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ABSTRACT

This study aims to enlarge our current knowledge of the application of brain-
inspired network science principles for training artificial neural networks (ANNs)
with sparse connectivity. The Cannistraci-Hebb training (CHT) is a brain-inspired
method for growing connectivity in dynamic sparse training (DST). CHT leverages
a gradient-free, topology-driven link regrowth mechanism, which has been shown
to achieve ultra-sparse (1% connectivity or lower) advantage across various tasks
compared to fully connected networks. Yet, CHT suffers two main drawbacks: high
time complexity of the link predictor and easy stack into the epitopological local
minima. Here, we propose a matrix multiplication GPU-friendly approximation of
the CH link predictor, which reduces the computational complexity to O(N3), en-
abling a fast implementation of CHT in large-scale models. Moreover, we introduce
the Cannistraci-Hebb Training soft rule (CHTs), which adopts a flexible strategy
for sampling connections in both link removal and regrowth, balancing the explo-
ration and exploitation of network topology. To further improve performance, we
integrate CHTs with a sigmoid gradual density decay strategy, referred to as CHTss.
Empirical results show that 1) using 5% of the connections, CHTss outperforms
fully connected networks in two Transformer-based machine translation tasks; 2)
using 30% of the connections, CHTss achieves superior performance compared
to other dynamic sparse training methods in language modeling (LLaMA-130M)
across different sparsity levels, and it surpasses the fully connected counterpart in
zero-shot evaluations.

1 INTRODUCTION

Fully connected layers in large models pose computational challenges during training and deploy-
ment. In contrast, the brain’s neural networks exhibit sparse connectivity Drachman (2005); Walsh
(2013), suggesting more scalable architectures. Dynamic sparse training (DST) Mocanu et al. (2018);
Jayakumar et al. (2020); Evci et al. (2020); Yuan et al. (2021); Zhang et al. (2024b) reduces computa-
tional and memory costs while maintaining performance. Unlike pruning methods Han et al. (2016);
Frantar & Alistarh (2023); Zhang et al. (2024a), DST starts with sparse networks and evolves their
topology during training. Key innovations of DST focus on regrowth criteria, such as the gradient-free
Cannistraci-Hebb training (CHT) Zhang et al. (2024b), inspired by brain-inspired network science
Cannistraci et al. (2013); Daminelli et al. (2015); Durán et al. (2017); Cannistraci (2018); Narula
(2017). CHT excels in ultra-sparse ANNs but faces challenges such as stacking in epitopological local
minima and high time complexity of link prediction, making it impractical for large-scale models.

This article introduces the Cannistraci-Hebb Training soft rule (CHTs), which addresses CHT’s
limitations. CHTs 1) uses a multinomial distribution for both link removal and regrowth that balance
the exploration and exploitation of network topology, 2) reduces time complexity of the path-based
link predictor to O(N3) with a node-based solution, and 3) leverages small-world properties for
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Figure 1: Illustration of the CHTs process. One training iteration follows the path of (a1) − >
(b1) − > (c1) − > (c2) − > (d1) − > (e). (a1) Network initialization with each of the sandwich
layers being a bipartite small-world (BSW) network. (a2) One sample BSW network with different
β values (for β = 0, the network contains the black links; for β = 0.25, the network is formed by
removing the marked black links and regrowing the green links). (b1) Link removal process. (b2)
Formula for determining which links to remove. (c1) Removal of inactive neurons caused by link
removal. (c2) Adjust and remove incomplete links caused by inactive neuron removal. (d1) Regrowth
of links according to the CH2/3-L3 node-based soft rule. (d2) Detailed illustration of the CH2/3-L3
node-based soft rule. (e) Finished state of the network after one iteration. The next iteration repeats
the steps (b1) - (e) from this finished state. Ã indicates the removal set of the iteration and A∗ is the
regrown set.

sparse initialization. Combined with a sigmoid density decay strategy, CHTss enables sparse neural
networks to perform as fully connected on large-scale models.

From the experimental results, CHTss outperforms fully connected Transformers with only 5% of
the links on Multi30k and IWSLT and achieves performance comparable to the fully connected
LLaMA-130M in language modeling tasks on OpenWebText. Moreover, CHTss outperforms the fully
connected LLaMA-130M on zero-shot evaluation tasks on GLUE Wang et al. (2019) and SuperGLUE
Wang et al. (2020) with only 30% density. These findings underscore the potential of CHTss in
enabling highly efficient and effective large-scale sparse neural network training.

2 CANNISTRACI-HEBB TRAINING SOFT RULE

Definition 1. Epitopological local minima. In the context of dynamic sparse training
methods, we define an epitopological local minima (ELM) as a state where the sets of
removed links and regrown links exhibit a significant overlap. See Appendix B for detailed
descriptions.

Cannistraci-Hebb soft removal and regrowth. In this article, we adopt a probabilistic approach
where the process of both regrowth and removal can be viewed as sampling from a {0, 1} multinomial
distribution, with the score assigned by either removal metrics or link prediction scores, introducing a
”soft sampling” mechanism. In this setup, each mask value is not rigidly determined by the scores but
allows for selecting (with lower probability) low-score links as the target links to remove or regrow,
facilitating the escape from the epitopological local minima (ELM).

Link removal alternating from weight magnitude and relative importance. We illustrate the
link removal part of CHTs in Figure 1b1) and b2). We employ two methods, Weight Magnitude
(WM) |W| and Relative Importance (RI) Zhang et al. (2024a), to remove the connections during
dynamic sparse training. Detailed information can be found in Appendix C.
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Table 1: Performance comparison on machine translation tasks of Multi30k, IWSLT, and WMT
with varying sparsity levels. The scores indicate BLEU scores, which is the higher the better. CHTs
(GMP) indicates CHTs uses GMP’s density decay strategy. The best performance on each dataset is
highlighted in bold and the performances better than the fully connected ones are marked with “*”.
si indicates the starting sparsity of the dst methods that use density decay strategy.

Method Multi30k IWSLT WMT

95% 90% 95% 90% 95% 90%

FC 31.28 24.2 25.22

SET 27.89 28.72 18.48 19.54 20.21 21.61
RigL 27.63 28.89 20.29 21.03 20.52 22.16
CHTs 28.12 30.35 20.55 21.60 21.14 22.68

MESTEM&S 28.71 28.26 18.95 20.77 20.79 22.3
GMP (si = 0.5) 26.42 27.06 22.44 22.62 22.29 23.52
GraNet (si = 0.5) 30.90 31.06 23.05 22.88 22.11 23.49
CHTs (GMP) (si = 0.5) 30.49 30.33 23.68 23.64 22.8 23.22
CHTss (si = 0.5) 32.04* 32.79* 24.86* 24.57* 22.68 24.05

Node-based link regrowth. In the original CHT framework, the time complexity of the path-based
CH3-L3 (CH3-L3p, see Appendix D) metric is O(N · d3), where N is the number of nodes and d is
the network’s average degree. This complexity is prohibitive for large models with numerous nodes
and higher-density layers. To address this issue, we introduce a more efficient, node-based paradigm
that eliminates the reliance on length-three paths between seed nodes, which also incorporates internal
local community links (iLCL) to enhance the expressiveness of the formula. This variant, referred to
as CH2-L3n, is formulated as:

CH2-L3n(u, v) =
∑
z∈L3

di∗z
de∗z

(1)

Here, u and v denote the seed nodes, while z1 and z2 are common neighbors on the L3 path Muscoloni
et al. (2022). The term de∗z and di∗z represents the number of external local community links (eLCL)
and iLCL of node z, with a default increment of 1 to prevent division by zero. We evaluate the
runtime performance of CH3-L3p and CH2-L3n across different network sizes and sparsity levels, as
illustrated in Figure 2. The results reveal that the node-based version achieves significantly faster
runtime performance compared to the path-based methods.

Sparse topological initialization with bipartite small-world model. In this work, we initialize the
network of DST with the bipartite small-world model (BSW). The BSW model, with its small-world
properties, ensures both high clustering and a short average path length. The high clustering increases
the probability that seed nodes share common neighbors along L3 paths (paths of length three). This,
in turn, improves the effectiveness of the CH-based link predictor in generating accurate predictions
early in the training process. A detailed discussion of the sparse topological initialization can be
found in Appendix E.

3 SIGMOID GRADUAL DECREASE DENSITY

As demonstrated in GraNet Liu et al. (2021) and MESTEM&S Yuan et al. (2021), incorporating a
density decrease strategy can significantly improve the performance of dynamic sparse training. In
this article, we propose a sigmoid-based gradual density decrease strategy, defined as:

st = sf + (si − sf )

(
1

1 + e
−k

(
t−

tf−t0
2

)
)
, (2)

where t ∈ {t0, t0 + ∆t, . . . , t0 + n∆t}, si is the initial sparsity, sf is the target sparsity, t0 is the
starting epoch of gradual pruning, tf is the end epoch of gradual pruning, and ∆t is the pruning
frequency. k controls the curvature of the decrease. We set k=6 for all the experiments in this article.
This strategy ensures a smoother initial pruning phase, allowing the model to warm up and stabilize
before undergoing significant pruning, thereby enhancing training stability and performance. A
detailed discussion of the decay strategy can be found in Appendix G.
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Table 2: Validation perplexity of different dynamic
sparse training (DST) methods on OpenWebText using
LLaMA-130M across varying sparsity levels. Bold val-
ues denote the best performance among DST methods.
Lower perplexity corresponds to better model perfor-
mance. si represents the initial sparsity for DST meth-
ods employing a density decay strategy.

Method Sparsity

95% 90% 80% 70%

FC 19.27

SET 28.37 24.73 22.02 20.82
RigL 49.39 37.18 66.35 25.85
CHTs 27.72 24.24 21.70 21.15

MESTEM&S 27.96 24.98 22.21 21.32
GMP (si = 0.5) 27.16 23.61 22.28 20.49
GraNet (si = 0.5) 61.31 26.81 29.03 22.84
CHTs (GMP) (si = 0.5) 26.81 22.94 20.94 20.01
CHTss (si = 0.5) 25.29 22.71 20.78 19.92

Table 3: Zero-shot evaluation of LLaMA-
130M between fully connected pertrained
and pretrained with CHTss (70% spar-
sity) across GLUE and Superglue datasets.
MRPC and QQP use F1 scores while the
others use ACC.

Dataset FC CHTss (si = 0.5)

CoLA 65.29 ± 1.47 69.13 ± 1.43
MNLI 32.44 ± 0.47 32.72 ± 0.47
MRPC 64.96 ± 2.36 81.05 ± 1.64
QNLI 50.38 ± 0.68 49.37 ± 0.68
QQP 52.09 ± 0.28 53.82 ± 0.26
RTE 48.38 ± 3.01 50.54 ± 3.01
SST-2 49.54 ± 1.69 49.08 ± 1.69
WNLI 49.30 ± 5.98 52.11 ± 5.97
Hellaswag 26.95 ± 0.44 26.97 ± 0.44
Boolq 43.85 ± 0.87 56.79 ± 0.87
CB 46.43 ± 6.72 50.00 ± 6.74
Copa 56.00 ± 4.99 57.00 ± 4.98

AVG 48.80 52.38
Win rate 0.17 0.83

4 EXPERIMENTS

Experimental details are provided in Appendix J. The baseline methods are detailed in Appendix I.
We also demonstrate superiority with merely CHTs using MLP on image classification datasets (See
Appendix K).

4.1 TRANSFORMER ON MACHINE TRANSLATION

We assess CHTs and CHTss using Transformer on classic machine translation tasks across three
datasets. We report the BLEU in Table 1, which demonstrates that 1) CHTs surpasses other fixed
density DST methods on all the sparsity scenrios. 2) Incorporating with the sigmoid density decrease,
CHTss outperforms even the fully connected ones with only 5% density.

4.2 NATURAL LANGUAGE GENERATION

Language modeling. We utilize LLaMA-130M (Touvron et al., 2023a) architecture as the baseline
for our language generation experiments. We show the validation perplexity results of each algorithm
across the different sparsities in Table 2. As shown, CHTs stably outperforms SET and RigL while
CHTss is constantly better than GraNet and GMP. At 70% sparsity, CHTss is already able to perform
a comparable performance in comparison to the fully connected.

Zero-shot evaluations. The pretrained model of CHTss with 30% sparsity and the fully connected
one are evaluated the zero-shot performance on the GLUE Wang et al. (2019) and SuperGLUE.
We show the results in Table 3. The performance difference between FC and CHTss is statistically
significant (p-value = 0.01) according to a paired two-sided Wilcoxon signed rank test, which means
CHTss is significantly better than fully connected ones in zero-shot evaluations.

5 CONCLUSION

In this article, we propose the Cannistraci-Hebb Training soft rule with sigmoid gradual density
decay (CHTss). First, we introduce a matrix multiplication mathematical formula for GPU-friendly
approximation of the CH link predictor. This significantly reduces the computational complexity of
CHT and speeds up the running time, enabling the implementation of CHTs in large-scale models.
Second, we propose a Cannistraci-Hebb training soft rule (CHTs), which innovatively utilizes a soft
sampling rule for both removal and regrowth links, striking a balance for epitopological exploration
and exploitation. Third, we integrate CHTs with a sigmoid gradual density decay strategy. Empirically,
CHTss surpasses the fully connected Transformer using only 5% density and achieves comparable
language modeling performance, along with better zero-shot results, to the fully connected LLaMA-
130M at just 30% density. This represents a relevant result for dynamic sparse training. We describe
the limitations of this study and future works in Appendix L.
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Figure 2: Runtime Performance Evaluation of node-based and path-based methods across varying
densities and network sizes. In (a), the network size is fixed at 1024 × 1024, while in (b), the density
is fixed at 5%.

A RELATED WORK

A.1 DYNAMIC SPARSE TRAINING

Dynamic sparse training is a subset of sparse training methodologies. Unlike the static sparse training
(also known as pruning at initialization) methods Prabhu et al. (2018); Lee et al. (2019); Dao et al.
(2022); Stewart et al. (2023), dynamic sparse training allows for the evolution of network topology
during the training process. The pioneering method in this field was Sparse Evolutionary Training
(SET) Mocanu et al. (2018), which removes links based on the magnitude of their weights and
regrows new links randomly. Subsequent developments have sought to refine and expand upon
this concept of dynamic topological evolution. One such advancement was proposed by DeepR
Bellec et al. (2017), a method that adjusts network connections based on stochastic gradient updates
combined with a Bayesian-inspired update rule. Another significant contribution is the RigL Evci
et al. (2020), which leverages the gradient information of non-existing links to guide the regrowth
of new connections during training. MEST Yuan et al. (2021) utilizes both gradient and weight
magnitude information to selectively remove and randomly regrow new links, which is the same as
SET. In addition, it introduces an EM&S strategy that allows the model training with a larger density
and finally convergence to the desired density. The Top-KAST Jayakumar et al. (2020) method
maintains constant sparsity throughout training by selecting the top K parameters based on parameter
magnitude at each training step and applying gradients to a broader subset B, where B ⊃ A. To
avoid settling on a suboptimal sparse subset, Top-KAST also introduces an auxiliary exploration loss
that encourages ongoing adaptation of the mask. Additionally, sRigL Lasby et al. (2023) adapts the
principles of RigL to semi-structured sparsity, facilitating the training of vision models from scratch
with actual speed-ups during training phases. Despite these advancements, the state-of-the-art method
remains RigL-based, yet it is not fully sparse in backpropagation, necessitating the computation
of gradients for non-existing links. Addressing this limitation, Zhang et al. Zhang et al. (2024b)
propose CHT, a dynamic sparse training methodology that adopts a gradient-free regrowth strategy
that relies solely on topological information (network shape intelligence), achieving an ultra-sparse
configuration that surpasses fully connected networks in some tasks.

A.2 CANNISTRACI-HEBB THEORY AND NETWORK SHAPE INTELLIGENCE

As the SOTA gradient-free link regrown method, CHT Zhang et al. (2024b) originates from a brain-
inspired network science theory. Drawn from neurobiology, Hebbian learning was introduced in
1949 (Hebb, 1949) and can be summarized in the axiom: “neurons that fire together wire together.”
This could be interpreted in two ways: changing the synaptic weights (weight plasticity) and changing
the shape of synaptic connectivity (Cannistraci et al., 2013; Daminelli et al., 2015; Durán et al.,
2017; Cannistraci, 2018; Narula, 2017). The latter is also called epitopological plasticity (Cannistraci
et al., 2013) because plasticity means “to change shape,” and epitopological means “via a new
topology.” Epitopological Learning (EL) (Daminelli et al., 2015; Durán et al., 2017; Cannistraci,
2018) is derived from this second interpretation of Hebbian learning and studies how to implement
learning on networks by changing the shape of their connectivity structure. One way to implement
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Bipartite Scale-Free 

network model
Bipartite Small-World network model

Existing links

Non-existing links

Regular network (𝛽 = 0) 𝛽 = 0.25 𝛽 = 0.5 𝛽 = 0.75 Erdős−Rényi network (𝛽 = 1)Powerlaw 𝛾 = 2.76

Figure 3: The adjacency matrices of the Bipartite Scale-Free (BSF) network model and the Bipartite
Small-World (BSW) network model vary with different values of β. a) The BSF model inherently
forms a scale-free network characterized by a power-law distribution with γ = 2.76. b) As β changes
from 0 to 1, the network exhibits reduced clustering. It is important to note that when β = 0, the
BSW model does not qualify as a small-world network.

EL is via link prediction, which predicts the existence and likelihood of each nonobserved link
in a network. CH3-L3 is one of the best and most robust performing network automata which is
inside Cannistraci-Hebb (CH) theory (Muscoloni et al., 2022) that can automatically evolve the
network topology with the given structure. The rationale is that, in any complex network with
local-community organization, the cohort of nodes tends to be co-activated (fire together) and to learn
by forming new connections between them (wire together) because they are topologically isolated in
the same local community (Muscoloni et al., 2022). This minimization of the external links induces
a topological isolation of the local community, which is equivalent to forming a barrier around the
local community. The external barrier is fundamental to maintaining and reinforcing the signaling in
the local community, inducing the formation of new links that participate in epitopological learning
and plasticity.

B EPITOPOLOGICAL LOCAL MINIMA

Let At be the set of existing links in the network at the training step t. Let Ãt be the set of removal
links and A∗

t be the set of regrown links. The overlap set between removed and regrown links at
step t can be quantified as Ot = Ãt ∩A∗

t . An ELM occurs if the size of Ot at step t is significantly
large compared to the size of A∗

t , indicating a high probability of the same links being removed and
regrown repeatedly throughout the subsequent training steps. This can be formally represented as
|Ot|
|A∗

t |
≥ θ, where θ is a predefined threshold close to 1, indicating strong overlap. This definition is

essential for the understanding of CHT, as evidenced by the article Zhang et al. (2024b) indicating
that the overlap rate between removed and regrown links becomes significantly high within just a few
epochs, leading to rapid topological convergence towards the ELM. Previously, CHT implements a
topological early stop strategy to avoid predicting the same links iteratively. However, it will stop the
topological exploration very fast and potentially trap the model within the ELM.

C SOFT LINK REMOVAL ALTERNATING FROM RI AND WEIGHT MAGNITUDE

We illustrate the link removal part of CHTs in Figure 1b1) and b2). We employ two methods, Weight
Magnitude (WM) |W| and Relative Importance (RI) Zhang et al. (2024a), to remove the connections
during dynamic sparse training.

RIij =
|Wij |∑
|W∗j |

+
|Wij |∑
|Wi∗|

(3)

As illustrated in Equation 3, RI assesses connections by normalizing the absolute weight of links
that share the same input or output neurons. This method does not require calibration data and can
perform comparably to the baseline post-training pruning methods like sparsegpt Frantar & Alistarh
(2023) and wanda Sun et al. (2023). Generally, WM and RI are straightforward, effective, and quick
to implement in DST for link removal but give different directions for network percolation. WM
prioritizes links with higher weight magnitudes, leading to rapid network percolation, whereas RI
inherently values links connected to lower-degree nodes, thus maintaining a higher active neuron
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post-percolation (ANP) rate. The ANP rate is the ratio of the number of active neurons after training
compared to the original number of neurons before training. These methods are equally valid but cater
to different scenarios. For instance, using RI significantly improves results on the Fashion MNIST
dataset compared to WM, whereas WM performs better on the MNIST and EMNIST datasets.

Soft link removal. In the early stages of training, both WM and RI are not reliable due to the
model’s underdevelopment. Therefore, rather than strictly selecting top values based on WM and RI,
we also sample links from a multinomial distribution using an importance score calculated by the
removal metrics. The final formula for link removal is defined in Equation 4.

Sij =

(
|Wij |/2

α+ (1− α)
∑

|Wi∗|
+

|Wij |/2
α+ (1− α)

∑
|W∗j |

) δ
1−δ

(4)

Here, α determines the removal strategy, shifting from weight magnitude (α = 1) to relative
importance (α = 0). In all experiments, we only evaluate these two α values. δ adjusts the softness
of the sampling process. As training progresses and weights become more reliable, we adaptively
increase δ from 0.5 to 0.75 to refine the sampling strategy and improve model performance. These
settings are constant for all the experiments in this article.

D PATH-BASED LINK PREDICTOR CH3-L3

One significant challenge for CHT lies in the time complexity of link prediction. In the original CHT
framework, the CH3-L3 metric is employed for link regrowth, defined as follows:

CH3-L3p(u, v) =
∑

z1,z2∈L3

1√
de∗z1 · de∗z2

(5)

Here, u and v denote the seed nodes, while z1 and z2 are common neighbors on the L3 path Muscoloni
et al. (2022). The term de∗i represents the number of external local community links (eLCL) of node i,
with a default increment of 1 to prevent division by zero. Path-based link prediction has demonstrated
its effectiveness on both real-world networks Muscoloni et al. (2022) and artificial neural networks
Zhang et al. (2024b). However, this method incurs a high computational cost due to the need to
compute and store all length-three paths, resulting in a time complexity of O(N · d3), where N is
the number of nodes and d is the network’s average degree. This complexity is prohibitive for large
models with numerous nodes and higher-density layers.

E SPARSE TOPOLOGICAL INITIALIZATION

Correlated sparse topological initialization. Correlated Sparse Topological Initialization (CSTI)
is a physical-informed topological initialization. CSTI generates the adjacency matrix by computing
the Pearson correlation between each input feature across the calibration dataset and then selects
the predetermined number of links, calculated based on the desired sparsity level, as the existing
connections. CSTI performs remarkably better when the layer can directly receive input information.
However, for layers that cannot receive inputs directly, it cannot capture the correlations from the start
since the model is initialized randomly, as in the case of the Transformer. Therefore, in this article,
we aim to address this issue by investigating different network models to initialize the topology, with
the goal of improving the performance for cases where CSTI cannot be directly applied.

Bipartite scale-free model. In artificial neural networks (ANNs), fully connected networks are
inherently bipartite. This article explores initializing bipartite networks using models from network
science. The Bipartite Scale-Free (BSF) Zhang et al. (2024b) network model extends the concept
of scale-freeness to bipartite structures, making them suitable for dynamic sparse training. Initially,
the BSF model generates a monopartite Barabási-Albert (BA) model Barabási & Albert (1999), a
well-established method for creating scale-free networks in which the degree distribution follows
a power law (γ=2.76 in Figure 3). Following the creation of the BA model, the BSF approach
removes any connections between nodes of the same type (neuron in the same layer) and rewires
these connections to nodes of the opposite type (neuron in the opposite layer). This rewiring is done
while maintaining the degree of each node constant to preserve the power-law exponent γ.
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Bipartite small-world model. The Bipartite Small-World (BSW) network model Zhang et al.
(2024b) is designed to incorporate small-world properties and high clustering coefficient into bipartite
networks. Initially, the model constructs a regular ring lattice and assigns two distinct types of nodes
to it. Each node is connected by an equal number of links to the nearest nodes of the opposite type,
fostering high clustering but lacking the small-world property. Similar to the Watts-Strogatz model
(WS) Watts & Strogatz (1998), the BSW model introduces a rewiring parameter, β, which represents
the percentage of links randomly removed and then rewired within the network. At β = 1, the model
transitions into an Erdős-Rényi model ERDdS & R&wi (1959), exhibiting small-world properties
but without high clustering coefficient, which is popular as the topological initialization of the other
dynamic sparse training methods Mocanu et al. (2018); Evci et al. (2020); Yuan et al. (2021).

F EQUAL PARTITION AND NEURON RESORTING TO ENHANCE BIPARTITE
SCALE-FREE NETWORK INITIALIZATION

As indicated in SET and CHT Mocanu et al. (2018); Zhang et al. (2024b), trained sparse models
typically converge to a scale-free network. This suggests that initiating the network with a scale-free
structure might initially enhance performance. However, starting directly with a Bipartite Scale-
Free model (BSF, power-law exponent γ = 2.76) does not yield effective results. Upon deeper
examination, two potential reasons emerge:

• The BSF model generates hub nodes randomly. However, This random assignment of hub
nodes to less significant inputs leads to a less effective initialization, which is particularly
detrimental in CHT, which merely utilizes the topology information to regrow new links.

• As demonstrated in CHT, in the final network, the hub nodes of one layer’s output should
correspond to the input layer of the subsequent layer, which means the hub nodes should
have a high degree on both sides of the layer. However, the BSF model’s random selection
disrupts this correspondence, significantly reducing the number of Credit Assignment Paths
(CAP) Zhang et al. (2024b) in the model. CAP is defined as the chain of the transformation
from input to output, which counts the number of links that go through the hub nodes in the
middle layers.

To address these issues, we propose two solutions:

• Equal Partitioning of the First Layer: We begin by generating a BSF model, then rewire the
connections from the input layer to the first hidden layer. While keeping the out-degrees
of the output neurons fixed, we randomly sample new connections to the input neurons
until each of the input neurons’ in-degrees reaches the input layer’s average in-degree. This
approach ensures all input neurons are assigned equal importance while maintaining the
power-law degree distribution of output neurons.

• Resorting Middle Layer Neurons: Given the mismatch in hub nodes between consecutive
layers, we suggest permuting the neurons between the output of one layer and the input of
the next, based on their degree. A higher degree in an output neuron increases the likelihood
of connecting to a high-degree input neuron in the subsequent layer, thus enhancing the
number of CAPs.

As illustrated in Figure 4, while the two techniques enhance the performance of the BSF initialization,
they remain inferior to the BSW initialization. As noted in the main text, achieving scale-freeness is
more effective when the model is allowed to learn and adapt dynamically rather than being directly
initialized as a predefined structure.

G DENSITY DECAY STRATEGIES

In GraNet, the network evolution process consists of three steps: pruning, link removal, and link
regrowth. The method first prunes the network to reduce the density, followed by removing and
regrowing an equivalent number of links under the updated density. The density decrease in GraNet
follows the same approach as Gradual Magnitude Pruning (GMP) Zhu & Gupta (2017), which adheres
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a) b)

Figure 4: The Performance of the bipartite scale-free model and two enhanced techniques. a) shows
the win rate of the Bipartite Scale-Free network model (BSF) with the different techinques. EP stands
for equal partition of the first layer, and Resort refers to reordering the neurons based on their degree.
b) assesses the comparison between Correlated Sparse Topological Initialization (CSTI), the Bipartite
Scale-Free (BSF) model with the best solution from a), and the Bipartite Small-World (BSW) model
with β = 0.25.

to a cubic function:

st = sf + (si − sf )

(
1− t− t0

n∆t

)3

, (6)

where t ∈ {t0, t0 + ∆t, . . . , t0 + n∆t}, si is the initial sparsity, sf is the target sparsity, t0 is the
starting epoch of gradual pruning, tf is the end epoch of gradual pruning, and ∆t is the pruning
frequency.

However, this density decay scheduler exhibits a sharp decline in the initial stages of training, which
risks pruning a substantial fraction of weights before the model has sufficiently learned. To mitigate
this issue, we propose a sigmoid-based gradual density decrease strategy, defined as Equation 2 in the
main text. We set k=6 for all the experiments in this article. This strategy ensures a smoother initial
pruning phase, allowing the model to warm up and stabilize before undergoing significant pruning,
thereby enhancing training stability and performance.

Since our work focuses on MLP, Transformer, and LLMs, where FLOPs are linearly related to the
density of the linear layers, the FLOPs of the whole training process are linearly related to the integral
of the density function across the training time. the The integral of the GraNet decrease function
from t0 to tf is: ∫ tf

t0

(si − sf )

(
1− t− t0

n∆t

)3

dt

=
1

4
(si − sf )(tf − t0).

(7)

For the sigmoid decrease, the integral is:

∫ t′f

t0

(s′i − sf )

 1

1 + e
−k

(
t−

t′
f
+t0

2

)
 dt

=
(s′i − sf )(t

′
f − t0)

2
.

(8)

To maintain consistency in the computational cost (FLOPs) during training compared to the cubic
decay strategy, we reduce the number of steps in the sigmoid-based gradual density decrease by half.

In addition to refining the decay function, we replace the weight magnitude criterion used in the
original GMP and GraNet processes with relative importance (RI). This adjustment is motivated
by prior work Zhang et al. (2024a), which has shown that RI provides a significant performance
advantage over weight magnitude, particularly when pruning models initialized with high density.
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H NETWORK PERCOLATION AND EXTENSION TO TRANSFORMER.

We have adapted network percolation Li et al. (2021); Zhang et al. (2024b) to suit the architecture of
the Transformer after link removal. The underlying concept involves identifying inactive neurons,
which we define as those lacking connections on one or both sides of a neuron layer. Such neurons
disrupt the flow of information during forward propagation or backpropagation. In addition, Layer-
wise computation of the CH link prediction score further implies that neurons without connections
on one side are unlikely to form connections in the future. Therefore, network percolation becomes
essential to optimize the use of remaining links.

As shown in Figure 1, network percolation encompasses two primary processes: c1) inactive neuron
removal to remove the neurons that lack connections on one or both sides; c2) incomplete path
adjustment to remove the incomplete paths where links connect to the inactive neurons after c1).
Typically applied in simpler continuous layers like those in an MLP, network percolation requires
modification for more complex structures. For example, within the Transformer’s self-attention
module, the outputs of the query and key layers undergo a dot product operation. It necessitates
percolation in these layers to examine the activity of the neurons in both output layers at the same
position. Similar interventions are necessary in the up proj and gate proj layers of the MLP module
in the LLaMA model family Touvron et al. (2023a;b).

I BASELINE METHODS

I.1 FIXED DENSITY DYNAMIC SPARSE TRAINING METHODS

SET Mocanu et al. (2018): Removes connections based on weight magnitude and randomly regrows
new links.

RigL Evci et al. (2020): Removes connections based on weight magnitude and regrows links using
gradient information, gradually reducing the proportion of updated connections over time.

CHT Zhang et al. (2024b): A state-of-the-art (SOTA) gradient-free method that removes links with
weight magnitude and regrows links based on CH3-L3 scores. (Note: CHT is only evaluated on
MLPs due to its computational cost in large models.)

I.2 GRADUAL DENSITY DECREASE DYNAMIC SPARSE TRAINING METHODS

GMP Han et al. (2015); Zhu & Gupta (2017): Prunes the network with weight magnitude and
gradually decrease the density based on Equation 7. Although originally a pruning method, GMP is
treated as a dynamic sparse training method in their implementation Zhu & Gupta (2017), as it stores
historical weights and allows pruned weights to reappear during training since, during training, the
pruning threshold might change.

MESTEM&S Yuan et al. (2021): Implements a two-stage density decrease strategy as described in
the original work. It removes links based on the combination of weight magnitude and 0.01*gradient
and regrows new links randomly.

GraNet Liu et al. (2021): Gradually decreases density using Equation 7. Similar to RigL, GraNet
removes links based on the weight magnitude and regrows new links with the gradient of the existing
links.

J EXPERIMENTAL SETUP

We evaluate the performance of CHTs using MLPs for image classification tasks on the MNIST
LeCun et al. (1998), Fashion MNIST Xiao et al. (2017), and EMNIST Cohen et al. (2017) datasets.
To further validate our approach, we apply the sigmoid gradual density decay strategy to Transformers
for machine translation tasks on the Multi30k en-de Elliott et al. (2016), IWSLT14 en-de Cettolo et al.
(2014), and WMT17 en-de Bojar et al. (2017) datasets. Additionally, we conduct language modeling
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a) b) 

Figure 5: The ablation test of the β of the bipartite small world model and the removal methods in
CHTs. a) evaluates the influence of the rewiring rate β on the model performance when initialized
with the Bipartite Small-World network model (BSW). b) assess the influence of link removal
selecting from the weight magnitude (WM), weight magnitude soft (WM-soft), relative importance
(RI), and relative importance soft (RI-soft). We utilize the win rate of the compared factors under the
same setting across each realization of 3 seeds for all experiment combinations on MLP. The factor
with the highest win rate is highlighted in orange.

experiments using the OpenWebText dataset Gokaslan & Cohen (2019) and evaluate zero-shot
performance on the GLUE Wang et al. (2019) and SuperGLUE Wang et al. (2020) benchmark with
LLaMA-130M Touvron et al. (2023a). For MLP training, we sparsify all layers except the final layer,
as ultra-sparsity in the output layer may lead to disconnected neurons, and the connections in the final
layer are relatively minor compared to the previous layers. For Transformers and LLaMA-130M, we
apply dynamic sparse training (DST) to all linear layers, excluding the embedding and final generator
layer. Detailed hyperparameter settings for each experiment are provided in Tables 5, 6, and 7.

K MLP FOR IMAGE CLASSIFICATION

Ablation Test. Using MLP, we conduct an ablation study on each component proposed within the
CHTs framework to determine the most effective implementation to apply next for the Transformer
model. Figure 5a) compares the topologies initialized with the Bipartite Small-World (BSW) model
at different values of β, clearly indicating that β = 0.25 yields the best results. Figures 5b) assess the
link removal methods, concluding that the weight magnitude soft (WM-soft) method outperforms
all others. We consider the best settings showcased in these results to decide the CHTs strategy for
training Transformers and LLaMA-130M.

Table 4: Performance comparison of different fixed sparsity dynamic sparse training methods on
MNIST, Fashion MNIST (FMNIST), and EMNIST datasets trained on MLP at 99% sparsity. ACC
represents accuracy, and ANP denotes the active neuron percolation rate that indicates the final size
of the network. The best method for each dataset is highlighted in bold and the performances better
than the fully connected ones are marked with “*”

Method MNIST FMNIST EMNIST

ACC (%) ANP (%) ACC (%) ANP (%) ACC (%) ANP (%)

FC 98.78 ± 0.02 - 90.88 ± 0.02 - 87.13 ± 0.04 -

CHTs (CH3-L3p) 98.81 ± 0.04* 20% 90.93 ± 0.03* 89% 87.61 ± 0.07* 24%
CHTs (CH2-L3n) 98.76 ± 0.05 27% 90.67 ± 0.05 73% 87.82 ± 0.04* 28%

CHT 98.48 ± 0.04 29% 88.70 ± 0.07 30% 86.35 ± 0.08 21%
RigL 98.61 ± 0.01 29% 89.91 ± 0.07 55% 86.94 ± 0.08 28%
SET 98.14 ± 0.02 100% 89.00 ± 0.09 100% 86.31 ± 0.08 100%

Main Results. In the MLP evaluation, we aim to assess the fundamental capacity of DST methods
to train the fully connected module, which is common across many ANNs. The sparse topological
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initialization of CHTs is CSTI since the input bipartite layer can directly receive information from
the input pixels. Table 4 displays the performance of DST methods compared to their fully connected
counterparts across three basic datasets. The DST methods are tested at 99% sparsity. As shown
in Table 4, both of the two regrowth methods of CHTs outperform the other fixed sparsity DST
methods. Notably, the path-based CH3-L3p outperforms the fully connected one in all the datasets.
The node-based CH2-L3n also achieves comparable performance on these basic datasets. In addition,
we present the active neuron post-percolation rate (ANP) for each method in Table 4. It is evident
that CHTs adaptively percolates the network more effectively while retaining performance.

L LIMITATION

A potential limitation of this work is that the hardware required to accelerate sparse training with
unstructured sparsity has not yet become widely adopted. Consequently, this article does not present
a direct comparison of training speeds with those of fully connected networks. However, several
leading companies Thangarasa et al. (2023) have already released devices that support unstructured
sparsity in training.

For future work, we aim to develop methods for automatically determining the temperature for soft
sampling at each epoch, guided by the topological features of each layer. This could enable each
layer to learn its specific topological rules autonomously. Additionally, we plan to test CHTss in
larger LLMs such as LLaMA-1b and LLaMA-7b to evaluate the performance in scenarios with denser
layers.

Table 5: Hyperparameters of MLP on Image Classification Tasks.

Hyper-parameter MLP
Hidden Dimension 1568
# Hidden layers 3
Batch Size 32
Training Epochs 100
LR Decay Method Linear
Learning Rate 0.025
ζ (fraction of removal) 0.3
Update Interval (for DST) 1

Table 6: Hyperparameters of Transformer on Machine Translation Tasks.

Hyper-parameter Multi30k IWSLT14 WMT17
Embedding Dimension 512 512 512
Feed-forward Dimension 1024 2048 2048
Batch Size 1024 tokens 10240 tokens 12000 tokens
Training Steps 5000 20000 80000
Dropout 0.1 0.1 0.1
Attention Dropout 0.1 0.1 0.1
Max Gradient Norm 0 0 0
Warmup Steps 1000 6000 8000
Decay Method inoam inoam inoam
Label Smoothing 0.1 0.1 0.1
Layer Number 6 6 6
Head Number 8 8 8
Learning Rate 0.25 2 2
ζ (fraction of removal) 0.3 0.3 0.3
Update Interval (for DST) 100 100 100
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Table 7: Hyperparameters of LLaMA-130M on OpenWebText.

Hyper-parameter LLaMA-130M
Embedding Dimension 768
Feed-forward Dimension 2048
Global Batch Size 512
Sequence Length 256
Training Steps 30000
Learning Rate 3e-3
Warmup Steps 10000
Optimizer Adam
Layer Number 12
Head Number 12
ζ (fraction of removal) 0.1
Update Interval (for DST) 100
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