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Abstract

Test-time prompt tuning, which learns prompts online with unlabelled test samples
during the inference stage, has demonstrated great potential by learning effective
prompts on-the-fly without requiring any task-specific annotations. However, its
performance often degrades clearly along the tuning process when the prompts
are continuously updated with the test data flow, and the degradation becomes
more severe when the domain of test samples changes continuously. We propose
HisTPT, a Historical Test-time Prompt Tuning technique that memorizes the useful
knowledge of the learnt test samples and enables robust test-time prompt tuning
with the memorized knowledge. HisTPT introduces three types of knowledge
banks, namely, local knowledge bank, hard-sample knowledge bank, and global
knowledge bank, each of which works with different mechanisms for effective
knowledge memorization and test-time prompt optimization. In addition, HisTPT
features an adaptive knowledge retrieval mechanism that regularizes the prediction
of each test sample by adaptively retrieving the memorized knowledge. Extensive
experiments show that HisTPT achieves superior prompt tuning performance con-
sistently while handling different visual recognition tasks (e.g., image classification,
semantic segmentation, and object detection) and test samples from continuously
changing domains.

1 Introduction

Vision Foundation Models (VFMs) [l 12, 3] have demonstrated impressive zero-shot generalization
capabilities over various downstream tasks at the cost of domain expertise for crafting appropriate
task-specific prompts [4, 5, 6. To circumvent this limitation, prompt learning [4]], which aims to
adapt VFMs to fit downstream tasks by optimizing prompts as learnable vectors with few-shot task
training samples, has been extensively explored recently. However, existing prompt tuning methods
generally suffer from two constraints: 1) they require labelled training data for each downstream task
which can be tedious and laborious to collect [7, [8]], and 2) the learnt prompts tend to overfit to the
few-shot training samples, leading to degraded generalization toward downstream tasks [9} 10, [11]].
Test-time prompt tuning [[7] instead learns prompts with a online flow of unlabelled test samples
during the inference stage. It has attracted increasing attention recently as it allows learning effective
prompts on-the-fly without requiring any task-specific annotations as illustrated in Fig.[I] (a).

Existing test-time prompt tuning methods usually start with an initial template prompt like “a photo
of a [class]" and optimize it with a self-supervised objective over test images together with their
model predictions [7} 8]]. However, these methods often experience a clear performance degradation
along the tuning process when the prompts are continuously updated with the test data flow, largely
due to the lack of test-sample annotations as illustrated in Fig. [T] (b). Specifically, these methods
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Figure 1: (a) Test-time Prompt Tuning learns and optimizes prompts from a continuous flow of
unlabelled test samples during the inference stage. (b) Most existing test-time prompt tuning methods
such as TPT [7]] and DiffTPT [8]] tend to ‘forget’ historical knowledge learnt from previous test
samples when the prompts are continuously updated with the test data flow. They learn effective
prompts at early tuning stage, but the learnt prompts degrade gradually along the tuning process. This
phenomenon becomes more apparent when the domain of test samples changes continuously. The
curves are derived from 100 runs over 3 different domains [[16, [17]. In each run, the order of the 3
domains as well as the samples within each domain is randomly shuffled to simulate continuously
changing test domains.

learn prompts well at the early test-time tuning stage, and the learnt prompt outperforms the initial
template prompts clearly. However, while the tuning continues, the learnt prompts deteriorate and
gradually perform even worse than the initial template prompt especially when the test domain
changes continuously. These results show that existing methods [7, 8] learn effective prompts via
self-supervised objectives at the early training stage, but tend to forget the useful knowledge learnt
from previous test samples, and the forgetting is largely due to the accumulation of prediction errors
over the unlabelled test samples along the tuning process [[12}[13]].

Inspired by prior studies [[14}[15] in memory-based learning, we propose Historical Test-time Prompt
Tuning (HisTPT) that introduces three types of knowledge banks to help memorize the previously
learnt useful knowledge to mitigate the knowledge ‘forgetting” problem. The three types of knowledge
banks are local knowledge bank, hard-sample knowledge bank and global knowledge bank, each of
which stores complementary historical information and works with different mechanisms. Specifically,
local knowledge bank buffers fresh information from the recent batches of test images, capturing
up-to-date distribution changes. Hard-sample knowledge bank identifies and stores the features of
hard samples from local knowledge bank, capturing difficult and rare corner cases along the tuning
process. Global knowledge bank stores global information by accumulating the features from the
local knowledge bank and hard-sample knowledge bank, leading to comprehensive memorization
that captures representative features. In addition, HisTPT introduces an adaptive knowledge retrieval
mechanism which retrieves memorized knowledge adaptively for each test image for prediction
regularization and prompt optimization. To this end, HisTPT builds up comprehensive memorization
that preserves useful knowledge from previous test samples, mitigating the knowledge forgetting and
enabling robust test-time prompt tuning as illustrated in Fig. [T| (b).

The contributions of this work can be summarized in three aspects. First, we design HisTPT, a
general test-time prompt tuning framework that explores memory learning to learn effective prompts
on-the-fly. To the best of our knowledge, this is the first work that explores memory learning for
test-time prompt tuning. Second, HisTPT constructs three types of knowledge banks that store
complementary historical information and introduces an adaptive knowledge retrieval mechanism
that retrieves memorized knowledge adaptively for each test image, mitigating the ‘forgetting’ of
learnt useful knowledge along the prompt tuning process and ultimately leading to robust prompt
learning with unlabelled test samples. Third, extensive experiments over multiple benchmarks show
that HisTPT achieves superior performance consistently across different visual recognition tasks such
as image classification, semantic segmentation, and object detection, especially when the domain of
test images continuously changes.



2 Related Work

Test-time Adaptation, which is a type of domain adaptation technique [[18},[19} 20, 21]], aims for
designing the technique to improve model generalization over test samples [22} 23] 24]. Early studies
such as test-time training (TTT) and its variants [22| [23]], introduce auxiliary tasks (e.g., rotation
prediction task [25])) into the supervised training objective to improve the model generalization at the
training stage, and then adapt the pre-trained model to test samples via self-supervised objectives at
the inference stage. Differently, recent studies [24} 120} 26, 27} 28| 29, |30} 131]] generally focuses on
fully test-time adaptation, where the model is adapted to test samples only during the inference stage,
without introducing any auxiliary task into the training phase. For example, TENT [24] minimizes the
batch-wise prediction entropy for test images while MEMO [27]] enforces the prediction consistency
between different augmentations of each test sample. With the advent of vision foundation models
(VFMs), test-time prompt tuning [[7, 18] has recently been explored for adapting pre-trained VFMs
toward downstream tasks via prompt tuning at the inference stage.

Prompt Learning of Vision Foundation Models (VFMs) [1,2,13] has been studied extensively as
VFMs despite their impressive zero-shot generalization capabilities over various downstream tasks
often require to design appropriate task-specific prompts for optimal adaptation. Inspired by the
“prompt learning” in NLP [32], one typical prompt learning approach for VFMs [4} |9} 33 134} 35/ 36}
37,138,139, 140, 4 1]] learns to optimize prompts as learnable vectors with few-shot labelled samples of
downstream tasks. Despite its effectiveness, it requires to label task-specific training data which is
often laborious with poor scalability [[7]]. In addition, the learnt prompts tend to overfit to few-shot
task samples, and this often degrades the generalization of VFMs while adapting toward various
downstream tasks [7]. Different from prompt learning, test-time prompt tuning [[7, [8] explores a new
prompt learning setup that learns prompts on-the-fly with an online flow of unlabelled test images
during the inference stage.

Test-time Prompt Tuning (TPT) aims to learn prompts on-the-fly using the test samples at inference.
It has attracted increasing attention recently [[7, |8l 42| 43| 144} 45] as it can learn effective prompts
online with unlabelled test samples flow continuously. Most existing test-time prompt tuning
studies focus on image classification tasks [[7} (8} 142 43| 44} 45]]. For example, TPT [7] optimizes
prompts by minimizing the prediction entropy between each test sample and its augmented views.
DiffTPT [8] improves the TPT by introducing the pre-trained diffusion model [46] to produce
multiple diverse and informative augmented views. Different from these studies [7} 18} 142, 43| 144, 45]],
HisTPT aims to mitigate the knowledge ‘forgetting’ problem in test-time prompt tuning when the
text tokens are continuously updated with the test data flow. HisTPT achieves it by constructing
comprehensive memorization capturing useful historical knowledge. In addition, HisTPT achieves
superior performance across various visual recognition tasks consistently, and it can effectively handle
the challenging scenario where the domain of test samples changes continuously.

Memory-based Learning has been studied extensively in computer vision [[12}147} 148, 149|150} 51} 152}
5315411551156, 157, such as semi-supervised learning [51} 58], long-term video understanding [15}(59]]
and domain adaptation [60, 61} [14]]. For the adaptation of vision foundation models (VFMs), several
studies employ memory for improving the performance on downstream tasks [62} |63 64} |65 166].
For instance, [66] tackles image captioning challenge by memorizing visual-related sentences which
helps VFMs to generate high-quality captions with fewer hallucinations. [65]] replaces text features by
identity-specific sequence features extracted by CLIP, which effectively facilitates video-based person
re-identification. [64] and [62] enable efficient training-free VFMs adaptation by caching category-
specific data features. Different from these studies, HisTPT designs three types of knowledge banks
for memorizing useful knowledge learnt from previously test samples and introduces an adaptive
knowledge retrieval mechanism that retrieves memorized knowledge for each test sample adaptively,
aiming for mitigating the knowledge ‘forgetting’ problem in test-time prompt tuning.

3 Method

3.1 Preliminaries and Task Definition

Preliminaries of Vision Foundation Models (VFMs). We denote a pre-trained VFM by F' =
{FT FT}, where F! and F'T are image encoder and text encoder respectively. Given a test image
T € Xiest and the names of its possible belonged classes y¢ € Viest = {yc}c the VFM image

c=1>



encoder and text encoder can produce image features and category-wise text features, respectively
,ie., v = FI(x)and u¢ = FT(y°). The predictions can be obtained by calculating the similarity
between the image features and the category-wise text features:

exp (cos(u®,v))/ T
o5 exp (cos(uj,v))/ 7

where cos(-) denotes the cosine similarity, and 7 is a temperature hyper-parameter that controls the
density of the encoded feature.

ey

¢ = argmaxp®, p° =
(&

Instead of directly obtaining text features using the raw class names, certain hand-crafted template
prompts, e.g., “a photo of a [class]”, are often adopted for generating task-related textual descriptions.
However, designing appropriate prompts for each downstream task is a non-trivial task which often
requires domain expertise. To this end, prompt learning [4} 9] has been extensively studied, aiming to
adapt VFMs to fit downstream tasks by optimizing prompts as learnable text tokens with few-shot
task samples. Specifically, M learnable text tokens are adopted to append the raw class names, i.e.,
t = {t1, 12, ..., tas } each being a vector of dimension D (e.g., D = 512). Thus, the textual description
for class ¢ becomes (t; y¢). The learnable text tokens t are optimized with a task-related loss (e.g.,
cross-entropy loss) over the few-shot labelled training samples.

Task Definition. Different from conventional prompt learning, this work focuses on continual test-
time prompt tuning that adapts VFMs via prompt tuning with unlabelled test images. The objective of
test-time prompt tuning is to optimize the text tokens t for test image x with certain self-supervised
training losses Ly that can be formulated by:

tx = argmin Lo p(F, t, ). 2)
t

Note that the test data is presented in a continuous flow, where the text tokens are continuously
updated with the test data flow.

3.2 Historical Test-time Prompt Tuning

We design three types of knowledge banks to help memorize the useful knowledge learnt from
the previous test samples and adaptively exploit the memorized knowledge for regularizing the
prediction of the current test samples. As illustrated in Fig.[2] local knowledge bank buffers features
of the recent test images, capturing up-to-date distribution changes along the tuning process. Hard-
sample knowledge bank actively identifies and stores hard samples from the local knowledge bank,
which helps to capture difficult and corner features. Global knowledge bank maintains global and
representative information along the whole prompt tuning process by accumulating all the features
from the local knowledge bank and hard-sample knowledge bank. In addition, HisTPT introduces an
adaptive knowledge retrieval mechanism that adaptively retrieves relevant memorized knowledge for
prediction regularization and prompt optimization for each test image.

Given a continuous flow of N test samples X} q¢ = {xn}fq\le, we take the time step n as an example
to describe the knowledge bank construction with the previous test sample z,,_; and the prompt
optimization of the current sample x,, with the memorized knowledge.

Knowledge Bank Construction. HisTPT comes with three types of knowledge banks for capturing
fresh and representative knowledge during the test-time prompt tuning with previous test samples.

Local Knowledge Bank captures and stores fresh and up-to-date knowledge by buffering the features
of the recent test samples. It works as a FIFO queue with a fixed size of L, where the features of the
oldest test sample will be dequeued and the features of the most recent test sample will be enqueued to
update the local knowledge bank, i.e, Miocar = {U!, 01> Ploear 21 ON the flow. Specifically, for the
latest test sample x,,—1 and its learnt text tokens t,,_1, local knowledge bank enqueues its text feature
un,—1 and prediction probability p,_1, i.e., un_1 = {us_;}< ; where u¢_; = FT((t,_1;%.)), and
o1 = {p%_1}< ; where p¢_, is calculated via Eq. |1} Note that the size of local knowledge bank L
is much smaller than the total number of test samples /N since local knowledge bank aims to capture
fresh information and up-to-date distribution changes of test samples along the test-time prompt
tuning process.

Hard-sample Knowledge Bank identifies hard samples from local knowledge bank for capturing
difficult and corner information. We identify hard samples by those having high classification
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Figure 2: Overview of the proposed HisTPT. HisTPT features three types of knowledge banks,
namely, local knowledge bank, hard-sample knowledge bank, and global knowledge bank, which
learn and memorize up-to-date, difficult and representative knowledge, respectively, from previous
test samples (e.g., x,,—2 and x,,—1) and their learnt text tokens (e.g., t,,—o and t,_;) along the
test-time prompt tuning process. For the current test sample x,,, HisTPT regularizes its prediction
by retrieving the memorized knowledge via an adaptive knowledge retrieval mechanism, enabling
prompt optimization for x,, with the self-supervised loss L.

uncertainty, where the uncertainty is measured by their prediction entropy which can be computed
from their prediction probability as stored in the local knowledge bank:

C
l,c l,c
g(’u’;ocal) = pl(anl IOg pl(occzﬁ (3)

c=1
where the first K samples with the highest entropy are selected and stored in the hard-sample
knowledge bank. To enable robust memorization, we first compact the features of K selected samples
via category-wise average and store the compacted feature in the hard-sample knowledge bank.
Similar to the local knowledge bank, hard-sample knowledge bank also works as a FIFO queue with
a fixed size of H, i.e., Mpgrq = {“Zard}ﬁ[:l-

Global Knowledge Bank stores global and representative knowledge the whole prompt tuning process
by accumulating all the features from the local knowledge and hard-sample knowledge banks.
Specifically, we compact the features %giopq; and Upqrq dequeued from the local and hard-sample
knowledge banks to generate category-wise feature prototype dgioba; = {6§lobal}f:1, where §§lobal =
1/2 (0§, g +154rq)- To facilitate stable and sustainable global memorization along the tuning process,
we update the global knowledge bank with compacted feature prototype in a momentum way:

5global — (]- - ’7) 5global + Y Sglobala (4)

where o global denotes the old global feature prototype and y is a coefficient for smooth feature update
in the global knowledge bank.

Prompt Optimization with the Constructed Knowledge Banks. With the built comprehensive
memorization, HisTPT introduces an Adaptive Knowledge Retrieval Mechanism that enables adaptive
retrieval of memorized knowledge for prediction regularization and prompt optimization of each test
sample.

Given the test sample z,, and the text tokens learnt at time step n — 1, i.e., t,,_1, the category-wise
. . oy . c C . . . . . .
prediction probability p,, = {pS, }c_; can be obtained by measuring the similarity between the image
feature v,, = F!(z,,) and category-wise text feature u¢ = F'T((t,,_1;y.)) via Eq.1. The prediction
pp, can be enhanced via regularization with the three types of knowledge banks. For temporary
knowledge in the local and hard-sample knowledge banks, we first compact the stored features into

category-wise feature prototypes, i.e., djocqr and pqrg, Via an average operation:

L H
1 1
_ c C _ c C c _ (Le) c _ (hyo)
dlocal = {6local}c=15 Ohard = {5hard}c=1 where 6local - z 2 :ulocal’ 6hard - E E :uhard'
1 1

&)



The new prediction for x; can thus be obtained based on the derived prototypes d;ocais Shard, and
dgtobal- Take the local prototype d;ocq; as an example. The prediction regularization of x,, can be
obtained with the local knowledge bank p;,cq; by

. exp (cos(df v T
Diocal = {p?ocal}cczlv pfoml = I8} ( ( local® n))/

Zj:l exp (Cos(éljocal7 Un))/ T
The prediction regularization by the hard-sample and global knowledge banks can be obtained in a
similar way. Generally, the prediction with higher confidence (i.e., lower entropy) means that the
corresponding feature prototype is better aligned with the current test sample in feature space, and it
should contribute more to the final prediction p,, that can be obtained as follows:

(©)

c

Pu=> w; pi, w; = Softmax(}_ p!” log p!), @)
i c=1

where i € {local, hard, global}. The softmax operation is performed across the entropy of different

predictions.

With the regularized prediction probability p,,, the text tokens t,,_; can be optimized for the current
test sample x,, with the self-supervised loss defined as follows:

Eself = l(pnyﬁn) (8)
where [(-) denotes a task-related loss, e.g., the standard cross-entropy loss for image classification.

4 Experiments

This section presents experiments including datasets, implementation details, benchmarking with the
state-of-the-art, as well as discussion of our designs.

4.1 Datasets

We evaluate HisTPT over multiple datasets across three widely studied visual recognition tasks:

Semantic Segmentation: We benchmark HisTPT over 6 image segmentation datasets with pixel-
wise annotations, including Cityscapes [16], BDD100K [67]], Mapillary [68], ADE20K [69]], Pascal
Content [70]] and ACDC [17].

Image Classification: We benchmark HisTPT over 10 classification datasets, including Flow-
ers102 [71]], DTD [72]], Oxford-Pets [73], StanfordCars [74]], UCF101 [75], Caltech101 [76]],
Food101 [[77]], SUN397 [78]], Aircraft [[79] and EuroSAT [80].

Object Detection: We benchmark HisTPT over 4 object detection datasets, including Cityscapes [16],
BDDI100K [67], ADE20K [69] and ACDC [17]]

4.2 Implementation Details

Semantic Segmentation: Following [81]], we adopt SEEM [3]] with two vision backbones including
Focal-Tiny [82] and Davit-Large [83]] as the segmentation foundation models. In training, we employ
AdamW optimizer [84]] with a weight decay of 0.05, and set the initial learning rate as 0.0001.

Image Classification: Following [7,(8], we use CLIP [1]] with two backbones, i.e., ResNet-50 [85]] and
ViT-B/16 [86l], as the classification foundation models. In training, we adopt AdamW optimizer [84]]
with a weight decay of 0.01, and set the initial learning rate as 0.005.

Object Detection: For object detection task, we adopt SEEM [3]] with two vision backbones including
Focal-Tiny [82] and Davit-Large [83]] as the detection foundation models. In training, we employ
AdamW optimizer [84] with a weight decay of 0.05, and set the initial learning rate as 0.0001.

For all experiments, the prompt is initialized as “a photo of a” and the corresponding 4 tokens (i.e.,
M = 4) of dimension D = 512 are optimized as in [[7, 8]]. Unless otherwise specified, we set the size
of the local knowledge bank and hard-sample knowledge bank at L = H = 32 and the number of the
selected hard-sample features K at 16. We set the update coefficient y of the global knowledge bank
at 0.99. Following [7]], we set the optimization step in test-time prompt tuning at 1 by default. All the
experiments are conducted on one NVIDIA Tesla V100 GPU with batch size 1.



Table 1: Test-time prompt tuning on semantic segmentation over 6 widely adopted datasets. mloU is
reported.

Method Cityscapes BDD  Mapillary ADE Pascal ACDCp,, ACDCpignt ACDCRrain  ACDCgpow Mean
SEEM-Tiny 39.2 374 14.7 146 451 34.6 20.7 33.1 35.8 30.5
TPT [7] 423 389 15.4 16.1 46.8 352 21.4 34.9 36.5 31.9
TPT [[7] + HisTPT 45.1 41.8 17.5 176 494 37.2 229 37.2 37.8 34.0
DiffTPT [8] 429 39.6 15.8 163 47.1 35.7 21.6 353 36.6 323
DiffTPT [8] + HisTPT 454 42.1 16.7 179 492 47.6 22.7 37.7 38.1 35.2
HisTPT 44.7 41.2 17.2 173 487 36.8 22.1 36.7 37.1 335
SEEM-Large 49.3 44.6 18.7 152 371 48.1 32.0 47.4 45.0 374
TPT [7] 50.1 452 19.1 157  40.2 48.7 324 479 457 38.3
TPT [7] + HisTPT 52.1 47.4 21.3 17.1 45.8 52.1 334 49.4 48.8 40.8
DiffTPT [8] 50.4 45.7 19.3 16.1 41.2 49.1 322 48.2 46.3 38.7
DiffTPT [8] + HisTPT 524 47.8 21.1 174 463 52.4 33.6 49.7 49.1 41.0
HisTPT 51.9 47.3 20.1 169 457 51.6 33.1 49.1 48.5 40.4

Table 2: Test-time prompt tuning on image classification over 10 widely adopted datasets. Top-1
classification accuracy is reported.

Method Flower DTD Pets Cars UCFI101 Caltechl0l Foodl01 SUN397 Aircraft EuroSAT Mean
CLIP-RN50 61.7 40.3  83.5 557 58.8 85.8 73.9 58.8 15.6 23.6 55.8
TPT [7] 62.2 40.1 839 583 60.3 86.3 74.4 60.9 16.7 274 57.1
DiffTPT [8] 63.1 39.7 829 60.1 62.1 86.4 78.3 62.4 17.3 39.3 59.2
HisTPT 67.6 413 849 613 64.1 87.2 81.3 63.5 18.1 42.5 61.2
CLIP-ViT-B/16  67.4 442 882 654 65.1 93.3 83.6 62.5 23.6 42.0 63.5
TPT [7] 68.2 473  87.1 66.5 67.7 93.7 84.2 65.1 24.3 42.1 64.6
DiffTPT [8] 69.4 463 879 664 68.1 92.3 86.5 65.3 25.1 42.8 65.0
HisTPT 71.2 489 89.1 69.2 70.1 94.5 89.3 67.2 26.9 49.7 67.6

4.3 Comparisons with State of the Arts

Semantic Segmentation. We evaluate and benchmark HisTPT over 6 semantic segmentation datasets.
Since there is little prior study on test-time prompt tuning on semantic segmentation, we benchmark
HisTPT by reproducing methods [7, 18], which are designed for image classification task, on semantic
segmentation task. Table[T|shows experimental results. We can observe that HisTPT achieves superior
segmentation performance, largely due to its comprehensive memorization that helps to regularize
the predictions of test samples and mitigates the knowledge forgetting problem in test-time prompt
tuning. In addition, HisTPT is complementary to existing methods and produces clear and consistent
performance boosts. This is attributed to the proposed HisTPT which can effectively mitigate the
knowledge forgetting existing methods.

Image Classification. Following [7, 8], we evaluate HisTPT over 10 image classification tasks. To
suit the setup in this work, we reproduce methods [[7, 8] by keeping their prompts continuously updated
during the test-time adaptation. As shown in Table[2] HisTPT outperforms state-of-the-art methods
consistently over different classification tasks such as classic classification on Flowers102 [71],
texture classification on DTD [72] and human action recognition on UCF101 [[75]. This demonstrates
the superior generalization ability while HisTPT faces diverse downstream data.

Object Detection. We evaluate and benchmark HisTPT over 4 object detection datasets. Similar
to semantic segmentation benchmarking, we benchmark HisTPT by reproducing methods [7} 8]
(designed for image classification task) on the object detection task. As shown in Table |3} HisTPT
achieves superior detection performance and can well handle a wide range of detection tasks including
detection under various weather conditions [[17]] across different scenes [16} |69]. The superior
detection performance is largely attributed to the knowledge banks in HisTPT which effectively help
generate more accurate predictions and learn better prompts for test samples.

4.4 Ablation Studies

We examine the proposed HisTPT by performing ablation study over Cityscapes semantic segmenta-
tion task. As shown in Table (4] the three types of knowledge banks can work well alone and improve



Table 3: Test-time prompt tuning on object detection over 4 widely adopted datasets. mAP5 is
reported.

Method Cityscapes BDD ADE ACDCpoy ACDCpight ACDCRyin  ACDCgpow Mean
SEEM-Tiny 30.5 26.1 15.7 442 22.3 259 339 28.3
TPT [7] 30.9 27.0 16.2 44.8 23.1 26.3 344 28.9
DiffTPT [8] 31.2 274 16.8 45.1 233 26.7 34.6 29.3
HisTPT 31.9 28.3 17.5 46.2 24.7 27.2 35.6 30.2
SEEM-Large 314 31.8 18.3 55.2 314 34.8 43.7 35.2
TPT [7] 31.8 322 18.5 55.6 31.9 35.1 442 35.6
DiffTPT [8] 32.5 323 18.9 56.1 323 354 44.8 36.0
HisTPT 332 334 19.4 56.9 33.1 36.4 452 36.8

Table 4: Ablation study of the proposed HisTPT over Cityscapes semantic segmentation task.

Histrocial Knowledge Banks

Method Adaptive knowledge retrieval mloU
local knowledge bank  hard-sample knowledge bank  global knowledge bank

SEEM-Tiny 39.2
v 41.1

v 40.9

v 41.7

v v 422

v v 42.8

v v 425

v v v 43.6

HisTPT v v v v 44.7

the performance consistently, indicating that all the stored historical knowledge is helpful in prompt
tuning. In addition, the three types of knowledge banks are complementary to each other, largely
because the three knowledge banks store different types of knowledge, i.e., local knowledge bank
stores fresh information, hard-sample knowledge bank stores difficult corner case information, and
global knowledge bank stores the global and representative features. On top of the three types of
knowledge, including the proposed adaptive knowledge retrieval improves the performance further.
This shows that adaptively retrieving different types of memorized information for each test image
could generate more accurate prediction and ultimately lead to better test-time prompt tuning.

4.5 Discussion

Complementarity to Prompt Learning Methods. As a test-time tuning technique, the proposed
HisTPT is complementary to prompt learning methods that learn prompts at the training stage. We
examine this feature by setting the learnt prompts by prompt learning [4, 9] as the initial prompts of
HisTPT. As Table [5|shows, equipping HisTPT with the learnt prompts improves the performance
clearly, indicating that HisTPT as a plug-in can greatly enhance existing prompt learning methods.

Optimization Steps. We examined how the optimization step
affects HisTPT by increasing it from 1 to 10. Figure [3]shows the
mean mloU over 6 semantic segmentation datasets with SEEM-
Tiny. We can observe that increasing the optimization step im-
proves segmentation consistently. Nevertheless, the performance
gain becomes marginal after 6-8 optimization steps. The actual ;
optimization step can be set by balancing the inference efficiency

and the inference accuracy. Figure 3: HisTPT with multiple
optimization steps.
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Continuously Changing Test Domains. As discussed in Sec-
tion[I] HisTPT can handle challenging scenarios when the domain of test samples changes continu-
ously. We examine this feature over semantic segmentation data that were collected under normal
weather [16] and various adverse weathers [17,187] (fog, night, rain and snow). As Table Eka) shows,
the performance of existing test-time prompt tuning methods TPT [7] and DiffTPT [8]] degrades
gradually along the tuning process when the weather changes from normal to adverse, largely due
to increasing error accumulation and ‘forgetting’ while the test domain changes continuously. As a



Table 5: Complementarity to state-of-the-art prompt learning methods CoOp [4] and CoCoOp [9]].
The mean top-1 accuracy across 10 image classification datasets is reported, and CoOp and CoCoOp
are supervised with 16-shot labelled training data per category.

Method | CLIP-RN50  CoOp  CoCoOp  HisTPT = HisTPT + CoOp  HisTPT + CoCoOp
Mean Accuracy | 55.8 56.1 57.2 61.2 62.4 63.1

Table 6: Test-time prompt tuning on semantic segmentation across continuously changing test
domains. mloU is reported.

Test Order (—) \ Normal Fog Night Rain Snow Test Order (—) \ Snow Rain Night Fog Normal

SEEM-Tiny ‘ 39.2 34.6 20.7 33.1 358 SEEM-Tiny ‘ 358 33.1 20.7 34.6 39.2

TPT ‘ 423(+3.1) 34.8(+0.2) 20.1(-0.6) 31.7(-14) 30.6(-5.2) TPT 36.5(+0.7) 34.1(+1.0) 20.1(-0.6) 32.7(-19) 35.8(-3.4)

DiffTPT 42.9(+3.7)  352(+0.6)  20.3(-0.4)  32.0(-1.1) 31.4(-4.4) DiffTPT 36.6(+0.8) 34.7(+1.6) 20.5(-0.2) 32.9(-1.7)  36.1(-3.1)

HisTPT ‘ 447(+5.5) 36.9(+2.3) 23.6(+2.9) 37.3(+4.2) 38.1(+2.3) HisTPT ‘ 37.1(+1.3) 36.8(+3.7) 22.1(+1.4) 37.0(+2.4) 44.9(+5.7)
(@) (b)

comparison, HisTPT improves the performance consistently across different weathers, and this is
largely due to two factors: 1) HisTPT effectively preserves representative and up-to-date knowledge
from past test samples along the tuning process; 2) HisTPT retrieves relevant memorized knowledge
for each test sample, mitigating the ‘forgetting’ and leading to more robust test-time prompt tuning.
Similar results are obtained when the test domain changes from adverse weather to normal weather as
shown in Table [6[b), further verifying HisTPT’s effectiveness and robustness while facing changing
test domains.

Comparisons to Existing Memory-based Learning Methods. We examine how the proposed
HisTPT performs as compared with existing memory-based learning techniques. We benchmark it
with two categories of memory-based learning techniques: 1) memory-based learning in traditional
network training [60} 61} [14]] and 2) memory-based learning with vision foundation models [66) 65,
62]. Table|/|shows experimental results on the task of semantic segmentation on Cityscapes with
SEEM-Tiny. It can be seen that HisTPT outperforms all existing memory learning techniques [60, 61}
14,1661 165| 162] with clear margins. The superior performance is largely attributed to two factors: 1)
HisTPT memorizes comprehensive knowledge of previous test samples on the fly along the prompt
tuning process and 2) HisTPT features a retrieval mechanism that adaptively retrieves the memorized
knowledge to learn specific prompts for each current test sample.

Table 7: Comparison with existing memory-based learning methods over Cityscapes semantic
segmentation task on SEEM-Tiny. mloU is reported.

Method | HCL [60]  MeGA [61]  BiMem [14] = MeaCap [66] = TF-Clip [65]  TDA [62] HisTPT
mloU | 40.3 40.7 41.2 41.9 414 42.6 4.7

5 Conclusion

This paper introduces Historical Test-time Prompt Tuning (HisTPT), a general test-time prompt tuning
framework that aims to mitigate the ‘knowledge forgetting’ problem across various visual recognition
tasks. HisTPT introduces three types of knowledge banks, including local knowledge bank, hard-
sample knowledge bank and global knowledge bank, each of which works with different mechanisms
for memorizing useful knowledge. With the three knowledge banks, HisTPT builds up comprehensive
memorization that preserves useful knowledge from previous test samples, mitigating the knowledge
forgetting and enabling robust test-time prompt tuning. In addition, HisTPT comes with an adaptive
knowledge retrieval mechanism that regularizes the prediction of the current test sample by adaptively
retrieving the memorized knowledge. Extensive experiments show that HisTPT achieves superior
performance consistently across various vision tasks. In addition, HisTPT can effectively handle the
challenging scenario where the domain of test samples changes continuously. Moving forwards, we
will further investigate memory-based learning for adaptation of vision foundation models.
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Appendix

A Datasets Details

We benchmark our HisTPT extensively over different visual recognition tasks with multiple datasets, including
10 image classification datasets, 6 semantic segmentation datasets and 4 object detection datasets. These datasets
have rich diversity as shown in table[8] Specifically, the 10 image classification datasets involves a wide range of
visual recognition tasks from fine-grained classification, to human action recognition and texture classification.
Similarly, the images of the semantic segmentation and object detection datasets are also in rich diversity,
spinning from street scene images collected from various cities with different weather conditions, to images
collected under indoor scenes such as office and kitchen.

Table 8: Details of the datasets used for benchmarking HisTPT.

Datasets | Test Images Classes Description

Image Classification |

Flower102 [71] 2,463 102 Flower images with various sizes and illumination environments.
DTD [72] 1,692 47 A dataset of textural images for image recognition.

Oxford-IIIT PETS [73] 3,669 37 A dataset for pet recognition with cat and dog images of 37 breeds.
Stanford Cars [[74] 8,041 196  Car images for fine-grained recognition.

UCF101 [75] 3,783 101 A video dataset for human action recognition.

Caltech101 2,465 101 A dataset for common object recognition.

Food-101 [77] 30,300 101 Food images for fine-grained recognition.

SUN397 [78] 19,850 397  Indoor and outdoor scene images for fine-grained recognition.
Aircraft [79] 3,333 100 A dataset of 100 aircraft model variants for aircraft model recognition.
EuroSAT [80] 8,100 10 A dataset of satellite images for land use and land cover recognition.

Semantic Segmentation |

Cityscapes [16] 500 19  Scene images collected in different cities for street scene understanding.
BDD100K [67] 1,000 19 Street scene images collected at different times of the day.

Mapillary [68] 2,000 65 A dataset of street-level images with high resolution.

ADE20K [69] 2,000 150 A large-scale dataset of images collected from outdoor and indoor scenes.
Pascal Content [[70] 5101 59  An extension of PASCAL VOC 2010 dataset with pixel-wise annotations.
ACDC [17] 406 19 Scene images with adverse weather conditions, i.e., fog, night, rain, snow.
Object Detection |

Cityscapes [16] 500 8 Scene images collected in different cities for street scene understanding.
BDD100K [67] 1,000 8  Street scene images collected at different times of the day.

ADE20K [69] 2,000 100 A large-scale dataset of images collected from outdoor and indoor scenes.
ACDC [17] 406 8  Scene images with adverse weather conditions, i.e., fog, night, rain, snow.

B Parameter Analysis

We study the size of the local knowledge bank and hard-sample knowledge bank (L and H), the parameter K
used in hard-sample knowledge bank update, and the update coefficient -y used in Eq. f]for global knowledge
bank, over the semantic segmentation task Cityscapes with SEEM-Tiny.

Size of the local knowledge bank L. As discussed in the main text, the size of local knowledge bank L is much
smaller than the total number of test samples, since local knowledge bank aims to buffer fresh information from
recent previous test samples. Here we study how it affects the test-time prompt tuning. As shown in Table[9]
(a), HisTPT yields robust performance when L is relatively small (from 8 to 64), while the performance drops
slightly when it becomes too large. This show that the local knowledge bank with relatively small size could
effectively capture fresh information and up-to-date distribution changes along the tuning process.

Size of the hard-sample knowledge bank H. Hard-sample knowledge bank stores the features of hard-samples,
capturing different and rare corner cases during the test-time prompt tuning process. Table 9] (b) show that
HisTPT is quite robust when H is between 8 to 128. Hence, we simply set it as the same as the size of the local
knowledge bank, i.e., H = L = 32.

The number of selected hard-sample features K. As discussed in the main text, hard-sample identifies and
stores K hard-sample features from the local knowledge bank. Here we study the sensitivity of K by increasing
it from 8 to 24 with a step of 4. As shown in Table[J{c), the performance is quite tolerant to the parameter N and
the best performance is obtained when K = 16.

Update coefficient . The update coefficient v in Eq. ] determines the update speed of global knowledge bank,
where the larger update coefficient results in the slower update of global knowledge bank. From Table[9](d), we
can observe that HisTPT is robust when + is large enough (i.e., from 0.9 to 0.999) while the performance of
HisTPT drops slightly when -y becomes too small. This demonstrates that a large update coefficient, ensuring
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smooth and gradual updates, facilitates stable global memorization. Conversely, a too small update coefficient
leads to rapid updates of the global knowledge bank, resulting in unstable memorization and less effective
test-time prompt tuning.

Table 9: Parameter analysis of HisTPT over semantic segmentation task Cityscapes with SEEM-Tiny.

L \ 8 16 32 64 128 512 H \ 8 16 32 64 128 512
HisTPT \ 445 4477 447 446 442 439 HisTPT \ 447 446 447 445 446 435

(a) The size of local knowledge bank L. (b) The size of hard-sample knowledge bank H.
K ‘ 8 12 16 20 24 o' \ 0.1 0.5 09 099 0.999
HisTPT 446 445 447 446 446 HisTPT \ 43.1 439 445 447 446
(c) The number of hard-sample features K. (d) The update coefficient .

C More Discussion about the Design of Historical Knowledge Banks

Update of the hard-sample knowledge bank. As discussed in the main text, hard-sample knowledge bank
works as an FIFO queue with a fixed size, and it is updated using the hard-sample features selected from local
knowledge bank with an average compaction operation. Here we provide more discussion about the different
update ways of hard-sample knowledge bank, including 1) directly update using the selected features and 2)
update using the compacted features with an average operation. From Table[T0] we can observe that updating
hard-sample knowledge bank using the selected features with average compaction operation performs better,
which is largely due to that the compacted features enabling to filter out some noises and results in more robust
memorization of difficult and corner-case information.

Table 10: Comparison of different update ways of hard-sample knowledge bank over semantic
segmentation task Cityscapes with SEEM-Tiny.

Method |  Directly update Update with average operation
mloU | 43.9 4.7

Update of the global knowledge bank. As described in the main text, we update the global knowledge bank
using the features dequeued from both the local knowledge bank and hard-sample knowledge bank. Here
we study its effectiveness with different update ways of global knowledge bank, including 1) update global
knowledge bank with only the features dequeued from local knowledge bank; 2) update global knowledge bank
with only the features dequeued from hard-sample knowledge bank and 3) update global knowledge bank with
the features dequeued from the local knowledge bank and hard-sample knowledge bank. Table[TT]shows the
experimental results. It can be observed that updating global knowledge bank with the features dequeued from
both the local knowledge bank and hard-sample knowledge bank performs the best, which indicates that the
features stored in local knowledge bank and hard-sample knowledge bank are complementary to each other,
working together to help build a more comprehensive and representative global memorization.

Table 11: Comparison of different update ways of global knowledge bank over semantic segmentation
task Cityscapes with SEEM-Tiny.

Method | local knowledge bank  hard-sample knowledge bank  global& hard-sample knowledge banks
mloU | 442 43.8 44.7

D More Comparisons with Memory-based Learning Methods

We provide more comparisons with existing memory-based learning methods [31} 88| |89, [28]. Our HisTPT
differs in two major aspects: Memory Types - HisTPT designs three types of knowledge banks for capturing
and storing both fresh and representative features; Memory Retrieval - HisTPT designs an Adaptive Knowledge
Retrieval Mechanism for retrieving the memorized information adaptively for each test image. Due to the very
different designs, HisTPT outperforms [31} 188l |89l 28] clearly as shown in Table@
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Table 12: Comparison with existing memory-based learning methods over Cityscapes semantic
segmentation task on SEEM-Tiny. mlIoU is reported.

Method | T3A [31] TAST[88] RoTTA[89] FAU[28]  HisTPT
mloU | 418 42.0 41.9 42.2 4.7

E Pseudo Codes of HisTPT

We provide the pseudo codes of the proposed historical test-time prompt tuning (HisTPT), as shown in Algo-
rithm[T] We initialize the three knowledge banks with the features of the first test sample and then gradually
update them as in Lines 3-7 along the test-time prompt tuning process. Note that, for the first test sample, we
skip the prediction regularization in Line 10 and optimize the tokens for it with the vanilla self-training objective
since the knowledge banks have not been constructed at that time.

Algorithm 1 Historical Test-Time Prompt Tuning.

Require: Online optimized text tokens t, a pre-trained vision foundation model F' = {F!, FT},
a continuous flow of test samples X;cqp = {xn}ﬁle and their possible belonged class names
Viest = {96}5:1
Initialization: Initialize t as t
forn =1to N do
Knowledge bank construction with x,,_; and t,,_1:
Encode ,—1: up—1 = FT (6513 Viest)
Update local knowledge bank: dequeue old feature 4;,.,; and enqueue u,, 1
Update hard-sample knowledge bank: dequeue old feature g and enqueue new feature
selected by Eq.
7:  Update global knowledge bank: generate new category-wise feature prototype using %ocq;
and %pqrq, and update the global knowledge bank by Eq. 4]
8:  Prompt optimization for x,, with the constructed knowledge banks:
9:  Generate prediction p,, for x,, with t,,_; via Eq. E]
10:  Generate the regularized prediction p,, by adaptively retrieving the memorized knowledge as

AN AR S

in Egs. ]
11:  Optimize the text token for x,,, i.e., t, < t,_1, by Eq.[§]
12: end for

F Quantification of the Forgetting Mitigation Ability of HisTPT

Following prior study [29], we measure the forgetting by randomly selecting one of the five datasets in Table 6]
as the reference domain and perform continual adaptation toward the other four datasets. During the continuous
adaptation process, we evaluate HisTPT’s ability of preserving the knowledge of vision foundation models by
measuring its performance on the reference domain. As shown in the Figure[d] HisTPT shows less performance
degradation on the reference domain consistently, demonstrating its effectiveness in preserving the knowledge of
vision foundation models and mitigating forgetting during the adaptation process.

G Further Analysis of the Three Knowledge Banks

We analyse the three knowledge banks by visualizing their stored features along the test-time adaptation process.
Three points can be drawn as illustrated in Figure[5} 1) the global prototypes exhibit slow and gradual shift
from the initial feature prototypes, preserving the knowledge of pre-trained vision foundation models and
facilitating stable test-time adaptation; 2) the features in the local knowledge bank change rapidly, validating
their effectiveness in capturing fresh and up-to-date distribution changes along the test-time adaptation process;
3) most features in the hard-sample knowledge bank lies around inter-category boundary, indicating their
effectiveness in capturing difficult and rare corner cases along the tuning process. With the three types of
complementary knowledge, HisTPT enables adaptive regularization for the prediction of current test samples.
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Figure 4: Comparison of preventing forgetting on continual test-time adaptation task with SEEM-
Tiny. For each experiment, one dataset is selected as the reference domain, and then we perform
the continual adaptation on the other datasets. We record the performance change on the reference
domain for measuring the forgetting during the continual adaptation process. Our HisTPT shows
clearly less performance degradation on the reference domain, demonstrating the effectiveness of
HisTPT in mitigating forgetting during the adaptation process.

Category Car: @ Initial prototype @ Global prototype @ Local prototype O Samples of local knowledge bank @ Hard-sample prototype O Samples of hard-sample knowledge bank

Category Truck: W Initial prototype 'V Global prototype W Local prototype |/ Samples of local knowledge bank WV Hard-sample prototype \/ Samples of hard-sample knowledge bank

30 20 T [ 10 20 0

(a) 100-th test sample (a) 200-th test sample (a) 400-th test sample

Figure 5: T-SNE visualization of the features stored in each knowledge bank with Cityscapes semantic
segmentation task on SEEM-Tiny. For clear illustration, we select two categories (i.e., car and truck)
for visualization. T-SNE visualization shows that 1) global prototype shifts slowly from the initial
prototype, preserving the original knowledge of pre-trained vision foundation models; 2) local
knowledge bank updates rapidly, capturing fresh information and reflecting real-time distribution
changes and 3) hard-sample knowledge bank captures challenging and rare cases situated near
decision boundaries.

H Analysis with Error Bars

In experiments, we observe negligible variance on the results between multiple random runs. Nevertheless, we
provide the error bar with 5 random runs to analyze the proposed HisTPT on semantic segmentation task with
SEEM-Tiny, image classification task with CLIP-RN50 and object detection with SEEM-Tiny, respectively.
From Table[T3] we can observe that our proposed HisTPT performs well consistently over multiple random runs.

Table 13: Analysis of our proposed HisTPT with error bars.

Method \ Semantic segmentation task (Mean) \ Image classification task (Mean) \ Object detection task (Mean)

HisTPT | 33.5+0.2 | 61.2 0.1 | 30.2£0.2
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I Qualitative Results

We present qualitative illustrations and comparisons over semantic segmentation task on Cityscapes. As shown
in Fig.[6| HisTPT yields the best segmentation consistently which is well aligned with the quantitative results.

Original Image =~ SEEM-Tiny [3] TPT [[7] HisTPT(Ours) Ground Truth

Figure 6: Qualitative comparison of HisTPT with the baseline model (SEEM-Tiny) [3] and TPT [7]
over semantic segmentation task on Cityscapes.

J Broader Impacts and Limitations

Broader Impacts. This work explores a novel pipeline for transfer learning with vision foundation models,
namely, test-time prompt tuning. Our proposed method offers great advantages by eliminating the need for
labelled task-specific data and allowing learning prompts from test samples on-the-fly. It thus makes a very
valuable contribution to the computer vision research community by providing a novel and efficient transfer
learning pipeline. The feature of requiring no labelled task-specific training data enables efficient adoption of
vision foundation models in various downstream tasks, broadening the applicability of vision foundation models
significantly.

Limitations. As discussed in Section 4.2 of the main text, HisTPT offers a general framework that can perform
well across different computer vision tasks. It enables effective test-time prompt tuning with the generic text
prompt that is universally applicable across all vision foundation models (VFMs), thus avoiding the complexity of
task-specific designs in VFM adaptation. At the other end, task-specific designs allow incorporating task-relevant
knowledge which often helps improve performance. For instance, the incorporation of specific visual prompts,
such as points and bounding boxes, in segmentation or detection foundation models often lead to more precise
segmentation masks and bounding boxes. We will investigate how to incorporate task-specific prompt tuning in
our future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction accurately describe the paper’s contributions and scope.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

 The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

« It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of the work in Section J of the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

¢ The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:
* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
¢ All assumptions should be clearly stated or referenced in the statement of any theorems.
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* The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided detailed instructions for reproducing the main experimental results in
Section 3 Method and Section 4 Experiment including the details of the proposed framework, and the
datasets, base models and the parameters used for experiments.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

« If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

¢ Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer:
Justification: Code will be released after being accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

¢ While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

¢ The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

* Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: We provided the detailed implementation details in Section 4.
Guidelines:

¢ The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provided the analysis with error bar in Section H of the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

 Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably report
a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

« If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provided sufficient information on the computation resources required for reproduce
the experiments in Section 4.1 Implementation Details.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

¢ The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the Neur[PS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: We discussed the broader impacts of the work in Section J of the Appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

« If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

¢ Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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12.

13.

14.

15.

» Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We properly credited the original owners of assets used in the paper and properly respect
their license and terms of use.

Guidelines:

* The answer NA means that the paper does not use existing assets.

¢ The authors should cite the original paper that produced the code package or dataset.

» The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA|
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

¢ Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

» The paper should discuss whether and how consent was obtained from people whose asset is
used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

¢ The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

¢ For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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