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ABSTRACT

A common challenge in real-time operations is deciding whether to re-solve an
optimization problem or continue using an existing solution. While modern data
platforms may collect information at high frequencies, many real-time operations
require repeatedly solving computationally intensive optimization problems for-
mulated as Mixed-Integer Linear Programs (MILPs). Determining when to re-
solve is, therefore, an economically important question. This problem poses sev-
eral challenges: 1) How to characterize solution optimality and solving cost; 2)
How to detect environmental changes and select beneficial samples for solving the
MILP; 3) Given the large time horizon and non-MDP structure, vanilla reinforce-
ment learning (RL) methods are not directly applicable and tend to suffer from
value function explosion. Existing literature largely focuses on heuristics, low-
data settings, and smooth objectives, with little focus on common NP-hard MILPs.
We propose a framework called Proximal Policy Optimization with Change Point
Detection (POC), which systematically offers a solution for balancing perfor-
mance and cost when deciding appropriate re-solving times. Theoretically, we
establish the relationship between the number of re-solves and the re-solving cost.
To test our framework, we assemble eight synthetic and real-world datasets, and
show that POC consistently outperforms existing baselines by 2%-17%. As a
side benefit, our work fills the gap in the literature by introducing real-time MILP
benchmarks and evaluation criteria.

1 INTRODUCTION

Combinatorial optimization problems are prevalent in industries such as transportation, energy, and
supply chain (Williams| [2013)). Since finding the optimal solution is NP-hard, solving large-scale
MILPs requires substantial resources and significant computation time. However, in many real-
world settings, we encounter high-frequency observational data involving systems that change dy-
namically over time, and frequent re-solving can incur unacceptable costs: either computational
costs of excess usage of compute resources, or operational costs associated with the overhead of too
frequent changes to the underlying decision variables (e.g., corresponding to a supply chain plan).
Most previous studies have focused on orthogonal approaches for reducing computational costs,
such as using the previous solution for warm start (Marcucci & Tedrakel 2020;|Zhang et al.), whereas
this work proposes a more general framework that directly tackles the issue of excess re-solves. In
particular, once a re-solve is carried out, our proposed framework can be used in conjunction with
the techniques explored in prior studies.

Our problem setting is ubiquitous in real life and carries significant practical importance. For ex-
ample, in transportation scheduling (Zhang et al., |2020b), Google Maps receives high-frequency
streams of traffic data and user search requests. If the shortest path were recalculated based on the
latest traffic information for every single user request, it would incur substantial computational costs
and cause noticeable search delays. However, when the system undergoes significant changes, such
as a traffic accident occurring on certain roads, re-solving for the optimal route seems necessary.
Another example is production planning (Cedillo-Robles et al.l |2020; |Dunke & Nickel, [2023). In
the GPU market, demand is constantly shifting, and Nvidia may reallocate production capacity from
consumer-grade GPUs, such as the RTX 5090, to data center GPUs, such as the H100. Changes
in production lines incur switching costs, while the company’s revenue also depends on the evolv-
ing market. Therefore, as mentioned above, we consider a general notion of re-solving cost, which
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not only covers the computational cost of solving large-scale MILPs, but also accounts for consumer
losses caused by delays, as well as the switching cost of transitioning from the old solution to the new
one, thereby providing a general re-solving scheduling framework for agents with different needs.

Besides evolving optimizations, another key factor shaping the re-solving policy relates to uncer-
tainty about the future (Quionero-Candela et al., 2009), as the exact optimization problem may be
typically unobserved and must be estimated from past data. When the environment shifts, outdated
samples produce poor estimates, and hence additional new data is required for accurate estimates.
An effective policy must therefore trade off the cost of re-solving against the need for reliable esti-
mates. This challenge cannot be handled by standard dynamic programming, as the current policy
both depends on past solutions and influences future re-solving decisions. To address this, we pro-
pose a policy learning framework with change-point detection that explicitly balances re-solving
costs against the need for new estimation samples under environmental shifts.

Our policy, as visualized in Figure[I] highlights two main factors that determine when re-solving is
needed. First, if the environment changes significantly, such as shifts in operations costs reflected
in the MILP objective, the underlying optimization problem also changes, making re-solving neces-
sary. An effective policy here is to detect major changes in environment dynamics and re-solve when
they occur. Second, even in a stable environment, we still need to estimate optimization parameters
obtained from sample observations. While more sampled data improves accuracy, the benefit of
frequent re-solving decreases over time due to diminishing returns from collecting similar observa-
tions. In this case, an effective policy is to gradually reduce the re-solving frequency. We formally
establish these characteristics of optimal re-solving schedules and corroborate the effectiveness of
the resulting learned policy through extensive experiments, where our approach significantly out-
performs existing heuristic methods.
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Figure 1: Re-solving decision for an instance: The blue vertical lines represent change points, and
the orange lines represent POC re-solving times. We observe that between two change points, the
POC re-solving intervals gradually increase.

Our Contributions. In this paper, we first study the problem of learning an optimal re-solving
policy for varying MILPs. We summarize our main contributions as follows.

First, we introduce a principled decision framework for when to re-solve large-scale, real-time
MILPs. We theoretically establish that the number of re-solves is upper-bounded by a function
of the re-solving cost and derive structural properties of the re-solving frequency.

Second, we delineate the relationship and key differences between our formulation and vanilla re-
inforcement learning, and clarify why existing methods are ill-suited for this setting. We propose
the POC framework, reducing the cumulative loss over existing baselines by 2%-17%. It strikes a
favorable balance between re-solving cost and optimization loss, thereby potentially decreasing the
number of re-solves in real-world deployments.

Third, we provide a new benchmark and evaluation protocol for deciding when to re-solve dynamic
MILP problems. We curate eight synthetic and real-world datasets across eight MILP families, e.g.,
set packing and travelling salesman problem, filling the gap in the literature caused by the scarcity
of real-time optimization datasets, and offer unified evaluation metrics to facilitate future research.

1.1 RELATED WORKS

Our work is closely related to the literature on change point detection (Aminikhanghahi & Cook,
2017; [Londschien et al., 2023} L1 et al., |2024a; |Dmitrienko et al., 2022; [Dong et al.l 2024} Xu
et al.| 2025} [Van den Burg & Williams| 2020; Bifet & Gavaldal, 2007; |Raab et al., [2020), re-solving
scheduling (Meignan, 2014;|Schieber et al., 2018; Yuan et al.,[2022}; Zych, 2012; Mannino & Sartor,
2020; Mahadevan & Mathioudakis} [2023; |[Hoffman et al.,2024; |[Florence et al.,2025)) and reinforce-
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ment learning for varying environments (Padakandla et al., 2020; Mao et al., |2020; [Padakandlal,
20215 [Dmitrienko et al., 2022; |(Cheung et al., |2023; Baumann et al., [2018}; [Zhang & Dietterich
1995; Mao et al., 2016)). Due to the space limit, we discuss these and more related works thoroughly

in Appendix [A.1]
2 PRELIMINARIES

We outline our formulation of the re-solving problem. We have an online data flow with an MILP
problem. At each time step ¢ € [T] = {1, ..., T}, we use min, ¢! z subject to Az < band z € Z>¢
to represent the problem without loss of generality, and we defer further discussion of different
forms of MILPs to Appendix [D.1] In practice, constraints often change much more slowly than
the objective. For example, while traffic conditions in New York can change rapidly, the road
network itself remains fixed; similarly, product prices tend to fluctuate much faster than factory
productivity. Mathematically, the change of constraints may lead to an infeasible old solution and
make re-solving unavoidable. The objective ¢; comes from the distribution p;, and p; might change
over time. We assume p; = p;—1 with probability 1 — p; and change arbitrarily with probability
p¢. For example, a traffic accident happens with a certain probability and may alter traffic condi-
tions. Typical systems are stable, so p; is small. People usually assume p; < O(T"%) (Wei &

Srivatsval [2018)) or Zle pt < o(T) (Besson et all, [2022). We access some offline data, denoted
by {g; = (A, b, {cit}tT;'l)}ie[ 7]- We aim to use them to learn a policy for determining appropriate
re-solving times in the online setting.

We use ¢ € {0,1}7 to denote the re-solving action, where & = 1 if we re-solve the MILP and 0
otherwise. We use ¢, to denote the time of the k-th re-solving. Besides deciding when to re-solve,
we also need to select informative data to predict the evolving environment. Objectives from other
distributions offer no benefit for estimating the objective at hand. We assume that ¢, is unobservable
at time ¢, for instance, a mapping service choosing a route does not know in advance whether an
accident will occur en route. Note that this setting is more challenging; however, our framework
readily extends to the case where c; can be observed before the decision is made. Therefore, our
action at time t is & = 7%(Z;) and x; = 7(Z;) where Z, = (A, b, c1,...,ci—1, {gi }iepn)) is all
available information. We sometimes ignore A and b when it’s clear from the context. Then, we can
define the cumulative loss

T
CL(m) = (aw —axi)+ ClEh
t=1
——
Optimization Loss Re-solving Cost

where x} is the clairvoyant optimal solution and C' is the cost of a single re-solving. The re-solving
cost may stem from various sources. It could represent the time and computational resources re-
quired to obtain a solution, or the monetary cost of invoking an API. It may also encompass other
types of costs. For instance, when a mapping service re-computes an optimal route, it may increase
latency, reduce user satisfaction, and lead to customer attrition; in supply chain management, chang-
ing a hub may incur fixed logistical costs. In the offline phase, we usually have more resources and
do not suffer the costs of simulations that have not actually occurred. We assume that the re-solving
cost remains constant in the online setting. If it varies, one can simply incorporate it into the state
and use the same pipeline. Hence, our goal is to learn 7* = argmin CL(w). We illustrate the
m=(7é,m®)

pipeline in Figure

3 THEORETICAL ANALYSIS

Unlike traditional RL, the objective function, represented by c; is not a Markovian decision process
(MDP). At time t, if we simply use c;_1, the latest objective we can observe as the state, since we
need to select previous data to estimate the environment, using cy, ..., ¢;—1 will lead to a different
transition kernel and reward compared with only using c;_1. For instance, note that estimating c;
by E,,c; will yield the best online solution due to the linear structure. As we need to estimate
the distribution of the upcoming c;, leveraging more previous observations will render a smaller
variance. Another option is to use (c1, ..., c;—1) as the state, which covers all available information.
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Figure 2: The POC pipeline: We first use the change point detector to choose informative data and
construct features. Then, we make re-solving decisions. If we re-solve, we use informative data to
estimate and solve.

However, it results in an increasing state dimension and time-varying transition, and we still need to
tailor RL algorithms to bypass these issues. In practice, we can use some feature extraction methods
to construct the state. Theoretically, we make the following assumptions.

Assumption 1. We assume p;, the probability of environment change, is homogeneous with respect
to t, that is, py = p for all t. When p; # py_1, as the environment can change arbitrarily, all
previous solutions have approximately the same optimization loss.

Assumption 2. There exists a feature extractor ¢ such that the state representation s; =
o(c1, ..., ce—1) fully summarizes all available estimates of the environment at time t.

Assumption [I] implies that if the environment changes, the expected degradation of previous solu-
tions is homogeneous. For example, a traffic accident on the road is usually unrelated to the route
we previously selected. Assumption [2]is a standard one in RL with function approximation (Sutton
et al.l [1999; |Prashanth & Bhatnagar, |2010; Jin et al.,|2020). Interested readers may refer to|Uehara
et al.| (2021) for details on how to learn the extractor ¢. It’s realistic in our setup. For instance, if
the age of the latest solution is used as a feature, choosing to re-solve at time ¢ resets it to 0, while
choosing not to re-solve increases it by 1, independent of previous features. With s; in hands, we

can define optimal value function V*(s;) = max E[Zf:t(chi — ¢y, — C&;)] and corresponding
optimal policy 7*. Note that we maximize the value function to be consistent with the literature. We

then have the following theorem.
Theorem 1. Under Assumptions[l|and[2] learning 7* with value function V* is equivalent to learn-
ing ©* with a discount value function V* with discount rate 1 — p and reward (1 — p)(cixf — crxy) —

C¢,.

Theorem [I] establishes that, in our setting, environmental changes are theoretically equivalent to
having a discount factor strictly smaller than 1. In practice, when p is unknown, one may either
adaptively estimate p from data or employ a fixed discount factor to mitigate the variance of the
algorithm.

We now analyze the properties of the number of re-solvings within a stable environment. Recall
that when the dynamic doesn’t change, we still need to re-solve, as with more observations of the
environment, our estimation would be more accurate. For instance, due to the concentration analy-
sis (Wainwright, 2019), we know that the estimation error of E[c;] will decay with rate O(ﬁ) with

n observations. We now make the following assumption on the optimization loss.

Assumption 3. Within a stable environment, if there are n observations to estimate c,, it holds that
the expected optimization loss E|cl x; — c] x}] of this solution is ©(n~=%). To be specific, we assume

there exists L and U such that <£-n=* < E[c]z; — ] x}] < L-n—.
- t t Tt i

Assumption [3]is common in the literature, and we discuss how to relax it in Appendix [B.5] [El Bal-
ghiti et al.[(2019) proves an aligned upper and lower bound of order o = %, while Liu & Grigas
(2021) provides an upper bound of order o« = % under loser assumptions. Hu et al.| (2022), on the
other hand, gives lower bounds of order o = % ora = éiz for some a separately for independent
and dependent noise. In our setting, it’s also easy to satisfy this assumption. When the optimal
solution z; is bounded, we will have an upper bound with « at least % Please refer to Examplein

Appendix
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Unlike Assumption [T} which characterizes the optimization loss arising from different distributions,
Assumption [3| characterizes the properties of the optimization loss within the same distribution.
Recall that the information at time 1 is an empty set with respect to {cy, ..., ¢ }, so we can only use
a default solution as there is no observation of the objective. We use ¢y = 1 to represent the default
solution at time 1. We now give some properties of the re-solving times within a period. Here, at
time ¢y, we have t;, — 1 samples to estimate ¢;’s distribution.

Theorem 2. Assuming conditional on the event that there is no change of the environment,
under Assumptions || I to 3] I Jor the optimal strategy, the gap between tj and t ., is at least

[m]“a (t; — 1). In other words, it holds that
L

Uty —1)=> = pC

thpr = 141 e,

Note that ¢} , , is increasing with respect to ¢, so we can give the lower bound of every ¢ denoted
by #5. Since we have a default solution at time 1 and ¢ should be an integer, from Theorem E], it
holds that ¢; > 2 := t;. We then have the following corollarles

Corollary 1. It holds that every ty, has a lower bound satisfying to = 1, t, = 2, and the recurrence
L

Uty —1)=* = pC

Corollary 2. When the re-solving cost is large, say C > %, we only need to re-solve once at the

beginning.

tk+1:1+[ ]l/a.

We derive Corollary [2]as the denominator becomes negative when re-solving cost C'is large, which
means that compared with the optimization loss incurred by using the old solution, the re-solving
cost is never worthwhile. It also demonstrates the relationship between the environment change
probability p and the re-solving times. When the changing probability p is small, re-solving has
more benefits for the future, so we intend to re-solve more times.

We now characterize the properties of the intervals between ¢, and have the following theorem.
Theorem 3. Assuming conditional on the event that there is no change of the environment, under
Assumptlonsmtoﬁl it holds that the interval between ty, is always increasing, say tpt1 — bk >t —

tg—1. Meanwhile, it holds that the optimal policy re-solves at most min{T, W} <

O(&) times.

We also observe the same phenomenon in our experiments. In Figure [T} we see that the learned
policy gradually increases the re-solving interval between two change points. This is due to the di-
minishing marginal effect of additional observations. Theorem [3|further corroborates the superiority
of our framework. [Florence et al.| (2025) also gives an upper bound T' — @(\/5) of the re-solving
time. However, our bound is much tighter. As we only need to re-solve constant times when the
time horizon 7' goes to infinity, they can only avoid re-solving in constant time horizons.

Together with Corollary [2{ we know that the upper bounds of the optimal re-solving times show

double phase transitions (cf. Figure@in Appendix . Define f(x) = % When

C < f~X(T), the upper bound is T'. The upper bound becomes % when f~1(T) <

C< %. Finally, when C' > %, the upper bound of re-solves ends up as 1.

We immediately obtain the following corollary when there are at most N — 1 change points which
divide T horizons into IV periods.
Corollary 3. When there are at most N distinct periods over the entire horizon, the optimal policy

C/(pC .
(plog((Up/LJrL Dy < O(X) times.

. N1
re-solves at most min{T, =&

In general, changes in the environment are accompanied by re-solving. Therefore, as N increases,
the upper bound on the number of re-solvings also grows.

4 METHODOLOGY

This section outlines the methods for constructing the POC framework, as shown in Figure



Under review as a conference paper at ICLR 2026

Data selection. Since the optimal online solution is to set the objective to E,, [¢;], we use the sam-
ple mean derived in the past to estimate it. However, one difficulty lies in the fact that cq, ..., ct—1
may be generated from different distributions. Thus, it is necessary to identify the informative
samples, namely those originating from the same distribution. Our approach begins by applying a
change point detection (CPD) algorithm to locate the most recent change point prior to time ¢. The
data following this change point are then used to estimate p,. We compare change point detection
with other methods, like enential moving averages (Hunter, [1986)) and sliding windows (Datar

et al.,2002), in Appendix m Maillard (2019) proves that the detection delay is at most O(ICEQT)
where A is the change magnitude. Notice that the impact of delay and that of estimation are of the
same order (Wainwright, 2019)), so change point detection will not be the main source of our cumula-
tive loss. In our experiments, we employ a random-forest—based change point detector (Londschien
et al.,|2023), as it is relatively robust. Designing specialized change point detectors for different data

scenarios is a worthwhile direction for future research.

Feature engineering. Motivated by Assumption |2} we seek to construct features that capture the
information set Z;. Recall that re-solving becomes necessary in two situations, say when the envi-
ronment experiences a significant shift, or when an increase in observations enhances the accuracy
of our estimate of the environment. For the first case, inspired by linear programming, we assume
that A and p are the slack variables corresponding to the constraints Az < b and z > 0 of the
relaxation of the MILP, respectively. We choose the gradient ¢ — AT\ + 1 of the corresponding
Lagrangian function as a feature, which reflects the suboptimality of the old solution under the new
MILP. In addition, we incorporate A and p, which reveal which constraints are binding. Note that
the first step in solving an MILP usually involves solving its linear relaxation, so the construction of
features does not incur additional computational cost. In the second case, we use as features both
the number of samples used by the previous solution to estimate the environment and the number of
samples that would be used if re-solving were performed at the current time. These features quan-
tify the extent to which additional samples improve the quality of the solution. We also record the
solution’s age to capture the probability of environmental change, due to Assumption[I] Moreover,
following Theorem [} we approximate the infinite-horizon re-solving problem using relative time.
We detail other auxiliary features and conduct an ablation study on the features’ effectiveness in

Appendix [D.6]

Policy learning. Through feature engineering, denoted as s;(Z;), we use an actor network to gen-
erate actions. We first sample from offline data to learn the policy. Since in practice s; does not form
a perfect MDP, we choose on-policy RL, which concentrates on policy learning, rather than model-
based RL, which learns the reward and transition, to enhance robustness (Janner et al.| [2019). We
use 6 to denote the parameters in both the action policy my and the value function Vj. Recall Theo-
rem (1} in practice, the frequency of unknown environment changes is much lower compared to the
data flow, so we assume p ~ 0 in the reward. This slightly reduces the weight of the re-solving cost
and strengthens exploration in offline learning. For the discount factor 1 — p, we approximate it with
a single hyperparameter . Here, we adopt a moderate value of -y to reduce the variance of the value
function caused by error accumulation (Munos, [2003). Accordingly, during the sampling phase, we
log the value estimate Vj(s;), the action &; ~ wg(st), and the negative loss c,x} — cixy — C&;.
Subsequently, we compute the TD-based advantage A; = c,xf — c,xe — C& +vVa(se1) — Vo(se),
and record the action probability F§(€t|5t) at time ¢. Therefore, after collecting the offline samples,
we tailor proximal policy optimization (PPO) (Schulman et al.,|2017) and update the neural network
to obtain a new policy,

0’ + arg min L(6)
9/

3 3
By | = minf 720 4 crin TS A 4 e (Ve (se) — Av — Va(s)? — e H[7S)(s0) ]
o (&ilse) g (&1lst

where H is the policy entropy of the new policy, and ¢, ¢ and ¢y are hyperparameters. We outline
our offline and online POC framework in Algorithms|[I|and [2]in Appendix[C.1]

In practice, once a sufficient number of online samples have been collected, they can be used to
fine-tune the actor network, thereby further improving the model’s performance.
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5 EXPERIMENTS

Prior literature has largely lacked dynamic MILP datasets, in which the loss with respect to the
objective exhibits non-smooth variations. Instead, most existing studies on cost-aware retraining
have primarily focused on relatively simple regression or classification tasks (Mahadevan & Math-
1oudakis), [2023} [Hoffman et al., 2024; Florence et al., [2025)). To systematically investigate the ques-
tion of when to re-solve, we construct a benchmark encompassing diverse classes of MILPs. Our
experiments examine eight MILP families, highlighting the performance advantages of the POC
framework relative to other algorithms when re-solving costs are present. In addition, we provide an
analysis of how varying levels of re-solving cost influence both the frequency of re-solving decisions
and the resulting cumulative loss.

5.1 DATASETS AND BASELINES

We present results on synthetic and real datasets. We design five synthetic datasets, including Set
Cover (SC), Matching (Mat), Set Packing (SP), Facility Location (FL), and general MILP (GMILP).
In addition, we curate a real-time second-level GTFS dataset for the New York area (Antrim et al.,
2013; McHughl 2013)) from the Microsoft Fabric platform to construct two MILP families, namely
Shortest Path Problem (SPPf] and Travelling Salesman Problem (TSP). Furthermore, we obtain
Combinatorial Auction (CA) data from [Leyton-Brown et al| (2000) and built a dynamic auction
dataset. This provides a foundation, say a comprehensive set of both synthetic and real-world data,
for future research on optimization problem scheduling. In Appendix we detail the specific
optimization formulations of these various MILP families.

In what follows, we describe the baseline methods considered in our study. For the change point
detector CPD, which returns the latest change point, we adopt a unified approach by employing
random forests (Londschien et al., [ 2023)) across all methods to ensure a fair comparison of different
algorithms for deciding when to re-solve. To the best of our knowledge, this is the first work that
systematically studies when to re-solve MILPs. Therefore, we tailor existing algorithms originally
developed for determining when to retrain predictive models and fine-tune their hyperparameters to
serve as baselines.

Specifically, ADWIN-5% (Bifet & Gavaldal [2007)) triggers re-solving when a fundamentally dif-
ferent new change point is identified with 95% confidence, while CARA-P (Mahadevan & Math-
1oudakis), 2023) periodically solves the MILPs. UPF, proposed by |[Florence et al.| (2025), decides
the re-solving timing by predicting the uncertainty of future performance. In addition, Mahadevan
& Mathioudakis| (2023)) introduces another two algorithms, CARA-T and CARA-CT, which rely on
knowledge of future objectives and their similarity to historical data, which is intractable in our set-
ting. Nevertheless, inspired by their definition of similarity, we augment UPF with a similarity-based
feature, which improves upon the performance of the original UPF. We detail their implementations
in Appendix and will analyze in the next section why these algorithms exhibit certain limitations
in the context of deciding when to re-solve MILPs.

5.2 RESULTS

In the first experiment, we fix the re-solving cost at C' = 10. Across eight synthetic and real-
world datasets, our POC framework consistently outperforms the baseline algorithms, reducing the
cumulative loss by an average of 2% to 17%. We list the cumulative loss (CL) and the total re-solving
times (# R-S) of different algorithms in Table [I] Moreover, in high-frequency data scenarios, our
POC framework substantially decreases the number of re-solving events, reducing the re-solving
frequency to below 5%. In addition, we provide two lower bounds for the cumulative loss. First, we
derive a lower bound under the assumption of knowing the change points in advance (LBwCP), i.e.,
if we had an oracle that revealed the exact locations of the change points and we re-solved every time
ignoring the re-solving cost, what the cumulative optimization loss would be. This characterizes the
unavoidable loss induced by the inherent randomness of the environment. Second, we derive a lower
bound without knowing the change points (LBwoCP). At each time step, it employs CPD for data
selection and updates the MILP solution without accounting for the re-solving cost. This measures

'SPP is a P problem, while the other seven families are NP-hard. For the sake of comparability, we also
formulate SPP as a MILP; however, modern solvers can typically solve it very efficiently.
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Table 1: Experimental Results: We report the cumulative loss and the number of re-solving events
for all algorithms on eight datasets. In the tables, the best results are highlighted in bold, and the
second-best results are underlined.

Aleo SC Mat SP FL
8 CL() [ #RS | CLQ) [ # RS | CLQ) | # RS | CL ) | #RS

ADWIN-5% | 2046.06 | 63.60 | 2473.62 | 53.20 | 2872.67 | 51.10 | 3009.56 | 55.10
CARA-P 2845.04 | 67.00 | 2850.80 | 91.00 | 3591.99 | 67.00 | 3501.49 | 63.00

UPF 8562.69 | 720.10 | 9086.74 | 724.00 | 9396.33 | 721.90 | 9889.30 | 755.80
POC (ours) | 1771.78 | 22.00 | 2423.56 | 24.10 | 2815.81 | 26.50 | 2646.49 | 14.60
LBwCP 971.24 - 1349.15 - 1826.46 - 2081.33 -
LBwoCP 1360.52 - 1845.83 - 2176.54 - 2332.99 -
GMILP SPP TSP CA
Algo

CL{) | #RS [ CLQ) [ #RS [ CL() | # RS | CL () | #R=S

ADWIN-5% | 2747.42 | 74.10 | 968.94 | 15.00 | 1565.95 | 11.00 | 8375.44 | 178.30
CARA-P 3243.08 | 67.00 | 857.77 15.00 | 1244.86 | 15.00 | 6337.09 | 42.00
UPF 7030.22 | 517.00 | 1336.47 | 61.00 | 4337.65 | 2.00 10352.47 | 308.70

POC (ours) | 2280.09 | 18.90 | 825.96 | 15.50 | 1161.10 | 13.70 | 5736.52 | 16.50

LBwCP 1631.09 - - - -
LBwoCP 1859.58 - 546.23 - 837.37 - 5464.87 -

the additional unavoidable loss introduced by the choice of change point detector. Therefore, the
gap between the cumulative loss and LBwoCP represents the potential loss incurred by a strategy
due to the presence of re-solving costs. For our POC framework, we provide the following remark.

Remark 1. For our POC framework, the re-solving cost within the cumulative loss is roughly com-
parable to the actual optimization loss minus the unavoidable optimization loss, i.e., LBwoCP.

Remark|[I]suggests that, in the presence of re-solving costs, it is necessary to reduce the frequency of
re-solving. The optimal policy must balance the re-solving cost against the increase in optimization
loss that arises from less frequent re-solving. This provides a fundamental guideline for addressing
this class of decision-making problems.

In the second experiment, we vary the re-solving cost C from 5 to 50 and examine the performance of
different algorithms under distinct costs on the general MILP dataset, as shown in Figures 3] and 4]
Unsurprisingly, we find that as C' increases, the number of re-solving events decreases while the
cumulative loss rises. Notably, ADWIN-5% tends to re-solve shortly after detecting a new change
point. Although it has been fine-tuned, it nevertheless remains largely insensitive to variations in
the re-solving cost. We also find that our POC framework exhibits strong robustness to misspecified
re-solving costs in Figure 5] Even when provided with an incorrect cost parameter, POC continues
to perform well. For instance, when the provided C is as large as 50, ten times the true cost of 5,
the performance of POC decreases by less than 25%, and on average, the degradation is below 5%.
In practice, the tradeoff between re-solving cost and optimization loss is often difficult to estimate
accurately. Thus, the robustness demonstrated by the POC framework highlights its broad potential
for practical deployment.

Finally, we discuss why the baseline algorithms perform poorly on the task of determining when
to re-solve. We first note the non-negligible gap between LBWCP and LBwoCP. Change point
detectors typically identify a change only some time after it has actually occurred. Moreover, CPD
is primarily designed for offline data, and in our online setting, it’s prone to detecting spurious
change points when the sample size is small. In contrast to ADWIN-5%, when POC encounters
such false change points, it refrains from triggering a re-solve due to the limited data available
and the resulting inaccuracy in environment estimation. Consequently, POC achieves fewer re-
solving events and lower cumulative loss. For CARA-P, since the distribution of change points is
highly irregular, we are forced to shorten the period to avoid missing essential change points. This,
however, introduces a large number of unnecessary re-solving events. UPF, on the other hand, tends
to suffer from error explosion under high-speed data streams. The original UPF is designed for
T = 8, whereas our six datasets have 7" = 1000 and the other two have T' = 300 during the test
phase. In such settings, even small errors can accumulate to exceed the magnitude of C, rendering
model-based approaches ineffective. Moreover, the original UPF requires enumerating all possible
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re-solving time points, which grows exponentially with 7" and is therefore impractical for large-
scale data. These observations demonstrate the substantial advantage of our direct policy-learning
framework in high-frequency environments.

5.3 DESIGN CHOICES ANALYSIS AND ABLATION STUDY

Compared to MILP, linear programming can be solved much more efficiently. We therefore ex-
periment with using linear programming to pre-train the policy, followed by MILP to fine-tune the
learned actor network. We find that this approach substantially reduces the number of epochs re-
quired for policy learning, with only about a 2% performance loss. In addition, we evaluate the
framework under different discount factors, network architectures, and data selection strategies,
thereby providing a practical recipe for applying the POC framework in real-world settings. The
corresponding results are reported in Appendix [D.6]

Compared to previous work, we additionally consider the beneficial sample size as a feature. Re-
solving can be triggered either by a detected essential change point or by the accumulation of suf-
ficient observations that enable more accurate estimation of the environment. Theorem [3] provides
theoretical guarantees, and our ablation study shows that incorporating beneficial sample size re-
duces cumulative loss by roughly 15% with a slight increase in re-solving frequency (cf. Table[IT]in
Appendix [D.6). These results highlight the value of beneficial sample size in guiding more effective
re-solving decisions.

6 CONCLUSION AND DISCUSSION

We propose a practical formulation of the fundamental problem of determining when to re-solve
dynamic MILPs. Unlike internal adaptivity, which adjusts re-solving time solely based on model
performance, our setting also accounts for external costs, where the re-solving time is determined
by external adaptivity. Our theoretical analysis characterizes the structural properties of re-solves
and motivates the design of the POC framework for policy learning. Building on these insights, we
introduce a robust POC framework, which integrates data selection, feature engineering, and policy
optimization. Across eight benchmark datasets, POC consistently outperforms strong baselines,
reducing cumulative loss by 2% to 17%. These results highlight the effectiveness of incorporating
re-solve-aware features into policy design and establish a policy-based rather than model-based
paradigm for real-time operations in high-frequency data streams.

Having put forward this overlooked problem, several questions naturally arise for future exploration.
For nonlinear optimization, how should one characterize the suboptimality of outdated solutions?
When the feature space is large or networks are deep, for instance, in optimization over text or image
domains, how do other policy learning algorithms, such as group relative policy optimization (Shao
et al.l 2024), compare in terms of efficiency and robustness? Relative to full re-solving, how might
one combine our approach with efficient optimization techniques such as subproblem selection (L1
et al.l 2025)? Finally, how can the POC framework be extended to broader cost-aware decision-
making settings, such as tool use in large language models (Wang et al.| 2025)?7 We leave these
directions as promising avenues for future research.
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A OMITTED DETAILS IN SECTION

A.1 RELATED WORKS

We summarize below three lines of existing literature pertinent to our work.

Change point detection. Change point detection is a widely studied topic in statistics. We use
a change point detector to filter objectives from the same distribution and leverage them to esti-
mate the environment and construct part of the strategy for generating new re-solving solutions.
Aminikhanghahi & Cook| (2017) provides a survey of traditional statistical methods for detecting
change points. In recent years, a number of papers have explored the application of deep learning
to change point detection. |[Londschien et al.| (2023)) establishes theoretical guarantees for detecting
change points using random forests, while [Li et al.| (2024a) demonstrates the relationship between
multilayer perceptrons (MLPs) and change point detection statistics. [Dmitrienko et al.| (2022)) dis-
cusses the advantages of transformer architectures in change point detection, and with the rapid
development of large language models (LLMs), [Dong et al.| (2024) investigates whether LLMs can
be used for anomaly detection. Interested readers may refer to [Xu et al.[(2025)), which provides a
review of various deep learning algorithms for change point detection and discusses the prospects
of integrating CPD with decision-making. Meanwhile, Van den Burg & Williams|(2020) constructs
a manually annotated dataset and a metric for comparing existing CPD algorithms. [Maillard| (2019)
investigates the relationship between the detection delay of a change point and the magnitude of the
change under sub-Gaussian distributions. [Wei & Srivatsva| (2018)); Besson et al.| (2022)) study bandit
problems with change points and establish regret bounds. [Bifet & Gavaldal (2007); [Pesaranghader
& Viktor| (2016); |[Raab et al.| (2020) directly treat the detection of a distribution shift as a signal
to change the policy. None of them accounts for the cost of policy changes; nevertheless, we aim
not only to detect change points but also to identify meaningful changes for re-optimization. Our
algorithm hence demonstrates significant advantages in scenarios with high re-solving costs.

Re-solving scheduling. Few papers have addressed the practical question of when to re-solve a
costly MILP problem under an uncertain environment. Meignan| (2014)); [Schieber et al.| (2018)) use
the bound on the distance between the old and new solutions to model the cost of re-solving. [Yuan
et al|(2022), on the other hand, does not account for the re-solving cost and instead focuses solely
on improving the solution method. |Zych| (2012) uses the solution from one instance to approximate
another NP-hard instance, and so does [Mannino & Sartor] (2020). However, our paper focuses
on deciding when to re-solve and treats the solver as a black box. Our setup is also related to
recent work on determining when to retrain a machine learning model. Mahadevan & Mathioudakis
(2023) uses a heuristic algorithm to decide when to retrain a classifier, while [Hoffman et al.[(2024)
uses a heuristic algorithm to address the corresponding regression problem. Unlike in regression,
applying their calibration method to an MILP can easily violate constraints and yield an infeasible
new solution, which introduces additional challenges to the problem we study. [Florence et al.|(2025))
quantifies uncertainty to decide when to retrain a binary classifier. They consider a low-data setting,
with a time horizon 7' of only 8. As a result, they can enumerate the action space to obtain the
ground truth. In contrast, we consider high-frequency data streams from real-world data platforms
with a very large 7', where their model-based supervised approach is not applicable. Instead, we
adopt a model-free on-policy method to address this problem.

Reinforcement learning for varying environments. There is a vast amount of literature on non-
stationary reinforcement learning (Padakandla et al. 2020; Mao et al. [2020; [Padakandla) 2021}
Dmitrienko et al., 2022} |(Cheung et al., |2023). They do not account for the cost of changing the
policy, whereas the cost associated with re-solving makes our problem non-smooth. Baumann et al.
(2018) uses deep RL to study event-triggered control with fixed dynamics. But since we need to
select data to estimate the future, our scenario is not a Markovian decision process, which makes
vanilla MDP-based RL algorithms not directly applicable. This issue also arises when using RL for
various types of scheduling (Zhang & Dietterichl [1995; Mao et al., 2016, Waschneck et al., 2018;
Zhang et al.|[2020a} Liu et al.,2020; Shyalika et al.,2020; |Liu et al., 2022). To address this issue, we
do not directly use the changing optimization goal as the state. Instead, we employ feature engineer-
ing to mitigate the effects of the non-MDP nature of the problem. Moreover, rather than estimating
model-based quantities such as transitions, we adopt a less sensitive policy-learning approach to
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directly determine the re-solving times. We tailor proximal policy optimization (Schulman et al.,
2017) to learn the policy; however, most policy-learning algorithms of this kind (Williams}, |1992;
Sutton et al., |1999; [Schulman et al., 2015; Mnih et al., |2016) rely on a discount factor, whereas
we consider infinite-horizon learning without discounting. We establish an equivalence between the
changing environment and the discount factor, thereby theoretically justifying the success of our
POC framework.

B OMITTED PROOF IN SECTION[3]

B.1 PROOF OF THEOREM/[I]

With a little abuse of notations, we use 7* to represent the best action facing s;. We assume that
if the environment doesn’t change over time, say p; = p;_1, it holds that s;; ~ P*(-|s;). From
Assumption[I] we assume that the expected optimization loss of old solution in a new environment
is R. Therefore, it holds that

V*(St) = ECtNP* (et ]st) [(1_/)) (C?CE:_Cfxt)_Cft]+PR+(1_P)ESt+1~IF’*(St+1 | St)V*(st+1)+pEV*(St+1)'

Recall that for every policy 7, we have & = 7¢(s;) and #; = 7%(s;). For the last term, since
when the environment changes, the change can be arbitrary, it’s the same as a restart from time 1
for our infinite-horizon decision-making problem. From Assumption [I] we know that this term is
independent of state s;. Hence, we only need to find optimal strategy

7 = argmax E.,p« (¢, | s)[(1 — p)(cf 27 — cjz) — C&] + (1 — p)Ey, sk (s04r |50V (St41),

n=(né,77T)
as R is unrelated with 7*. Besides, since when the environment changes, s;1; is a new start
with the same dynamic, for example, the probability of environment changes is still p, maximiz-
ing Ee,wps(c, | s [(1 = p)(cf xf — cfwy) — C&] + (1= p)Ey,y b (s101 | 50)V * (5141) Will optimize
PEV*(s¢41) naturally.
We apply the above procedure recursively. It holds that the optimal strategy satisfies
T

m* = arg max ZEP*(' syl =p) 71 (1 = p)(cFat — cLa,) — C& ).
m=(n8, 7))
Therefore, we know that finding 7* with respect to V' * is equivalent to find 7* with respect to a new
value function V* with discount rate 1 — p and reward (1 — p)(cl z} — cj ;) — C&;, which shows the
equivalence of V* and V*. Note that the transitional kernel P*(-|s;) is now slightly different from
the true environment, as we assume the environment doesn’t change over time. This design is only
for analysis. In practice, this formulation is also beneficial to policy learning. As the environment
change brings high variance to the learning process, focusing on the unchanged part will stabilize
our learning process, which motivates our design in the region of high data and low switching.

B.2 PROOF OF THEOREM[Z]

Before proving Theorem 2] we first give an example under which Assumption [3|holds.

Example 1. Within a stable environment, when the solution x is bounded, it holds that E[ctT:rt —

1o . .
cl'z¥] < O(n~2) using n observations to estimate c;.

Proof. Since we use n i.i.d. observations to estimate E[c;], we know that the mean square error A
is less than O(ﬁ) (Wainwright, 2019). Since z is bounded, we assume that ||| < B. Let’s now
consider two optimization problems, say min,, ¢! x subject to Az < band x € Z>. It then holds
that

crar —clay = clat — clat + cFat — el o
< cpaf —cjaf +efa; — ey
<llea = erlle - (27ll2 + ll22]l2)

S 23”02 — Cl||2~
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Here, we use the fact that 27 is the optimal solution to the first MILP, so ¢f 'z < ¢ x3. Then, as we
have A < (’)( =), it immediately yields

B[z — claz}] <2BA < O(n~ 7),

which ends the proof. So, we know that the order of the upper bound is at least % O

We now turn to Theorem [2| With the help of Theorem I} we know that conditional on a stable
environment, we only need to consider a (1—p)-discount MDP. We use  to denote 1—p. We re-solve
the MILP at time ¢, and we assume that we wait n = ¢ — tj to re-solve another time. Therefore,
we have an extra re-solving cost 7" C after discounting. The optimization loss only differs after £ 1,
so the gap is at most (y* + " + - Uty — 1) — L(tx +n — 1) <) due to Assumption [3]
Recall that when we use the - dlscount MDP, the reward becomes y(c! z} — ¢l ;) — C&;, and we
should adjust the optimization loss considering discount as well.

Therefore, to motivate the re-solve at ¢ 1, we have

n

O < 17 Uty —1)™* = L{t), +n —1)"%).
Y
It yields that for the optimal strategy, the interval should satisfy
L
> 1t e,
e ek
Thus, we know that
+* >1 1/«
I R (Tl

which finishes our proof.

B.3 PROOF OF COROLLARYI]

We know that ¢t , > 1+ [U(t;—1)—§—(1—7)0]1/a and 1 + [U(t;—1)—£—(1—y)c]l/a is increasing
with ¢7. Assuming ¢}, has a lower bound #y, i.e., t}, > tx, it holds that

L
Ut =1 = (1=)C
which ends the proof.

L
}l/a > 1+[ 1/ _ ot

a2 1+ UG- -0

B.4 PROOF OF COROLLARY 2]

Note that ¢} = 2, therefore, for the proof of Theorem L when y"C' > 1 (U x17*—L(n+1)"%)
for all n, we would never re-solve the MILP. It’s equivalent to C' > U e Wthh ends the proof.

B.5 PROOF OF THEOREM[3]

From Corollary we know that t11 = 1+ | ) C]l/ @, Let’s construct a numerical

L
Ulte—1)—*—(1—~
sequence x = (tx — 1), and z; = 1. Since t; increases with k, we have that z; should be
decreasing. In the meantime, we have that z;; = %xk (i} 7) . Therefore, it holds that
(1-yC U (1 —7)0
LSS e sl A s gy )

Since x1 = 1, we know that

Uy U-L-(Q1-7C (1-7C
we= () U—1L T
Note that x5 = L{y)c We need z2 < x1, which is equivalent to C' > U v . Otherwise, we use

a trivial u%per bound 7" to bound the number of re-solves. Since now, we only focus on the region
that C' >

— "
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When Uz, < (1 — 7)C, we won’t re-solve anymore due to the proof of Corollary 2| We then
compute the largest k such that zj, > % It holds that

U U-L-(1-—7yC (1-7C_ (1-9C
arginax{k;.(f)k ( T—1I )+ U_1 > U }
_ log((1 =7)C)/(1 =7)C+ L -U)

log(U/L)

So, we know that the optimal strategy re-solves at most W times. We notice that the
upper bound is independent of the decay rate «. It arises from the fact that Assumption [3|supposes
homogeneous decay over time. When the decay rate falls into an interval, we can similarly obtain
the recurrence formula for x;, which now depends on the rate ratio, and solve the sequence. In
practice, we can simulate and obtain the sequence; however, from a theoretical perspective, we may

not be able to derive a closed form. Therefore, we retain Assumption |3|as it provides all essential
insights into the re-solving times.

Finally, let’s prove t41 — tj, is increasing. Since z3, = (%)kfl(Ufo(lJ’)c) + e

ToL T—1 > We know
that U U-L—(1-7C. (1—+)C
. k—1 —L=U=7 -7 —1/a

Denote h(z) = 1+ [(%)w’l(U_LJ£1;7)C) + (1[;:’%0]*1/“. It’s sufficient to prove that h(z) is a
convex function. It holds that

h/(l‘) — _é[(%)r—l(U — LU’__(lL_ ’Y)C)_‘_(llj__’yzc]—l/a—l((] — LU__(lL_ 7)0)(%)17—1 1og(%)

Since « is positive, we know that fé < 0. Meanwhile, as U > L, we know that log( %) >0

and (%)”"_1 is increasing. Additionally, since C' > %, it holds that w < 0, and
(Z

—)x_l(U_LlelL_V)C) + (1U_j)LC]_1/‘X_1 is increasing. Therefore, we know that h/(z) is an in-

creasing function, which means that h(x) is convex. We then obtain that ¢; 1 — t;, is increasing, or
in other words, tj41 — t > tp — tr—1.
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Figure 6: Upper bound of the optimal re-solving times: We observe double phase transitions in the

upper bound of the optimal re-solves. The optimal number of re-solving times should always lie
below the black solid line.

Together with Corollary [2] we can bound the number of re-solves for different re-solving costs and
observe a double phase transition as shown in Figure[6] It holds that the optimal re-solving times
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[|€* |1 satisfies

T, C < Y1),
N log(pC/(pC+L—U _ )
ey < { 1BECLECHLU) - o [p-1(r), L,
1, c>75,
where f(z) = %’#_U”. Moreover, since it holds that W <

log(U/L[)J(;é'+L—U)’ we know that [|€*[; < O(%) as well. It means that the optimal number of

~

re-solves decays at least as fast as O(é) with respect to re-solving cost C'. This finishes our proof.

B.6 PROOF OF COROLLARY[3]

We know for Theorem [3] that when there is no change point, the optimal strategy only needs to
re-solve at most W times. Since Assumption [2| supposes that state s; can capture
all useful information, including the location of the change points, we only need to restart at every

change point. Therefore, we only need to re-solve at most Nlog(’iocg/ ((5/623L_U)) < O(%) with

N -1 chan points. As the number of re-solves has a trivial upper bound 7', it finishes our proof

of Corollary [3|that the optimal policy re-solves at most min{7’, ~ log(plgg/ ((g/cir)LfU)) } times.

C OMITTED DETAILS IN SECTION 4]

C.1 OUR OFFLINE AND ONLINE POC FRAMEWORKS

Algorithm 1 Offline POC Framework.

Input: Offline data {g; };c[7], policy 7y, change point detector CPD.
Initialization: g < (.
for i € [I] do
fort € [T;] do

Observe A;, b; and c;1, ..., Cj(1—1)-

Select data starting at ¢« = CPD(c;1, ..., Ci(t—1))-

Construct feature s;;.

Choose re-solving action &;; ~ Wg(sit).

if £;; = 1 then

Solve z;; = argmin,,

end if

Observe ¢;; and computer advantage A;;.

Update g < g U (Sit, &it, Vo(sit), Ait, W(g(fitlsit))«

end for

end for
Update policy 6§ <+ arg min, L(#) over dataset g.
Output: Updated policy 7.

t—1 T
% subject to A;x < b; and © € Z>0, and update solution.

D OMITTED DETAILS IN SECTION
In this section, we provide a detailed description of our experimental design and the results obtained.
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Algorithm 2 Online POC Framework.

Input: Policy 7y, change point detector CPD, default solution x.
for ¢t € [T] do

Observe A, band cq,...,ci_1.

Select data starting at ¢ = CPD(cq, ..., C¢—1).

Construct feature s;.

Choose re-solving action &; ~ Wg(st).

if £ = 1 then

Solve x4y = argmin,,
Update solution x <— x;.
else
Use old solution z.
end if
end for

t—1 T
Zj::, Cj

- : subject to Az < band z € Z>.

D.1 DATASETS

We first detail in this section the construction of our eight datasets. For Set Cover, Facility Location
and general MILP, the optimization problem is

min ¢’z
xr

st. Ax > b
x € Zzo.

For SC, the matrix A encodes the coverage structure, where rows correspond to elements and
columns to sets, with A;; = 1 indicating that set j covers element ¢. It’s generated by assigning
each constraint to be covered by a random number of sets, ensuring at least one coverage per con-
straint, and then adding about 5% additional random entries. The vector b specifies the coverage
requirements, typically with all entries being 1 to enforce that each element must be covered at least
once. The cost vector ¢ assigns a nonnegative cost to each set, and the objective is to identify a
subset of sets of minimum total cost that satisfies all coverage constraints. Meanwhile, for FL, A de-
notes the customer—facility incidence matrix, where A;; = 1 if customer % can be served by facility
7. It’s generated by connecting each customer to each facility independently with some probability,
and ensuring that every customer is connected to at least one facility. The constraint vector b = 1
requires that each customer be covered by at least one open facility, while the cost vector c specifies
the opening cost of each facility. The objective is to minimize the total cost of selected facilities
subject to the coverage constraints. Another setting is to restrict x to be a binary variable. These two
formulations are equivalent, since the optimal solution must take values of either O or 1. Addition-
ally, for GMILP, we consider some general covering problems. We no longer constrain b = 1 and
let b be any positive random number. In addition, unlike SC, where A is a sparse matrix and A;; can
be either O or 1, the matrix A for GMILP is a dense matrix and every entry comes from a uniform
distribution. We then select MILPs with at least one feasible solution to form the dataset.

On the other hand, for the Matching, Set Packing and Combinatorial Auction dataset, the MILP
formulation is

max CT.I'

st. Ax <b
x € Zzo.

In the Mat dataset, the matrix A represents the vertex—edge incidence structure, where A, = 1 if
edge e is incident to vertex v. It’s generated by randomly sampling some distinct undirected edges
between vertices, with each column corresponding to an edge that is incident to exactly two vertices.
The vector b enforces the matching constraints, typically with b = 1 to ensure that each vertex is
incident to at most one selected edge. The cost vector ¢ assigns a weight to each edge, and the
objective is to maximize the total weight of the chosen edges subject to the matching constraints.
Similarly, for SP, A indicates element—set membership, with A;; = 1 if element ¢ is in set j. Here, A
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is generated by assigning each set to cover a random subset of elements, and each column contains
at least one nonzero entry. The constraint vector b = 1 ensures that each element can belong to at
most one chosen set, while the cost vector ¢ assigns weights to sets. The goal is to maximize total
weight. Finally, for CA, the matrix A represents the bundle-item structure, where A;; means the j-th
bundle contains the i-th item. We set b = 1, assuming each item can be allocated at most once. The
objective c is the bid, and the auctioneer aims to maximize the total revenue. For all these datasets,
we transform them into a unified form min, ¢’z subject to Az < b and = € Z>( by changing the
signs of A, b, and c.

For the Shortest Path Problem, we have MILPs with a formulation
T

min ¢ x
xr
st.Ax =0
WS Zzo.
Here, A is the node—edge incidence matrix, where each column encodes the orientation of an edge.
The vector b specifies flow balance, with b = 1 at the source, b = —1 at the sink, and zeros

elsewhere. The cost vector c records edge travel times. Minimizing the objective yields the shortest
path between the source and the sink.

For the Travelling Salesman Problem, we study an NP-hard variant of the traditional TSP problem.
We assume to start at a location and return to the same location. However, we constrain that the
route has to pass by some assigned locations V. For example, consider Amazon trucks that depart
from a central consolidation warehouse each morning, deliver parcels to a set of regional distribution
depots, and finally return to the warehouse. The company may determine the visiting order of depots
dynamically based on real-time traffic conditions. The optimization problem becomes

m:gn 'z
st. Az =0
Apf = by
Z z, > 1lifveV
{e:e—v}
f<Vie
f=0
T € L.

For TSP, the vector x indicates whether each directed edge is selected, while the continuous vector f
represents the auxiliary flow used to eliminate subtours and guarantee connectivity. Two incidence
matrices are introduced here. The matrix A, is the node—edge incidence matrix applied to the edge
variables . It enforces degree balance, i.e., the number of selected incoming edges equals the
number of selected outgoing edges at every node, encoded as the constraint A,z = b, with b, = 0.
The second matrix, Ay, is an identical incidence structure applied to the flow variables f. It imposes
flow conservation according to Ay f = by, where by specifies supply and demand, say the root node
provides |V| units of flow, each must-visit node consumes one unit, and all other nodes are neutral.
Together, (A;,b,) guarantees edge-balance for the route, while (A, by) ensures that the auxiliary
flow establishes connectivity from the root to all must-visit nodes.

We now proceed to describe the construction of the datasets. For each offline dataset, we designate
the last 20 to 10 instances as the validation set, and the final 10 instances as the online test set.

For SC, Mat, SP, FL. and GMILP, we set 7' = 1000 horizons and randomly choose three change
points within every time series. Hence, in the first experiment, we leverage the true change points
for the training process. The periods separated by change points are associated with objectives ¢;
drawn from different underlying distributions, while we assume A and b remain the same, reflecting
the fact that in practice, objectives change more frequently than constraints. In every dataset, we
have 100 variables and 50 constraints.

For SPP and TSP, we use the New York City GTFS transit dataset (Antrim et al.l 2013} McHugh)
2013)) from June 17 to June 30, 2025. To reduce variance, traffic conditions are estimated by aver-
aging observations within 10-minute intervals. The dataset covers 14,095 locations, which we clus-
ter into 100 regions using a K-Medoids model with Manhattan distance (Kaufman & Rousseeuw,
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2009). For experiments, we focus on the largest connected component of the induced region-level
network, which consists of 94 regions and 313 edges. We choose 7' = 300 in both datasets, so
we segment long time series into short sequences of length 300. We observe that the shortest paths
fluctuate frequently over time. For certain origin—destination pairs, the optimal path changes more
than 200 times during the observation period, say 2 weeks. For the TSP dataset, we assume that
the route must visit five designated nodes in addition to the starting point. Therefore, we have 313
variables in these two datasets, and corresponding constraints are given in their formulations.

For the CA setting, we use the Combinatorial Auction Test Suite (CATS) (Leyton-Brown et al.,
2000) to generate bids that mimic real-world bidding behaviors. We consider 5 items, which results
in 31 possible bundle bids. We set T = 1000 in this dataset. At each horizon, there is a probability
of 0.5% that a change point occurs in the bidding distribution. The distributions are drawn from
the Lo and L, categories in CATS, which are introduced by [Sandholm/(2002), and the Lg category,
which is proposed by |[Fujishima et al.|(1999). Note that the distributions before and after a change
point may be identical, which we use to simulate non-substantive change points.

D.2 FEATURE ENGINEERING

After identifying the final change point ¢ using changeforest (Londschien et al., |2023), we
construct a set of features to predict the optimal re-solving time. We use the subscript old to denote
the variables corresponding to the previous solution.

We first employ a set of features to record the lifetime of the solution and the amount of data used.
These features reflect whether the previous solution has become outdated and whether the current
number of observations is sufficient to substantially improve the accuracy of environment estimation.

* ¢t minus the acquisition time of the old solution;
* The number of observations available for estimating the objective, i.e., t — ¢;

* The number of observations used by the old solution.

For each solving instance, we obtain a solution z together with the slack variables A and p of the
corresponding linear program. Since the Lagrangian function can be written as L(z) = ¢z —
AT Az + pTx, we use its gradient ¢ — AT\ + 1 to assess how well the old solution fits the newly
observed environment.

t—1 .
e The gradient of the old solution in the new environment ZE; 9 AT N + ftold;

¢ OId solution zyq;
¢ Old slack variables related to Az < b, i.e., Aqd;
* OId slack variables related to x > 0, i.e., fioid-

Meanwhile, slack variables A\ and p likewise indicate, for the old solution, which constraints are
binding and which are non-binding. Together with the direction of change in the objective c, they
jointly predict how the old solution will perform in the altered environment.

A potential direction for future research is to develop more comprehensive features, following As-
sumption |2} to decide when to re-solve. For nonlinear optimization problems, our POC framework
remains applicable, together with other carefully designed features tailored to the optimization prob-
lem at hand.

D.3 NETWORK ARCHITECTURES AND HYPERPARAMETERS

After extracting the features via feature engineering, we use them to train both the actor network

7T§ (+|-) and the value network Vjp(+).

For datasets SC, Mat, SP, FL, GMILP and CA, we employ a binary actor—critic architecture based
on a multilayer perceptron. The network consists of three fully connected layers of sizes 512, 256,
and 128, each followed by ReLU activations, which are shared between the actor and the critic.
The actor network is implemented with a policy head that outputs a single logit, parameterizing
a Bernoulli distribution over binary actions, i.e., whether to keep the old solution or to re-solve,
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while the critic is implemented with a value head that predicts the state value function. To ensure
symmetry at initialization, the weights and bias of the policy head are set to zero, yielding an initial
action probability of 0.5.

For SPP and TSP, however, since these two optimization problems have larger scales, we adopt a
deeper residual MLP as the shared backbone for the actor network to better capture the structure of
the MILPs. Concretely, an input linear layer projects the features to width 1024, followed by three
residual blocks, composed of a linear layer, a ReLU activation and another linear layer with a skip
connection, and a LayerNorm after each block to stabilize optimization. A bottleneck module, say
a ReLU activation, a 256-dimensional linear layer and another ReLU activation, then compresses
the representation, upon which we place two linear heads, namely a policy head and a value head as
before. This residual, wider architecture improves gradient flow and representation capacity, which
we find beneficial for SPP and TSP datasets without changing the training protocol for the critic or
the loss definitions.

We use off-the-shelf PPO hyperparameters with no task-specific tuning, and we hypothesize that
targeted fine-tuning would further improve our POC framework’s performance. We set the discount
factor v = 0.9, use parameter ¢ = 0.2 for clipping, and set value function coefficient ¢c; = 0.5
and entropy coefficient c; = 0.01. We use the AdamW optimizer with a learning rate of 0.0001.
The policy 775 is updated once every 100 epochs, with training capped at 1500 epochs, and we
select the model with the lowest cumulative loss on the validation set and evaluate it on the test set.
All experiments are conducted on a single NVIDIA H100 GPU. At last, before initiating the POC
framework, an initial feasible solution is required. For convenience, we assume the cost vector c to
be an all-ones vector in order to obtain this initial solution.

In the ablation study, we investigate the performance of alternative architectures on the task of
deciding when to re-solve, such as graph neural networks (GNN), which have proven effective in
representing MILP instances (Gasse et al.,|[2019; Scavuzzo et al | [2022; |Li et al., 2024b;|Zhang et al.,
2024). We further study how model performance varies with hyperparameter settings, for example,
how adjusting v can reduce the variance of the value function.

D.4 BASELINES

In this section, we present the specific implementation details of the baselines.

ADWIN-5%. ADWIN-5% (Bifet & Gavalda, 2007) aims to identify essentially distinct change
points with a probability of 5%, and uses them to trigger re-solving. We employ changeforest
as the change point detector to examine whether the distribution of the objective has shifted. By
setting its p-value, we search for change points at each time step with a 5% significance level, and
retain the most recent change point to distinguish the current objective distribution. We observe
that real-world data are often highly noisy, which leads to fluctuations in the locations of change
points identified by the detector. We argue that such fluctuations do not represent essentially distinct
changes. For example, given c1, ..., 100, the detector may report the last change point at 75, while
for ¢y, ..., c101, it may return 74. In practice, we do not regard these as different change points, nor
should they trigger a re-solve. To address this, we fine-tune a threshold on the validation set that
only when the distance between a newly detected change point and the previous one exceeds this
threshold do we consider it as identifying a genuinely distinct change point, which then triggers a
re-solve.

CARA-P. CARA-P (Mahadevan & Mathioudakis, [2023) periodically triggers re-solving. Since
the initial solution lacks observations of the environment, we enforce the algorithm to re-solve the
corresponding MILP immediately after the first real observation of the environment. Similarly, we
fine-tune the re-solving period on the validation set and apply the optimal period identified there for
testing on the test set.

UPE. We follow [Florence et al.| (2025) to implement UPF. Specifically, we enumerate all possible
combinations of the solution time and real time ¢ to construct the training dataset. Note that since

. . . . . 2
T in our setting is on the order of hundreds to thousands, each time series produces roughly %
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combinations. Consequently, UPF exhibits high computational complexity and low efficiency in our
case.

Similarly, we use ElasticNet to train the predictor. For the real-world datasets SPP, TSP, and
CA, we standardize the features before regression. We adopt the feature construction in [Florence
et al.[ (2025). Specifically, if the previous solution uses cqq to estimate the mean of the objective,
then the resulting features are as follows.

* The acquisition time of the old solution;
¢ Real time ¢;

t—1
« Distribution shift in the objective, namely, Z;i’; G o

Meanwhile, although CARA-T and CARA-CT are not directly applicable to our setup, we draw on
their notion of staleness cost and include it as a feature in UPF, leading to a slight improvement in
performance.

t .
* Staleness cost || ]{icj — Cold||2-

When we decide to re-solve, we cannot observe future c; in the online setting. Following Florence
et al.| (2025)), we assume that future c; and the objective at the time of re-solving are drawn from
the same distribution. Under this assumption, the staleness cost reduces to zero. Once the UPF
predictor is trained, we compare the total optimization loss between re-solving and not re-solving at
each decision point. If the difference exceeds the re-solving cost, we perform a re-solve; otherwise,
we continue to use the previous solution.

LBwCP. For LBWCP, we provide a lower bound on the cumulative loss by ignoring the re-solving
cost. Without the re-solving cost, we can re-solve the MILP at every time step. For the synthetic
datasets, since the true change points are known, we use these locations to estimate the environment,
thereby avoiding the additional loss introduced by the change point detector. LBWCP reflects the
minimum achievable optimization loss given the uncertainty of the environment.

LBwoCP. Unlike LBWCP, LBwoCP does not have access to the true change point locations.
Hence, it reflects how much cumulative loss arises from the non-negligible re-solving cost when
using the same change point detector. This provides a decomposition of the cumulative loss, viz.,

CL = LBWCP + (LBwoCP — LBwCP) + (CL — LBwoCP).

The gap between LBwoCP and LBwCP corresponds to the unavoidable loss introduced by the
change point detector, while the difference between an algorithm’s cumulative loss and LBwoCP
stems from the re-solving cost itself and the resulting reduction in the number of re-solves, which
leads to less accurate environment estimation and consequently higher loss.

D.5 RESULTS

In the first experiment, we examine the performance of the POC framework and other baselines
across eight datasets. To avoid falling into the trivial cases of the first and third segments of re-
solves illustrated in Figure [6] we set 30 seconds as the unit for SPP and TSP. For CA, we set the
unit to 10. Experimental results indicate that varying the unit produces similar outcomes. For
ADWIN-5% and CARA-P, the corresponding thresholds and periods are reported in Table[2] We find

Table 2: ADWIN-5% threshold and CARA-P period for different datasets.
Dataset SC Mat SP FL GMILP SPP TSP CA
ADWIN-5% threshold | 1 2 3 5 1 19 28 10
CARA-P period 15 11 15 16 15 20 20 24

that for real-world datasets, such as the New York GTFS dataset, ADWIN-5% requires a relatively
large threshold. This is because real-world environments are highly noisy, making the change point
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detector prone to detecting spurious change points. A larger threshold helps filter out essentially
redundant change points and prevents excessive re-solving.

In the second experiment, we vary the re-solving cost from 5 to 50. To make the setting more
practical, we also use the change point detector to identify change points during training, rather than
directly relying on the true change point locations. We find that due to the delay and inaccuracy in
change point detection, the cumulative loss increases slightly, for example, when C' = 10, it rises
from 2280.09 to 2375.39. Besides, the total number of re-solves decreases from 18.90 to 16.70,
which reflects that as uncertainty increases, the benefit of re-solving diminishes, and the model
tends to conservatively rely on the old solution. We first present the experimental results in Table[3]

Table 3: Experimental Results: We report the cumulative loss and the number of re-solving events
for distinct re-solving cost C. In the tables, the best results are highlighted in bold, and the second-
best results are underlined.

C=5 C =10 C=20

Algo CL() | #RS | CL() | #RS | CL() | #RS
ADWIN-5% | 2377.04 | 74.10 | 2747.42 | 74.10 | 3421.23 | 59.70
CARA-P | 279229 | 91.00 | 3243.08 | 67.00 | 4012.23 | 39.00

UPF 5301.43 | 688.60 | 7030.22 | 517.00 | 8988.62 | 356.10
POC (ours) | 2341.01 | 31.70 | 2375.39 | 16.70 | 2670.83 | 12.40
LBwoCP 1859.58 - 1859.58 - 1859.58 -
Al C =30 C =40 C =50
g0

CL() | #RS | CLQ) | #RS | CL() | #RS
ADWIN-3% | 4018.23 | 59.70 | 4797.57 | 58.00 | 5371.57 | 58.00
CARA-P | 440223 | 39.00 | 524354 | 27.00 | 5513.54 | 27.00

UPF 10184.67 | 277.40 | 11061.07 | 229.90 | 11750.65 | 197.70
POC (ours) | 2858.57 | 11.40 | 2982.99 | 10.30 | 3331.65 9.80
LBwoCP 1859.58 - 1859.58 - 1859.58 -

Subsequently, in Table ] we report the thresholds of ADWIN-5% and the periods of CARA-P for
different re-solving costs C'. We observe that as the re-solving cost increases, the POC framework as
well as all other baselines tend to reduce the number of re-solves in order to balance the optimization
loss and the re-solving cost.

Table 4: ADWIN-5% threshold and CARA-P period for distinct re-solving costs.

Re-solving Cost C=5 C=10 C=20 C=30 C=40 C=50
ADWIN-5% threshold 1 1 8 8 9 9

CARA-P period 11 15 26 26 37 37

Finally, we investigate the robustness of our POC framework, namely, how the performance of the
learned policy 7y is affected when it is trained with an incorrect re-solving cost. We present our
results in Table [5] We find that our POC framework exhibits strong robustness. Even when the
re-solving cost is mis-specified by a factor of ten, the performance of POC decreases by less than
25%, and on average the degradation is below 5%. We observe that in some cases a mis-specified C

Table 5: Cumulative loss of the policy trained with a mis-specified re-solving cost C’, evaluated
under the true re-solving cost C.

Real Cvs. ProvidedC" | C=5 [C=10 C=20] C=30] C=40| C =50
C'"=5 2341.01 | 2499.51 | 2816.51 | 3133.51 | 3450.51 | 3767.51
C'=10 2291.89 | 2375.39 | 2542.39 | 2709.39 | 2876.39 | 3043.39
C'=20 2484.83 | 2546.83 | 2670.83 | 2794.83 | 2918.83 | 3042.83
C'=30 2573.57 | 2630.57 | 2744.57 | 2858.57 | 2972.57 | 3086.57
C'=40 2622.49 | 2673.99 | 2776.99 | 2879.99 | 2982.99 | 3085.99
C’' =50 2890.65 | 2939.65 | 3037.65 | 3135.65 | 3233.65 | 3331.65
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even leads to better performance. This may stem from the interaction between the discount factor
and re-solving cost C'. We use the GMILP dataset since it represents the most general MILP dataset.
Investigating the robustness of the POC framework on other real-world datasets and developing
automated hyperparameter tuning are promising directions for future research.

D.6 DESIGN CHOICES ANALYSIS AND ABLATION STUDY

We first investigate using linear programming (LP) as a warm start to decide whether to re-solve the
MILP. We evaluate this approach on the GMILP dataset, and within our problem scale, solving the
LP is 25 times faster than solving the MILP. We first relax the integrality constraints to examine the
performance of our POC framework on LP in Table[6] We find that our framework also outperforms
other baselines in the LP setting, indicating its compatibility with a broader range of optimization
problems.

Table 6: Experimental Results: We report the cumulative loss, the number of re-solving events and
fine-tuned hyperparameters for all algorithms on LP problems. In the tables, the best results are
highlighted in bold, and the second-best results are underlined.

LP

Algo CL () | #R-S | ADWIN-5% threshold | CARA-P period
ADWIN-5% | 2741.25 | 74.10 I .
CARA-P | 324255 | 67.00 - 15
UPF 707221 | 521.20 - )
POC (ours) | 2278.81 | 24.50 - -
LBwWCP | 1632.81 - : .
LBwoCP | 1861.28 - - -

Subsequently, we fine-tune the actor network obtained from LP as a warm start, incorporating in-
tegrality constraints to decide when to re-solve the corresponding MILP problem. The results are
reported in Table We observe that the number of epochs required for convergence decreases
significantly from 600 to 300, while the cumulative loss increases slightly. This suggests that the
LP warm start may sacrifice certain observations specific to MILP, providing a case study of the
trade-off between training efficiency and performance in real-world applications.

Table 7: Performance of POC under cold start and warm start.

GMILP
Start Scheme 5 R S T Epochs
Cold Start | 2280.09 | 18.90 | 600
Warm Start | 2336.60 | 19.40 300

Next, we investigate the impact of different discount factors v on model performance. Since we are
dealing with high-frequency data flows, the probability of environmental changes between consec-
utive time steps is small, suggesting that the theoretically optimal « should be close to 1. However,
increasing vy also amplifies the variance of the value function, which can lead to gradient explosion
and training collapse. A moderately sized ~ can thus effectively mitigate these risks. We consider
~ = 0.85,0.90, and 0.95, and the results in Table B] show that v = 0.90 provides a good balance
between theoretical guidance and empirical training stability.

Table 8: Performance of POC under different discount factors.

Discount Factor L 81)\411‘2 RS
v = 0.85 2377.30 | 32.10
v =0.90 2280.09 | 18.90
v=0.95 2292.15 | 21.40

Beyond MLPs, GNNs are another widely used architecture capable of representing the structural
information of MILPs. Besides the features discussed above, we additionally introduce features that
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are standard in prior GNN work (Gasse et al 2019; |Paulus et al., [2022), as follows. We denote the
previous LP approximation solution as z54 .

=t

 Normalized objective coefficient J iy H %23

* Existing LP solution value x(ﬁf ;

« Existing LP solution value fractionality 25 — (2L |;

* Unshifted side normalized by row norm, b; /|| A;]|2 for all i;
o1
* Cosine similarity of the row with the objective, cos(=4= . A;) for all i;

* Row value equals right-hand side, 1{A4;z5Y = b;} for all 4;

For all denominators, we add 108 to avoid division by zero. At the same time, we construct the edge
index from the nonzero elements of A, which allows the GNN to recover the structural information
of the MILP.

We use a GNN architecture consisting of two input encoders, a sequence of graph convolutional lay-
ers, and separate heads for the actor network and value function. Specifically, variable and constraint
features are first projected into a shared latent space of size 128 through independent linear trans-
formations. These embeddings are concatenated and then passed through two graph convolutional
network layers, each with hidden dimension 128, which propagate information along the bipartite
graph defined by the variable—constraint edge index, thereby capturing the structural dependencies
of the underlying MILP instance. After message passing, variable representations are extracted and
aggregated by mean pooling within each graph to obtain a compact graph-level embedding. This
embedding is then fed into two separate output modules, the policy head and the value head, imple-
mented as a small feedforward network with a hidden layer of width 128 and ReLU activation, to
predict state values.

We conduct comparative experiments on both a synthetic dataset (GMILP) and a real-world dataset
(SPP). As shown in Table 0] we find that the performance of GNNGs is rather poor, which is due to

Table 9: Performance of POC under different network architectures.
MILP SPP

CL() | # RS | CL() | #RS
MLP 2280.09 | 18.90 | 825.96 | 15.50
GNN 4245.93 | 105.00 | 1151.07 | 11.70

Architecture

the structural characteristics of our problem. In the GMILP dataset, the constraint matrix A is often
dense, which leads to an excessive number of nonzero edges in the edge index. Specifically, the
dimensionality of the edge index is 20000, while all other features together have a dimensionality
of only 803. As a result, the GNN does not effectively exploit the structure of the MILP and instead
tends to overfit, producing large uncertainty. This leads to unsatisfactory generalization performance
on the test set. On the SPP dataset, we observe the same issue. In this case, 2504 dimensions are
devoted solely to representing the structure of the matrix A, whereas the features directly relevant to
predicting when to re-solve amount to only 2257 dimensions. Compared with the GMILP dataset,
this alleviates the severity of the imbalance, yet the mismatch in dimensionality still induces over-
fitting and high variance. Consequently, while using a GNN to predict when to re-solve on the SPP
dataset does not perform as poorly as in the GMILP case, it still underperforms relative to an MLP.

These results suggest that GNNs are better suited for sparse MILPs, where the structural represen-
tation remains manageable. In contrast, applying GNNs to dense MILPs yields diminishing returns,
as the overwhelming number of edges not only hampers learning efficiency but also increases cu-
mulative loss.

In real-world settings, the distribution of the objective may also undergo continuous small changes,
making the use of segment averages between change points no longer optimal. To investigate this,
we employ the SPP dataset and study two other commonly used approaches, say exponential moving
averages (EMA) and windowing. For EMA, we set the smoothing factor to 0.9. For windowing, we
treat every 20 consecutive time steps as a segment, then wait for 300 time steps before concatenating
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another 20-step segment. By repeating this process, we construct sequences of 300 time steps. We
assume that segments separated by 300 time steps originate from different distributions, and we
regard the concatenation points as change points. The results are summarized in Table [I0] We

Table 10: Performance of POC under different weighting schemes.

Weighting Scheme CL( SPP RS
CPD 825.96 | 15.50

EMA 751.86 | 11.80
Windowing 1138.01 | 8.00

observe that on real-world datasets, EMA achieves a lower cumulative loss compared to our change
point detector. Although EMA lacks theoretical guarantees, it is well-suited for real-time operations,
as real environments typically evolve continuously at every moment. This provides a practical recipe
for deploying our POC framework in real-world settings.

Finally, we conduct an ablation study to examine whether the number of observations is a beneficial
feature that can enhance model performance. As shown in Table [IT] incorporating the number of
observations, both from the previous solution and from the current re-solve, reduces the cumulative
loss by about 15%. This supports our approach of categorizing re-solves into two types, namely,
those triggered by environmental changes, and those enabled by having more observations to better
estimate the environment. It also indicates that including the number of observations as a feature
helps improve decision-making for the latter type of re-solve.

Table 11: Performance of POC under different features.
GMILP

CL{) | #R-S
Including Sample Size | 2280.09 | 18.90
Excluding Sample Size | 2676.41 | 17.10

Feature Engineering

This concludes the appendix. We only use LLMs for simple writing checks, such as grammar errors.
Since LLMs do not play a significant role, they should not be regarded as a contributor.
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