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Abstract

We consider a partially personalized formulation of Federated Learning (FL) that strikes a
balance between the flexibility of personalization and cooperativeness of global training. In
our framework, we split the variables into global parameters, which are shared across all
clients, and individual local parameters, which are kept private. We prove that under the
right split of parameters, it is possible to find global parameters that allow each client to
fit their data perfectly, and refer to the obtained problem as overpersonalized. For instance,
the shared global parameters can be used to learn good data representations, whereas the
personalized layers are fine-tuned for a specific client. Moreover, we present a simple algo-
rithm for the partially personalized formulation that offers significant benefits to all clients.
In particular, it breaks the curse of data heterogeneity in several settings, such as training
with local steps, asynchronous training, and Byzantine-robust training.

1 Introduction

Federated Learning has emerged as a promising approach to address data privacy concerns and enable dis-
tributed learning in various applications, such as healthcare, finance, and mobile devices (Konečný et al.,
2016). In this approach, multiple parties collaboratively train a machine learning model without sharing
their raw data with each other, instead only sharing the model updates with a central server. Despite
its potential, Federated Learning faces significant challenges in optimizing the models due to the hetero-
geneity of the client’s data, the heterogeneity of the devices involved in training, and the communication
constraints (McMahan et al., 2017).

Collaborative Federated Learning aims at uniting a number of private data holders in order to find together
a joint set of parameters x∗ that minimizes their private loss functions:

find x∗ s.t. fm(x∗) ≈ arg min
x
fm(x) for all m. (Non-personalized FL)

This formulation, however, is often too restrictive as there might not exist a common model x∗ that fits all
participating clients. FL, therefore, often relies on private fine-tuning or personalization to find individual
x∗
m for every client m. This leads to a fully personalized formulation of FL:

find x∗
1, x

∗
2, . . . s.t. fm(x∗

m) ≈ arg min
x
fm(x) for all m.

(Personalized FL)

This formulation offers a lot of flexibility at the cost of needing to do more work for every client. Since there
is no longer a global model x trained to perform well on all clients, it is now necessary to find a personalized
model for every new client. New clients, therefore, might experience bad performance of the initial model
until they obtain enough data to personalize it for their needs.

Thus, having no personalization might be too restrictive, while full personalization can be excessively ex-
pensive and inefficient. Following recent works on personalization by Arivazhagan et al. (2019) and Singhal
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et al. (2021), we strike a balance by splitting the parameters into global and private parts and formulate our
problem as

find θ∗, w∗
1 , w

∗
2 , . . . s.t. fm(θ∗, w∗

m) ≈ arg min
θ,w

fm(θ, w)

for all m. (Partially personalized FL)

Above, θ∗ is the part of the parameters that is shared by all clients, while parameters in w∗
m are specific to

client m.

1.1 Motivation and formulation

The main interest of our work is to show that the partially personalized formulation gives a significant benefit
to all clients as long as there exists a universal θ∗. As a motivating example, consider the phenomenon in
deep learning where we can train a big network on one task or dataset and fine-tune only its last few layers
when working with new source of data. The layers that are not fine-tuned produce so-called representations.
The overall objective is then to minimize ℓ(Φ(θ,Xm), wm, ym), where ℓ(·, ·, ·) is a loss function, Φ(θ, ·) is
the features mapping parameterized by θ, Xm, ym are the data of the m-th client, and wm are fine-tuning
parameters. Since the representation should fit all non-adversarial clients and we send to clients only θ, we
expect the m-th client to find approximately w∗

m(θ) = argminw fm(θ, w). Therefore, we want to find such
θ that changing only wm is sufficient, which can be written as ∇1fm(θ, w∗

m(θ)) = 0, where ∇1fm is the
gradient of fm with respect to θ that does not differentiate through w∗

m(θ). Thus, our overall objective is to
solve

find θ∗ ∈ Rd s.t. Fm(θ∗) = 0 for all m,
where Fm(θ) = ∇1fm(θ, w∗

m(θ)). (1)

The values of private wm’s are not available to the server to preserve the privacy of the clients. Moreover,
to enable stateless FL applications where a client cannot maintain a state, we assume that a client might
initialize its wm randomly. To the best of our knowledge, this exact problem has not been studied in
optimization literature. It can also be seen as a first-order stationarity condition for the overparameterized
objective

min
θ,{wm}m

Em[fm(θ, wm)],

which connects our work to the previous literate on overparameterization in stochastic optimization (Ma
et al., 2018; Vaswani et al., 2019).

1.2 Our objective

Motivated by the scenario of representation learning, we ask about the potential benefits of partial person-
alization. In summary, the key aspects of our work are as follows:

1. The problem is partially personalized with global parameters θ (e.g., representations) and lo-
cal/private parameters w (e.g., last layers).

2. The data is heterogeneous, but there are sufficiently many parameters in w to make the solution
set of problem (1) non-empty. Similar to overparameterization in deep learning (Allen-Zhu et al.,
2019), we call this setting overpersonalized.

3. The clients are stateless by default, i.e., they might not be able to store their private parameters w,
as is often the case in cross-device FL (Kairouz et al., 2021).

4. The clients should be able to run arbitrary local optimizers to fine-tune the private part of the model.

5. Our particular interest is in identifying the benefit of local training as well as the positive impact of
client cooperation.
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Table 1: A brief overview of related work and conceptual differences to our approach. We say that local steps
are provably helpful if the method achieves a better communication complexity when increasing the number
of local steps. A method handles heterogeneous data if its complexity does not depend on any heterogeneity
constant. In “Local Training with GD”, clients do not communicate at all and run Gradient Descent using
local data (non-distributed method).

Algorithm Personalized Stateless Provably helpful
local steps

Handles
heterogeneous data

Local Training with GD ✓ ✓ ✓ ✓

FedAvg (McMahan et al., 2017) ✗ ✓ ✓ ✗

FedProx(Li et al., 2020a) ✗ ✓ ✓ ✗

Scaffnew (Mishchenko et al., 2022b) ✗ ✗ ✓ ✗

FedAlt/FedSim (Pillutla et al., 2022b) ✓ ✗ ✗ ✓

FFGG (This work) ✓ ✓ ✓ ✓

It is natural to ask if this objective is reasonable at all. As the next proposition shows, it is always feasible
if we allocate sufficiently many parameters in w.
Proposition 1. There always exists a split of parameters x into global and local parameters θ, w1, w2, . . .
such that there exists θ∗ satisfying Fm(θ∗) = 0 for all m.

Proof. The result is trivial: if we set wm to be all parameters and θ to be any variable such that fm does
not depend on it, then naturally fm(θ, w∗

m(θ)) = minθ′,w fm(θ′, w) and Fm(θ) = 0 for all θ.

As indicated by Proposition 1, splitting the variables to remove the data heterogeneity is always possible.
It is non-trivial, on the other hand, to find the right split, as moving all parameters into w will eliminate
any cooperation between the clients. The interesting case is, therefore, when θ includes sufficiently many
parameters that affect fm. We leave the question of finding the right split for future work and focus instead
on the consequences of having it. In particular, we prove, under some mild assumptions, that the partially
personalized objective can be cast as a nonlinear equation:

find θ∗ s.t. F (θ∗) = 0, (2)

where F is a nonlinear operator. Moreover, we design algorithms capable of leveraging this property that
demonstrates, for the first time, the provable benefits of partial personalization.

1.3 Motivating challenges

Device heterogeneity. So far we have been discussing how the data heterogeneity is a challenge for feder-
ated learning. At the same time, heterogeneity in the devices participating in training leads to unbalanced
computation time of different clients. This issue also arose in classical distributed optimization, where it
was proposed (Niu et al., 2011) to run asynchronous methods that do not ask the participating devices to
synchronize their updates.

While asynchronous methods have been popular in practice in many applications, including Federated Learn-
ing (Nguyen et al., 2022), their theoretical utility is very limited in the setting of heterogeneous data. This
is an expected drawback as when all clients have different functions, clients that participate less will not
give us sufficient information, leading to a biased solution. Nevertheless, in this paper, we show that in the
context of learning representations, even with heterogeneous data, Asynchronous SGD would converge under
arbitrary delays.

Byzantine attacks. The next challenge that we will consider is that of the potential presence of Byzantine
clients, which is a problem faced by many distributed systems (Lamport et al., 1982; Su & Vaidya, 2016;
Lyu et al., 2020). Standard Federated Learning algorithms are vulnerable to Byzantine attacks even in the

3



Under review as submission to TMLR

case of homogeneous data. For general heterogeneous problems, Byzantine robustness cannot be achieved in
general. In this work, we develop a new method for the proposed problem formulation and show its provable
robustness to Byzantine attacks, even in the case of heterogeneous data on clients.

Personalization of representations. Beyond learning representations and personalizing the last layers, a
common framework is to personalize representations while the weights in the last layers can be shared. For
instance, in medical applications, different scanners or sensors may have different intensities and contrast,
resulting in a feature shift (Li et al., 2020b). The labels, however, are shared across hospitals, so we can still
train personalized models with shared parameters. In that case, wm would be responsible for aligning the
features, for instance, using batch normalization parameters as done by Li et al. (2020b), whereas θ would
represent the rest of the network.

Similarly, in cross-device Federated Learning, the features might change due to use of different phones, giving
another motivation for personalizing the representations. As every phone model is equipped with its own
version of a photo camera, the layers used to produce the embeddings may need to be readjusted, while
the layers deeper in the network can remain the same. Likewise, a robot can be deployed in places with
different lighting, so its visual signal may depend on the environment, suggesting that the first layers need
to be adjusted. By and large, hardware and environment heterogeneity will demand changes to the part of
the network giving us representations, whereas the decision layers can remain intact in such scenarios.

On a final note, personalizing the first layers, which interact with the data, might boost privacy even more
than the personalization of the last layers. These layers can be used by clients to obfuscate the data source
and distribution while relying on the server to get good universal predictors for generic obfuscated data. As
our framework does not assume the exact meaning of θ and w, all of our results are immediately applicable
in the setting of personalizing the representation.

1.4 Related work

Methods for non-personalized FL. Most methods for Federated Learning stem from the Federated
Averaging algorithm (FedAvg) of McMahan et al. (2017). FedAvg itself can be seen as a variant of Local
SGD, which received a lot of attention in the optimization literature (Mangasarian, 1995; Stich, 2019).
The speed of convergence of Local SGD heavily depends on the amount of data heterogeneity, with much
slower rates under arbitrary data dissimilarity (Khaled et al., 2020). Other methods, such as FedProx (Li
et al., 2020a) and Scaffold (Karimireddy et al., 2020), were proposed to alleviate the issues stemming from
data heterogeneity, with provable acceleration if clients can maintain local states (Mishchenko et al., 2022b;
Grudzień et al., 2022). To the best of our knowledge, however, the case of FL with stateless clients and
heterogeneous data remains challenging.

Personalization. FedAvg and other classical algorithms train a single model for all clients. Jiang et al.
(2019) showed that FedAvg is good at personalization, but this is an implicit property. Various works have
proposed alternative methods that run algorithms with explicit personalization, for example using model-
agnostic meta-learning (Chen et al., 2018; Fallah et al., 2020) or using penalty-based objective (Hanzely &
Richtárik, 2020). Unlike us, these papers consider full-model personalization and update all parameters.

Partial personalization. More related to ours, some works split variables into personalized and non-
personalized ones. In the context of Meta-Learning with deep networks, Raghu et al. (2020) established that
only the last few layers needed to be adapted for new tasks. The work of Pillutla et al. (2022b) is perhaps
the closest to ours as they studied optimization properties of partially personalized FL. In particular, they
established convergence of algorithms with alternating and simultaneous updates, but unfortunately, their
theory does not guarantee any benefit from using multiple gradient steps beyond reducing noise due to extra
sampling.

Asynchronous optimization. Asynchronous SGD has been extensively studied for homogeneous
data (Tsitsiklis et al., 1986; Agarwal & Duchi, 2011). Recently, it was shown that Asynchronous SGD
converges regardless of the delays in the setting of homogeneous data (Mishchenko et al., 2022a; Koloskova
et al., 2022). Moreover, for heterogeneous data, Asynchronous SGD was to converge to a neighborhood
under gradient similarity (Mishchenko et al., 2022a) and to the exact solution under stochastic sampling of
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clients (Koloskova et al., 2022; Islamov et al., 2024). However, to the best of our knowledge, Asynchronous
SGD is not guaranteed to converge for heterogeneous data without assuming structure in the delays.

Byzantine robustness. The first approaches to Byzantine-robust distributed learning were concentrated
around the replacing of standard averaging in Parallel SGD by some other aggregation rule, which is more
robust to the outliers (Blanchard et al., 2017; Yin et al., 2018; Damaskinos et al., 2019; El-Mhamdi et al.,
2018; Pillutla et al., 2022a). However, they turned out to be vulnerable to special Byzantine attacks (Baruch
et al., 2019; Xie et al., 2020) that can be partially explained by the fact that the term “robust aggregation” was
formally introduced later by Karimireddy et al. (2021). In the case of homogeneous data, this discovery led
to the development of provably Byzantine-robust distributed methods (Karimireddy et al., 2021; Gorbunov
et al., 2022; 2023). In parallel, alternative approaches based on clients’ elimination were developed in
(Alistarh et al., 2018; Allen-Zhu et al., 2021).

In the arbitrary heterogeneous data case, it is impossible to distinguish regular clients from Byzantine
ones. Moreover, even when the heterogeneity (in terms of the gradients’ dissimilarity) is bounded by a
constant, there is a lower bounded on the optimization error that can be achieved for a given fraction
of Byzantine clients (Karimireddy et al., 2022), matching/nearly matching upper-bounds were derived in
(Karimireddy et al., 2022; Wu et al., 2020; Zhu & Ling, 2021; Gorbunov et al., 2023). Nevertheless, in the
overparameterized regime, some methods can still converge to the exact solution (asymptotically) – this was
shown in (Karimireddy et al., 2022; Gorbunov et al., 2023) for standard Federated Learning formulation.
In our work, we continue this line of work by showing that for the proposed problem formulation, one can
also achieve provable Byzantine robustness even in the heterogeneous case under similar assumptions about
overparameterization.

Bilevel optimization. The partially-personalized FL formulation can be seen as a special case of bilevel
optimization. Recently, bilevel optimization was also studied in the context of FL (Tarzanagh et al., 2022; Li
et al., 2022). Its main disadvantage is the requirement to differentiate through the inner-level objective, which
is typically done by estimating inverse-Jacobian-vector products. Moreover, algorithms for bilevel optimiza-
tion usually require maintaining the private variable in memory and updating over multiple communication
rounds, which is not possible in stateless Federated Learning (Kairouz et al., 2021).

2 Technical Preliminaries

Notation. We say that a function is L-smooth if its gradient is L-Lipschitz. We use ∇ifm(·, ·) to denote
the gradient with respect to the i-th argument of fm.
Definition 1. For any client m and parameters θ, we denote w∗

m(θ) as any minimizer of the m-th client
loss, i.e.,

w∗
m(θ) ∈ arg min

w
fm(θ, w). (3)

Assumption 1. We assume that the operator Fm(θ) = ∇1fm(θ, w∗
m(θ)) is 1

L -cocoercive in θ, i.e., for any
θ1, θ2

⟨Fm(θ1) − Fm(θ2), θ1 − θ2⟩ ≥ 1
L

∥Fm(θ1) − Fm(θ2)∥2. (4)

The best way to view Assumption 1 is as a generalization of convexity and smoothness to nonlinear operators.
For instance, if fm does not depend on w, then it is enough for it to be convex and L-smooth (Nesterov,
2013). However, our main interest is when parameters w are personalized, so below, we give a few examples
with nontrivial dependence on w where it provably holds.

Another assumption that we make is regarding the overparameterization aspect of the problem. For example,
if good data representations exist for all clients, then we can fine-tune w on each client to perfectly fit the
training data. This is formalized below.
Assumption 2. There exists at least one θ∗ such that for any client m, the loss fm(θ∗, w) achieves its
minimum with some optimal w∗

m(θ∗), i.e., fm(θ∗, w∗
m(θ∗)) = minθ,w fm(θ, w).

Notice that Assumption 2 requires that θ does not represent personalization to be possible.
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Algorithm 1 Fine-tuning Followed by Global Gradi-
ent (FFGG)
Input: initialization θ0 ∈ Rd, stepsize γθ > 0

1: for r = 0, 1, 2, . . . do
2: Sample a batch of clients Cr
3: for client m ∈ Cr do
4: Solve wrm ≈ argminw fm(θr, w)

(E.g., using Algorithm 2)
5: ∆r

m = ∇1fm(θr, wrm)
6: end for
7: θr+1 = θr − γθ

1
|Cr|

∑
m∈Cr ∆r

m

8: end for

Algorithm 2 Local GD fine-tuner
(to find wrm ≈ argminw fm(θr, w))
Input: stepsize γθ > 0, number of local steps τ ,
θr ∈ Rd

1: Initialize wr,0m randomly
2: for i = 0, . . . , τ − 1 do
3: wr,i+1

m = wr,im − γw∇2fm(θr, wr,im )
4: end for

Now we give a few examples for which Assumption 1 holds. Note that we defer all proofs to the appendix.
Example 1. Let fm(θ, w) be given as fm(θ, w) = ϕm(θ) + 1

2 ∥Amθ+ Bmw− ym∥2, where ϕm is any convex
Lϕ-smooth function. Then, Assumption 1 is satisfied with L = 2 max(Lϕ, ∥A⊤

m(I − BmB†
m)Am∥).

Example 1 is a regularized version of the linear regression problem, which has served as a litmus test for
verifying if an assumption makes sense. Our assumption is thus validated on this simple example. At the
same time, Assumption 1 is satisfied for a wider range of functions that include the following example.
Example 2. Let fm be twice-differentiable, µ-strongly convex and L-smooth in θ. Moreover, assume the
cross-term in the Hessian and the Jacobian of w∗

m to be bounded as ∥∇2
12fm(θ, w)∥ ≤ C1, and ∥∇θw

∗
m(θ)∥ ≤

C2 with C1C2 ≤ µ
2 . Then, Fm is cocoercive and µ

2 -strongly monotone.

Example 2 provides a general recipe for an objective to satisfy Assumption 1. It is somewhat restrictive as
it requires smoothness of both fm and w∗

m, but these assumptions are, in fact, natural. The smoothness of
fm is commonly assumed to make minimization of fm possible (Nesterov, 2013). The assumption on the
smoothness of w∗

m(θ) is directly related to the assumptions employed in the theory of min-max optimization;
see, for example, (Nouiehed et al., 2019). Moreover, it is possible to ensure w∗

m is Lipschitz by adding λ
2 ∥w∥2

to fm, see Lemma B.1 of Nouiehed et al. (2019).

Let us also add a small generalization of Example 1 to the case of the composition of smooth nonlinear
functions and linear transformations.
Example 3. Let fm(θ, w) be given as fm(θ, w) = ϕm(θ) + ψm(Amθ + Bmw − ym), where ψm and ϕm are
any convex and L

2 -smooth functions. Then, Assumption 1 is satisfied.

This example is particularly interesting from the perspective of parameter-efficient fine-tuning. Methods such
as Low-Rank Adaptation (LoRA) (Hu et al., 2022), fine-tune linear layers by adding low-rank perturbations.
Specifically, the linear layer is split into two parts, similar to how we compute Amθ + Bmw in Example 3.
Note that Bm can have a rank much smaller than Am.

3 New Method: Fine-tuning Followed by Global Gradient (FFGG)

Having defined a formulation of partial personalization, it is very easy to derive an algorithm that will solve
it. Under our assumptions, it is enough to update the global parameters θ using the standard gradient-
descent update. However, in practice, we need to compute w∗

m(θ) using local gradient updates. This gives
us a double-loop method called Fine-tuning Followed by Global Gradient (FFGG), which we present in
Algorithm 1. At round r of FFGG, we sample a set of clients Cr, and the clients in the set approximately
minimize their loss functions w.r.t. the personalized parameters w and fixed global parameters θr to get wrm
(Line 4). For example, clients can perform τ local steps with stepsize γw and find an approximate solution
wrm := wr,τm of their local objective using the gradients ∇2fm(·, ·) (see Algorithm 2). Then, the clients use wrm
to compute the gradient ∇1fm(·, ·) and send their update ∆r

m to the server (Line 5). After that, the server
averages the received vectors ∆r

m and makes a gradient-descent type update of θr with stepsize γθ (Line 7).
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The proposed method is applicable to situations when clients are stateless since neither global parameters
θr nor local parameters wrm are required to be stored on client m once the round is finished.

Comparison with (Pillutla et al., 2022b). We also notice that our method is noticeably different from
the ones proposed in (Pillutla et al., 2022b). From the methodological perspective, Pillutla et al. (2022b)
studies how gradient-based methods popular in FL solve the considered problem. In contrast, we notice that
the objective is similar to bilevel optimization with the restriction that we cannot store auxiliary variables due
to the stateless nature of the clients. Therefore, the method that we proposed tries to first find appropriate
private parameters wm(θ) and only then update θ, whereas the FedSim method from (Pillutla et al., 2022b)
updates θ on each worker without first trying to see if a client’s local objective can be minimized by updating
only wm.

There is more similarity between our FFGG and the FedAlt method from (Pillutla et al., 2022b) with τv = 1
(number of local steps w.r.t. θ). In particular, if we use gradient descent as the local solver when optimizing
wm in FFGG, the methods become almost identical. However, the code of Pillutla et al. (2022b) only
supports running the same number of updated with respect to θ and wm, and it does not seem that they
have tested any alternative. Moreover, our method can use an arbitrary algorithm to solve the problem from
Line 4, e.g., Adam or its variations.

4 Theory

We present the convergence theory for Algorithm 1 and its variants in several cases. First of all, let us
understand how its idealistic version, which computes w∗

m(θ) exactly, would converge under our assumptions.
Theorem 1. Let Assumptions 1-2 hold and assume that we use exact updates, wrm = arg minw fm(θr, w).
If we choose γθ ≤ 1

L , then

min
r<R

E
[
∥F (θr)∥2] ≤ L∥θ0 − θ∗∥2

γθR
,

where θ∗ is any vector such that F (θ∗) = 0.

The theorem establishes convergence of operator norms to 0, which implies that the global parameters θr
eventually approach θ∗. If we compare the result to the standard bounds on convergence of gradient descent,
we can see that there is no slowdown. In this sense, personalization completely removes the issues of data
heterogeneity, which usually causes FL method to converge slower (Khaled et al., 2019). In more practical
scenarios, Algorithm 1 will compute w∗

m(θ) inexactly, which will affect the convergence. The next theorem
outlines what happens in that case.
Theorem 2 (Informal). Let Assumptions 1-2 hold and fm be smooth and strongly convex in w. If τ is large
enough, then

min
r<R

E
[
∥F (θr)∥2] ≤ 4L∥θ0 − θ∗∥2

γθR
.

We formulate Theorem 2 more rigorously in the supplementary material; see Theorem 6. The main mes-
sage, however, remains the same. Moreover, we can see that the local updates are important, which is in
stark contrast to the theory in (Pillutla et al., 2022b), where having more local updates does not improve
convergence.

4.1 Breaking the curse in other settings

Asynchronous communications. We consider Algorithm 3, asynchronous variant of Algorithm 1. For
this method, whenever one of the clients finishes local computations, the server immediately uses the client’s
update to perform a step, and then that client begins local work starting from newly updated global param-
eters. The following result holds in this setting.
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Algorithm 3 Asynchronous FFGG
1: Input: initialization θ0 ∈ Rd, stepsizes γw, γθ >

0, number of local steps τ ∈ N
2: for r = 0, 1, 2, . . . do
3: Receive update from client jr with delay drj
4: θr+1 = θr − γθ∆

r−dr
j

jr

5: Sample new client mr and initialize w0
mr

ran-
domly

6: Solve wrmr
≈ argminw fmr

(θr+1, w)
E.g., using Algorithm 2

7: ∆r+1
mr

= ∇1fmr (θr+1, wτmr
)

8: end for

Algorithm 4 Local FFGG
Input: initialization θ0 ∈ Rd, stepsize γθ > 0

1: for r = 0, 1, 2, . . . do
2: Sample a batch of clients Cr
3: for client m ∈ Cr do
4: Set θr,0 = θr and wr,0m randomly
5: for k = 0, 1, . . . ,K − 1 do
6: wr,k+1

m = wr,km − γw∇2fm(θr,k, wr,km )
7: θr,k+1 = θr,k − γθ∇1fm(θr,k, wr,k+1

m )
8: end for
9: ∆r

m = θr − θr,K

10: end for
11: θr+1 = θr − 1

|Cr|
∑
m∈Cr ∆r

m

12: end for

Theorem 3 (Informal). Let Assumptions 1-2 hold and assume that we use exact updates. Assume the delays
and the number of active clients are bounded. Then

min
r<R

E
[
∥F (θr)∥2] ≤ 2L∥θ̂0 − θ∗∥2

γθR
,

where θ̂0 is defined in (15).

We highlight the fact that the proposed problem formulation allows for Algorithm 1 to converge in an
arbitrarily heterogeneous regime. The detailed formulation and proof of this result can be found in the
supplementary material, see Theorem 7.

Byzantine-robust learning. To achieve Byzantine robustness, our method needs a small but very impor-
tant modification: in line 7, instead of averaging, we apply agnostic (δ, c)-robust aggregation (see Definition 2
in the appendix): θr+1 = θr − γθARAgg(∆r

1,∆r
2, . . . ,∆r

M ), where {1, . . . ,M} is the set of all clients, B ≤ δM
of them are Byzantines and δ < 1/2 (see the detailed setup in Appendix D). For this version of the method,
we derive the following result.
Theorem 4 (Informal). Let operators Fm be ℓm-cocoercive, F be strongly monotone, and good clients com-
pute stochastic estimates satisfying E[∥gm(θ)∥2] ≤ ρin∥Fm(θ)∥2. If δ is small enough, then for Byzantine-
robust version of Algorithm 1 we have

E
[
∥θR − θ∗∥2] ≤

(
1 − γθµ

2

)R
∥θ0 − θ∗∥2.

We emphasize that for arbitrary heterogeneous problems, it is impossible to tolerate even one Byzantine
client. In contrast, Theorem 4 implies that for the considered problem formulation, the proposed algorithm
converges linearly to the exact solution (asymptotically) even when data on clients is heterogeneous and
a small amount of Byzantines takes part in the training. The complete formulation of the above result is
deferred to the supplementary material, see Theorem 8.

4.2 Benefit of cooperation

As discussed in the introduction, we could have chosen to fit the local data on each client individually.
However, the drawback of such an approach is that the clients will not benefit from cooperative training.
Here, we show that having partial personalization allows to find parameters θ that are useful for all clients.
This implies that in expectation, a new client m that receives θ∗ as initialization will have a better value of
post-training risk fm(θ∗, w∗

m(θ)). We have the following result.
Theorem 5. Let Fm be monotone for all m and Assumptions 1-2 hold, and assume we found θ∗ such that
Em[Fm(θ∗)] = 0. Then, θ∗ minimizes the expected risk Em[fm(θ, w∗

m(θ))].
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Figure 1: (a): convergence of FFGG varying the number of local steps of conjugate gradients solver τ ; (b-d):
comparison of FFGG against Scaffold, Local GD, and L2GD varying the number of local gradient steps in
each method (denoted as τ for all methods). Note that unlike in (a), FFGG uses gradient descent as a
subsolver to make the comparison fair.

The key observation of Theorem 5 is that finding the solution to E [Fm(θ)] = 0 is equivalent to minimizing
E [fm(θ, w∗

m(θ))]. The obtained θ∗ turns out to be optimal for solving a more challenging bilevel optimization
problem.

When we combine the result of Theorem 5 with Assumption 2, we get

(θ∗, w∗
m(θ)) = argminθ,w fm(θ, w) for all m.

This means that the combined partially personalized model θ∗, w∗
m(θ∗) fits the data of client m perfectly.

When the model is deployed using the found θ∗, all new clients benefit from having a part of the model
pretrained optimally for them. This reduces the computation load, especially if θ is a big part of the model.

4.3 How to split the parameters

The derived theory gives us the following insights:

1. To break the curse of data heterogeneity, the personalized part of the model w must be sufficiently
large. Then, Assumption 2 is satisfied, and the training will be easier.

2. If the previous condition is satisfied, Theorem 5 suggests that every client will be able to fit the data
perfectly by fine-tuning only w. Thus, the smaller the personalized part w is, the easier will be its
fine-tuning.

Therefore, the balance between θ and w when splitting the parameters is crucial. In some cases, it is known
that fine-tuning just the batch normalization layers can be sufficient (Li et al., 2020b). Our theory suggests
that the key quantity to measure the quality of the split is ∥Fm(θ)∥, which we can compute in practice. If
it is too close to 0, θ will not be updated, so one should consider decreasing the number of personalized
parameters. It seems less obvious how to detect that we should personalize more parameters. Several layers
for personalization have been developped in practical works, see Section 5 for an empirical study.

5 Experiments

The detailed description of all experimental setups is deferred to the Appendix E.

5.1 The more local work, the better the convergence

In our first experiment, we study the convergence of Algorithm 1 with inexact gradient computation. We
test it on the problem from Example 1, namely:

fm(θ, w) = ψm(θ) + 1
2∥Amθ + Bmw − ym∥2,

ψm(θ) = 1
2∥Hmθ − bm∥2,

9
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Table 2: Test accuracy across different model variants and datasets. For FedAlt and FedSim, we report the
numbers for the best performing option in each experiment.

Variant/Test acc. (%) FEMNIST GLDv2 StackOverflow
FedAvg 93.18 51.43 23.82
Local Training 67.29±0.15 18.73±0.28 10.19±1.12

FFGG (Input Layer) 93.60±0.02 51.25±0.03 24.11±0.02

FFGG (Output Layer) 93.58±0.04 55.20±0.04 24.92±0.01

FFGG (Adapter) 94.26±0.03 64.93±0.04 24.80±0.01

FedAlt (Stateless, Best) 93.97±0.03 64.10±0.14 24.94±0.01

FedSim (Stateless, Best) 93.89±0.02 63.19±0.04 24.94±0.01

where Hm,Am ∈ Rn×dθ ,Bm ∈ Rn×dw , bm, ym ∈ Rn with n = 10000, dθ = 100, dw = 50. The number of
clients is 32. All matrices are generated from uniform distribution on [0, 1], and then divided by the second
dimension (i.e., dθ for Hm,Am and dw for Bm).

We use SciPy’s (Virtanen et al., 2020) implementation of the Conjugate Gradient (CG) method to solve
local subproblem in w and vary the number of inner steps τ of CG (see Figure 1, (a)). The convergence with
a small number of local steps τ = 10 is already sufficient to achieve an error as small as 10−4. Moreover,
Algorithm 1 converges to the exact solution for τ ∈ {30, 40}, i.e., without finding the precise solution of the
local subproblem. This experiment shows that the convergence of FFGG indeed improves with an increasing
amount of local work, and the method is overall practical.

5.2 Comparison against other methods

Next, we compare FFGG combined with Algorithm 2 as a fine-tuner against non-personalized methods such
as Scaffold (Karimireddy et al., 2020) and Local GD, and fully personalized method L2GD (Hanzely &
Richtárik, 2020). For Scaffold, we set outer and inner stepsizes to be equal to 0.5 and 1

Lfτ
correspondingly,

where Lf is a smoothness constant of fm. For Local GD the stepsize is equal to 1
Lfτ

. Finally, for L2GD we
choose λ = 0.1 and stepsize to be equal to (2M)−1 max

{
L(1 − p)−1, λp−1}, where p = τ−1 (we make such

choice for p to make the number of local steps to be close to τ in expectation).

We test the convergence of the methods changing the number of local steps τ ∈ {100, 200, 500}. Figure 1
(b-d) shows that FFGG outperforms other baselines in all cases. We also highlight that FFGG’s convergence
improves when we increase the number of local steps as it is predicted by theory.

5.3 Comparison on real-world datasets

Finally, we evaluate our method on real-world federated datasets: FEMNIST (character recognition), GLDv2
(Visual Landmark Recognition), and StackOverflow (next word prediction). We demonstrate that FFGG
leads to a significant performance improvement compared to non-personalized FedAvg and exhibits better
adaptability to heterogeneity compared to methods with the same personalized objective, such as FedAlt (Pil-
lutla et al., 2022b).

As previously discussed, we do not address the optimal parameter split in this work. To achieve partial
personalization, we follow the setup from (Pillutla et al., 2022b). However, we show that when overpersonal-
ization occurs, i.e., we can achieve zero training loss, FFGG outperforms all other methods by a substantial
margin. All experimental details and hyperparameter selections are provided in the appendix. For partial
personalization, we consider three partitioning schemes:

• Input-layer personalization: This architectural design customizes the input layer to learn personal-
ized representations, whereas the remaining part of the model is common to all clients. For predicting
the next word, the initial transformer layer is personalized instead of the embedding layer.

10
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• Output-layer personalization: This design learns a common representation but customizes the pre-
diction layer. In a transformer model, we adapt the final transformer layer instead of the output
layer for personalization.

• Adapter personalization: Every client uses a personalized low-rank adapter to fine-tune the global
model.

We also introduce an algorithmic extension to Algorithm 1 to incorporate local steps with respect to global
parameters into the training loop. After receiving a global model from the server, clients randomly initialize
personalized parameters and perform one local epoch with respect to these parameters to approximate
w∗
m(θ). Following this step, we alternate between stochastic gradient steps with respect to global and

local parameters. We only initialize wm at the beginning of local training. This approach allows us to
approximate w∗

m(θ) with a single gradient step after initial fine-tuning. The pseudocode for this algorithm
is provided in Algorithm 4. Our results are presented in Table 2. The displayed values represent averages
over three independent seeds. It is worth noting that for both datasets, FFGG leads to an improvement of
at least one percent in final test accuracy over non-personalized FedAvg. We also observe that Adapter is
a particularly useful technique for partially personalizing local models. The largest improvement, exceeding
13%, is observed for FFFG (Adapter) on the GLDv2 dataset. In this particular case, the final train accuracy
for all clients is 100%, which aligns well with our theory as it implies that Fm(θ∗) = 0. Additionally, since
we employ the same experimental setup for personalization as Pillutla et al. (2022b), we also compare our
results with their stateless version of FedAlt (notably, the stateless version is not analyzed in their work).
We report the performance of the personalization technique that yielded the best results for FedAlt. It is
noteworthy that FFGG consistently performs as well as, if not better than, FedAlt, outperforming FedAlt
in two out of three datasets.

6 Limitations

In this section, we discuss some limitations of the proposed algorithms and analysis.

• Since the proposed algorithms require the clients to approximately minimize their objective functions
w.r.t. their personalized parameters (Line 4, Algorithm 1), it creates a computation and latency
overhead in comparison to standard Parallel (S)GD. However, if we use Local-GD (Algorithm 2) as
a subsolver for the mentioned problem, then FFGG has no overheads in comparison to standard
FedAvg. Moreover, FFGG has even cheaper iterations than FedAvg since FFGG with Local-GD
subsolver computes multiple gradients with respect to personalized parameters and one gradient
with respect to global parameters, while FedAvg requires the clients to compute multiple gradients
with respect to all parameters.

• The proposed methods require knowing the split of parameters, which might be non-trivial to obtain.

• The analysis relies on Assumption 1, which is closely related to convexity and smoothness. These
assumptions are commonly used in the literature but are not common in practice, so the main utility
of the analysis is to get a general understanding of the methods’ behavior.

7 Conclusion

We proposed a new analysis of partial personalization that shows its provable benefits in Federated Learning.
The main takeaways can be summarized as follows.

• We proved that the problem can always be made overpersonalized and the data heterogeneity slow-
down can be completely eradicated.

• We also illustrated this by showing that, in contrast to standard FL, asynchronous training with par-
tial personalization converges precisely, and partial personalization can be made Byzantine-robust.
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• Our theory also suggests algorithmic changes to how the training should be performed and allows
for generic local solvers. Compared to the work of Pillutla et al. (2022b), our methods are stateless,
and our theory does not require making stepsizes smaller than O (1/τ), where τ is the number of local
steps. Finally, our assumptions are satisfied for several natural classes of functions, highlighting that
our theory is quite general.

There are several open questions that can be of interest to make personalization more practical. First of
all, a direction that seems important to us is how we can find optimal splits between θ and w to achieve
both the speed-up of removed data heterogeneity and make sure that clients benefit from cooperation.
Secondly, parameter-efficient fine-tuning might bring even more speed-ups. Lastly, while the statistical
effect of cooperation was left out of consideration in our work, it can bring new insights and deserves some
attention.

References
Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. Advances in Neural Infor-

mation Processing Systems, 24, 2011. (Cited on page 4)

Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. Byzantine stochastic gradient descent. Advances in Neural
Information Processing Systems, 31, 2018. (Cited on page 5)

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019. (Cited on
page 2)

Zeyuan Allen-Zhu, Faeze Ebrahimianghazani, Jerry Li, and Dan Alistarh. Byzantine-resilient non-convex
stochastic gradient descent. In International Conference on Learning Representations, 2021. (Cited on
page 5)

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Federated
learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019. (Cited on page 1)

Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough: Circumventing defenses for distributed
learning. Advances in Neural Information Processing Systems, 32, 2019. (Cited on pages 5 and 27)

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with
adversaries: Byzantine tolerant gradient descent. Advances in Neural Information Processing Systems,
30, 2017. (Cited on pages 5 and 27)

Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning with fast conver-
gence and efficient communication. arXiv preprint arXiv:1802.07876, 2018. (Cited on page 4)

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial settings:
Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of Computing Systems,
1(2):1–25, 2017. (Cited on page 27)

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. EMNIST: Extending MNIST to
handwritten letters. In 2017 international joint conference on neural networks (IJCNN), pp. 2921–2926.
IEEE, 2017. (Cited on page 33)

Georgios Damaskinos, El-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis, and Sébastien Rouault.
Aggregathor: Byzantine machine learning via robust gradient aggregation. Proceedings of Machine Learn-
ing and Systems, 1:81–106, 2019. (Cited on page 5)

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009. (Cited on page 32)

12



Under review as submission to TMLR

El-Mahdi El-Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The hidden vulnerability of distributed
learning in byzantium. In International Conference on Machine Learning, pp. 3521–3530. PMLR, 2018.
(Cited on page 5)

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with theoretical
guarantees: A model-agnostic meta-learning approach. Advances in Neural Information Processing Sys-
tems, 33:3557–3568, 2020. (Cited on page 4)

Eduard Gorbunov, Alexander Borzunov, Michael Diskin, and Max Ryabinin. Secure distributed training at
scale. In International Conference on Machine Learning, pp. 7679–7739. PMLR, 2022. (Cited on page 5)

Eduard Gorbunov, Samuel Horváth, Peter Richtárik, and Gauthier Gidel. Variance reduction is an antidote
to Byzantines: Better rates, weaker assumptions and communication compression as a cherry on the top.
International Conference on Learning Representations, 2023. (Cited on pages 5, 26, 27, and 29)

Michał Grudzień, Grigory Malinovsky, and Peter Richtárik. Can 5th generation local training methods
support client sampling? yes! arXiv preprint arXiv:2212.14370, 2022. (Cited on page 4)

Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv preprint
arXiv:2002.05516, 2020. (Cited on pages 4 and 10)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016. (Cited
on pages 32 and 33)

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification with real-world data
distribution. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part X 16, pp. 76–92. Springer, 2020. (Cited on page 32)

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9. (Cited on page 6)

Rustem Islamov, Mher Safaryan, and Dan Alistarh. AsGrad: A sharp unified analysis of asynchronous-SGD
algorithms. In Proceedings of The 27th International Conference on Artificial Intelligence and Statistics,
volume 238, pp. 649–657. PMLR, 2024. (Cited on page 5)
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A Deferred proofs

A.1 Proof of cocoercivity for Example 1

Below we show that the function fm(θ, w) = ϕm(θ) + 1
2 ∥Amθ + Bmw − ym∥2 satisfies Assumption 1.

Proof. Notice that ϕm(θ) does not depend on w, so
∇1fm(θ, w∗

m(θ)) = ∇ϕm(θ) + A⊤
m(Amθ + Bmw

∗
m(θ) − ym).

Then, by convexity and Lϕ-smoothness of ϕm, we have
⟨∇1fm(θ1, w

∗
m(θ1)) − ∇1fm(θ2, w

∗
m(θ2)), θ1 − θ2⟩

= ⟨∇ϕ(θ1) − ∇ϕ(θ2), θ1 − θ2⟩ + ⟨A⊤
m(Amθ1 + Bmw

∗
m(θ1) − Amθ2 − Bmw

∗
m(θ2)), θ1 − θ2⟩

≥ 1
Lϕ

∥∇ϕ(θ1) − ∇ϕ(θ2)∥2 + ⟨A⊤
m(Amθ1 + Bmw

∗
m(θ1) − Amθ2 − Bmw

∗
m(θ2)), θ1 − θ2⟩.

Let us find the value of w∗
m(θ). Differentiating fm(θ, w) with respect to w and setting the gradient to 0, we

get
B⊤
m(Amθ + Bmw

∗
m(θ) − ym) = 0,

whence
B⊤
mBmw

∗
m(θ) = B⊤

m(ym − Amθ) and w∗
m(θ) = B†

m(ym − Amθ).
Substituting this into the previous lower bound, we get

⟨∇1fm(θ1, w
∗
m(θ1)) − ∇1fm(θ2, w

∗
m(θ2)), θ1 − θ2⟩

≥ ⟨A⊤
m(Amθ1 − BmB†

mAmθ1 − Amθ2 + BmB†
mAmθ2), θ1 − θ2⟩ + 1

Lϕ
∥∇ϕ(θ1) − ∇ϕ(θ2)∥2

= ⟨A⊤
m(I − BmB†

m)Am(θ1 − θ2), θ1 − θ2⟩ + 1
Lϕ

∥∇ϕ(θ1) − ∇ϕ(θ2)∥2.

Let Bm = UΣV⊤ be the SVD decomposition of Bm, then I−BmB†
m = I−UΣΣ†U⊤ = U(I−ΣΣ†)U⊤ is a

symmetric positive semi-definite matrix. Therefore, A⊤
m(I − BmB†

m)Am is symmetric positive semi-definite
as well. Thus, we obtain that the linear term in Fm is convex. Since it is the gradient of a quadratic, it is
L̂-smooth with L̂ = ∥A⊤

m(I − BmB†
m)Am∥. Therefore,

⟨∇1fm(θ1, wm(θ1)) − ∇1fm(θ2, wm(θ2)), θ1 − θ2⟩

≥ 1
Lϕ

∥∇ϕ(θ1) − ∇ϕ(θ2)∥2 + 1
L̂

∥A⊤
m(I − BmB†

m)Am(θ1 − θ2)∥2

≥ 1
2 max(Lϕ, L̂)

∥∇ϕ(θ1) − ∇ϕ(θ2) + A⊤
m(I − BmB†

m)Am(θ1 − θ2)∥2

= 1
2 max(Lϕ, L̂)

∥∇1fm(θ1, wm(θ1)) − ∇1fm(θ2, wm(θ2))∥2.

which is exactly 1
2 max(Lϕ,L̂) -cocoercivity of Fm.

A.2 Proof of cocoercivity for Example 2

Now, we study a general function fm that has bounded derivatives.

Proof. Let us lower bound the Jacobian of Fm:
∇θFm(θ) = ∇2

11fm(θ, w∗
m(θ)) + ∇θw

∗
m(θ)∇2

12fm(θ, w∗
m(θ))

≽ µI + ∇θw
∗
m(θ)∇2

12fm(θ, w∗
m(θ))

≽ µI − ∥∇θw
∗
m(θ)∥ · ∥∇2

12fm(θ, w∗
m(θ))∥

≽
µ

2 I.
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This lower bound implies µ
2 -strong monotonicity. We also have a similar upper bound:

∇θFm(θ) = ∇2
11fm(θ, w∗

m(θ)) + ∇θw
∗
m(θ)∇2

12fm(θ, w∗
m(θ)) ≼ (L+ C1C2)I.

Since L ≥ µ, we have C1C2 ≤ µ
2 ≤ L, and

∇θFm(θ) ≼ 2LI,

which implies Fm is (2L)-Lipschitz. Combining this with strong monotonicity, we get that it is also µ
4L2 -

cocoercive.

A.3 Proof of cocoercivity for Example 3

Example 3 is the hardest to study. First, we state and prove the following standard result.
Proposition 2. Let φ1, φ2 be L-smooth convex functions. Then φ = φ1 + φ2 is (2L)-cocoercive.

Proof. As can be found in standard textbooks, such as (Nesterov, 2013), convexity and smoothness imply
that both φ1 and φ2 are L-cocoercive. Moreover, for any θ1, θ2, it holds

⟨∇φ(θ1) − ∇φ(θ2), θ1 − θ2⟩ = ⟨∇φ1(θ1) − ∇φ1(θ2), θ1 − θ2⟩ + ⟨∇φ2(θ1) − ∇φ2(θ2), θ1 − θ2⟩

≥ 1
L

∥∇φ1(θ1) − ∇φ1(θ2)∥2 + 1
L

∥∇φ2(θ1) − ∇φ2(θ2)∥2

≥ 1
2L∥∇φ1(θ1) − ∇φ1(θ2) + ∇φ2(θ1) − ∇φ2(θ2)∥2

= 1
2L∥∇φ(θ1) − ∇φ(θ2)∥2,

which is exactly what we need to prove.

Now we proceed to prove cocoercivity of Fm from Example 3.

Proof. Notice that ϕm(θ) does not depend on w, so

∇1fm(θ, w∗
m(θ)) = ∇ϕm(θ) + A⊤

m∇ψm(Amθ + Bmw
∗
m(θ) − ym).

Let us find the value of w∗
m(θ). Differentiating fm(θ, w) with respect to w and setting the gradient to 0, we

get
B⊤
m∇ψm(Amθ + Bmw

∗
m(θ) − ym) = 0.

Let u1 = Amθ1 + Bmw
∗
m(θ1) − ym and u2 = Amθ2 + Bmw

∗
m(θ2) − ym. Then,

⟨A⊤
m∇ψm(Amθ1 + Bmw

∗
m(θ1) − ym) − A⊤

m∇ψm(Amθ2 + Bmw
∗
m(θ2) − ym), θ1 − θ2⟩

= ⟨A⊤
m∇ψm(u1) − A⊤

m∇ψm(u2), θ1 − θ2⟩
= ⟨∇ψm(u1) − ∇ψm(u2),Am(θ1 − θ2)⟩
= ⟨∇ψm(u1) − ∇ψm(u2), (Amθ1 − ym) − (Amθ2 − ym)⟩
= ⟨∇ψm(u1) − ∇ψm(u2), (Amθ1 + Bmw

∗
m(θ1) − ym) − (Amθ2 + Bmw

∗
m(θ2) − ym)⟩

− ⟨∇ψm(u1) − ∇ψm(u2),Bmw
∗
m(θ1) − Bmw

∗
m(θ2)⟩.

Moreover, since B⊤
m∇ψm(u1) = 0 and B⊤

m∇ψm(u2) = 0, we have

⟨∇ψm(u1) − ∇ψm(u2),Bmw
∗
m(θ1) − Bmw

∗
m(θ2)⟩

= ⟨B⊤
m∇ψm(u1) − B⊤

m∇ψm(u2), w∗
m(θ1) − w∗

m(θ2)⟩
= 0.
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Plugging this back, we get

⟨A⊤
m∇ψm(u1) − A⊤

m∇ψm(u2), θ1 − θ2⟩ = ⟨∇ψm(u1) − ∇ψm(u2), u1 − u2⟩

≥ 1
Lψ

∥∇ψm(u1) − ∇ψm(u2)∥2.

Therefore, ∇1fm(θ, w∗
m(θ)) is equal to the sum of two cocoercive operators. Thus, Fm is cocoercive as

well.

A.4 Proof of Theorem 1

Proof. Since we assume exact computation of w∗(θr) for all r and m ∈ Cr, it holds

∆r
m = ∇1fm(θr, w∗

m(θr)) = Fm(θr).

Therefore, we have the following recursion:

∥θr+1 − θ∗∥2 = ∥θr − θ∗∥2 − 2γθ
|Cr|

∑
m∈Cr

⟨Fm(θr), θr − θ∗⟩ +
∥∥∥∥ γθ

|Cr|
∑
m∈Cr

Fm(θr)
∥∥∥∥2

(4)
≤ ∥θr − θ∗∥2 − 2γθ

L|Cr|
∑
m∈Cr

∥Fm(θr)∥2 +
∥∥∥∥ γθ

|Cr|
∑
m∈Cr

Fm(θr)
∥∥∥∥2

≤ ∥θr − θ∗∥2 − 2γθ
L|Cr|

∑
m∈Cr

∥Fm(θr)∥2 + γ2
θ

|Cr|
∑
m∈Cr

∥Fm(θr)∥2

γθ≤ 1
L

≤ ∥θr − θ∗∥2 − γθ
L|Cr|

∑
m∈Cr

∥Fm(θr)∥2.

Taking expectation, we get

E
[
∥F (θr)∥2] ≤ E

[
1

|Cr|
∑
m∈Cr

∥Fm(θr)∥2

]
≤ L

γθ

(
∥θr − θ∗∥2 − ∥θr+1 − θ∗∥2) .

Summing this bound over r = 0, . . . , R− 1, we get

min
r<R

E
[
∥F (θr)∥2] ≤ 1

R

R−1∑
r=0

E
[
∥F (θr)∥2] ≤ L∥θ0 − θ∗∥2 − ∥θR − θ∗∥2

γθR
≤ L∥θ0 − θ∗∥2

γθR
,

which completes the proof.

A.5 Proof of Theorem 5

Proof. Our goal is to show that all solutions to F (θ) = 0 are also minimizers of E[fm(θ, w∗
m(θ))]. Since we

assume that the functions are convex, it is sufficient to show that the gradient of E[fm(θ, w∗
m(θ))] is equal

to 0. We have

∇θfm(θ, w∗
m(θ)) = ∇1fm(θ, w∗

m(θ)) + ∇12f(θ, w∗
m(θ))[∇2

22f(θ, w∗
m(θ))]−1∇2fm(θ, w∗

m(θ)).

Note that by definition of w∗
m(θ), it holds ∇2fm(θ, w∗

m(θ)) = 0 since w∗
m(θ) is optimal when the first argument

of fm is fixed. Therefore,

∇θfm(θ, w∗
m(θ)) = ∇1fm(θ, w∗

m(θ)).

Let θ∗ be such that F (θ∗) = 0. Then,

F (θ) = E[∇1fm(θ, w∗
m(θ))] = ∇θE[fm(θ, w∗

m(θ))] = 0.
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B Algorithm 1 with inexact gradient computation

We consider Algorithm 1 where ∆r
m ̸= Fm(θr), i.e., with inexact gradient computation. The analysis of the

inexact version of Algorithm 1 requires additional assumptions on the problem which are listed below.

Assumption 3. There exist constants Lw and µw such that for any client m, the loss fm is Lw-Lipschitz
continuous and µw-strongly convex in w for any fixed θ, i.e.,

∥∇1fm(θ, w1) − ∇1fm(θ, w2)∥ ≤ Lw∥w1 − w2∥ (5)

fm(θ, w1) ≥ fm(θ, w2) + ⟨∇2fm(θ, w2), w1 − w2⟩ + µw
2 ∥w1 − w2∥2. (6)

If Assumption 3 holds, then the standard result for Gradient Descent in w takes place

∥wr,τm − w∗
m(θr)∥2 ≤ (1 − µwγw)∥wr,τ−1

m − w∗
m(θr)∥2 ≤ (1 − µwγw)τ∥wr,0m − w∗

m(θr)∥2, (7)

where the inner stepsize γw ≤ 1
Lw

.

Assumption 4. There exist constants A,C such that for any client m, the solution w∗
m(θ) satisfies

∥w∗
m(θ)∥ ≤ A∥θ − θ∗∥ + C. (8)

This assumption holds if the norm of ∇θw
∗
m(θ) is bounded by A, because then w∗

m is A-Lipschitz continuous,
and consequently w∗

m satisfies Assumption 4:

∥w∗
m(θ)∥ ≤ ∥w∗

m(θ) − w∗
m(θ∗)∥ + ∥w∗

m(θ∗)∥ ≤ A∥θ − θ∗∥ + ∥w∗
m(θ∗)∥.

Remark 1. For simplicity of explanation, let wr,0m be initialized as zero and the cardinality of Cr is fixed.

Remark 2. We provide the proof of Algorithm 1 where fine-tuning is performed using Local GD (Algo-
rithm 2). In fact, all clients may utilize any other method to solve a subproblem to approximate w∗

m(θr).
The only difference in the analysis is that we need to require ∥wr,τm − w∗

m(θr)∥2 ≤ (1 − ρ)∥wr,0m − w∗
m(θr)∥2

and assume that ρ is not too small or τ is sufficiently large in order to derive a convergence. For example,
in the case of Example 1, we may use the Conjugate Gradient method, which is more suitable for quadratic
problems in w.

Theorem 6. Let Assumptions 1, 3 and 4 hold, set the stepsizes as γθ = 1
L , γw = 1

Lw
, and assume that the

number of local iterations τ is lower bounded as

τ ≥ Lw
µw

max
{

2 log aR, 2 log bR
r0
, log b

2R

r2
0

}
,

where a and b are defined as a := 2LwA
L , b := 2LwC

L . Then

min
r<R

E
[
∥F (θr)∥2] ≤ 4L∥θ0 − θ∗∥2

γθR
.
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Proof. Due to inexactness of the update, ∆r
m = ∇1fm(θr, wr,τm ) ̸= Fm(θr). Thus, θ will be updated with a

biased estimate of Fm(θr). We start with unrolling ∥θr+1 − θ∗∥2:

∥θr+1 − θ∗∥2 = ∥θr − θ∗∥2 − 2γθ
|Cr|

∑
m∈Cr

⟨∆r
m, θ

r − θ∗⟩ +
∥∥∥∥ γθ

|Cr|
∑
m∈Cr

∆r
m

∥∥∥∥2

= ∥θr − θ∗∥2 − 2γθ
|Cr|

∑
m∈Cr

⟨Fm(θr), θr − θ∗⟩ − 2γθ
|Cr|

∑
m∈Cr

⟨∆r
m − Fm(θr), θr − θ∗⟩

+
∥∥∥∥ γθ

|Cr|
∑
m∈Cr

[∆r
m − Fm(θr) + Fm(θr)]

∥∥∥∥2

(4)
≤ ∥θr − θ∗∥2 − 2γθ

|Cr|
∑
m∈Cr

∥Fm(θr)∥2 − 2γθ
|Cr|

∑
m∈Cr

⟨∆r
m − Fm(θr), θr − θ∗⟩

+ 2γ2
θ

|Cr|
∑
m∈Cr

∥∆r
m − Fm(θr)∥2 + 2γ2

θ

|Cr|
∑
m∈Cr

∥Fm(θr)∥2

γθ≤ 1
2L

≤ ∥θr − θ∗∥2 − γθ
L|Cr|

∑
m∈Cr

∥Fm(θr)∥2 − 2γθ
|Cr|

∑
m∈Cr

⟨∆r
m − Fm(θr), θr − θ∗⟩

+ 2γ2
θ

|Cr|
∑
m∈Cr

∥∆r
m − Fm(θr)∥2, (9)

where in the first inequality, we also use Young’s inequality two times. Now we handle the third term in (9)
taking expectation w.r.t to all probability events happened before iteration r:

− 2γθ
|Cr|

∑
m∈Cr

⟨∆r
m − Fm(θr), θr − θ∗⟩ ≤ 2γθ

|Cr|
∑
m∈Cr

∥θr − θ∗∥ · ∥∆r
m − Fm(θr)∥

≤ 2γθ
|Cr|

∑
m∈Cr

∥θr − θ∗∥
√

∥∇1fm(θr, wr,τm ) − ∇1fm(θr, w∗
m(θr))∥2

(5)
≤ 2γθLw

|Cr|
∑
m∈Cr

∥θr − θ∗∥
√

∥wr,τm − w∗
m(θr)∥2

(7)
≤ 2γθLw

|Cr|
(1 − γwµw)τ/2

∑
m∈Cr

∥θr − θ∗∥ · ∥w∗
m(θr)∥

(4)
≤ 2γθLw(1 − γwµw)τ/2(A∥θr − θ∗∥2 + C∥θr − θ∗∥), (10)

where we use the assumption wr,0m = 0. Now we work on the last term in (9)

2γ2
θ

|Cr|
∑
m∈Cr

∥∆r
m − Fm(θr)∥2 = 2γ2

θ

|Cr|
∑
m∈Cr

∥∇1fm(θr, wr,τm ) − ∇1fm(θr, w∗
m(θr))∥2

(5)
≤ 2L2

wγ
2
θ

|Cr|
∑
m∈Cr

∥w∗
m(θr) − wr,τm ∥2

(7)
≤ 2L2

wγ
2
θ

|Cr|
(1 − γwµw)τ

∑
m∈Cr

∥w∗
m(θr)∥2

(4)
≤ 2L2

wγ
2
θ (1 − γwµw)τ (2A2∥θr − θ∗∥2 + 2C2). (11)
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Plugging (10) and (11) in (9), we get

Er∥θr+1 − θ∗∥2 ≤ ∥θr − θ∗∥2 − γθ
L|Cr|

∑
m∈Cr

Er∥Fm(θr)∥2

+ 2γθLw(1 − γwµw)τ/2(A∥θr − θ∗∥2 + C∥θr − θ∗∥)
+ 2L2

wγ
2
θ (1 − γwµw)τ (2A2∥θr − θ∗∥2 + C2).

Thus, taking full expectation, we have

0 ≤ E

[
γθ

RL|Cr|

R−1∑
r=0

∑
m∈Cr

∥Fm(θr)∥2

]
≤ 1
R

(∥θ0 − θ∗∥2 − E∥θR − θ∗∥2)

+ 2γθLw
R

(1 − γwµw)τ/2
R−1∑
r=0

(AE∥θr − θ∗∥2 + C
√
E∥θr − θ∗∥2)

+ 2γ2
θL

2
w

R
(1 − γwµw)τ

R−1∑
r=0

(2A2E∥θr − θ∗∥2 + 2C2)

≤ 1
R

(∥θ0 − θ∗∥2 − E∥θR − θ∗∥2)

+ 1
R

(
2γθLwA(1 − γwµw)τ/2 + 4γ2

θL
2
wA

2(1 − γwµw)τ
)R−1∑
r=0

E∥θr − θ∗∥2

+ 2γθLwC
R

(1 − γwµw)τ/2
R−1∑
r=0

√
E∥θr − θ∗∥2 + 4γ2

θL
2
wC

2(1 − γwµw)τ . (12)

This implies that

E∥θR − θ∗∥2 ≤ ∥θ0 − θ∗∥2

+
(

2γθLwA(1 − γwµw)τ/2 + 4γ2
θL

2
wA

2(1 − γwµw)τ
)R−1∑
r=0

E∥θr − θ∗∥2

+ 2γθLwC(1 − γwµw)τ/2
R−1∑
r=0

√
E∥θr − θ∥2 + 4Rγ2

θL
2
wC

2(1 − γwµw)τ

≤ ∥θ0 − θ∗∥2 +
(
ae−γwµwτ/2 + a2e−γwµwτ

)R−1∑
r=0

E∥θr − θ∗∥2

+ be−γwµwτ/2
R−1∑
r=0

√
E∥θr − θ∗∥2 + b2e−γwµwτR, (13)

where (we plug in stepsize values from the statement and use inequality (1 − x)α ≤ e−αx)

a := 2LwA
L

, b := 2LwC
L

.

Now we will show by induction that E∥θr − θ∗∥2 ≤ 4r2
0, where r2

0 ≥ ∥θ0 − θ∗∥2, for any r. The base of
induction is trivial since ∥θ− θ∗∥2 ≤ r2

0 < 4r2
0. Assume that E∥θr − θ∗∥2 ≤ r2

0 for all r ∈ {0, . . . , R− 1}, then
it also holds for E∥θR − θ∗∥2. Indeed, the restriction on τ

τ ≥ max

2Lw log aR
µw

,
2Lw log bR

r0

µw
,
Lw log b2R

r2
0

µw


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implies that by the basis of induction, the following:

ae−γwµwτ/2
R−1∑
r=0

E∥θr − θ∗∥2 ≤ a exp (−γwµwτ/2)Rr2
0

≤ a exp
(

− µw
2Lw

2Lw log aR
µw

)
Rr2

0

= a exp(− log aR)Rr2
0 = aRr2

0
aR

= r2
0.

Similarly,

a2e−γwµwτ
R−1∑
r=0

E∥θr − θ∗∥2 ≤ a2 exp(−γwµwτ)Rr2
0

= (a exp(−γwµwτ/2))2Rr2
0

≤
(
a exp

(
− µw

2Lw
2Lw log aR

µw

))2
Rr2

0

= (a exp(log(−aR)))2Rr2
0 = a2Rr2

0
a2R2 ≤ r2

0.

And we have the same bounds for the remaining two terms in (13):

be−γwµwτ/2
R−1∑
r=0

√
E∥θr − θ∗∥2 ≤ b exp(−γwµwτ/2)Rr0

≤ b exp
(

− µw
2Lw

2Lw log bR
r0

µw

)
Rr0

= b exp
(

− log bR
r0

)
Rr0 = bRr0

bR/r0
= r2

0,

and

b2e−γwµwτR ≤ b2 exp

−µw
Lw

Lw log b2R
r2

0

µw

R

= b2 exp
(

−b2R

r2
0

)
R = b2R

b2R/r2
0

= r2
0.

Hence, all four terms in (13) are smaller than r2
0. Thus, with such a choice of stepsize, we prove the

statement of induction. Note that restrictions on τ logarithmically depend on R only, hence it is not a
strong assumption.

Now we establish the statement of the theorem. Using the statement of induction in (12), we get

min
r<R

E
[
∥F (θr)∥2] ≤ 1

R

R−1∑
r=0

E
[
∥F (θr)∥2]

≤ 1
R

R−1∑
r=0

1
|Cr|

∑
m∈Cr

E
[
∥Fm(θr)∥2]

≤ 4L∥θ0 − θ∗∥2

γθR
.
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C Asynchronous method

We formulate and prove the convergence of Algorithm 3 (which is the asynchronous version of Algorithm 1)
with exact computations only, i.e., in line 7 the subproblem is solved exactly. However, the convergence
of the inexact version can be derived in a similar way as for Algorithm 1 in Appendix B. As defined in
Algorithm 3, we denote the client that finishes the computation at iteration r as jr and the newly sampled
client as mr.

To prove the convergence, we define prev(m, r) := max{j < r : mj = m} — the last iteration before
iteration r when the update from client m was applied. Our analysis is based on the virtual iterates, also
known as perturbed iterates, that were introduced by Mania et al. (2017). In particular, we consider the
sequence defined recursively as

θ̂r+1 = θ̂r − γθFmr
(θr). (14)

We also use initialization
θ̂0 = θ0 −

∑
m∈C0

γθFm(θ0) (15)

since all are initially sampled, clients will compute their gradients using θ0. The set of active clients Cr
initialized with C0 is updated according to Cr+1 = {mr} ∪ (Cr \ {jr}). We assume that Cr is always
bounded, which is satisfied, for instance, when the total number of clients is finite. We assume that delays
are bounded.

Assumption 5. There exists a constant τmax such that for any client m at iteration r the following inequality
holds: | prev(m, r) − r| ≤ τmax, i.e., all the delays are bounded by τmax.

Theorem 7. Assume Assumptions 1 and 5 hold. Let the number of active clients is upper bounded by M .
Assume the stepsize is such that γθ ≤ (2L

√
2Mτmax)−1. Then

min
r<R

E
[
∥F (θr)∥2] ≤ 2L∥θ̂0 − θ∗∥2

γθR
.

Proof. Let us first show the link between θ̂r and θr by induction:

θr − θ̂r =
∑
m∈Cr

γθFm(θprev(m,r)). (16)

It is true for the base r = 0. Let us assume that it holds for r − 1 and prove for r. We have

θr − θ̂r =
(
θr−1 − γθFjr−1(θprev(m,r−1)

)
−
(
θ̂r−1 − γθFmr−1(θr−1)

)
=

∑
m∈Cr−1

γθFm(θprev(m,r−1)) + γθ(Fmr−1(θr−1) − Fjr−1(θprev(m,r−1))).

We also remind the reader that prev(mr−1, r) = r−1 and Cr = {mr−1}∪ (Cr−1 \{jr−1}). Moreover, for the
rest of active workers m (those gradients still have not been applied) we have prev(m, r − 1) = prev(m, r).
Thus, the above can be rewritten as

θr − θ̂r =
∑
m∈Cr

γθFm(θprev(m,r)).

Note that |Cr| ≤ M by the assumption of the theorem. This lemma says that the difference between θr

and θ̂r is always equal to the sum of gradients that are being computed at iteration r. Having this link, we
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continue as follows

Er
[
∥θ̂r+1 − θ∗∥2

]
= ∥θ̂r − θ∗∥2 − 2γθEr

[
⟨Fmr

(θr), θ̂r − θ∗⟩
]

+ γ2
θEr

[
∥Fmr

(θr)∥2]
= ∥θ̂r − θ∗∥2 − 2γθEr [⟨Fmr

(θr), θr − θ∗⟩] + γ2
θEr

[
∥Fmr

(θr)∥2]
+ 2γθ⟨F (θr), θr − θ̂r⟩

= ∥θ̂r − θ∗∥2 − 3γθ
2 Er [⟨Fmr

(θr), θr − θ∗⟩] − γθ
2 Er [⟨Fmr

(θr), θr − θ∗⟩]

+ γ2
θEr

[
∥Fmr

(θr)∥2]+ 2γθ⟨F (θr), θr − θ̂r⟩
(i)
≤ ∥θ̂r − θ∗∥2 − 3γθ

2 Er [⟨Fmr
(θr), θr − θ∗⟩] − γθ

2LEr
[
∥Fmr

(θr)∥2]
+ γθ

2LEr
[
∥Fmr

(θr)∥2]+ 2γθ⟨F (θr), θr − θ̂r⟩

= ∥θ̂r − θ∗∥2 − 3γθ
2 ⟨F (θr), θr − θ∗⟩ + 2γθ⟨F (θr), θr − θ̂r⟩

= ∥θ̂r − θ∗∥2 − γθ⟨F (θr), θr − θ∗⟩ − γθ
2 ⟨F (θr), θr − θ∗⟩

+ 2γθ⟨F (θr), θr − θ̂r⟩
(ii)
≤ ∥θ̂r − θ∗∥2 − γθ

L
∥F (θr)∥2 − γθ

2 ⟨F (θr), θr − θ∗⟩ + γθ
2L∥F (θr)∥2

+ 2Lγθ∥θr − θ̂r∥2

= ∥θ̂r − θ∗∥2 − γθ
2L∥F (θr)∥2 − γθ

2 ⟨F (θr), θr − θ∗⟩ + 2Lγθ∥θr − θ̂r∥2.

where in (i) we use Assumption 1 and stepsize restriction γθ ≤ 1
2L ; in (ii) we use Assumption 1 and Cauchy-

Shwartz inequality. Rearranging the terms, we have
γθ
2L∥F (θr)∥2 ≤ Er

[
∥θ̂r+1 − θ∗∥2

]
− ∥θ̂r − θ∗∥2 − γθ

2 ⟨F (θr), θr − θ∗⟩ + 2Lγθ∥θr − θ̂r∥2.

After averaging over iterations from r = 0 to R− 1 we get

γθ
2L

1
R

R−1∑
r=0

E
[
∥F (θr)∥2] ≤ ∥θ̂0 − θ∗∥2

R
+ 2Lγθ

R

R−1∑
r=0

E
[
∥θr − θ̂r∥2

]
− γθ

2R

R−1∑
r=0

E [⟨F (θr), θr − θ∗⟩] .

Now we need to upper bound the third term. Using (16), we have

R−1∑
r=0

E
[
∥θr − θ̂r∥2

]
=
R−1∑
r=0

γ2
θE

∥∥∥∥∥ ∑
m∈Cr

Fm(θprev(m,r))
∥∥∥∥∥

2


≤ Mγ2
θ

R−1∑
r=0

∑
m∈Cr

E
[
∥Fm(θprev(m,r))∥2

]
As.1
≤ γ2

θML

R−1∑
r=0

∑
m∈Cr

E
[
⟨Fm(θprev(m,r)), θprev(m,r) − θ∗⟩

]

= γ2
θML

R−1∑
r=0

∑
m∈Cr

E
[
⟨F (θprev(m,r)), θprev(m,r) − θ∗⟩

]
.

The term E
[
⟨F (θprev(m,r)), θprev(m,r) − θ∗⟩

]
appears in the right hand side τmax times at most. Indeed, it

appears for all iterations between prev(m, r) and r, which is upper bounded by τmax. Thus, we have
R−1∑
r=0

E
[
∥θr − θ̂r∥2

]
≤ γ2

θMLτmax

R−1∑
r=0

E [⟨F (θr), θr − θ∗⟩] .
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If γθ ≤ 1
2L

√
2Mτmax

, then we have

R−1∑
r=0

E
[
∥θr − θ̂r∥2

]
≤ 1

8L

R−1∑
r=0

E [⟨F (θr), θr − θ∗⟩] .

Thus, we derive

γθ
2L

1
R

R−1∑
r=0

E
[
∥F (θr)∥2] ≤ ∥θ̂0 − θ∗∥2

R
+ 2Lγθ

R

1
8L

R−1∑
r=0

E [⟨F (θr), θr − θ∗⟩]

− γθ
2R

R−1∑
r=0

E [⟨F (θr), θr − θ∗⟩]

≤ ∥θ̂0 − θ∗∥2

R
.

Finally, we get

min
r<R

E
[
∥F (θr)∥2] ≤ 2L∥θ̂0 − θ∗∥2

γθR
.

Remark 3. We highlight the fact that if we use the stepsize γθ = 1
2L

√
2Mτmax

, then the convergence is

min
r<R

E
[
∥F (θr)∥2] ≤ 4L2√

2Mτmax∥θ̂0 − θ∗∥2

R
.

We observe a square root dependency on τmax. The same result has been recently derived in a homogeneous
setting (Koloskova et al., 2022) for vanilla Asynchronous SGD.

D Byzantine-robust version

Preliminaries. We assume that among M clients participating in the training, there is a subset of clients
B called Byzantines, i.e., clients that can (intentionally or not) deviate from the prescribed algorithm and
are omniscient (i.e., they know the updates of other clients and aggregation rule applied by the server). More
precisely, we assume that [M ] = G ⊔ B, where G denotes the set of regular clients, |G| := G, |B| := B ≤ δM ,
where δ < 1/2. The goal is to solve an instance of (2) with

F (θ) = 1
G

∑
m∈G

Fm(θ), (17)

where operators {Fm}m∈G are defined as Fm(θ) = ∇1fm(θ, w∗
m(θ)).

Since the standard averaging is vulnerable to Byzantine attacks, we use robust aggregation rules in the sense
of the following definition.
Definition 2 ((δ, c)-robust aggregator (Karimireddy et al., 2021; 2022; Gorbunov et al., 2023)). Let random
vectors {x1, . . . , xM} are such that there exists a subset G ⊆ [M ] such that |G| = G ≥ (1 − δ)n where
δ < 1/2 and for some σ ≥ 0 the following inequality holds: 1

G(G−1)
∑
m,n∈G E[∥xm − xn∥2] ≤ σ2 where the

expectation is taken w.r.t. the randomness of {xm}m∈G . Then, vector x̂ is called (δ, c)-Robust Aggregator
((δ, c) − RAgg) for some c > 0 and denoted as x̂ = RAgg(x1, . . . , xM ) if the following condition holds:

E
[
∥x̂− x∥2] ≤ cδσ2, (18)

where x = 1
G

∑
m∈G xi. If, in addition, the computation of x̂ is independent of σ2, x̂ is called (δ, c)-Agnostic

Robust Aggregator ((δ, c) − ARAgg) and denoted as x̂ = ARAgg(x1, . . . , xM ).
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Algorithm 5 Byzantine-Robust Fine-tuning Followed by Global Gradient (BR-FFGG)
1: Input: initialization θ0 ∈ Rd, stepsizes γw, γθ > 0, (δ, c)-ARAgg
2: for r = 0, 1, 2, . . . do
3: for client m ∈ G do
4: Compute and send gm(θr) – an unbiased estimate of Fm(θr)
5: end for
6: for client m ∈ B do
7: Send gm(θr) = ∗ ▷ Byzantine clients can send anything to the server
8: end for
9: θr+1 = θr − γθARAgg(g1(θr), . . . , gM (θr))

10: end for

This definition is tight in a certain sense (see the details in (Karimireddy et al., 2021)) and is not satisfied for
such defenses as Krum (Blanchard et al., 2017), geometric median (Pillutla et al., 2022a), and coordinate-
wise median (Chen et al., 2017) that are known to be insufficient to ensure Byzantine-robustness (Baruch
et al., 2019; Xie et al., 2020). For the examples of aggregators satisfying Definition 2 we refer to Gorbunov
et al. (2023).

We also make an additional assumption related to the overparameterization.
Assumption 6. We assume that any regular client m ∈ G can compute an unbiased estimate gm(θ) of
Fm(θ), i.e., E[gm(θ)] = Fm(θ), and for any θ ∈ Rd

E
[
∥gm(θ)∥2] ≤ ρin∥Fm(θ)∥2. (19)

In addition, we assume that for any θ ∈ Rd we have
1
G

∑
m∈G

∥Fm(θ)∥2 − ∥F (θ)∥2 ≤ ℓsim⟨F (θ), θ − θ∗⟩. (20)

For example, inequality (19) is satisfied with ρin = 1 when gm(θ) = Fm(θ), i.e., when regular clients compute
wm(θr) and Fm(θr) exactly at each step, and can be satisfied when the clients have overparameterized data
(locally). Inequality (20) is satisfied with ℓsim ≤ L whenever Assumption 1 holds. However, ℓsim can be
much smaller than L if local operators {Fm}m∈G are similar.

Finally, we made an extra assumption on structured non-monotonicity of operators {Fm}m∈G .
Assumption 7. We assume that for all m ∈ G operators Fm are µ-quasi strongly monotone, i.e., for all
θ ∈ Rd and θ∗ such that Fm(θ∗) we have

⟨Fm(θ), θ − θ∗⟩ ≥ µ∥θ − θ∗∥2. (21)

Standard strong monotonicity, i.e., ⟨Fm(θ1) − Fm(θ2), θ1 − θ2⟩ ≥ µ∥θ1 − θ2∥2 for any θ1, θ2 ∈ Rd, implies
condition from (21) (Mertikopoulos & Zhou, 2019; Song et al., 2020; Loizou et al., 2021) but the opposite
implication is not always true. Moreover, as it is shown in (Loizou et al., 2021), an operator can be non-
monotone but quasi-strongly monotone.
Theorem 8. Let Assumptions 1, 2, 6, 7 hold. Assume that

δ ≤ µ

2c
((
ρin + 1

G−1

)
ℓsim + (ρin − 1)L

) , (22)

γθ ≤ 1
4
(

(ρin−1)(L+ℓsim)
G + L+ 2cδ

((
ρin + 1

G−1

)
ℓsim + (ρin − 1)L

)) . (23)

Then, for any R ≥ 0 the iterates produced by Algorithm 5 satisfy

E
[
∥θR − θ∗∥2] ≤

(
1 − γθµ

2

)R
∥θ0 − θ∗∥2. (24)
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Proof. To simplify the derivation, we introduce new vectors: ĝr = ARAgg(g1(θr), . . . , gM (θr)) and gr =
1
G

∑
m∈G gm(θr). Then, θr+1 = θr − γθĝ

r and

∥θr+1 − θ∗∥2 = ∥θr − θ∗∥2 − 2γθ⟨ĝr, θr − θ∗⟩ + γ2
θ∥ĝr∥2

≤ ∥θr − θ∗∥2 − 2γθ⟨gr, θr − θ∗⟩ − 2γθ⟨ĝr − gr, θr − θ∗⟩
+ 2γ2

θ∥gr∥2 + 2γ2
θ∥ĝr − gr∥2

≤
(

1 + γθµ

2

)
∥θr − θ∗∥2 − 2γθ⟨gr, θr − θ∗⟩ + 2γ2

θ∥gr∥2

+ γθ

(
2γθ + 1

2µ

)
∥ĝr − gr∥2,

where in the second step we use ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2 and, in the last step, we apply ⟨a, b⟩ ≤ α
2 ∥a∥2+ 1

2α∥b∥2

that hold for any a, b ∈ Rd and α > 0. Taking the expectation Er[·] w.r.t. the randomness coming from the
r-th step and using Er[gr] = F (θr), we derive

Er
[
∥θr+1 − θ∗∥2] ≤

(
1 + γθµ

2

)
∥θr − θ∗∥2 − 2γθ⟨F (θr), θr − θ∗⟩ + 2γ2

θEr
[
∥gr∥2]

+ γθ

(
2γθ + 1

2µ

)
Er
[
∥ĝr − gr∥2] . (25)

Next, we use independence of {gm(θr)}m∈G :

Er
[
∥gr∥2] = Er

[
∥gr − F (θr)∥2]+ ∥F (θr)∥2

= 1
G2

∑
m∈G

Er
[
∥gm(θr) − Fm(θr)∥2]+ ∥F (θr)∥2

(19)
≤ ρin − 1

G2

∑
m∈G

∥Fm(θr)∥2 + ∥F (θr)∥2

= ρin − 1
G

(
1
G

∑
m∈G

∥Fm(θr)∥2 − ∥F (θr)∥2

)
+
(

1 + ρin − 1
G

)
∥F (θr)∥2

(4),(20)
≤

(
(ρin − 1)(L+ ℓsim)

G
+ L

)
⟨F (θr), θr − θ∗⟩. (26)

To upper-bound Er
[
∥ĝr − gr∥2], we need to estimate PVr := 1

G(G−1)
∑
m,n∈G Er

[
∥gm(θr) − gn(θr)∥2]:

PVr = 1
G(G− 1)

∑
m,n∈G
m̸=n

Er
[
∥gm(θr)∥2 + ∥gn(θr)∥2]− 2

G(G− 1)
∑

m,n∈G
m̸=n

⟨Fm(θr), Fn(θr)⟩

= 2
G

∑
m∈G

Er
[
∥gm(θr)∥2]− 2

G− 1
∑
m∈G

〈
Fm(θr), 1

G

∑
n∈G
n̸=m

Fn(θr)
〉

= 2
G

∑
m∈G

Er
[
∥gm(θr)∥2]+ 2

G(G− 1)
∑
m∈G

∥Fm(θr)∥2 − 2
G− 1

∑
m∈G

⟨Fm(θr), F (θr)⟩

(19)
≤ 2((G− 1)ρin + 1)

G(G− 1)
∑
m∈G

∥Fm(θr)∥2 − 2G
G− 1∥F (θr)∥2

= 2((G− 1)ρin + 1)
G− 1

(
1
G

∑
m∈G

∥Fm(θr)∥2 − ∥F (θr)∥2

)
+ 2(ρin − 1)∥F (θr)∥2

(20),(4)
≤ 2

((
ρin + 1

G− 1

)
ℓsim + (ρin − 1)L

)
⟨F (θr), θr − θ∗⟩. (27)
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In view of Definition 2, this upper bound gives us

Er
[
∥ĝr − gr∥2] ≤ cδPVr

(27)
≤ 2cδ

((
ρin + 1

G− 1

)
ℓsim + (ρin − 1)L

)
⟨F (θr), θr − θ∗⟩. (28)

Plugging (26) and (28) in (25), we get

Er
[
∥θr+1 − θ∗∥2] ≤

(
1 + γθµ

2

)
∥θr − θ∗∥2

− 2γθ
(

1 − γθ

(
(ρin − 1)(L+ ℓsim)

G
+ L

))
⟨F (θr), θr − θ∗⟩ (29)

+ 2cδγθ
(

2γθ + 1
2µ

)((
ρin + 1

G− 1

)
ℓsim + (ρin − 1)L

)
⟨F (θr), θr − θ∗⟩

(22)
≤
(

1 + γθµ

2

)
∥θr − θ∗∥2

− 2γθ
(

3
4 − γθ

(
(ρin − 1)(L+ ℓsim)

G
+ L

))
⟨F (θr), θr − θ∗⟩

+ 4cδγ2
θ

((
ρin + 1

G− 1

)
ℓsim + (ρin − 1)L

)
⟨F (θr), θr − θ∗⟩

(23)
≤
(

1 + γθµ

2

)
∥θr − θ∗∥2 − γθ⟨F (θr), θr − θ∗⟩

(21)
≤
(

1 − γθµ

2

)
∥θr − θ∗∥2.

Taking the full expectation from the above inequality and unrolling the recurrence, we obtain the result.

The derived result establishes linear convergence to the exact solution (asymptotically, in expectation) with
the possible presence of Byzantine clients. For simplicity, let us consider the case when ρin = 1. As mentioned
earlier, this case corresponds to the exact computation of Fm(θr) for all m ∈ G. Then, conditions (22) and
(23) reduce to

δ ≤ µ

2c
((

1 + 1
G−1

)
ℓsim

) , γθ ≤ 1
4
(
L+ 2cδ

(
1 + 1

G−1

)
ℓsim

) .
In the worst case, ℓsim = L that can be much larger than µ and, thus, implies that δ should be very
small for the derived result. In the context of minimization, similar pathological behavior is observed in
(Karimireddy et al., 2022; Gorbunov et al., 2023). In particular, the existing SOTA theoretical results under
the assumption 1

G

∑
m∈G ∥∇fm(θ, w)∥2 ≤ B2∥∇f(θ, w)∥2 (Karimireddy et al., 2022; Gorbunov et al., 2023)

require δ ≲ 1/cB2. However, when all functions {fm}m∈G are L-smooth, have shared minimum, and f is
µ-strongly convex, then, in the worst case, B2 = L/µ. Up to numerical constants and the differences between
definitions of L and µ in our work and in (Karimireddy et al., 2022; Gorbunov et al., 2023), we get the same
worst-case upper-bound for δ.

However, when ℓsim ≪ L, our condition on δ can be very mild. For example, when the data on workers is
similar to a certain extent, then ℓsim can be of the order of µ or even smaller. In this case, our condition on
δ can become void, and the upper bound for δ will be determined by the type of aggregation rule (see the
examples in (Karimireddy et al., 2022)).

E Experiments

E.1 How does data heterogeneity affect the convergence?

In this section, we provide the experiments on Example 1 to demonstrate the robustness of the proposed
FFGG algorithm varying the data heterogeneity of the optimization problem. To do so, we follow Section 5.1
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(a): ζ = 20 (b): ζ = 40 (c): ζ = 80

Figure 2: Comparison of FFGG against Scaffold, Local GD, and L2GD varying the data heterogeneity
constant ζ. FFGG uses gradient descent as a subsolver with the same number of local steps as the other
methods to make the comparison fair.

and construct the matrices Hm,Am,Bm and vectors ym, bm as follows. First, we sample matrices H,A,∈
Rn×dθ and B ∈ Rd×dw from standard uniform distribution and rescale by the second dimension, i.e.

H,A ∼ 1
dθ

[Unif(0, 1)]n×dθ , B ∼ 1
dw

[Unif(0, 1)]n×dw .

Second, we choose a number ζ > 0 and for each client m ∈ [M ] we define the matrices

Hm = H + ζ · H′
m

∥H′
m∥2

, Am = A + ζ · A′
m

∥A′
m∥2

, Bm = B + ζ · B′
m

∥B′
m∥2

,

where

H′
m,A′

m ∼ [N (0, 1)]n×dθ , B′
m ∼ [N (0, 1)]n×dw .

Here the constant ζ controls the heterogeneity of the problem. The higher the value of ζ, the more hetero-
geneous the problem becomes. Finally, the vectors ym and bm are constructed by

ym = Amy1 + Bmy2 + ιy3, where y1 ∼ [N (0, 1)]dθ , y2 ∼ [N (0, 1)]dw , y3 ∼ [N (0, 1)]n,

bm = Hmb1 + ιb2 where b1 ∼ [N (0, 1)]dθ , b2 ∼ [N (0, 1)]n,

and ι = 10−3. We set dθ = 100, dw = 50, n = 1000,M = 32, and vary ζ ∈ {20, 40, 80}. We consider the
same set of algorithms as in Section 5.1 and set the theoretical values of the stepsize for all of them. All
algorithms use local gradient updates with τ = 20 local steps.

The results are reported in Figure 2. We observe that in all the cases FFGG algorithm achieves the gradient
norm of order 10−6 after about 130 − 150 communication rounds, i.e. the change in data heterogeneity has
negligible impact on the convergence of FFGG. In contrast, the other three algorithms are affected more
since the gradient norm that they achieve gets worse with ζ. These results demonstrate the stability of
FFGG in relation to the variations in the data heterogeneity of the problem and support the theoretical
findings of our work.

E.2 Expertimental details for real-world datasets

As mentioned in the main part, we adhere to the experimental arrangement outlined in (Pillutla et al.,
2022b) for consistency. To provide comprehensive information, we present the setup below.

Our experiments are conducted using two datasets encompassing two modalities, specifically images, and
text. These datasets feature a natural division of data that is non-i.i.d., mirroring the heterogeneity of data
encountered in real-world Federated Learning scenarios. We provide a detailed account of the experimental
setup and hyperparameters employed. We base our implementation on the publicly available code provided
by Pillutla et al. (2022) 1.

1https://github.com/facebookresearch/FL_partial_personalization
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E.3 Datasets, tasks and models

We explore two tasks inspired by real-world applications of Federated Learning: StackOverflow for next-word
prediction and EMNIST for character recognition.

As part of our approach to partial personalization, we consider three partitioning schemes:

• Input-layer personalization: This architectural design focuses on customizing the input layer to learn
personalized representations while the remaining parts of the model are shared among all clients.
Specifically, in the case of predicting the next word, we personalize the initial transformer layer
instead of the embedding layer.

• Output-layer personalization: With this design, we aim to learn a shared representation while cus-
tomizing the prediction layer. In the case of a transformer model, we adapt the final transformer
layer instead of the output layer to achieve personalization.

• Adapter personalization: In this scheme, each client utilizes a personalized low-rank adapter to
fine-tune the global model.

These partitioning schemes serve as strategies for incorporating partial personalization into Federated Learn-
ing, allowing for different levels of customization while leveraging a shared model across clients.

E.3.1 StackOverflow for next word prediction

Dataset. The dataset used for our task is derived from Stack Overflow, a popular programming question-
answer website. It consists of questions and corresponding answers. In the next word prediction task,
the objective is to forecast the subsequent word based on a partial sequence of words within a question or
answer. This particular task serves as a valuable open-source benchmark for evaluating next-word prediction
capabilities in mobile keyboards. For our experiments, we utilize the StackOverflow dataset made available
by TensorFlow Federated2.

Client distributions. Each client in our study corresponds to an individual user on Stack Overflow, and
the data available to each client comprises the questions and answers posted by that specific user. To ensure
an adequate amount of data for analysis, we only include clients with a minimum of 100 training sequences
and 10 testing sequences. Here, a sequence refers to either a question or an answer posted by the user. We
further narrow down the dataset by utilizing a fixed subsample of 1000 clients.

Consistent with the approach described in (Reddi et al., 2020), we limit the vocabulary to the top 10000
most frequently occurring words in the dataset. Additionally, we apply padding and truncation techniques
to standardize the length of each sequence within each client, setting it to 20. Furthermore, we consider a
maximum of 1000 training sequences per client during our analysis.

Model. For our implementation, we employ a transformer model (Vaswani et al., 2017) that is similar in
size to BERT Mini (Turc et al., 2019). The model consists of 4 transformer blocks, and each self-attention
layer is equipped with 4 attention heads. The transformer hidden dimension is set to 256, while the fully
connected hidden dimension is 1024.

The model incorporates a causal language modeling head, which refers to a fully connected layer responsible
for assigning scores to all possible vocabulary items, including special tokens.

Loss function and evaluation metric. During the training phase, we utilize the causal language mod-
eling objective. This means that for each partial sequence, we treat the task of predicting the next word as
a multiclass classification problem and aim to minimize the cross-entropy loss.

2https://www.tensorflow.org/federated
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Table 3: Hyperparameters for each dataset/task.

Hyperparameter StackOverflow GLDv2 EMNIST

Common

Batch size 64 64 32
Devices per round 50 50 10

Local epochs 1 1 1
Server optimizer FedAdam FedAdam FedAvg
Client optimizer SGD SGD SGD
Global scheduler Linear Linear Exponential

Warm-up 10% of rounds 10% of rounds N/A
LR decay rounds N/A N/A
Max. grad. norm. 0.1 N/A N/A

Non-personalized training
(step 1. of the pipeline)

# Rounds 1000 2500 2000
Server learning rate 5 × 10−4 2 × 10−4 1.0
Client learning rate 1 10−2 0.5

Personalized training
(step 2. of the pipeline)

# Rounds 500 600 500
Server learning rate 5 × 10−5 2 × 10−5 1.0
Client learning rate 10−1 10−3 10−2

Local finetuning
(step 3. of the pipeline)

#Epochs 5 5 5
Optimizer SGD SGD SGD

Client learning rate 10−1 10−3 10−2

For evaluation purposes, we employ the top-1 accuracy metric, which measures the accuracy of predicting
the correct word from the proper 10000-word vocabulary. This evaluation metric disregards special tokens
such as padding, out-of-vocabulary terms, and beginning/end of sequence markers.

E.3.2 GLDv2 for visual landmark recognition

Dataset. Google Landmarks Dataset v2 (GLDv2) (Weyand et al., 2020) is a large-scale image dataset.
This dataset comprises pictures of well-known landmarks across the globe, all of which were captured and
uploaded by contributors to Wikipedia. Although the image dimensions vary, the most prevalent size is 800
by 600 pixels.

The primary objective of the visual landmark recognition assignment is to pinpoint the landmark depicted
in the image. This task mirrors real-life situations where individuals use their smartphones to take pictures
of natural or architectural landmarks during their travels. We utilize the federated version of the GLDv2
dataset by (Hsu et al., 2020), which includes 2028 landmarks and is provided by TensorFlow Federated.

Client distributions. Every client is associated with a specific Wikipedia user and includes all images
contributed by that user. We only incorporate the 823 clients that have a minimum of 50 datapoints. We
don’t utilize the original test set from GLDv2 for evaluation, as it originates from distinct clients. Rather,
we allocate 50% of the data from each client to be used as a test set.

Model. We employ a ResNet-18 (He et al., 2016) model, which has been pretrained on the ImageNet
dataset (Deng et al., 2009). We use group normalization in place of batch normalization. All images are
resized to dimensions of 224 by 224 pixels. Our training incorporates two data augmentations: a random
cropping to a 256 by 256 size and a random horizontal flip.

Loss function and evaluation metric. We use the cross-entropy loss. The model’s effectiveness is
evaluated based on its classification accuracy.
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E.3.3 EMNIST for character recognition

Dataset. The EMNIST dataset (Cohen et al., 2017) serves as a character recognition dataset. The ob-
jective is to identify images containing handwritten digits or letters, with a total of 62 possible options
encompassing lowercase and uppercase letters (a-z, A-Z) as well as digits (0-9).

The images within the dataset are grayscale and have dimensions of 28×28, resulting in a total of 784 pixels.
For our experiments, we utilize the EMNIST dataset made available by TensorFlow Federated.

Client distributions. In our study, each client represents an individual "writer," referring to the human
subject who contributed by hand-writing the digit or letter during the data collection phase. We specifically
consider clients that have a minimum of 100 training points and 25 testing points, resulting in a total of
1114 eligible clients for analysis.

Model. To address the smaller image size (28 × 28 × 1) in our dataset, which differs from the 224 × 224 × 3
size that the original ResNet was designed for, we utilize a ResNet-18 model (He et al., 2016). However, we
make two modifications to accommodate this smaller size.

Firstly, we adjust the convolutional kernel size in the first convolution layer from the original 7 × 7 to 3 × 3.
This modification allows the model to process the input images appropriately.

Secondly, we omit the first pooling layer that is present in the original ResNet architecture. By removing
this layer, we ensure compatibility with our image size and maintain the effectiveness of the model for our
specific task.

Loss function and evaluation metric. We use the cross-entropy loss. We evaluate the performance of
the model using its classification accuracy.

E.4 Experimental pipeline and baselines

There are three components in the training pipeline for all experiments:

1. Non-personalized federated pre-training: The first step involves training a global model with-
out any personalization using FedAvg that we use to initialize (1).

2. Partially personalized federated training: This is the main training step that we describe in
detail in Section 5.3.

3. Final finetuning: The last step involves only finetuning the personalized parameter w∗
m(θ) for each

client.

E.5 Hyperparameters and evaluation details

The hyperparameters we use are given in Table 3.

Evaluation metric. Our main evaluation metric for both next-word prediction and image classification
tasks is the weighted average of test accuracy across all clients. This weighted average takes into account the
number of test examples from each client, allowing for a comprehensive assessment of model performance.
This evaluation metric is equivalent to an unweighted accuracy achieved by aggregating all the data centrally.

Rounds. We utilize the concept of communication rounds, which refers to the number of iterations during
which the shared parameters are securely aggregated, to track the progress of each algorithm. In the case of
non-personalized training, we set the number of rounds to 1000 for StackOverflow, 2000 for EMNIST, and
2500 rounds for GLDv2.

For personalized training, we initialize the model with the parameters obtained from the non-personalized
training and continue training for an additional 500 rounds for both StackOverflow and EMNIST datasets,
and 600 rounds for GLDv2.
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Devices per round. We assume that all devices are accessible and selections are made in a uniformly
random manner. Consistent with the approach described in (Reddi et al., 2020), we choose 50 devices per
round for StackOverflow/GLDv2 and 10 devices per round for EMNIST. This selection process applies to
both non-personalized and personalized training for all datasets.

Local updates and minibatch size. In both non-personalized and personalized federated training, each
selected device executes one epoch of mini-batch stochastic gradient descent locally. Following this, during
the final fine-tuning stage of personalized training, we perform five epochs of training.

For the StackOverflow and GLDv2 datasets, we utilize a mini-batch size of 64 across all settings. As for the
EMNIST dataset, the mini-batch size is set to 32 for all configurations.

Server and client optimizer details. For the EMNIST dataset, we utilize the FedAvg algorithm, while
for the StackOverflow dataset and GLDv2, we employ FedAdam (Reddi et al., 2020). Additionally, we
incorporate a global scheduler that applies a schedule to the client learning rates across multiple rounds
while maintaining a constant learning rate for each client within a round.

There are two types of schedulers we use: a linear scheduler and an exponential scheduler (referred to
as "stepLR" in PyTorch). The linear scheduler involves a linear warmup, if applicable, until reaching the
maximum learning rate, followed by a linear decay to 0. On the other hand, the exponential scheduler
reduces the client learning rate by half after a fixed number of rounds.
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