from LLMs to108

enrich training datasets, thereby enhancing model109

performance without the need for extensive com-110

putational resources. Notably, a series of studies111

have demonstrated the use of LLMs to generate112

both final answers and task-related descriptions,113

which aid in training smaller models for reasoning114

tasks (Li et al., 2022; Shridhar et al., 2023; Hsieh115

et al., 2023). In the realm of text summarization,116

Wang et al. (2021) have used GPT-3 (Brown et al.,117

2020) to generate reference summaries. Concur-118

rently, Gekhman et al. (2023) proposed the use of119

LLMs for annotating summary factual consistency120

(Maynez et al., 2020), facilitating the training of121

models to evaluate factual consistency. Moreover,122

Liu et al. (2023c) have explored further fine-tuning123

of news summaries generated by the GPT series124

for the summarization domain.125

Therefore, in this paper, we expand the dataset126

and thoroughly analyze the differences between127

LLMs and human summarization. In the subse-128

quent research, we will further train the summaries129

generated using LLMs, aiming to redefine the role130

of LLMs in summarization tasks. 131

3 LLM-Guided Summarization 132

3.1 Models 133

In this study, we selected the most advanced Chat- 134

GPT2 provided by OpenAI as an example. To 135

minimize the randomness of generated results, we 136

set the temperature parameter of the model to 0, 137

whereas other parameters are at their default val- 138

ues to ensure stability and reproducibility of the 139

experimental results. 140

For a comprehensive analysis, BART (Lewis 141

et al., 2020), PEGASUS (Zhang et al., 2020), and 142

BRIO (Liu et al., 2022) were chosen as the ba- 143

sic classic summarization models for our exper- 144

iments. These models have been proven in pre- 145

vious research to possess excellent text summa- 146

rization capabilities, each representing various re- 147

search directions in the field of summarization. The 148

pre-trained models of BART and PEGASUS are 149

sourced from the Transformers Library (Wolf et al., 150

2020), whereas the weights for BRIO are obtained 151

from the GitHub repository of the original paper. 152

3.2 Human Referenced Datasets 153

In this study, we adopted two key news summa- 154

rization datasets that are widely used in the re- 155

search of summarization models and the evalua- 156

tion of large language model performance: the 157

Extreme Summarization Dataset (abbreviated as 158

XSum) (Narayan et al., 2018)3 and the CNN / 159

DailyMail News Summarization Dataset (abbre- 160

viated as CNNDM)4 (Nallapati et al., 2016b). The 161

XSum dataset is comprised of press releases from 162

the British Broadcasting Corporation, whereas the 163

CNNDM dataset compiles news articles from the 164

Cable News Network (CNN) and the Daily Mail. 165

Notably, these two datasets differ significantly in 166

their nature. Compared to CNNDM, the summary 167

reference texts in XSum mostly contain only one 168

to two sentences, posing a significant challenge for 169

summarization models to refine and extract core 170

information for the summary. Table 1 shows the 171

ROUGE scores (cf. section 4.2) of classic models 172

on the XSum and CNNDM datasets. 173

2GPT-4-Turbo (gpt-4-1106-review)
https://platform.openai.com/docs/models/overview

3https://github.com/EdinburghNLP/XSum
4https://cs.nyu.edu/~kcho/DMQA/
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XSum CNNDM

Models R-1 R-2 R-L R-1 R-2 R-L

BART 45.14 22.27 37.25 44.16 21.28 40.90
PEGASUS 47.21 24.56 39.25 44.17 21.47 41.11
BRIO 49.07 25.59 40.40 47.78 23.55 44.57

Table 1: BART, PEGASUS, and BRIO’s ROUGE scores on the XSum and CNNDM datasets.

3.3 LLM Referenced Dataset174

As one of the core objectives of our research, we175

created a dataset comprising summaries generated176

by LLMs to serve as reference summaries. This177

dataset is based on XSum and CNNDM, maintain-178

ing the format of the original datasets. To leverage179

the ChatGPT API for generating high-quality sum-180

maries, we have meticulously designed a prompt181

template that specifically emphasizes the role of182

ChatGPT as a summary writer. Additionally, to183

better control the summary length, we included a184

description of the length limit as a soft constraint185

in the prompt and set the API max_tokens parame-186

ter as a hard constraint. The detailed design of187

the prompt is presented in Appendix A.1. For188

the source text, we designated the document from189

XSum and the article from CNNDM as the vari-190

ables. During the summary generation process,191

the length restriction was set to ensure that the192

difference in lengths between the newly generated193

summaries and the original reference summaries re-194

mained within a range of plus or minus five tokens.195

We provide an example of our summary generation196

process in Appendix A.2.197

3.4 Implementation Details198

3.4.1 Data Processing199

We extracted a sample comprising 20,000 data200

points from the training set and 1,100 data points201

from the validation set. These samples were202

subjected to the LLM summarization workflow to203

produce reference summaries. This subset was204

designated as the Small variant. In contrast, the205

test set underwent comprehensive processing to206

guarantee a robust and reliable evaluation. Data207

processing was conducted on both the XSum208

and CNNDM datasets to ensure uniformity and209

accuracy in our analyses.210

211

3.4.2 Training Details 212

The initiation of training for each model leveraged 213

checkpoints that had been previously fine-tuned 214

on the benchmarked XSum and CNNDM datasets. 215

These fine-tuned checkpoints used for BART 5, 216

PEGASUS 6 and BRIO 7 were obtained from the 217

Huggingface library. For optimization, the AdamW 218

optimizer was employed, incorporating a weight 219

decay of 0.01 and an initial learning rate of 0.00002. 220

A linear learning rate scheduler was applied with- 221

out any warm-up steps. Model performance evalu- 222

ation on the validation set informed the selection 223

of checkpoints, whereas performance metrics on 224

the test set were documented and reported. 225

3.5 Evaluation Methods 226

To validate the performance of our model, we use 227

two primary evaluation methods: human validation 228

and automatic metrics. Initially, human validation 229

gauges the summaries’ quality from readers’ view- 230

points. Automatic metrics are used to determine 231

whether the fine-tuning process is functioning prop- 232

erly and toward the training objectives. 233

3.5.1 Human Evaluation Protocol 234

As the main evaluation methods of this study, we 235

adopted three common forms of human validation, 236

including the Likert scale scoring, pairwise com- 237

parison, and multiple candidate ranking. 238

The Likert scale scoring is the most used method 239

in human validation assessments. The evaluation 240

process involves presenting a source text and its 241

corresponding generated summary, where human 242

annotators are required to score the summary on 243

several aspects of performance. In this research, 244

we defined five distinct aspects for evaluation: rele- 245

vance, consistency, fluency, coherence, and infor- 246

5https://huggingface.co/facebook/bart-large-xsum and
https://huggingface.co/facebook/bart-large-cnn

6https://huggingface.co/google/pegasus-xsum and
https://huggingface.co/google/pegasus-cnn_dailymail

7https://huggingface.co/Yale-LILY/brio-xsum-cased and
https://huggingface.co/Yale-LILY/brio-cnndm-cased
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(a) (b)

Figure 1: Pairwise Comparison on XSum and CNNDM

mativeness. Detailed guidelines for these metrics247

are elaborated in Appendix B.1. Through these248

metrics, human annotators can more comprehen-249

sively score the overall quality of summaries. The250

scoring range is set from 1 (worst) to 5 (best).251

Pairwise comparison is a human validation eval-252

uation method based on relative comparison. Given253

a source text and two summaries generated by dif-254

ferent models, assessors are asked to select the one255

with the better quality.256

Multiple candidate rating is an advanced and257

complex variation of the pairwise comparison258

method. Assessors are compelled to examine a set259

of summaries for a given source text and assign a260

unique rating to each, reflecting the overall quality261

of each summary. Therefore, the method facilitates262

a thorough evaluation of the performance variations263

across various summarization models. Within our264

experiment, we established a rating scale from 1265

(lowest quality) to 5 (highest quality).266

3.5.2 Automatic Evaluation Metrics267

We adopted Recall-Oriented Understudy for Gist-268

ing Evaluation (ROUGE) (Lin, 2004) as our au-269

tomatic evaluation metric for summarization ef-270

fectiveness. ROUGE is crucial in performing271

summarization research, serving as a standard272

for comparing the similarity and quality between273

computer-generated and human-crafted reference274

summaries. This study employs three ROUGE275

variants: ROUGE-1 (R-1), ROUGE-2 (R-2), and276

ROUGE-L (R-L). ROUGE-1 assesses unigram sim-277

ilarity to gauge informational content. ROUGE-2278

evaluates bigram similarity for fluency. ROUGE-279

L focuses on the longest common subsequence to280

determine core content extraction.281

4 Experiment Result and Analysis 282

4.1 Human preference 283

The collection of human annotations contains eval- 284

uations of summaries generated by models that 285

were fine-tuned on the Small dataset. These eval- 286

uations were obtained through a combination of 287

crowd-sourced contributors and expert judgments. 288

4.2 Crowd-Sourced Annotations 289

We gathered annotations via Amazon Mechanical 290

Turk (MTurk) for 1,000 articles from the XSum 291

and CNNDM test sets. Details of the recruitment 292

process are in Appendix B.2. We compared mod- 293

els fine-tuned on the original datasets with those 294

fine-tuned on the LLM-reference dataset. Each 295

summary was evaluated by three annotators using 296

Likert scale scoring and pairwise comparison meth- 297

ods (Section 3.5.1). 298

Figures 1b and 1a show the crowd-sourced win- 299

ning rates from pairwise comparisons. Systems 300

trained using human references are denoted with 301

Human, while those using GPT-4 references are 302

marked with GPT. Key observations: 303

(1) GPT-4 generated summaries were preferred 304

over human-written ones for both XSum and CN- 305

NDM tasks, supporting hypotheses from related 306

works (Goyal et al., 2022; Liu et al., 2023c; Pu 307

et al., 2023). 308

(2) Models trained on GPT-4 references consis- 309

tently outperformed those trained on human refer- 310

ences, demonstrating the benefits of high-quality, 311

AI-generated references in supervised training. 312

(3) The performance advantage was less pro- 313

nounced for CNNDM compared to XSum. 314

Table 2 shows the Likert scale scoring results. 315

Our analysis revealed: 316

4



Dataset System Relevance Consistency Fluency Coherence Informativeness

Human Base 0% 0% 0% 0% 0%

XSum

GPT-4 +13.8% +13.2% +9.3% +7.5% +3.6%
BARTGPT +17% +15.5% +10.9% +11.3% +4.2%
PEGASUSGPT +18.3% +15.4% +14.5% +16.5% +7.4%
BRIOGPT +11% +8.3% +9% +7% +3.3%

CNNDM

GPT-4 +3.58% +1.6% +5.6% +1.2% -0.2%
BARTGPT +0.2% +0.7% +1.4% +1.4% +0.9%
PEGASUSGPT -1.1% +3.1% +1.5% +1.8% +1.4%
BRIOGPT -1.9% +2.9% +0.7% +0.9% -0.5%

Table 2: Evaluation through Crowd-Sourced Likert Scale Scoring, which models referenced by humans serve as the
baseline for comparison (default as 0%). The report highlights the percentage difference in occurrences where one
system is adjudged to outperform the other. For instance, GPT-4 exceeds human writers in Relevance by 13.8% on
the XSum dataset. In case of a tie, both systems are recognized as winners.

(1) For XSum, GPT-4 referenced models outper-317

formed across all metrics, with the most significant318

improvement in summary relevance. Informative-319

ness remained the weakest point due to the dataset’s320

requirement for highly abstract, single-sentence321

summaries.322

(2) For CNNDM, GPT-4 referenced summaries323

still outperformed human-generated ones, but the324

margin was narrower (often within 1-2%). This325

is likely due to the dataset’s approach of collect-326

ing human-written summary bullets, which tend to327

be more extractive and closely mirror the original328

content.329

While these results validate our LLM-guided330

training approach, we acknowledge potential relia-331

bility concerns due to variability in nonexpert judg-332

ments (Callison-Burch and Dredze, 2010; Goyal333

et al., 2022; Zhang et al., 2024). To address this,334

we conducted additional analyses with expert re-335

viewers for more dependable evaluations.336

4.2.1 Expert Annotations337

To ensure the rigor of expert analysis, we estab-338

lished specific criteria for the selection of anno-339

tators, focusing on those with a requisite level of340

expertise. We collected annotations for a sample of341

100 articles from the XSum and CNNDM test sets.342

The evaluation of each summary was entrusted to343

three distinct expert annotators who applied the344

Multiple Candidates Rating Methods as delineated345

in Section 3.5.1. Additionally, annotators were346

required to provide reviews of their annotations,347

enabling verification of results. The candidates the348

position of an expert annotator are hired from the349

Upwork platform. The detailed recruitment setting 350

is described in Appendix B.3. 351

Figures 2b and 2a illustrate the rating distribu- 352

tions (1-5) for each system according to expert 353

evaluations. The analysis yields two key insights: 354

(1) Expert raters show a clear preference for sum- 355

maries generated using GPT-4 and GPT-4-assisted 356

systems over those written by humans. This sup- 357

ports our hypothesis based on crowd-sourced an- 358

notations, confirming the ability of our system to 359

produce summaries more aligned with human pref- 360

erences. 361

(2) Notably, models trained using GPT-4 ref- 362

erences achieve, and sometimes surpass, the per- 363

formance of GPT-4 in expert assessments, reach- 364

ing a 68% inter-annotator agreement. This indi- 365

cates that using our training methodology, smaller 366

models can attain the efficacy of large language 367

models. 368

(3) In both datasets, BARTGPT performs bet- 369

ter than GPT-4, with its proportion in CNNDM 370

reaching as high as 45%. However, BRIOGPT ’s 371

performance in CNNDM is closer to that of hu- 372

mans. 373

XSum CNNDM

0.3187 0.4377

Table 3: Ranking Pearson correlation coefficient by
three raters.

Based on the observed results, we further calcu- 374

lated the Pearson correlation coefficient (Pearson, 375

1907) for expert rankings, as shown in Table 3. The 376
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(a) (b)

Figure 2: Rating proportions in XSum and CNNDM

XSum CNNDM

Gwet’s AC1 PA Gwet’s AC1 PA

0.2252 41% 0.3773 52%

Table 4: Gwet’s coefficient and Percentage agreement
of BARTGPT better than GPT-4 by three raters.

XSum CNNDM

Gwet’s AC1 PA Gwet’s AC1 PA

0.4081 48% 0.5940 60%

Table 5: Gwet’s coefficient and Percentage agreement
of BARTGPT and PEGASUSGPT being better than
human by three raters.

correlation coefficient for XSum is 0.3187, and for377

CNNDM is 0.4377, indicating a positive correla-378

tion, meaning that the rankings by experts tended379

to be consistent. We also analyzed the consistency380

and agreement among the three experts who unan-381

imously considered BARTGPT better than GPT-382

4. Based on the results in Figure 2, we observed383

no significant difference between BRIOGPT and384

human. Therefore, we compared the consistency385

and agreement among the three experts who unani-386

mously considered BARTGPT and PEGASUSGPT387

better than human. We used Gwet’s Coefficient388

(Gwet’s AC1) (Gwet, 2008) and Percentage Agree-389

ment (PA) for calculations, with results shown in390

Tables 4 and 5, respectively. For the consistency391

and agreement in considering BARTGPT better392

than GPT-4, the consistency for both datasets si- 393

multaneously is 0.2252 and 0.3773, respectively, 394

which is considered Fair agreement. The agree- 395

ment percentages are 41% and 52%, respectively. 396

For the consistency in considering BARTGPT and 397

PEGASUSGPT better than human, the values are 398

0.4081 and 0.5940, respectively, which is consid- 399

ered Moderate agreement, with agreement percent- 400

ages of 48% and 60%. Therefore, both in terms 401

of ranking proportions and consistency and agree- 402

ment, these results demonstrate that by incorporat- 403

ing GPT-4 generated summaries into smaller mod- 404

els through simple knowledge distillation, we have 405

achieved summarization capabilities comparable to 406

GPT-4. 407

4.2.2 Brief 408

The results of the multi-summary ranking are quite 409

remarkable. We employed a teacher forcing train- 410

ing method, and theoretically, the model should not 411

surpass the teacher’s performance. However, after 412

using GPT-4 generated summaries, it outperformed 413

GPT-4 in expert rankings. This conclusion further 414

enhances the significance of this research. Addi- 415

tionally, although CNNDM showed higher consis- 416

tency and agreement values than XSum, XSum 417

performed better in overall pairwise comparisons 418

and rankings. Therefore, this paper proposes GX- 419

Sum, a news summarization dataset consisting of 420

numerous GPT-4-generated summaries. 421

4.3 Automatic Metric 422

Next, we compare various summary generation 423

models on the XSum and CNNDM datasets, us- 424
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XSum CNNDM

Reference Hypothesis R-1 R-2 R-L R-1 R-2 R-L

GPT-4

Human 24.95 5.64 18.59 36.80 10.89 31.91
BARTGPT 45.36 19.59 36.28 48.92 20.73 41.02
PEGASUSGPT 43.71 18.68 35.07 46.28 20.54 39.10
BRIOGPT 47.37 21.30 38.55 50.03 21.96 41.73

Human

GPT-4 24.95 5.64 18.57 36.80 10.90 32.05
BARTGPT 26.39 6.61 19.10 40.05 14.86 35.08
PEGASUSGPT 28.00 7.94 20.77 40.50 16.18 35.76
BRIOGPT 26.81 7.01 19.81 40.39 15.19 35.20

Table 6: Evaluation of ROUGE Scores after Fine-Tuning with 20,000 GPT-4 Summaries. This table presents the
calculated ROUGE scores, comparing various Hypotheses with References.

ing ROUGE scores for evaluation as shown in Ta-425

ble 6. This analysis contrasts human-generated426

summaries with those generated from GPT-4, not-427

ing lower ROUGE scores when comparing GPT-4428

outputs to human references, highlighting differ-429

ences in sentence structure and expression. Our430

results indicate variability in model performance,431

with GPT’s BRIO model leading in ROUGE-1 and432

ROUGE-L scores on CNNDM, and GPT-based433

models surpassing human performance on XSum434

in these scores. Despite this, a significant perfor-435

mance gap exists between the best models and hu-436

man summaries, particularly on XSum’s ROUGE-2437

scores. This result shows the strength of GPT-based438

models in abstract text generation, despite the chal-439

lenges in closely mimicking human summarization.440

5 Comparative Study441

5.1 Training Efficiency442

In Section 4.3, we detail the ROUGE score perfor-443

mance of various systems fine-tuned on a dataset444

of 20,000 GPT-4 generated references. The results445

show a discernible performance gap between the446

ROUGE scores achieved by our model and those447

reported in the original papers (Lewis et al., 2020;448

Zhang et al., 2020; Liu et al., 2022), particularly449

concerning the XSum dataset. Therefore, we ques-450

tioned whether fine-tuning the model on a larger451

dataset can yield further improvements in ROUGE452

performance. To check this, we created three sets453

of reference summaries from XSum articles using454

GPT-4, each varying in size, to serve as an enlarged455

training corpus. The specifics of the three datasets456

are detailed in Table 7.457

First, we trained the model starting from the458

checkpoint fine-tuned on XSum, employing the 459

same experimental setup as detailed in 3.4, results 460

are reported in Table 8. On analysis, it becomes ev- 461

ident that augmenting the size of the dataset leads 462

to an improvement in model performance, as mea- 463

sured by the ROUGE metric. 464

However, as we use the XSum checkpoint for 465

its proven quality as a baseline, human reference 466

remains crucial in our training process, leading to 467

redundancy compared to other systems. To address 468

this redundancy, we conducted additional exper- 469

iments where, alongside using the XSum check- 470

point, we initiated training with pre-trained weights 471

for each model in this new configuration. 472

Variant Train Validation Test

Small (20k) 20,000 1,100
11,334Medium (50K) 50,000 2,750

Large (100K) 100,000 5,500

Table 7: Details of three dataset variations on XSum

System Dataset R-1 R-2 R-L

BARTGPT

Small 45.36 19.59 36.28
Medium 47.44 21.47 38.34
Large 48.52 22.42 39.57

PEGASUSGPT

Small 43.71 18.68 35.07
Medium 46.63 20.99 38.12
Large 47.62 22.13 39.32

BRIOGPT

Small 47.37 21.30 38.55
Medium 48.82 23.28 40.66
Large 49.05 23.81 41.20

Table 8: Evaluation of ROUGE scores after fine-tuning
from the XSum checkpoint with various data sizes.
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System Dataset R-1 R-2 R-L

BARTGPT

Small 46.28 20.37 37.26
Medium 48.06 22.11 39.60
Large 48.84 23.13 40.68

PEGASUSGPT

Small 45.04 19.59 36.26
Medium 47.21 21.76 38.80
Large 47.88 22.50 39.64

BRIOGPT

Small 47.64 21.68 38.93
Medium 48.99 23.35 40.79
Large 49.33 24.08 41.44

Table 9: Evaluation of ROUGE scores post fine-tuning
from pre-trained weight with different data sizes.

Table 9 shows the result of fine-tuning from pre-473

trained weight. We observed that:474

(1) The model performance can indeed be advanced475

by training with only LLM reference, which476

proved that our dataset can substitute the origi-477

nal XSum dataset in the training procedure.478

(2) Compared to the model fine-tuned on the XSum479

checkpoint, the model that was fine-tuned from480

pre-trained weights demonstrated enhanced perfor-481

mance on identical data volumes. This improve-482

ment likely originates from variances between hu-483

man reference and LLM reference (detailed in sec-484

tion 4.3), prompting the model to perceive previ-485

ously trained targets as potential noise.486

(3) Our dataset reduces the performance gap487

across models like BART, PEGASUS, and BRIO,488

indicating that summaries generated using LLM ef-489

fectively counteract biases associated with the var-490

ied styles of human writers in the original dataset.491

Therefore, these LLM-generated summaries fa-492

cilitate a smoother learning process for models,493

thereby diminishing the requirement for intricate494

training methodologies.495

5.2 Novelty Analysis496

In this section, we delve into the comparative anal-497

ysis of novelty between the summaries authored by498

humans and those generated by GPT-4. Novelty is499

defined through the computation of novel n-grams,500

a method that serves to gauge the ’abstraction’ of501

our models. The novelty metric is calculated8 using502

the formula from Liu et al. (2022), i.e.,503

Novelty(D,S∗) =

∑
g∈GS∗ 1(g /∈ GD)

|GS∗ | (1)504

8The calculation is performed using ExplainaBoard
(Liu et al., 2021). https://github.com/neulab/
ExplainaBoard, and we had not employed PTBTokenizer
prior to this calculation.

where D and S∗ are the source document and ref- 505

erence summary respectively, GD and GS∗ are the 506

sets of bigrams in D and S∗, 1 is the indicator 507

function. 508

As presented in Table 10, models referencing 509

GPT-4 exhibit better abstraction compared to those 510

referencing human-generated summaries in the CN- 511

NDM dataset. Conversely, for the XSum dataset, 512

models using human references are more "abstract" 513

than those based on GPT-4 references. Despite 514

these differences, as discussed in Section 4, sum- 515

maries guided by GPT-4 are favored by human 516

annotators across both the XSum and CNNDM 517

datasets. This preference suggests that GPT-4, 518

alongside our model, successfully balances the use 519

of a diverse vocabulary for summary composition 520

with effective information extraction from the orig- 521

inal articles. Such a balance enhances summary 522

relevance and aligns more closely with human pref- 523

erences in summary generation. 524

XSum CNNDM

System Unigram Bigram Unigram Bigram

Human .3399 .8342 .1180 .4960
GPT-4 .2960 .8009 .2375 .7074

BART .2461 .7310 .0118 .0922
BARTGPT .1986 .6643 .1287 .5389

PAGASUS .2664 .7474 .1666 .2919
PAGASUSGPT .1558 .5780 .0946 .4616

BRIO .2696 .7654 .0258 .2261
BRIOGPT .2203 .7039 .0962 .4890

Table 10: Ratio of novel n-grams of various models on
XSum and CNNDM. Novel n-grams are those that appear
in the summaries but not in the source documents.

6 Conclusion 525

In this work, we propose a novel supervised learn- 526

ing framework using LLM-generated summaries 527

as references. Our human evaluation compared sys- 528

tems guided by human-written and LLM-generated 529

summaries. Results show LLMs can guide small 530

models to produce summaries aligned with human 531

preferences, opening new research directions in au- 532

tomatic summarization. We’re releasing GXSum 533

datasets in three sizes, containing XSum articles 534

and LLM-generated summaries, which our exper- 535

iments validate as potential replacements for the 536

original XSum dataset. Our findings and dataset 537

offer unique insights into LLM-enhanced auto- 538

matic text summarization, encouraging further ex- 539

ploration of applying LLM knowledge to improve 540

smaller, task-specific language models. 541
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7 Limitations542

Our work introduces a new dataset, GXsum, for543

which we employ summaries generated by GPT-544

4 as references. It is essential to note that in our545

experiments, summaries were generated using Ope-546

nAI’s API, which, due to its rapid iteration capa-547

bility, might result in variable outcomes that could548

limit the reproducibility of our experiments. Fur-549

thermore, constrained by the performance of GPT-550

4, the generated summaries may still possess a551

certain level of hallucination. Additionally, con-552

sidering effectiveness, the dataset and generated553

summaries used in this experiment are confined to554

the news domain. Employing datasets from other555

domains might provide a more comprehensive anal-556

ysis, which represents a potential future research557

direction for us. Lastly, the human evaluation ex-558

periments conducted aim to explore a wide range559

of human reading preferences. The outcomes may560

vary depending on the timing of the assessment and561

the platform used to employ evaluators; we merely562

state the observed facts.563
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A LLM Summary Generation816

A.1 Prompt Template Example817

Figure 3 illustrates the template for our prompt de-818

sign. The {article} variable represents the source ar-819

Assuming you are an abstract writer, re-
sponsible for writing summaries of articles.
Given the source article: {article}, please
write a summary between {len_lower} to
{len_upper} words about this article. please
ensure that the summary is grammatically
correct and coherent.

Figure 3: Template for a ChatGPT API prompt.

ticle from the original dataset, and the {len_lower} 820

and {len_upper} variables represent the lower 821

bound and upper bound length constraints that we 822

will set. 823

A.2 Generation Process 824

LLM generated summary:
Prison Link Cymru highlights the chronic need for post-release 
housing to prevent homelessness and reoffending in Wales.

ar ticle:
Prison Link Cymru had 1,099 referrals in 2015-16 and said some 
ex-offenders were living rough for up to a year before finding 
suitable accommodation.Workers at the charity claim investment 
in housing would be cheaper than jailing homeless repeat 
offenders. The Welsh Government said more people than ever 
were getting help to address housing problems. Changes to the 
Housing Act in Wales, introduced in 2015...

Source Ar ticle

reference:
There is a "chronic" need for more housing for prison leavers in 
Wales, according to a charity.

Reference Summary

Assuming you are an abstract writer, responsible for 
writing summaries of articles. Given the source article: 
{ article} , please write a summary between { ref_len - 5}  to 
{ ref_len + 5}  words about this article. please ensure that 
the summary is grammatically correct and coherent.

Prompt

Figure 4: Illustration of LLM summary generation pro-
cess

Figure 4 shows an example of our LLM sum- 825

mary generation process. 826

B Human Annotation Setting 827

B.1 Annotation Guideline 828

The definitions of various quality aspects we use in 829

our annotation tasks are as follows: 830

• Relevance: Measures the importance of the 831

summary content relative to the article, consid- 832

ering whether it has extracted the key points. 833
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• Consistency: Considers whether the summary834

accurately includes all facts without fabricat-835

ing false information.836

• Fluency: Assesses whether each sentence in837

the summary is well-written and grammati-838

cally correct.839

• Coherence: Considers whether the entire sum-840

mary flows smoothly and reads naturally.841

• Informativeness: Considers whether the sum-842

mary clearly conveys the main message of the843

article, excluding unnecessary details.844

B.2 Amazon Mechanical Turk Recruitment845

To recruit qualified crowd annotators, stringent se-846

lection criteria were applied. These criteria stipu-847

lated that participants must have successfully com-848

pleted more than 500 Human Intelligence Tasks849

(HITs), maintained an acceptance rate exceeding850

95%, and resided within the United States. This rig-851

orous selection process was implemented to guar-852

antee that the annotators were native English speak-853

ers and had a demonstrable record of experience in854

effectively performing annotation tasks.855

B.3 Upwork Recruitment856

To ensure the rigor of expert analysis, we estab-857

lished specific criteria for selecting annotators, fo-858

cusing on those with a requisite level of expertise.859

We engaged the Upwork platform to identify suit-860

able candidates, stipulating prerequisites such as861

residency in English-speaking countries (specifi-862

cally the USA, UK, Australia, or Canada), min-863

imum educational attainment of a bachelor’s de-864

gree, and prior experience in data annotation or865

linguistics-related roles. The ultimate selection of866

our expert candidates comprised individuals with867

backgrounds as writers, journalists, and profes-868

sional text data annotators.869

C Case Study870
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Article ID 36043765 AVG. Score
Human A seal found tangled in nets on an Aberdeenshire beach has been

returned to the sea.
1.0

GPT-4 Scottish SPCA rescues and frees a heavily netted grey seal at Cruden
Bay, preventing potential lethal injuries.

3.0

BARTGPT A large seal entangled in netting at Cruden Bay was rescued by the
Scottish SPCA and safely released.

3.3

PEGASUSGPT Scottish SPCA rescued a grey seal from Cruden Bay with a large net
tangled around its neck, releasing him unharmed.

3.0

BRIOGPT A grey seal entangled in heavy netting at Cruden Bay was rescued
by the Scottish SPCA and released unharmed.

4.6

Table 11: Case study on XSum

Article ID 38537698 AVG. Score
Human The reaction from BT’s investors told us much about media regulator

Ofcom’s ruling on the fate of Openreach, the BT subsidiary that
provides much of the UK’s broadband infrastructure.

1.6

GPT-4 BT’s shares surged after Ofcom ruled out a company break-up due to
practical challenges, including a complex pension scheme and legal
obstacles, potentially leading to future operational conflicts.

3.3

BARTGPT Ofcom’s Sharon White admits BT’s potential break-up faces practical
hurdles due to land deals, pension scheme complexities, and potential
conflicts over Openreach’s ownership and governance.

4.3

PEGASUSGPT BT shares rise 3% after Ofcom’s decision not to break up the com-
pany, citing pension issues and land deals.

3

BRIOGPT Ofcom postpones BT’s break-up due to pension scheme and land
deals, prompting plans for separation and potential conflicts of inter-
est.

2.6

Table 12: Case study on XSum
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Article ID ee17dfb574feca82ccac5689595e47483bd23f12 AVG. Score
Human London’s Metropolitan Police say the man was arrested at Luton

airport after landing on a flight from Istanbul. He’s been charged
with terror offenses allegedly committed since the start of November.

1.0

GPT-4 British man, Yahya Rashid, 19, faces terror charges upon his UK
return from Turkey. Arrested at Luton airport, he’s accused of prepar-
ing and aiding terrorist acts from November to March. Rashid will
appear in court in Westminster.

2.6

BARTGPT Yahya Rashid, a 19-year-old from northwest London, was charged
with terror offenses after his arrest at Luton airport on his return
from Turkey. He faces charges of terrorism preparation and aiding
acts of terrorism between November 1 and March 31, with a court
appearance set for Wednesday.

5.0

PEGASUSGPT Yahya Rashid, a 19-year-old from London, was charged with terror-
ism offenses at Luton Airport after returning from Turkey. He faces
charges of preparing acts of terrorism and assisting others to commit
terrorism.

2.6

BRIOGPT 19-year-old Yahya Rashid, a UK man, was charged with terror of-
fenses after his arrest at London’s Luton airport after his return from
Turkey. He faces charges for planning and aiding acts of terrorism
between November 1 and March 31, with his court appearance set
for Wednesday.

3.6

Table 13: Case Study on CNNDM.
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