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ABSTRACT

Tensor approximation of convolutional and fully-connected weights is an effec-
tive way to reduce parameters and FLOP in neural networks. Due to memory and
power consumption limitations of mobile or embedded devices, the quantization
step is usually necessary when pre-trained models are deployed. A conventional
post-training quantization approach applied to networks with decomposed weights
yields a drop in accuracy. Therefore, our goal is to develop an algorithm that
finds tensor approximation directly with quantized factors and thus benefit from
both compression techniques while keeping the prediction quality of the model.
Namely, we propose to use Alternating Direction Method of Multipliers (ADMM)
for approximating a float tensor by a tensor of Canonical Polyadic format (CP),
whose factors are close to their quantized versions. This leads to lower approxima-
tion error after quantization and smaller quality drop in model predictions while
maintaining the same compression rate.

1 INTRODUCTION

Recent years more and more applications based on deep learning algorithms appear on the market,
and many of them are developed to work on mobile and edge devices. However, neural networks
which are in the core of such algorithms can not usually be used as it is, because they either do not
satisfy memory and energy constraints of devices or perform the inference phase not fast enough to
satisfy the user needs. Thus, many approaches to reduce and accelerate neural networks have been
proposed in the literature.

Conventionally, people distinguish approaches based on pruning, tensor/factorization methods,
quantization, knowledge distillation, and architecture search. Recent years some researchers try
to combine different techniques to gain benefits from several methods simultaneously. The avail-
ability of additional information, such as training data or loss/gradients values, yields additional
opportunities to improve performance of compressed models. From this point of view, we distin-
guish among techniques that do not use additional data, use data but do not perform training, and
those that run several training epochs to tune parameters of the compressed model.

In our paper we propose a method that jointly performs factorization and quantization of neural net-
works. Namely, we replace a linear (convolutional) layer represented with parameters in FLOAT32
format with a decomposed layer, which is constructed as a sequence of linear (convolutional) layers
with weights in lower precision format (e.g., INT8/INT6/INT4). By applying our method we benefit
from reduction in number of parameters and operations due to factorization and further model size
reduction and acceleration due to lower bit representation of weights.

Our main contributions are the following:

• We introduce an ADMM-based algorithm, which approximates a tensor with a
CP-factorization, where factors are represented in lower precision format (e.g.,
INT8/INT6/INT4).

• We propose a neural networks compression method that simultaneously performs factor-
ization and quantization of weight tensors based on introduced tensor approximation tech-
nique. As far as we are concerned, this is the first work that introduces weights approxima-
tion by CP-decomposition with lower precision factors.
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• We show that in terms of compression/accuracy trade-off our approach performs better that
conventional tensor approximation followed by quantization of factors.

2 RELATED WORK

There are many papers related to neural networks speed-up and compression. In this section we
review the most relevant to our proposed technique.

2.1 FACTORIZATION

Various tensor decompositions(Kolda & Bader, 2009; Cichocki et al., 2016) are used in Deep Neural
Networks to factorize weights(Panagakis et al., 2021; Kossaifi et al., 2019; Gusak et al., 2019) or
activations(Cui et al., 2020; Gusak et al., 2021). This approach allows to store less parameters
during training and inference and to fasten the computation by reducing the number of elementary
operations required. For linear layers, prior works have utilized Tensor-Train (TT) format (Novikov
et al., 2015). For convolutional layers, whose weights are 4d tensors, authors in Lebedev et al.
(2015) have used CP(Canonical Polyadic or CANDECOMP/PARAFAC). Authors in (Phan et al.,
2020) have also decomposed convolutional layers through CP-decomposition but proposed to flatten
spacial dimension and factorize 3d tensors instead of the original 4d. Other tensor approximations
techniques like Tucker(Kim et al., 2016) or block term decompositions have been exploited by
researchers as well. In our paper we focus on CP decomposition for convolutional layers with
kernel spacial dimensions greater than 1 and matrix factorization for other linear layers. We prefer
to study these type decompositions to others as they showed promising accuracy/speed-up trade-off
in existing research papers.

2.2 QUANTIZATION

Due to memory/power consumption limitations of real devices, the quantization step is necessary,
when pre-trained models are deployed. A comprehensive overview on Neural Networks quantization
was given in Nagel et al. (2021) and Gholami et al. (2022). Quantization might greatly impedes the
quality of a neural network prediction. There are different techniques to restore the quality of neural
networks after quantization, some of them might require additional data or training. Best accuracy
restoration can be obtained by usage of quantization-aware training: fine-tuning the quantized model
while restricting model weights to be on the quantization grid. However, it requires dataset and
resources to train the model.

2.3 ADMM

Alternating Direction Method of Multipliers or ADMM(Boyd et al., 2010) is an optimization al-
gorithm for convex problems. The advantages of ADMM algorithm are that it can be efficiently
parallelized(Shang et al., 2014; Liavas & Sidiropoulos, 2015) and the convergence is guaranteed in
convex case(Boyd et al., 2010). However, for non-convex problems the algorithm is not guaranteed
to converge or might not converge to a global minimum. Authors in Diamond et al. (2016) proposed
using ADMM in conjunction with local improvement methods to find sufficient heuristic solutions.

In Huang et al. (2016) authors have applied ADMM to a task of finding a CP-decomposition that
satisfied particular constraints like non-negativity, sparsity, etc.. They called this approach AO-
ADMM, since one of the objectives was an Alternating Optimization(in particular, Alternating Least
Squares) that is used to find CP factors.

Authors in Yin et al. (2021) have embedded ADMM into training neural network to impose low
TT-rank structure on its weights. After training, the weights are decomposed into a TT-format and
fine-tuned.

Leng et al. (2018) aimed to apply ADMM to training neural network with weights that lie on a grid
of scaled powers of two. The first objective function in their case is model prediction loss, the second
- projection of weight tensors on the grid of scaled powers of two. The authors solve a discrete non-
convex constraint problem by alternating between optimizing a scaling factor and projecting onto a
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fixed grid. The method converges, however, the projection even on the unscaled grid is a non-convex
problem and is not guaranteed to converge to global minimum.

3 METHODOLOGY

3.1 CONVOLUTIONAL LAYER FACTORIZATION

As was proposed in Phan et al. (2020), we represent convolution layer weights as a 3-way tensor
by flattening spacial dimension and decompose it into 3 consecutive convolutional layers. Let K ∈
RT×S×D×D be a kernel tensor, corresponding to convolutional layer with S input channels, T
output channels, and D × D spacial convolution. Let K ∈ RT×S×D2

denote the K tensor after
reshape operation. Using rank-R CP decomposition, one element of K can be represented as follows:

K(t, s, dd) ∼=
R∑

r=1

K
dd
(dd, r)Ks(s, r)Kt(t, r) (1)

Then, in order to reshape convolutional layer back to original shape, we reshape factor-matrix K
dd

to a tensor Kdd of shape D ×D ×R.

K(t, s, j, i) ∼=
R∑

r=1

Kdd(j, i, r)Ks(s, r)Kt(t, r) (2)

Therefore, having an input X to the convolutional layer, the output tensor Y is calculated as follows:

Y(t, h′, w′) =

h′+δ∑
h=h′−δ

w′+δ∑
w=w′−δ

S∑
s=1

K(t, s, h− h′ + δ, w − w′ + δ)X(s, h, w) (3)

Substituting kernel expression into the last formula, performing rearrangements and grouping sum-
mands, we obtain the following four consecutive expressions for the approximate evaluation of the
convolution

Z1(r, h, w) =

S∑
s=1

Ks(s, r)X(s, h, w),

Z2(r, h′, w′) =

h′+δ∑
h=h′−δ

w′+δ∑
w=w′−δ

Kdd(h− h′ + δ, w − w′ + δ, r)Z1(r, h, w),

Y(t, h′, w′) =

R∑
r=1

Kt(t, r)Z2(r, h′, w′),

where δ = D/2.

Therefore, we substitute original convolution with a sequence of smaller convolutions: point-wise
convolution that reduces the number of input channels from S to R, convolution with the same
spacial dimension as the original but with R number of input and output channels, and another
point-wise convolution that changes the number of channels from R to T . The last convolution in
sequence adds the original bias.

Downsampling skip-connection layers are used in ResNet architecture to bring the output of
the previous layer and the residual connection activation to the same spacial dimension and same
number of channels. They are implemented by a Convolutional layer with kernel size 1. Such
layer is equivalent to a Linear layer with weight matrix of shape S × T acting on the input with
flattened spacial dimension and, thus, can be decomposed into two matrix factors and replaced with
a sequence of two convolutional layers both with kernel size 1. Since downsampling layers have a
significant impact on model accuracy, in Experiments section (4) we demonstrate results with both
factorized and unfactorized downsampling layers.
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3.2 QUANTIZATION

Quantizing of neural network means transforming its weights and/or activations into low-bit fixed-
point representations (e.g. INT8). It saves memory occupied by model parameters, reduces the
amount of data transfer, size and energy consumption of the MAC operation (Nagel et al., 2021).

In our work we use signed symmetric min-max per-tensor quantization (Nagel et al., 2021) in which
tensors are mapped to their int versions in the following way:

xint = clip
(
⌊x⌉
scale

;−2b−1, 2b−1 − 1

)
, (4)

where ⌊x⌉ denotes rounding x to the nearest integer, scale is a stepsize of the quantization grid and b
is a number of bits in quantization. Real-valued approximation is obtained by multiplying by scale:
x ≈ scale ∗ xint. For per-tensor MinMax quantization (Nagel et al., 2021) scale is determined from
minimum and maximum values of tensor that is being quantized:

scale =
max{X} −min{X}

2b − 1
(5)

3.3 QUANTIZATION-AWARE FACTORIZATION

Finding a decomposition that produces less error after quantization can be formulated as a con-
strained tensor factorization problem. A method called AO-ADMM(a hybrid of the Alternating
Optimization and the Alternating Direction Method of Multipliers) has been shown(Huang et al.,
2016) to successfully solve problems that involve non-negativity, sparsity or simplex constraints. In
our work we extend the field of its application by introducing a constraint function that ensures low
quantization error of the derived factors and construct a corresponding algorithm.

Searching for a factorization of n×m matrix X that satisfies quantization constraint (i.e. obtained
factors are equal to their quantized versions) means minimizing the following function:

minimize
A,B

1

2
∥X −ABT ∥2F + IQ(A) + IQ(B) (6)

where A is a matrix of shape n× r, B - of shape r ×m (r ≤ n,m) and IQ is an indicator function
such that IQ(Y ) = 0 when Y ∈ Q and IQ(Y ) = +∞ if Y /∈ Q. In case of symmetric min-max per-
tensor quantization (Nagel et al., 2021) Q is a space of tensors whose elements belong to a discrete
set {(−2b−1) ∗ scale, ..., (2b−1 − 1) ∗ scale}.

We introduce an auxilary variable B̃ and formulate a constrained Alternating Least Squares (ALS)
problem. ALS procedure fixes one variable and minimizes the objective function over the other. For
fixed factor A the subproblem takes the following form:

minimize
B,B̃

1

2
∥X −AB̃∥2F + IQ(B)

subject to B = B̃T

(7)

ADMM method introduces a dual variable U for equality constraint B = B̃T and alternates between
optimizing each part of the objective function:

B̃ ←− argmin
B̃

(
1

2
∥X −AB̃∥2F +

ρ

2
∥B − B̃T + U∥2F

)
B ←− argmin

B

(
IQ(B) +

ρ

2
∥B − B̃T + U∥2F

)
U = U +B − B̃T

(8)

Solving the outlined problem for the auxiliary variable B̃ raises the following update:

(XT − B̃TAT )A+ ρ(B − B̃T + U) = 0

XTA+ ρ(B + U) = B̃T (ATA+ ρI)

B̃T = (XTA+ ρ(B + U))(ATA+ ρI)−1

B̃ = (ATA+ ρI)−1(XTA+ ρ(B + U))T

(9)
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For efficiency, 9 is solved through Cholesky decomposition of ATA+ ρI .

Solving 8 for factor B gives the minimum distance between B̃T − U and set Q:

B ← argmin
B∈Q
∥B − B̃T + U∥2F (10)

B = projQ(B̃
T − U) (11)

Algorithm 1 Solve 6 using ADMM
Input: B, U ,K, G
Output: B, U

1: ρ← trace(G)/F
2: L← Cholesky(G+ ρI)
3: repeat
4: B̃ ← L−TL−1(K + ρ(B + U))T

5: B0 ← B
6: B ← projQ(B̃

T − U)

7: U ← U +B − B̃T

8: r ← ∥B − B̃T ∥2F /∥B∥2F
9: s← ∥B −B0∥2F /∥U∥2F

10: until r < ϵ and s < ϵ

Overall, the ADMM procedure for factor B is defined in Algorithm 1. For X ≈ AB̃T matrix
factorization G is a Gram matrix of the factor that is fixed on current iteration of Alternating Least
Squares and K is an original matrix multiplied by a fixed factor (ATA and XTA in this case).
We adopt expressions for r, s and ρ from Huang et al. (2016). Similarly, the task is solved for
the remaining factor through minimizing ||X − ÃTBT ||2F over set Q. The procedure continues
alternating between factors until convergence.

For 3-way tensors, the matrix multiplication of two factors in 6 is replaced with the Canonical
Polyadic decomposition (CP):

minimize
A,B,C

1

2
∥X−

R∑
r=1

A:,r ⊗B:,r ⊗ C:,r∥2F + IQ(A) + IQ(B) + IQ(C) (12)

where X is a tensor of shape n ×m × k, A is a matrix of shape n × r, B - matrix of shape m × r,
C - matrix of shape k× r, ⊗ denotes the outer product. The constrained ALS subproblem for factor
B takes the following form:

minimize
B,B̃

1

2
∥X(2) − B̃T (C ⊙A)T ∥2F + IQ(B)

subject to B = B̃T

(13)

where X(1) is a matrix unfolding of tensor X by mode 1, ⊙ denotes Khatri-Rao product. The
ADMM procedure is the same as in Algorithm 1, with G = ATA ∗ CTC and K = X(2)(C ⊙ A)
(Smith et al., 2017). Optimization with respect to factors A and C is done in the same manner
(Smith et al., 2017). Alternating between factors proceeds until convergence.

The set Q is non-convex, thus, it is not guaranteed that solution converges to global or even local
minimum. Moreover, as shown in Figure 1, convergence depends on initialization1. Authors in
Diamond et al. (2016) proposed to use Multistart, Polishing and Neighbor search to improve so-
lution. However, in our case, search among neighbors(even sampling search) of current iteration
factor would require number of computations comparable to the number of parameters in a layer.
Polishing on Q reduces to simple recomputation of B̃k+1 with Bk+1 instead of Bk since the only
convex restriction(Diamond et al., 2016) that can be chosen in this case is the trivial one. Multistart,
however, proved to be a plausible technique to obtain a better solution (Figure 1).
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Figure 1: Convergence of ADMM algorithm for layer3.0.conv1 of ResNet18 model. Different
colours indicate different random initialization seeds. Initialization using svd decomposition is la-
beled explicitly.

4 EXPERIMENTS

We use pretrained ResNet18 from PyTorch model zoo and ImageNet dataset to evaluate our
method. For each convolutional layer of the network we compute two different procedures: (i)
CP-factorization with parafac followed up with quantization; (ii) ADMM algorithm that outputs al-
ready quantized factors. Obtained factors are then loaded into a sequence of two (for downsample
layers) or three convolutional layers that replace the original layer (3.1). The fully-connected layer in
the tail of the model is decomposed into a sequence of two linear layers with a matrix factorization.

Factorization ranks To choose a rank for each layer factorization, we set up a parameter reduction
rate (i.e. how many times the number of the obtained layer parameters is lower than the original)
and define the rank as N/(n+m)/rate for a fully-connected and downsample layers and N/(n+
m+ k)/rate for other convolutional layers. N is the number of parameters in the original layer, n,
m and k - dimensions of reshaped convolution weights (3.1), rate denotes the parameter reduction
rate. In our evaluations we experimented with which layers to leave unfactorized for better model
performance. Thus, the factorization reduction rate is not always precisely the parameter reduction
rate of the whole model (Table 2).

Calibration Since ResNet18 model has a lot of BatchNorm layers, training only BatchNorm pa-
rameters(the procedure called ”calibration”) can substantially boost the model prediction quality.
We perform a few iterations of training with all parameters frozen except for BatchNorm Layers. In
all our experiments we calibrate on 100 batches of size 512 from ImageNet training set with a single
fixed random seed for a data-sampler.

Parafac Parafac algorithm from Tensorly1 package is used to factorize convolutions and fully-
connected layer. The obtained factors are then quantized and placed as layers of a reduced model.
The results are used as a baseline for comparison to ADMM (Table 2).

First, we experimented with individual layers of ResNet18 model. Figure 2 shows neural network
accuracy after factorization, after per-tensor quantization of factors (admm outputs already quan-
tized factors), and calibration of the transformed model. With parafac factorization higher rank
leads to better model predictions. Moreover, the accuracy is higher than that of a model factorized
with admm, since parafac only had one optimization objective - Least Squares without quantiza-
tion constraints. However, when obtained factors are quantized, the accuracy begins to decrease as
the rank increases. Whereas with our method the accuracy is consistent with rank. We theorize
that quantizing parafac factors performs poorly for higher ranks because the number of elements in
tensor is bigger and, thus, the scale of quantization (Equation 5) is wider. After calibration admm

1https://github.com/tensorly
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Table 1: Accuracy of ResNet18 model with quantized (INT8, INT6, INT4) weights and FP32 ac-
tivations. Average ImageNet validation accuracy (%) over 3 runs of factorization algorithm with
different random initialization seeds.

Bit-width W8 W6 W4
Param Reduction Rate 2x 4x 8x 2x 4x 8x 2x 4x 8x

ADMM 52.67 4.01 0.11 42.90 2.18 0.12 2.58 0.16 0.10
ADMM Calibrated 65.48 39.07 6.01 63.94 36.32 5.51 52.55 15.27 1.36

Table 2: Accuracy of ResNet18 model with quantized (INT8, INT6, INT4) weights and FP32 ac-
tivations. Average ImageNet validation accuracy (%) over 3 runs of factorization algorithm with
different random initialization seeds. Factorization is not performed on downsample layers and first
convolutional layer, their weights are only quantized.

Bit-width W8 W6 W4
Param Reduction Rate 1.97x 3.83x 7.23x 1.97x 3.83x 7.23x 1.97x 3.83x 7.23x

ADMM 64.01 25.63 0.40 59.73 18.75 0.34 12.31 0.88 0.18
ADMM Calibrated 66.55 52.31 19.87 65.62 49.41 17.13 56.05 31.45 5.72
Parafac Quantized 0.10 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.10
Parafac Quantized
Calibrated 0.14 0.17 0.50 0.10 0.11 0.10 0.10 0.10 0.11

performes almost on the level of a baseline, whereas quantized parafac loses up to 15% of model
accuracy for some reduction rates.

Our second experiment was quantizing one of the four ResNet18 modules, that contains four con-
volutional layers and one downasample layer for skip-connection. Figure 3 shows the same trend
as Figure 2 with admm performing better then the quantized parafac approach. In case of modules,
the error induced by parafac factors quantization sums up and brings model accuracy to the level of
random guessing amoung 1000 of ImageNet classes. Calibration helps, but the resulting accuracy
of quantized parafac is below 50%.

Finally, we transform the whole ResNet18 model. Table 1 shows results for factorization-
quantization with ADMM before and after calibration. However, we discovered that first convo-
lution and downsample layers have a significant impact on model accuracy, while being relatively
light-weighted layers. Thus, we can achieve almost the same parameter compression rate while ob-
taining higher model accuracy both before and after calibration if we factorize all layers except for
first convolution and downsample layers. Nevertheless, weights of these layers are quantized so that
all weights of the model have the same bit-width. Table 2 shows results both for admm and parafac
in this experiment setting. It is notable, that quantized parafac approach doesn’t regain accuracy
even after calibration step.

To explore how reduction rate and low-precision format correspond to memory, we plot a model
size-accuracy dependency (Figure 4). It is clear from the graph, for example, that factorizing with
2x reduction rate and INT4 quantization constraint is more beneficial in terms of memory than INT8
format with 2x reduction rate factorization.

5 CONCLUSION

In the current paper we proposed a technique for compressing neural networks that performs joint
factorization and quantization. We introduced ADMM-based approximation algorithm to replace
weights with float32 elements with their factorized representations, whose factors contain elements
of lower precision (int8/int6/int4).
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Figure 2: Average ImageNet validation accuracy (%) over 3 runs of factorization algorithm with
different initialization random seeds. The factorization and 8bit quantization is performed on a
single layer of a network. (Admm algorithm outputs already quantized factors; Parafac factors are
quantized.) Then for each method the model is calibrated on 100 batches of size 512.

Our method allows to benefit from both factorization and quantization techniques, resulting in de-
crease of model size and acceleration in model inference. Our experiments have shown significant
advantage of our proposed method in comparison over a naive approach of consequent factorization
and quantization of weights.

Nevertheless, there is a lot of opportunities to improve our method by incorporating more sophisti-
cated tensor and quantization techniques.
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Figure 3: Average ImageNet validation accuracy (%) over 3 runs of factorization algorithm with dif-
ferent initialization random seeds. The factorization and 8bit quantization is performed on a module
of a network. (Admm algorithm outputs already quantized factors; Parafac factors are quantized.)
Then for each method the model is calibrated on 100 batches of size 512.

Figure 4: Average ImageNet validation accuracy (%) over 3 runs of factorization algorithm with
different initialization random seeds. X axis represents models weights size in megabytes. Red dot
indicates original ResNet model weights size and baseline accuracy.
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