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Abstract
This work focuses on general and loss-value-
driven lossless model compression, ensuring that
the model’s loss value remains unchanged or
decreases after compression. A key challenge
is effectively leveraging compression errors and
defining the boundaries for lossless compres-
sion to minimize model loss. i.e., compression
for better. Currently, there is no systematic ap-
proach to determining this error boundary or un-
derstanding its specific impact on model perfor-
mance. We propose a general and loss-driven
LossLess Compression theoretical framework
(LLC), which further delineates the compression
neighborhood and higher-order analysis bound-
aries through the total differential, thereby spec-
ifying the error range within which a model can
be compressed without loss. To verify the ef-
fectiveness of LLC, we apply various compres-
sion techniques, including quantization and de-
composition. Specifically, for quantization, we
reformulate the classic quantization search prob-
lem as a grouped knapsack problem within the
lossless neighborhood, achieving lossless quanti-
zation while improving computational efficiency.
For decomposition, LLC addresses the approxi-
mation problem under low-rank constraints, auto-
matically determining the rank for each layer and
producing lossless low-rank models. We conduct
extensive experiments on multiple neural network
architectures on different datasets. The results
show that without fancy tricks, LLC can effec-
tively achieve lossless model compression. Our
code will be made publicly.

1. Introduction
The scale and complexity of Deep Neural Networks (DNNs)
have rapidly increased, driving up memory and FLOPS de-
mands. To tackle these challenges, model compression has
become a crucial method for improving efficiency, reducing
energy consumption, and speeding up inference. However,
achieving effective compression without sacrificing perfor-
mance remains a key challenge. As such, model compres-
sion must balance two critical objectives: maximizing the

compression ratio while preserving model performance. In
this work, we focus on post-training compression, where
the model is compressed after training without requiring
modifications to the training process. Its advantage is that
the computing resource consumption is low and there is no
need to adjust the model training process.

In the context of post-training compression, developing a
framework that preserves model performance while ensur-
ing generality requires two key conditions: Performance
Assurance, which involves understanding the relationship
between compression-induced errors and model perfor-
mance to maintain accuracy and stability; and General
Applicability, ensuring the method can be broadly applied
across different tasks and technical frameworks.

For the performance assurance, most existing compression
schemes focus on maximizing the compression rate while
trying to optimize the performance of the compressed model.
Taking model quantization and matrix decomposition as ex-
amples, quantization significantly speeds up inference and
reduces model size by using lower bit widths to represent
tensors. For example, HAWQ (Dong et al., 2019) employed
layer-wise sensitivity metrics to determine the precision of
different layers, striking a good balance between error and
compression ratio. Matrix decomposition decomposes the
weight matrix into two or more smaller matrices, using
these smaller matrices during actual storage and computa-
tion. Hsu et al. (Hsu et al., 2022) incorporated weighted
Fisher information into singular value decomposition er-
ror to reduce the model degradation after decomposition.
Although these methods aim to reduce the impact of com-
pression errors at different compression rates, performance
degradation remains unavoidable at both high and low com-
pression rates. This is primarily because the optimization
of compression errors is not inherently aligned with the
optimization of model performance.

For the general applicability, The key is identifying analyt-
ical tools or evaluation metrics that are applicable across
tasks while remaining independent of specific models or
tasks. While task-specific metrics like accuracy and perplex-
ity provide an intuitive measure of model performance, their
strong dependence on specific tasks limits their applicability
across domains. In contrast, loss functions serve as a uni-
versal optimization objective in machine learning, offering
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two key advantages: (1) they provide a consistent evaluation
standard across tasks while maintaining strong correlations
with downstream metrics, and (2) their continuous and dif-
ferentiable nature enables precise quantification of model
variations, offering a solid mathematical foundation for op-
timization. Building on this, the proposed LLC framework
centers on loss functions to analyze the relationship between
compression error and model performance, ensuring loss re-
mains unchanged or decreases during compression, thereby
enabling domain-independent compression.

LLC reveals the relationship between compression error
and model performance through full differential analysis,
and uniformly analyzes compression error and model loss.
LLC also clearly defines the error neighborhood of lossless
compression and determines the boundary through second-
order Hessian analysis. We apply model quantization and
matrix decomposition to the LLC framework: for quanti-
zation, we transform the quantization search problem into
a grouped knapsack problem to improve computational ef-
ficiency while ensuring lossless quantization; for decom-
position, we combine the compression error neighborhood
and low-rank constraints to generate lossless low-rank mod-
els. Experiments show that LLC can effectively compress
models without loss under multiple datasets and different
network architectures while ensuring compression rate, and
even obtains compressed models with lower loss than the
original model. For example, LLC compresses the volume
of the ResNet series model by nearly 70%, achieving better
performance than the original model.

Our contributions are as follows: 1) We propose a universal
loss-driven compression framework that provides guidance
on how compression errors can be used for lossless model
compression. 2) We apply LLC to quantization and matrix
decomposition: by transforming the quantization search
problem into a knapsack problem, we ensure lossless com-
pression; in matrix decomposition, we combine the error
neighborhood with low-rank constraints to successfully gen-
erate lossless low-rank models. 3) Experimental results
across multiple task datasets, neural network architectures,
and multiple compression technologies verify the effective-
ness of the proposed LLC framework.

2. Related Works
2.1. Quantization

Quantization uses low-bit-width representations for tensors
while maintaining their dense format, aiming to reduce
model storage and computational overhead. In typical se-
tups, mixed-precision quantization strategies are employed,
where different layers are assigned varying bit-widths based
on their sensitivity to quantization. This approach mini-
mizes performance loss after compression. For example,

HAQ (Wang et al., 2019) used reinforcement learning to
determine the quantization strategy for each layer, incorpo-
rating feedback from hardware accelerators to improve com-
putational efficiency. AutoQ (Lou et al., 2019) introduced
a layered deep reinforcement learning (DRL) method that
sequentially determines kernel bit-widths. HAWQ (Dong
et al., 2019) employed the top Hessian eigenvalues to mea-
sure each layer’s sensitivity to quantization, providing a rel-
ative sensitivity score, although bit-width allocation still re-
lies on manual selection. HAWQ-V2 (Dong et al., 2020) re-
placed this with the trace of the Hessian matrix. BRECQ (Li
et al., 2021) further introduced block-wise optimization,
which used different granularities of quantization to signif-
icantly reduce the model degradation induced by quanti-
zation. While these methods narrow the performance gap
between the compressed and original models in practice,
model degradation is still difficult to fully avoid, even un-
der 8-bit quantization. Moreover, although these methods
are effective empirically, they lack a principled explana-
tion of optimality. Furthermore, bit-width assignment for
each layer leads to an exponentially growing search space,
decreasing efficiency.

2.2. Decomposition

Traditional decomposition methods, such as Singular Value
Decomposition(SVD), CANDECOMP/PARAFAC(CP), and
Tucker decomposition, involve decomposing model weight
matrices and directly assigning the decomposed weights
back to the original model. However, this approach often
leads to significant increases in model loss, typically rising
5–10 times compared to the original model. To mitigate this
issue, existing methods incorporate fine-tuning after decom-
position, which entails retraining to reduce the loss. Yu et
al. (Yu et al., 2017) leveraged weight structure information
by combining low-rank weight matrices and feature map
reconstruction to reduce fully-connected layer parameters.
Xu et al. (Xu et al., 2019) integrated low-rank approxima-
tion with regularization into the training process, achieving
a notable reduction in performance degradation. Yang et
al. (Yang et al., 2020) introduced an SVD-based decomposi-
tion training method that first decomposes each layer into
full-rank forms and then retrains the decomposed weights.
Zhang et al. (Zhang et al., 2023) used multiple low-rank
matrices to approximate gated recurrent unit (GRU) weight
matrices and subsequently retrained the model. While these
methods can mitigate loss through fine-tuning, they still
often yield some level of model degradation and entail sig-
nificant time costs in the retraining phase.

The above methods aim to reduce the gap between the com-
pressed and original models. In contrast to the view that
compression inevitably leads to degradation, we aim to offer
a method where model loss consistently decreases after com-
pression, without requiring fine-tuning or other additional
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Figure 1. In the analysis of noise boundaries for weights and acti-
vations, for activations, when the noise level is below 1× 10−3,
only the first-order term needs to be considered, as higher-order
terms have negligible impact on optimization. When the noise is
below 8× 10−2, the second-order Hessian term should be incor-
porated along with the first-order gradient term in the optimization
objective. For weights, although theoretically a well-trained model
should yield zero weight gradients, in practice, the weight gradi-
ents are seldom exactly zero and therefore still need to be taken
into account.

steps—in other words, compression yields gains.

3. Lossless Theoretical Framework
Basic Analysis. The theoretical framework of LLC is pri-
marily based on the mathematical properties of extreme
points, oriented to the loss function, and aims to reduce the
loss value and improve the model performance. In general,
for an n-layer neural network model, the loss of the model
is optimized according to the following equation

min
W

f(W ) = ESampleℓ(W,Sample) =
1

m

∑
(xi,yi)∈D

ℓ(W,xi, yi)

ℓ(W,xi, yi) = L(modeln(xi,W ), yi),

modeln = h1(h2(h3(h4(· · · (hn+1, wn) · · · , w4), w3), w2), w1)
(1)

where f(·) represents the loss of the model on a dataset,
E stands for expectation, m is the size of the dataset, ℓ(·)
is the loss function for a sample, and (xi, yi) denotes a
sample in the dataset along with its corresponding label,
L(·) represents the loss function, such as the cross-entropy
function; hi, with i ∈ [1, ..., n], represents the (n− i+ 1)th
layer in the neural network; W = (wT

n , w
T
n−1, · · · , wT

1 )
T ,

where wi is the parameter in hi(·); and for the reason of
a unified format, hn+1 denotes the sample x. This form
ensures that LLC is independent of the specific network
architecture, making it applicable to different models.

Compression techniques such as quantization and decom-
position are mathematically considered to be the process of
adding noise to the original weights and activations of the
model. After compression, for a sample, the model loss ℓ
during the inference process is restated as

ℓ̄(w, xi, yi) = L(h1(h2(· · ·hn(hn+1 + ϵn, wn + δn)

+ϵn−1 · · · , w2 + δ2) + ϵ1, w1 + δ1), yi)
(2)

where δi, i ∈ 1, · · · , n, and ϵi, i ∈ [1, ..., n] are errors
caused by compression, such as data type conversion in
quantization and low-rank error in decomposition.

LLC directly associates the compression noise error and
the change of the loss function through total differentials.
According to total differentials, the following equation can
be obtained

ℓ̄(w, xi, yi)− ℓ(w, xi, yi) =

n∑
i=1

∂ℓ

∂hi+1
· ϵi +

∂ℓ

∂wi
· δi+

1

2
(ϵi, δi)

TH(ϵi, δi) +O(||(ϵi, δi)||n)

(3)

where H represents the Hessian matrix and O(||(ϵi, δi)||n)
represents the high-order term, · is inner product and ∗ is
the scalar product. For the loss on whole dataset, we can
gain

min
ϵ∈E

f̄(w)− f(w) =
1

m

∑
(xj ,yj)∈D

n∑
i=1

∂ℓ

∂hi+1
· ϵi +

∂ℓ

∂wi
· δi

+
1

2
(ϵi, δi)

TH(ϵi, δi) +O(||(ϵi, δi)||n)
(4)

where f̄(w) = 1
m

∑
ℓ̄(·). This equation directly links

compression and model performance (Loss). Thus, we can
optimize the above expression to make f̄(w)− f(w) < 0,
meaning that the loss after compression is smaller than the
original model’s loss.
Lemma 3.1. The total differential describes the increment
of a smooth, differentiable function under arbitrarily small
parameter changes.

Lemma 3.1 (Parr & Howard, 2018) sets limitations on the
use of the total differential: first, the function must be
smooth and differentiable, and second, parameter changes
must be sufficiently small. According to the chain rule,
multilayer neural networks are continuously differentiable
with respect to all parameters, meaning they are inherently
smooth and differentiable. Therefore, Eq. 4 generally satis-
fies Ck continuity. As the scale of compression governs the
parameter changes, we primarily focus on the magnitude of
noise.
Lemma 3.2. The total differential relies on a linear ap-
proximation assumption, valid only when the changes in the
function’s variables are sufficiently small.

When the variations ϵ, δ are small enough, the actual change
in the loss function can be accurately described by the total
differential df . The lemma above outlines the theoretical
range for noise. Thus, it is essential to identify this "suffi-
ciently small" threshold within the practical model.

Noise Neighborhood Mapping. Since each layer can ac-
commodate different noise sizes, we set the noise to δi, ϵi.
We then calculate the gap U(x) between theory and practice
in Eq. 4

Uδk (xi) : |ℓ(w ± δki , xi, yi)− (ℓ(w, xi, yi) +

n∑
i=1

∂ℓk
∂wi

· δki )+

1

2
(δi)

TH(δi) +O(||(δi)||n)|
(5)

3
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Uϵk (xi) : |ℓ̂(w, xi, yi)− (ℓ(w, xi, yi) +

n∑
i=1

∂ℓk
∂hi+1

· ϵki )+

1

2
(ϵi)

TH(ϵi) +O(||(ϵi)||n)|
(6)

the left side represents the loss due to actual noise distur-
bances, while the right side represents the theoretical loss in-
duced by noise. The k controls the compression level, such
as 4/8-bit or rank. When k represents rank, higher values
of k result in lower compression. Eq. 5 and Eq. 6 calculate
the noise bounds for weights and activations, respectively.
LLC measures the change in loss through perturbation of
the first- and second-order terms. As shown in Fig. 1, the
perturbation noise boundaries under LLC and their domi-
nant influencing orders are illustrated. First, for activations,
when the noise range is below 10−3, the first-order term is
the dominant factor, and the gradient can be treated as the
primary optimization target, with the influence of higher-
order terms negligible. This is because higher-order errors
decay exponentially compared to lower-order ones. When
the noise range is between [10−3, 8× 10−2], both the first-
and second-order terms significantly affect the loss, thus the
second-order Hessian information should be included in the
optimization target. For noise levels above 8 × 10−2, the
negative impact increases, and higher-order terms need to
be considered.

For weights, ideally, the first-order term in a trained-well
model should be zero. However, in practice, gradients are
rarely zero, so they must be included in the optimization.
When the noise is less than 8 × 10−3, the first-order term
should be the main optimization target. When the noise
range is between [8 × 10−3, 2 × 10−1], the second-order
term’s influence should be considered. When the noise
exceeds 2× 10−1, the influence of weight noise on the loss
becomes significant, and higher-order terms should not be
omitted. This range defines the noise boundaries and the
dominant terms in the compression process.

Multiple experiments show that weights have higher noise
tolerance than activations, meaning weights can be deeply
compressed, whereas activations cannot. This phenomenon
aligns with the consensus that weights are more easily com-
pressed. Since our focus is on stable and efficient lossless
compression, experimental results show that the first-order
terms dominate across all noise ranges, while the contribu-
tion of higher-order terms exponentially decays and has a
minimal effect on loss changes. In the quantization process,
we evaluated the impact of the second-order terms, and the
error loss was found to be below 0.00001. In decomposi-
tion, due to the lack of consideration for the full covariance
structure of the original data, errors introduced by the de-
composition can severely distort the Hessian matrix, leading
to incorrect estimates. Furthermore, the computation of

second-order terms is computationally expensive and time-
consuming. Therefore, in our analysis, given the dominant
effect of the first-order terms and the consideration of time
efficiency, LLC omits higher-order terms, as their impact
on performance is negligible. Thus, LLC mainly focuses on
gradient-driven lossless compression.

LLC Framework. The LLC framework is a highly efficient,
lossless compression method based on the first-order analy-
sis range. Within the first-order range, the Eq. 4 is updated

to min
ϵ∈E

f̄(w)−f(w) = 1
m

∑
(xj ,yj)∈D

n∑
i=1

∂ℓ
∂hi+1

· ϵi+ ∂ℓ
∂wi

·δi.

We need to find appropriate noise vectors ϵ and δ to ob-
tain a model with minimal loss. When the inner product is
negative, the compressed model’s loss is lower than the full-
precision model, meaning we find noise vectors opposite to
the model’s gradient direction. Thus, in theory, the goal of
loss-driven lossless compression is achieved.

To select the appropriate compression noise, we must ensure
that it opposes the model gradient direction. Taking activa-
tion compression as an example, we will first explain the
rationale behind this choice. Using the language of probabil-
ity theory, we describe ∂ℓ

∂hi+1
· ϵ for ϵ is a stochastic vector

naturally. Let ϵ = [e1, e2, .., ek] and ei is i.i.d. random
variable. We also set that ∂ℓ

∂hi+1
= [p1, p2, ..., pk] and pi

represent i.i.d. random variable. e and p are independence
to each other, k is the length of the vector. Alternatively,
pi can be treated as the random variable with different dis-
tributions or directly use E ∂ℓ

∂hi+1
vector in analyses. The

conclusions are the same or close with current analysis. We
have ∂ℓ

∂hi+1
· ϵ =

∑k
i=1 ei ∗ pi and Eq. 7

E
∂ℓ

∂hi+1
· ϵ = E

k∑
i=1

ei ∗ pi = kEeEp (7)

For a well-trained model, the Ep can be computed as Ep =
1
k ∗ ∂ℓ

∂hi+1
· 1⃗. Then to gain a negative E ∂ℓ

∂hi+1
· ϵ, the Ee

should be different signs with Ep. For specific compression
methods, such as quantization, we use different rounding
functions to ensure the sign of Ee. In decomposition, we
calculate the noise direction at different ranks. This type
of method is not the only way to obtain a negative inner
product, but it is easy to calculate and effective.

After having a compression method, we also need to analyze
the performance improvement brought by the compressed
model and the probability of obtaining a lower loss model.
Based on the above analysis and the Chebyshev’s inequality,
we can infer

P (
∂ℓ

∂hi+1
· ϵ ≥ 0) < P (| ∂ℓ

∂hi+1
· ϵ−EeEp| ≥ |EeEp|)

≤ V ar(ep)

|EeEp|2 =
V ar(e)V ar(p)

|EeEp|2 +
V ar(e)

|Ee|2 +
V ar(p)

|Ep|2

(8)

Hence, when Ep is larger, i.e., | ∂ℓ
∂hi+1

· 1⃗| is larger, V ar(p)

is smaller, making it more likely to obtain good results.
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4. LLC Quantization and Decomposition
Quantization. Loss-Driven lossless mixed-precision quan-
tization addresses two key challenges: first, how to achieve
stable lossless compression under mixed-precision quanti-
zation; and second, how to efficiently select the optimal
quantization bit-width for each layer, which is an NP-hard
problem. For the first challenge, LLC quantization is ap-
plied for first-order analysis, ensuring lossless quantization
within the first-order bounds. The second challenge is re-
formulated as a group knapsack problem, which is solved
efficiently using dynamic programming. In the LLC frame-
work, the loss function is treated as the "value P ", each
layer i is considered a "group" with one bit-width j choice
per group, and the model size is treated as the "knapsack
capacity W ". This transforms the original problem into a
low-computation group knapsack problem, where the goal
is to select the optimal bit-width for each layer to mini-
mize loss while keeping the quantized model size within the
specified capacity C.

min

n∑
i=1

P [i][j] s.t.

n∑
i=1

W [i][j] < C, j ∈ [1, k], j ∈ Z (9)

where n is the number of model layers. The problem scale
of the grouped knapsack is very small, usually less than
n∗k, and has a significant efficiency advantage. The overall
process of our proposed method is shown in Algorithm 1.
In the algorithm, ϵ and δ are the quantization noise errors of
activation and weight. Positive and negative are the choices
of different quantization directions. We set the quantization
level of Algorithm 1 to k = 4 categories, namely 2/4/8/16
bit. The total time complexity is O(n ∗ k ∗ feature).

Decomposition. The main challenge of post-training de-
composition is how to choose a low rank, so as to reduce
the model loss stably while compressing. Under the LLC
framework, we view the decomposition problem as a numer-
ical rank-deficiency issue and study how the rank of weight
matrices at different layers affects the final model loss. In
our decomposition approach, we opt for the simplest low-
rank decomposition scheme due to its minimal parameter
introduction and highest efficiency.

We treat the LLC error calculation boundary as a differential
neighborhood and combine it with the low-rank assumption
as an inequality constraint in the optimization objective, as
shown below

min
δk∈∆

f̄(w)− f(w) =
1

m

n∑
i=1

∑
(xj ,yj)∈D

∂ℓ

∂wi
· δki (10)

s.t. Uδk : {∥wij − lijrij∥F }i,j ≤ γ, ∀i, j (10a)

0 < k <
NM

N +M
(10b)

where since the calculated error gamma vector is the small-
est, we choose the F norm and approach it to 0. This
algorithm is flexible, the neighborhood calculation can
be replaced with other decomposition methods, such as

Algorithm 1 Lossless Mixed Precision Search Grouped
Knapsack Algorithm

1: Input: Neural network M with n layers, quantization
levels [q1, q2, ..., qk], maximum error errormax, cali-
bration dataset D

2: Output: Cost matrix P , weight matrix W of size n×k
3: Calibrate the network M with dataset D to collect data

distribution
4: for each qj in [q1, q2, ..., qk] do
5: for each Layeri in M do
6: Calculate W [i][j], the model size of Layeri at

qj
7: Compute ||ϵi|| and scaleinput for Layeri
8: Calculate slope = ||f(M)−finput(M ;scaleinput,i)||

scaleinput

9: Compute fluc as
||f(M)− fweight(M ; scaleweight, i)||

10: Determine noise for quantization:
11: if Positive then
12: noise = scaleinput × ⌈random⌉
13: else if Negative then
14: noise = scaleinput × ⌊random⌋
15: end if
16: if fluc < errormax then
17: Update P [i][j] with slope× ||ϵi||√

size(ei)

18: else
19: Calculate ||δi|| and scaleweight

20: Update P [i][j] with slope × ||ϵi||√
size(ϵi)

+

fluc
scaleweight

× ||δi||√
size(δi)

21: end if
22: end for
23: end for
24: return P , W

ŵ = usvT . However, using alternative decompositions may
increase parameter count and computation time.

Algorithm 2 is our proposed lossless decomposition method.
This algorithm incorporates a layer-wise early stopping strat-
egy: during the decomposition process of each layer, if a
candidate decomposition meets the loss threshold with a
sufficiently low loss, the search for additional candidate
matrices for that layer is immediately halted, enhancing effi-
ciency. The time complexity is O(n ∗ k ∗ feature), where
k << rmax represents the actual number of decompositions
per layer.

5. Experiment
5.1. Datasets and Details.

Datasets. The ImageNet-1K dataset (Krizhevsky et al.,
2017) consists of 1.28 million training and 50K valida-

5
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Algorithm 2 Lossless Decomposition Algorithm under Nu-
merical Rank-Deficiency
Input: Neural network M with n layers, loss threshold ϵ,

maximum rank rankmax .
Output: Loss-minimized model M̂ after factorization.

1: for Layera in M do
2: if Layera is already decomposed then
3: continue
4: end if
5: Initialize loss list A for recording candidate factor-

izations.
6: for c = 1, 2, ..., rankmax do ▷ Parallel

optimization
7: Initialize Lc, Rc ▷ Temporary matrices for

rank-c factorization
8: Compute the error δi of hi+1 under rank-c level

on the dataset
9: if {∥wij − lijrij∥F }i,j ≤ γ, ∀i, j then

10: if ∂ℓ
∂wi

· δi < 0 then
11: {Record Lc, Rc, and computed Loss} in

list A
12: if {∥wij − lijrij∥F }i,j → 0) then
13: break ▷ Early stopping
14: end if
15: end if
16: end if
17: Update Lc, Rc ▷ Update
18: end for
19: Select La, Ra from A that minimizes Loss
20: Wa = La ·Ra ▷ Final factorized matrix for layer
21: Return ˆLayera
22: end for
23: Return M̂

tion images. ImageNet-1K is usually used as the bench-
mark for model compression. SWAG dataset (Zellers et al.,
2018) consists of 113k multiple-choice questions about
grounded situations. The Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016) is a collection
of question-answer pairs derived from Wikipedia articles.
In SQuAD, the correct answers to questions can be any se-
quence of tokens in the given text. MNLI (Williams et al.,
2017) is a dataset for natural language reasoning tasks. Its
corpus is a collection of textual implication annotations of
sentences through crowdsourcing. The task is to predict
whether the premise sentence and the hypothesis sentence
are logically compatible (entailment, contradiction, neutral).

Details. The LLC scheme does not involve fine-tuning or
retraining. We utilize the VGG (Simonyan & Zisserman,
2014), MobileNet (Howard, 2017), ResNet (He et al., 2016)
series (including ResNet-18, 34, and 50) to determine the
error bounds depicted in Figure 1. In the implementation,

Table 1. Activation under different models introduces different
levels of compressed noise neighborhoods for first-order terms.

ϵ ResNet-18 ResNet-34 ResNet-50 ResNet-101 BERT
[1e-1] 0.00735 0.009541 0.023649 0.020001 0.011155
[8e-2] 0.005322 0.007455 0.013232 0.006897 0.008154
[1e-2] 0.004321 0.006581 0.008651 0.001548 0.005221
[1e-3] 0.002283 0.004321 0.006422 0.000801 0.004517
[1e-4] 0.002675 0.004362 0.006458 0.000823 0.004394

error bounds can be flexibly computed using Eq. 5 and Eq.
6 across various models on multiple datasets. Experiments
show that, although the error bounds vary, the majority
of models fall within this defined range. The parameters
errormax and γ are set to approximately 10−4 in the al-
gorithm. Quantization parameters are calculated using the
ACIQ method. The validation set of ImageNet is used as the
calibration set, where we check gradients without updating
the weights. To ensure fairness, all experiments are con-
ducted under identical optimization settings and executed
on two NVIDIA A800 GPUs. The models are implemented
based on pre-trained full-precision configurations in Py-
Torch. The code is implemented in PyTorch.

5.2. Ablation
Compressed Noise Bounds. The calculation of error
bounds depends on the sensitivity of different models to
noise, resulting in varying error bounds for each model.
When a model is sensitive to noise, the extent of lossless
compression is limited. The error neighborhood extends be-
yond the analytically manageable range of total differentials,
making stable lossless compression unachievable. Firstly,
as shown in Table 1, we present the first-order analysis error
bounds for different models on ImageNet. The data in the
table are the actual calculation results of different models in
Eq. 6. When the noise is large, Uϵk will also increase, indi-
cating that there is a gap between the theoretical calculation
results and the actual. According to Equation 3, when the
error is less than 1, the second-order term is the square of the
error, which further diminishes the influence of the second-
order term, establishing that the first-order analysis error is
dominant. Experimental results indicate that when noise is
low, the actual results for LLC align closely with theoretical
predictions. The data in the table suggest that the loss im-
pact from the second-order term is negligible. For instance,
if we want the impact of the loss function to be less than
6 ∗ 10−5, which is the minimum positive number for FP16
(ϵ <

√
0.00006), resulting in a small second-order impact,

the first-order derivative estimation performs effectively.

Weight Gradient and Compression Level. In theory, the
weight gradients of a well-trained model should be close to
zero. However, experimental results show that while weight
gradients are generally small, they are not precisely zero.
Thus, when compression noise is introduced, the impact
of weight changes on the loss function is minimal. Com-
pared to activations, weights can tolerate higher compres-
sion levels. Based on experiments across various models
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Table 2. Performance of different models on image datasets. LLC
quantize the model and loss is lower than the original model.

Model Top-1 Top-5 Loss Bit-width Drop-rate
MNIST

CNN 97.51 - 0.0792 Full Prec.
Ours 97.66 - 0.0786 Mix(8/4bit) ↓73%

CIFAR
VGG13 73.69 - 1.2726 Full Prec.

Ours 74.09 - 1.2503 Mix(8/4/2bit) ↓74%
MobileNet 66.21 - 1.5653 Full Prec.

Ours 66.59 - 1.5631 Mix(8/4/2bit) ↓69%
ResNet-14 86.68 - 0.3634 Full Prec.

Ours 87.23 - 0.3576 Mix(F/8bit) ↓56%
MobileNet_V2 62.44 - 1.6358 Full Prec.

Ours 62.88 - 1.6245 Mix(8/4/2bit) ↓71%
ImageNet

VGG16 71.59 91.38 1.1454 Full Prec.
Ours 71.43 90.30 1.1337 Mix(F/8/4bit) ↓77%

MobileNet_V2 71.89 90.29 1.1480 Full Prec.
Ours 71.89 90.30 1.1478 Mix(8/4/2bit) ↓71%

ResNet-18 69.77 89.07 1.2470 Full Prec.
Ours 69.72 89.09 1.2457 Mix(F/8/4bit) ↓73%

ResNet-34 73.29 91.43 1.0812 Full Prec.
Ours 72.88 91.24 1.0787 Mix(F/8/4bit) ↓62%

ResNet-50 75.06 92.42 1.0019 Full Prec.
Ours 75.09 92.44 0.9854 Mix(F/8/4bit) ↓66%

SQuAD
EM F1 Loss Bit-width Drop-rate

BERT 80.49 88.15 0.4461 Full Prec.
Ours 80.51 88.15 0.4461 Mix(F/8bit) ↓45%

and accounting for different sensitivities among layers, we
averaged the noise introduced. For example, in quantization,
2-bit quantization introduces noise at an order of 10−1, 4-
bit quantization introduces noise at approximately 5 ∗ 10−3,
and 8-bit quantization introduces noise around 5 ∗ 10−4.
Consequently, 4-bit and 8-bit are the primary compression
levels used in the LLC framework.

5.3. Performance and General Applicability

In the comparison experiments, we conduct LLC-based loss-
less quantization tests alongside standard benchmarks. The
lossless experiments are compared against uncompressed
models, while the comparison benchmarks are tested against
existing methods to highlight the versatility of LLC under
different architectures, datasets, and tasks. In addition, we
also verify LLC on different compression techniques.

Lossless in Quantization. As shown in Table 2, we quan-
tize activations and weights and validated on ImageNet,
CIFAR-100, SQuAD and MNIST datasets. The results indi-
cate that LLC achieves stable, lossless quantization across
various models while maintaining high compression rates.
On VGG series models, we even employed 2-bit quantiza-
tion, as some layers were less sensitive to noise, and the
INT2 noise boundary still fell within LLC’s differential
neighborhood on Cifar. In NLP tasks, such as question-
answering with BERT, LLC compression continued to show

Table 3. Comparison of LLC quantization with existing methods
while ensuring the same compression rate on ImageNet.

Method Top-1 Top-5 Loss Drop-rate
Orgin(R.18) 69.77 89.07 1.2470

↓73%
AdaRound 68.55 - -

HAWQ 69.56 88.97 1.2544
ACIQ 69.63 89.01 1.2492
Ours 69.75 89.09 1.2457

Orgin(Mo_v2) 71.89 90.29 1.1480

↓70%

HAWQ 72.90 90.97 1.1703
AdaRound 69.25 - -

HAQ 71.85 90.24 -
BRECQ 72.57 90.24 1.1956

Ours 71.89 90.30 1.1478

Table 4. Performance of different models after decomposition on
Imagenet. LLC steadily reduces the loss of the decomposed model.

Model Top-1 Top-5 Loss Drop-rate
Shallow Models

VGG13_BN 71.59 90.37 1.144342 ↓39%
Ours 71.58 90.37 1.139801

VGG19_BN 74.21 91.84 1.042591 ↓43%
Ours 74.22 91.89 1.021449

ResNet-18 69.76 89.08 1.247314 ↓62%
Ours 69.23 88.94 1.245241

ResNet-50 76.13 92.86 0.961835 ↓56%
Ours 76.10 92.90 0.950493

Deep Models
ResNext101 79.31 94.52 0.926616 ↓81%

Ours 78.16 94.02 0.869111
ResNet-152 78.31 94.04 0.876225 ↓10%

Ours 78.18 94.06 0.852449
DenseNet169 75.60 92.81 0.997792 ↓52%

Ours 75.45 92.80 0.971887

strong performance. Importantly, our focus is on stable,
lossless compression rather than striving for lower-bit com-
pression. Additionally, within the bounds of differential
analysis, when compression noise opposes the gradient di-
rection and has a larger magnitude (i.e., lower compression),
the model loss decreases more substantially.

Comparisons in Quantization. Table 3 compares LLC
with various quantization methods (Nagel et al., 2020; Dong
et al., 2019; Banner et al., 2018; Wang et al., 2019; Li et al.,
2021) at the same compression ratio. Existing methods gen-
erally lead to increased loss during quantization, whereas
LLC achieves stable, lossless quantization through differen-
tial analysis. Although HAWQ slightly improves accuracy
on MobileNet, it still incurs higher loss and fails to show
consistent accuracy gains on other models. In contrast, LLC
demonstrates stable performance across different models,
effectively reducing model loss while maintaining broad
applicability.

HAWQ series methods require multiple GPUs for quanti-
zation bit-width search, yet still take 30-50 minutes. In
contrast, thanks to our efficient grouped knapsack search
algorithm, our approach completes bit-width search in un-
der 10 minutes on a single GPU. Additionally, since LLC’s
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Table 5. Comparison of LLC and existing methods on NLP
datasets with the same compression ratio.

SQuAD Acc on Val EM F1 Loss
BERT_base 85.74 80.49 88.15 0.4461
Base_SVD 83.78 79.04 86.86 0.5168
Zhang et.al 84.33 80.48 87.94 0.6777

Ours 85.67 80.42 88.16 0.4460
MNLI Acc on Val Loss on Val Acc on Test Loss on Test

BERT_base 82.77 0.0289 83.91 0.0285
Base_SVD 81.69 0.0302 82.65 0.0299
Song et.al 81.46 0.0340 81.54 0.0310
Zhang et.al 80.54 0.0570 80.89 0.0742

Ours 82.78 0.0289 83.92 0.0285

lossless quantization process requires no fine-tuning or re-
training, the quantization speed is extremely fast, taking
less than 5 minutes in total. This demonstrates a significant
efficiency advantage.

Lossless in Decomposition. In lossless decomposition, net-
work depth significantly impacts model performance and
matrix rank. Based on this, we divide models into shallow
and deep categories for experiments, decomposing the lin-
ear layers on the ImageNet dataset. Table 4 presents the
results of applying LLC to shallow and deep models. The
results indicate that LLC enables lossless decomposition
across different model architectures. Unlike quantization,
decomposition alters the structure of the original parameter
matrix, making compression more challenging. Neverthe-
less, LLC achieves reduced model loss while maintaining
compression rates, demonstrating the effectiveness of its
first-order differential analysis. Additionally, LLC shows
lower loss than the original model and achieves comparable
or even higher accuracy in some cases. It is noteworthy that
LLC achieves a improvement in model loss reduction. This
improvement is calculated using ∂ℓ

∂wi
· δki . Since both the

gradient and compression noise values are less than 1, the
extent of loss reduction cannot theoretically exceed 1.

Comparisons in Decomposition. Table 5 and 6 shows
the performance of our proposed LLC method compared to
other existing approaches (Zhang et al., 2023; Wei, 2021)
on NLP datasets. Unlike current methods, LLC reliably
achieves lossless model decomposition while significantly
reducing model loss after compression. All methods in Ta-
ble 5 use the same compression rate. We compressed the
BERT model by 20% while maintaining leading accuracy.
LLC consistently achieved loss reduction on both the val-
idation and test sets, further demonstrating the generality
and stability of the LLC decomposition approach.

Table 6 presents the efficiency and performance of LLC dur-
ing the decomposition process. LLC achieves the shortest
decomposition time and the lowest data requirements under
the same hardware conditions. Existing low-rank decom-
position methods often require fine-tuning and retraining to
recover accuracy degradation, whereas our method reaches
near-original model performance without the need for fine-

Table 6. The performance and efficiency of LLC compared to the
existing methods.The efficiency of LLC decomposition is higher.

ImageNet Acc@5 Cost Time(min) Loss Appor Data(G)
Orgin(VGG16) 90.37 - 1.1443

SVD 90.36 314.985 1.1454 140
Tai et.al 90.31 - - 140

Kim et.al 89.4 - - 140
Zhang et.al 90.35 433.115 1.2330 140

Ours 90.38 8.287 1.1393 6.4
SWAG Acc Cost Time(min) Loss Appor Data(M)

Orgin(BERT) 79.11 - 0.0579
SVD_ft 78.44 134.649 0.0591 27

Song et.al_ft 78.55 151.006 0.0640 27
Zhang et.al_ft 79.00 233.146 0.0722 27

Ours 78.57 11.413 0.0566 7.6
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Figure 2. Performance curves and loss curves of LLC in quantiza-
tion and decomposition methods. LLC can achieve better perfor-
mance with lower loss and smaller models.

tuning or retraining, outperforming most existing methods.

Figure 2 illustrates the performance and loss curves for
LLC when compressing the ResNext-50 model. During
LLC quantization, LLC automatically selects the optimal
bit-width for lossless compression, while during decom-
position, it identifies the lowest rank suitable for lossless
compression. Compared to SVD methods, LLC more re-
liably identifies low-rank matrices that preserve accuracy,
achieving effective model compression.

Discussion and Limitations. The core principle of LLC is
to leverage total differentiation to establish an error neigh-
borhood, identifying compression vectors that oppose the
gradient direction to ensure the compressed model has lower
loss than the original. Thus, LLC aims for stable, loss-
less compression rather than maximizing compression ratio.
When the quantization bit-width and rank are extremely
low, the resulting error margin expands beyond the scope
of low-order total differential analysis, making theoretically
lossless compression unfeasible.

6. Conclusion
This paper introduces a general loss-driven lossless com-
pression framework designed to achieve stable and lossless
model compression. LLC defines the compression neigh-
borhood and higher-order analysis boundaries through total
differentiation, specifying the permissible error range for
lossless model compression. Ultimately, LLC has been ef-
fectively applied to both quantization and decomposition,
achieving efficient compression outcomes.
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