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ABSTRACT

Monitoring sleep states is essential for evaluating sleep quality and diagnosing
sleep disorders. Traditional manual staging is time-consuming and prone to sub-
jective bias, often resulting in inconsistent outcomes. Here, we developed an auto-
mated model for sleep staging to enhance diagnostic accuracy and efficiency. Con-
sidering the characteristics of polysomnography (PSG) multi-lead sleep monitor-
ing, we designed a multimodal sleep state classification model, MSSC-BiMamba,
that combines an Efficient Channel Attention (ECA) mechanism with a Bidirec-
tional State Space Model (BSSM). The ECA module allows for weighting data
from different sensor channels, thereby amplifying the influence of diverse sensor
inputs. Additionally, the implementation of bidirectional Mamba (BiMamba) en-
ables the model to effectively capture multi-dimensional features and long-range
dependencies of PSG data. The developed model demonstrated impressive per-
formance on sleep stage classification tasks on the ISRUC-S3 and ISRUC-S1
datasets, respectively, including healthy and unhealthy sleep patterns. Our model,
which can effectively handle diverse sleep conditions, is the first to apply Bi-
Mamba to sleep staging with multimodal PSG data, showing substantial gains in
computational and memory efficiency over traditional Transformer-style models.
This method enhances sleep health management by making monitoring more ac-
cessible and extending advanced healthcare through innovative technology.

1 INTRODUCTION

Sleep, a fundamental pillar of human health and well-being, involves a complex series of stages in
cognitive function and overall wellness Peter-Derex et al. (2015). However, modern lifestyles, work-
related stress, and environmental factors have adversely impacted the sleep duration, continuity,
and quality of many individuals, leading to a concerning rise in sleep problems, especially among
children The Lancet Diabetes (2024). The accurate classification of sleep stages and assessment
of sleep health are vital for the effective diagnosis and treatment of sleep disorders. Traditionally,
polysomnography (PSG) has been considered the gold standard for monitoring sleep stages, but it
requires specialized equipment and is typically confined to clinic settings. This limitation highlights
the pressing need for more accessible and less intrusive approaches to sleep analysis.

Recent advances in machine learning, particularly deep learning, have paved the way for innovative
approaches to sleep stage classification Loh et al. (2020). Among these, the Transformer model
Vaswani et al. (2017), known for its effectiveness in handling sequential data primarily in the field
of natural language processing, offers promising avenues for sleep data analysis due to its ability
to capture long-range dependencies in time-series data. However, the Transformer’s self-attention
mechanism, which evaluates interactions across all sequence positions, significantly slows down as
data length increases, and hence suffers from low efficiency due to heavy computational demands
and limited scalability with large datasets. This necessitates more efficient algorithms or adaptations
of existing models to optimize performance in tasks like sleep stage classification and anomaly
detection without compromising computational resources.

Modern state space models (SSMs) particularly effective in capturing long-range dependencies, have
evolved significantly with recent innovations. The Mamba model Gu & Dao (2023) advances SSMs
by integrating time-varying parameters and a hardware-aware algorithm, enhancing training and
inference efficiency dramatically. Despite its superior scalability and potential as an alternative to
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Transformer in language modeling, Mamba is limited by its unidirectional approach and lack of po-
sitional awareness. To address these limitations, Vision Mamba Zhu et al. (2024) employs the Bidi-
rectional State Space Model (BSSM) to leverage dynamics in both forward and reverse directions,
significantly boosting prediction accuracy for sequential tasks. This bidirectional enhancement en-
sures high accuracy and enhances efficiency, making Vision Mamba ideal for large-scale studies and
potentially suitable for real-time sleep monitoring applications.

In this study, we leverage the recent progress in deep learning by integrating the powerful capabili-
ties of the Transformer architecture with the Bidirectional State Space Model (BSSM) from Vision
Mamba. This novel combination harnesses the strengths of both approaches to effectively capture
intricate temporal patterns within sleep data, enabling precise sleep stage classification. The bidi-
rectional nature of the BSSM allows for comprehensive analysis of the temporal context, while the
Transformer’s deep learning capabilities facilitate the processing of large-scale, multimodal sleep
monitoring datasets. By synergizing these cutting-edge techniques, our proposed model offers a
robust and efficient solution for accurate sleep stage classification, pushing the boundaries of what
is possible in the field of sleep medicine.

The main contributions of this paper are as follows:

• Innovative Model Architecture: We introduce the MSSC-BiMamba model with an in-
novative architecture, which combines the Efficient Channel Attention mechanism with
BiMamba, tailored specifically for sleep stage classification.

• Enhanced Efficiency: The MSSC-BiMamba model, employing complex multimodal PSG
data, significantly improves computational and memory efficiency, and bridges the gap
between intricate clinical evaluations and practical, real-time monitoring solutions.

• Superior Results: Our model demonstrates superior performance on the ISRUC-S1 and
ISRUC-S3 datasets, thereby confirming its generalizability and effectiveness across differ-
ent sleep-related tasks.

2 RELATED WORK

2.1 CLASSIFICATION OF SLEEP STAGES

Traditionally, the classification of sleep stages is performed by experienced sleep specialists or
physicians, who categorize 30-second or specific time intervals of polysomnographic (PSG) data
into various sleep stages according to established sleep assessment criteria Liang et al. (2012). This
process is known to be both laborious and time-consuming Malhotra et al. (2013). In contrast, ma-
chine learning algorithms may require significantly shorter durations to accomplish the same clas-
sification task Chang et al. (2019), while experts have traditionally extracted features from the time
domain Sharma et al. (2017), frequency domain Zoubek et al. (2007), and time-frequency domain
Al-Salman et al. (2019) to preprocess data for machine learning methods. The selection of effective
features remains a critical issue in enhancing the classification performance of traditional classifiers.

The emergence of deep learning has further advanced the automation process, enabling direct ex-
traction of complex features from raw data, thus reducing the preprocessing workload Sekkal et al.
(2022). Therefore, an increasing number of deep learning methods are being applied to sleep stage
classification tasks, including CNNs Phan et al. (2018), RNNs Zhu & Liang (2020), GCNs Jia et al.
(2021), and others. However, CNNs may struggle to capture long-term dependencies in time-series
data effectively. While RNNs are capable of handling sequential data and capturing long-term de-
pendencies in time series, they are prone to issues such as vanishing or exploding gradients during
training. Additionally, GCNs exhibit lower efficiency in processing large-scale graph data.

Ji et al. Ji et al. (2023; 2024) proposed several sleep stage classification models. These studies
transformed PSG data into the frequency domain space, combined with time-domain signals as
input to the model. They then utilized 3D CNNs, 2D CNNs, and GCN networks for classification,
achieving satisfactory results. Compared to these methods, we propose an approach that solely
utilizes time-domain signals but achieves superior performance.

2
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Figure 1: The architecture of the proposed MSSC-BiMamba model.

2.2 STATE SPACE MODEL AND MAMBA

Recent research advances have led to a surge of interest in state-space models (SSMs). Originating
from the classical Kalman filtering model Kalman (1960), SSMs excel at capturing long-term de-
pendencies. Researchers have proposed several SSM-based methods, such as Structured State Space
Sequence Models (S4) Gu et al. (2021) and S4D Smith et al. (2022), for handling sequential data
from various tasks and modalities, particularly in modeling remote dependencies. Due to their con-
volutional and near-linear computations, they exhibit high efficiency in processing long sequences.
In recent studies, Mamba Gu & Dao (2023) integrated time-varying parameters into SSMs and pro-
posed a hardware-aware algorithm to achieve highly efficient training and inference. Compared to
the original Mamba, the Bidirectional Mamba offers higher efficiency and performance. Based on
this structure, we explore the temporal PSG signals.

3 METHOD

3.1 OVERVIEW OF THE FRAMEWORK

The proposed MSSC-BiMamba model, depicted in Figure 1, addresses a critical challenge in sleep
medicine: the classification of sleep stages utilizing PSG data, such as EEG and EOG signals. This
innovative model is specifically designed to enhance diagnostic accuracy and efficiency, thereby
boosting a deeper understanding of sleep health in clinical environments, and facilitating the early
diagnosis of sleep disorders.

The architecture of MSSC-BiMamba incorporates the Efficient Channel Attention (ECA) module to
focus on salient features in the data effectively, followed by the Bidirectional Mamba (BiMamba)
module, which processes these features to capture complex temporal relationships. This setup en-
sures a robust analysis of sleep patterns. In the experimental setup, we detail the configuration
of hyperparameters and the specific conditions under which the model operates. We conclude by
describing the evaluation metrics used to assess the performance of the model, ensuring a compre-
hensive understanding of its effectiveness in clinical applications.

3.2 THE EFFICIENT CHANNEL ATTENTION MODULE

In recent years, the introduction of channel attention mechanisms into convolutional blocks has gar-
nered widespread attention. A prominent method in this domain is SENet (Squeeze-and-Excitation
Networks)Hu et al. (2018), which learns channel attention for each convolutional block and signifi-
cantly enhances the performance of various deep CNN architectures. While these methods achieve
high accuracy, they often lead to increased model complexity and substantial computational burden.
To address these challenges, Wang et al.Wang et al. (2020) proposed the Efficient Channel Atten-
tion (ECA) module. The ECA module avoids dimensionality reduction and effectively captures
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cross-channel interactions, ensuring both efficiency and effectiveness. This module has achieved
commendable results in the field of image processing.

The channel attention mechanism is critical for dynamically adjusting the channel responses of fea-
ture maps by learning the importance of each channel. This process enhances the representational
capacity of neural networks by allowing for the dynamic recalibration of feature channel correla-
tions. Specifically, for time series data, this involves adjusting multiple PSG channel data to capture
temporal patterns and dependencies more effectively. Building on the ECA module, we propose an
adaptation tailored to time series data (Figure 1 .a). Our approach ensures the suitability and effi-
cacy of the ECA mechanism in handling the unique characteristics of time series, such as temporal
dependencies and sequential patterns.

Let xci denote the input feature map, where c is the number of channels and L represents the length
of the feature map. First, the global spatial information of each channel is computed through a global
average pooling (GAP) operation, resulting in channel descriptors Sc.

Sc =
1

L

L∑
i=1

xci (1)

Subsequently, channel weights W are obtained through convolutional layers and activation func-
tions.

W = σ(Conv1d(S)) (2)

Finally, the learned channel weights are applied to the original feature map, yielding the weighted
feature map X̃ci.

X̃ci = Wc ·Xci (3)

In this way, the network can strengthen the important channel features for sleep stage classification
tasks while suppressing those unimportant channel features, thereby enhancing the model’s ability
to classify sleep stages.

3.3 BIDIRECTIONAL MAMBA

The S4 and Mamba structures discretize the state space representation of continuous systems. They
utilize zero-order hold (ZOH) to maintain the dynamic characteristics of the system, addressing the
limitation of direct implementation of continuous systems on digital computers, as digital computers
can only process discrete signals. Through precise sampling and holding processes, stable and
efficient digital implementation of continuous systems is permitted. The continuous state h(t) and
input x(t) can be represented as:

h′(t) = Ah(t) +Bx(t) (4)
y(t) = Ch(t) (5)

where A ∈ RN×N is the state transition matrix, and B ∈ RN×1, C ∈ RN×1 is the input and output
matrix.

Through the time scale parameter ∆, the continuous parameters A and B are transformed into dis-
crete parameters, resulting in Ā, B̄. Zero-order hold (ZOH) is a method of maintaining the value of
a signal unchanged during sampling and holding until the next sampling point. After discretizing A
and B, the discrete versions using the time scale parameter ∆ can be rewritten in the following form:

ht = Āht−1 + B̄xt

yt = Cht
(6)

4
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where, Ā = exp(∆A), B̄ = (∆A)
−1

(exp(∆A) − I) · B, finally, the model’s output is obtained
through a global convolution.

K̄ = (CB̄,CAB, · · · , CĀL−1B̄),
y = x · K̄ (7)

where K̄ ∈ RL is the structured convolutional kernel, and L is the length of the input sequence x.

As shown in Figure 1 .b, the bidirectional Mamba utilizes both forward and backward modules to
expedite the SSM process and enhance the capability of acquiring contextual information. Specif-
ically, it scans the sequence once from start to end and again from end to start. Subsequently, it
averages the outputs from both scans to obtain a comprehensive representation.

The BSSM Block operates on an input xt ∈ RB×L×D, where B is the batch size, L is se-
quence length , and D is hidden dimension at each time step t. Initially, it performs linear pro-
jections on xt , expanding the hidden dimension to D , resulting in x and z (Algorithm.1,2).
These projections undergo further processing through 1D convolution and SiLu activation (Algo-
rithm.5). The block’s core features a discretized BiSSM with parameters adjusted based on the
input (Algorithm.6-13). This discretized BiSSM, along with x, generates the state representation
{yi|i ∈ {forward, backward}} . After yi is combined with a residual connection from z after ap-
plying SiLu activation, a linear projection then delivers the output yt at time step t (Algorithm.16).
Overall, the BSSM Block effectively processes sequential information by adapting to input varia-
tions and integrating BiSSM capabilities.

Algorithm 1 BSSM Block Process Algorith
Require: xt : (B,L,D)
Ensure: yt : (B,L,D)

1: x : (B,L,E)← Linear(xt)
2: z : (B,L,E)← Linear(xt)
3: process Bidirectional Mamba
4: for each direction i ∈ {forward, backward} do
5: x′ : (E,L,ED)← SiLU(Conv1di(x))
6: Bi : (B,L,N)← Linear(x′)
7: Ci : (B,L,N)← Linear(x′)
8: softplus ensures positive ∆i

9: ∆i : (B,L,D)← log(1 + exp(Linear(x′) + Parameter∆i))
10: shape of ParameterAi is (E,N)

11: Ai : (B,L,D,N)← ∆i ⊗ ParameterAi
12: Bi : (B,L,D,N)← ∆i ⊗Bi

13: yi : (B,L,ED)← SSM(Ai, Bi, Ci)(x
′)

14: end for
15: residual connection
16: yt : (B,L,D)← Linear((

∑
i∈{forward,backward})yi ⊙ SiLU(z))

17: return yt

4 EXPERIMENTS

4.1 DATASETS

The ISRUC-Sleep dataset Khalighi et al. (2016) comprises data from both healthy subjects and
individuals with sleep disorders. Specifically, the ISRUC-S3 subset contains data from 10 healthy
subjects, while the S1 subset includes data from 100 participants with sleep disorders. The data
provider performed preprocessing on all PSG recordings, which involved the following steps: 1)
50 Hz power-line noise removal using a notch filter; 2) for the electroencephalogram (EEG) and
electrooculogram (EOG) data, a bandpass Butterworth filter was applied to obtain waves in the
frequency range of 0.3 Hz to 35 Hz; 3) the electromyogram (EMG) data were filtered using a low
cutoff frequency of 10 Hz and a high cutoff frequency of 70 Hz. To mitigate the impact of noise,

5
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the last 30 epochs from each subject were removed. This approach aimed to eliminate potentially
unreliable or contaminated data points that could adversely affect the accuracy and robustness of the
subsequent analyses and sleep stage classification.

Table 1: Detailed information of the ISRUC-Sleep datasets used for sleep stage classification.
Subset Subject Number W N1 N2 N3 REM Total

ISRUC-S3 10 1674 1217 2616 2016 1066 8589
ISRUC-S1 (50) 50 10097 5555 13250 8675 5779 43356
ISRUC-S1 (all) 100 20098 11062 27511 17251 11265 87187

4.2 EXPERIMENTAL SETUP

According to the American Academy of Sleep Medicine (AASM) guidelines Berry et al. (2012), the
sleep-wake cycle can be classified into five stages: wakefulness (W), rapid eye movement (REM)
sleep, and three non-rapid eye movement (NREM) stages, namely N1, N2, and N3. The NREM
stages are further categorized based on the depth of sleep, with N1 representing the lightest stage of
sleep, N2 being a deeper stage, and N3 corresponding to the deepest stage of sleep, also known as
slow-wave sleep.

For the classification of sleep stages, we utilized all data from the S3 dataset and 50 participants with
odd-numbered IDs from the S1 dataset (Table 1), and selected PSG data from ten channels, including
EEG (F3-A2,C3-A2,O1-A2, F4-A1,C4-A1,O2-A1), EOG ( LOC-A2,ROC-A1), ECG(X2) and Chin
EEG (X1).

To prepare the data for analysis, we first applied a downsampling technique, reducing the sampling
rate from 200 Hz to 100 Hz. This step helps to minimize computational complexity while preserving
the essential information in the signal. Subsequently, we performed slicing operations on the data
from each channel. The data input into the network comprised 1000 points (30 s), about 33.33 Hz.
The ISRUC-S3 dataset employed a 10-fold cross-validation, while the ISRUC-S1 dataset utilized a
25-fold cross-validation. Cross-validation was independently performed for each subject to ensure
that data from the same subject did not appear simultaneously in both the training and validation
sets. The experimental setup and hyperparameters are summarized in Appendix A.

5 EXPERIMENTS AND NUMERICAL ANALYSIS

5.1 CLASSIFICATION EXPERIMENTS ON THE ISRUC-S3 AND ISRUC-S1 DATASETS

To assess the performance of our model, we conducted experiments using four different combina-
tions on the ISRUC-S3 dataset, testing the functionality of different modules. The experimental
results (Table 2) indicate that incorporating the ECA module can notably enhance performance.
Compared to the model without the ECA module, performance improvements are observed across
all metrics except for F1 in the W stage, where the performance remains relatively consistent. To
evaluate the performance of models with different depths, we configured BiMamba modules with 1
layer, 2 layers, 3 layers, and 10 layers. Through comparison, we found that increasing the depth of
the model does not necessarily lead to performance improvement. However, for the challenging N1
stage with a limited sample size, some improvement is observed. The model with CNN, ECA, and
1-layer BiMamba performed best. The confusion matrices are presented in Appendix B.

When compared to previous models (Table 2), our model outperforms them in most performance
metrics on the ISRUC-S3 dataset. However, it exhibits marginally lower F1-scores in the Wake (W)
and Rapid Eye Movement (REM) stages compared to the JK-STGCN Ji et al. (2022) and MixSleep-
Net Ji et al. (2024) models. Specific comparisons of the F1 scores for each sleep stage are provided in
Appendix B. Additionally, our model benefits from a significantly reduced parameter count, making
it more efficient than earlier deep-learning models in terms of computational resources and mem-
ory usage. This efficiency makes our model particularly suitable for deployment in clinical settings
where computational power may be limited.

6
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Table 2: Comparison with other methods on the ISRUC-S3 dataset.
Model Parameter ACC F1 Kappa

RF Memar & Faradji (2017) <0.1M 0.702 0.685 0.616
DeepSleepNet Supratak et al. (2017) 21M 0.719 0.696 0.643

GraphSleepNet Jia et al. (2020) - 0.786 0.770 0.724
JK-STGCN Ji et al. (2022) - 0.831 0.814 0.782

MixSleepNet Ji et al. (2024) 2.4M 0.830 0.821 0.782

CNN+1BiMamba 0.47M 0.845 0.817 0.794
MSSC-BiMamba 0.47M 0.852 0.824 0.803

CNN+ECA+2BiMamba 0.73M 0.847 0.819 0.796
CNN+ECA+3BiMamba 0.99M 0.850 0.822 0.800
CNN+ECA+10BiMamba 2.79M 0.850 0.823 0.800

After conducting a comparative analysis on the ISRUC-S3 dataset, we finalized the model param-
eters and selected the MSSC-BiMamba (CNN+ECA+1BiMamba) model. Subsequently, we per-
formed experiments on the ISRUC-S1 dataset. As illustrated in Table 3, our model outperforms
other models in most performance metrics. Although it exhibits slightly lower F1-scores in the W
and N1 stages compared to Mixsleepnet and JK-STGCN, it excels in other stages, highlighting its
overall effectiveness. Given that the model parameters were optimized for ISRUC-S3, the perfor-
mance on ISRUC-S1 could likely be further enhanced with additional tuning specific to this dataset.
Nonetheless, the current results underscore the potential and adaptability of the model in diverse
sleep stage classification tasks.

Table 3: Comparison with other methods on the ISRUC-S1 dataset.
Method ACC F1 Kappa

RF Memar & Faradji (2017) 0.699 0.649 0.607
DeepSleepNetSupratak et al. (2017) 0.730 0.691 0.654

GraphSleepNetJia et al. (2020) 0.780 0.751 0.715
JK-STGCNJi et al. (2022) 0.820 0.798 0.767
MixsleepnetJi et al. (2024) 0.813 0.787 0.757

MSSC-BiMamba 0.830 0.801 0.773

To provide a more intuitive comparison of the model’s performance, the sleep state classifications for
participants are presented, showing the alignment between expert-labeled outcomes and those pro-
duced by our models. Although minor discrepancies occur during transitions between sleep stages,
the majority of the classifications closely match expert assessments, as illustrated in Appendix C.

Therefore, the developed model demonstrated impressive performance on sleep stage classification
tasks on both the ISRUC-S3 and ISRUC-S1 datasets. These datasets respectively contain clinical
PSG data from populations with healthy and unhealthy sleep patterns. This distinction highlights
the model’s capability to effectively differentiate and analyze sleep stages across diverse health con-
ditions, showcasing its potential for broad applications in sleep medicine. Especially, our efficient
model can free clinical physicians from the tedious task of manual staging, allowing them to focus
more on supervising and correcting the automated classifications, as well as devoting more energy
to the treatment and care of patients. This automated classification method not only enhances diag-
nostic accuracy, but also significantly improves efficiency when dealing with large volumes of data,
bringing significant technological innovations to the field of sleep medicine.

5.2 CROSS-VALIDATION EXPERIMENTS

In order to assess the generalization ability of the model across different datasets, we performed
cross-validation experiments using models trained on ISRUC-S1(50) and ISRUC-S3 datasets, uti-
lizing ISRUC-S1(50), ISRUC-S1(100), and the entire ISRUC-S3 dataset as test sets to evaluate the
performance of all models through K-fold validation and finally computed the average performance.

7
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Table 4: Comparison of cross-experiment results between the ISRUC-S3 and ISRUC-S1 models.
Model Datasets ACC F1 Kappa

ISRUC-S3 ISRUC-S3 0.857 0.851 0.817
ISRUC-S1(50) 0.330 0.281 0.160

ISRUC-S1(50)
ISRUC-S1(50) 0.852 0.833 0.809

ISRUC-S1(100) 0.808 0.788 0.752
ISRUC-S3 0.797 0.774 0.737

From Table 4, it can be observed that the S1(50) model performs well on all three subsets, S1(50),
S1(100), and S3, demonstrating its strong generalization ability. However, models trained on the S3
dataset do not perform as well on the S1 dataset, possibly due to differences between the S3 and
S1 datasets, as well as the smaller size of the S3 dataset. Overall, the model’s robust performance
across various metrics underscores its potential for reliable and accurate sleep stage classification.

6 CONCLUSIONS

In this study, we have demonstrated the exceptional generalization capabilities and computational
efficiency of the Mamba-driven deep learning framework in handling complex polysomnography
(PSG) data, underscoring its potential to revolutionize sleep medicine. By assisting doctors in anno-
tation, this innovative approach can transform medical experts from front-end operators to back-end
supervisors, streamlining diagnostic workflows and optimizing resource utilization. Future research
will focus on detailed analysis and model training for different sleep disorders. By incorporating
rich features and optimizing algorithms, we aim to enhance the model’s predictive accuracy and
enable precise, real-time sleep stage recognition. Developing accurate, reliable, and efficient tools
for sleep stage recognition and sleep disorder diagnosis will not only enhance patient care but also
deepen our understanding of the intricate mechanisms underlying sleep health. This will provide
valuable insights and support for the diagnosis and management of sleep disorders, ultimately im-
proving patient care and outcomes. We remain committed to exploring the potential of the Mamba
framework, striving for breakthroughs in sleep medicine. Our ongoing efforts will continue to push
boundaries, driving progress in this field and paving the way for a brighter future.
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A EXPERIMENT DESIGN

Table 5: Experimental environment and hyperparameter descriptions.
Parameter Value

GPU NVIDIA GeForce RTX 4090
CPU AMD Ryzen 9 7900 12-Core Processor

Pytorch Torch 2.1.1+cu118
Python 3.10.13
Epoch 40

Batch Size 100
Learning Rate 0.001
Weight Decay 0.0001

Dropout 0.2
Optimizer Adam

B ADDITIONAL RESULTS

B.1 CONFUSION MATRIX FOR ABLATION EXPERIMENTS

The confusion matrices in Figure 2 illustrate the performance of different models on the ISRUC-S3
dataset. By comparing panels (a) and (b), it is evident that the inclusion of the Efficient Channel
Attention (ECA) module enhances classification performance for all stages except N1. Further
comparison of panels (b), (c), and (d) reveals that deepening the network improves the recognition
performance for the N1 stage. However, this improvement comes at the cost of reduced performance
for other stages.
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(a)

(c) (d)

(b)

Figure 2: The confusion matrices for experiments on the ISRUC-S3 dataset: a,
CNN+1bimamba; b, (MSSC-BiMamba) CNN+ECA+1bimamba; c, CNN+ECA+2bimamba; d,
CNN+ECA+10bimamba.

B.2 COMPARISON OF F1 SCORES FOR EACH SLEEP STAGE CLASSIFICATION
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Table 6: Comparison F1 Score all class with other methods on the ISRUC-S3 dataset.
Method W N1 N2 N3 REM

RF Memar & Faradji (2017) 0.838 0.470 0.671 0.763 0.684
DeepSleepNet Supratak et al. (2017) 0.831 0.463 0.742 0.851 0.595

GraphSleepNet Jia et al. (2020) 0.864 0.540 0.782 0.869 0.793
JK-STGCN Ji et al. (2022) 0.900 0.598 0.826 0.901 0.845

MixSleepNet Ji et al. (2024) 0.899 0.625 0.819 0.899 0.860
CNN+1BiMamba 0.871 0.620 0.834 0.910 0.852
MSSC-BiMamba 0.886 0.624 0.841 0.915 0.854

CNN+ECA+2BiMamba 0.878 0.625 0.831 0.914 0.847
CNN+ECA+3BiMamba 0.871 0.629 0.840 0.915 0.855

CNN+ECA+10BiMamba 0.879 0.635 0.838 0.916 0.846

Table 7: Comparison F1 Score all class with other methods on the ISRUC-S1 dataset.
Method W N1 N2 N3 REM

RF Memar & Faradji (2017) 0.841 0.307 0.705 0.750 0.640
DeepSleepNetSupratak et al. (2017) 0.850 0.385 0.739 0.830 0.648

GraphSleepNetJia et al. (2020) 0.889 0.463 0.763 0.825 0.813
JK-STGCNJi et al. (2022) 0.895 0.550 0.811 0.883 0.850
MixsleepnetJi et al. (2024) 0.908 0.512 0.799 0.871 0.844

MSSC-BiMamba 0.901 0.547 0.812 0.885 0.860

C MSSC-BIMAMBA PREDICTIONS COMPARED TO EXPERTS

(a) Hypnogram with the highest accuracy for fold 9, participant 33 and participant 35.

(b) Hypnogram with  the nearest median accuracy for fold 14, participant 53 and participant 55.

(c) Hypnogram with the lowest accuracy for fold 3, participant 9 and participant 11.

Figure 3: Visualization of the highest, nearest median, and lowest scoring in the ISRUC-S1 dataset
between expert-labeled outcomes and predictions by our ISRUC-S1 model
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(a) Hypnogram with the highest accuracy for fold 8, participant 8.

(b) Hypnogram with the nearest median  accuracy for fold 9, participant 9.

(c) Hypnogram with the lowest accuracy for fold 3, participant 3.

Figure 4: Visualization of the highest, nearest median, and lowest scoring in the ISRUC-S3 dataset
between expert-labeled outcomes and predictions by our ISRUC-S3 model
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