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Abstract

Transformers are slow to train on videos due to extremely large numbers of input
tokens, even though many video tokens are repeated over time. Existing methods
to remove such uninformative tokens either have significant overhead, negating
any speedup, or require tuning for different datasets and examples. We present
Run-Length Tokenization (RLT), a simple approach to speed up video transformers
inspired by run-length encoding for data compression. RLT efficiently finds and
removes ‘runs’ of patches that are repeated over time prior to model inference,
then replaces them with a single patch and a positional encoding to represent
the resulting token’s new length. Our method is content-aware, requiring no
tuning for different datasets, and fast, incurring negligible overhead. RLT yields
a large speedup in training, reducing the wall-clock time to fine-tune a video
transformer by 30% while matching baseline model performance. RLT also works
without any training, increasing model throughput by 35% with only 0.1% drop
in accuracy. RLT speeds up training at 30 FPS by more than 100%, and on longer
video datasets, can reduce the token count by up to 80%. Our project page is at
https://rccchoudhury.github.io/projects/rlt/.

1 Introduction

Vision transformers [11] have enjoyed enormous success in modeling images and videos due to their
scaling properties and minimal inductive bias. Unfortunately, training these models on videos, which
generally have orders of magnitude more tokens than images, is significantly more expensive. One
contributing factor is that video transformers tokenize videos by splitting them into uniformly sized
spatiotemporal patches [2, 3], then embed them into a latent token space. As a result, the number of
tokens depends only on the video’s length and resolution. Researchers are thus forced to work with
very short videos (<10s), as well as significantly downsample them to low frames-per-second (FPS)
and low spatial resolution.

One promising solution to this problem is to reduce the number of input tokens. Compared to
language input, videos are significantly less dense in information; many works observe that videos
consist mostly of redundant or uninformative tokens [15, 39, 43]. However, existing methods that aim
to reduce input tokens to vision transformers have had limited adoption. Learned pruning methods
[34, 52] reduce model complexity measured by GFLOPS, but either incur significant overhead during
training, or require padding to handle changing numbers of tokens, negating any speed-up during
training. Random masking [1, 27], though fast, decreases accuracy and thus requires more training
time to match performance. Moreover, although methods like random masking and Token Merging
[5] do lead to wall-clock speedups, they are not content-aware: they only remove a fixed number of
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Figure 1: Toy Example. Given a set of input frames, with each square representing a patch, standard
tokenization always produces the same number of tokens. RLT compares temporally consecutive
patches and removes redundant ones, storing a single token and the run-length instead.

tokens per video, and will reduce the same number of tokens from a high-speed, high-action clip as
from a still image repeated over time.

We argue that content-awareness can help more effectively reduce the number of input tokens. As an
example, imagine an hour-long video of a lecture. Most of the frames are exactly the same over time,
displaying a single slide. Existing methods would produce the same number of tokens from this as
from an hour of motion-heavy GoPro footage, even though the two videos have significantly different
amounts of content. On the other hand, video compressors, such as H.264 and H.265 [46, 41], are
explicitly content-aware: rather than encoding frames independently, they encode pixel differences
between consecutive frames, drastically reducing video size when there is no change.

We propose Run-Length Tokenization (RLT), which combines a simpler version of this idea with
classical run-length encoding to tokenize videos for transformers. Our insight is that we can efficiently
identify ‘runs’ of input patches that are repeated over time, enabling us to reduce the number of tokens
based on the video content. When tokenizing the video, we compare consecutive patches in time and
group together patches with sufficiently small differences. We then remove the “repeated” patches,
and treat the remaining tokens as having variable length. Similar to how the string aaaabb can be
run-length encoded as a4b2, we can add length information to each of the tokens, which incurs no
additional overhead while retaining some of the information lost from removing the redundant tokens.
Despite its simplicity, RLT works remarkably well - with it, we can fine-tune a video transformer in
40% faster wall-clock time than baseline ViTs while matching performance.

Our contributions are as follows: we (1) propose RLT, an alternative method to tokenize videos
for vision transformers, (2) thoroughly compare its performance and compare RLT’s speed to prior
methods, finding significant improvements, (3) evaluate RLT’s performance on high-FPS and longer
videos, and (4) ablate design choices and qualitatively visualize RLT’s output. We believe RLT can
be a key step to significantly accelerate and further scale video understanding.

2 Related Work

Video Transformers. Vision Transformers [11] have been successfully adapted to video [2, 3,
13, 26, 38] but are generally trained and evaluated on short (<10s) video clips with relatively few
frames. To efficiently handle videos, many works incorporate video-specific inductive biases in their
architectures [29, 22, 56], such as memory [49, 35], compression cues [48], or modified attention
mechanisms [30, 53]. Other methods, especially in video generation, project the video to a smaller
latent space [20] and then split it into patches. We instead use the standard ViT formulation but
apply a different tokenization scheme, reducing the number of input tokens to improve speed while
maintaining performance.
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Figure 2: RLT Overview. RLT works by comparing temporally consecutive patches, and retaining
those with L1 difference above a threshold τ . The remaining tokens are augmented with a length
encoding to signify their ‘run-length’ and passed to the transformer.

Video Tokenization. Prior to vision transformers, video architectures were designed to take in a fixed
size input [14, 40, 55]. However, transformers can handle arbitrary numbers of input tokens [44], and
training on variable-sized inputs is standard in language modeling [23]; this has been used to train
vision transformers with variable resolutions [4, 10]. However, video transformers still generally
use the spatiotemporal patch tokenization scheme introduced in [2, 3] which is content-agnostic: the
number of tokens depends only on the video’s length and resolution. Some works attempt to reduce
input size by compressing the video to a latent space, then tokenizing [12, 33, 6], but the number
of tokens still depends strictly on the input video dimensions. On the other hand, standard video
compressors like HEVC [41] and AVC [46] are content-aware: they actively consider the differences
between consecutive frames for more efficient compression. Our work applies this idea to video
transformers by condensing static tokens and tracking their length.

Faster ViTs with Fewer Tokens. Several works have attempted to remove uninformative tokens
from vision transformers. One line of work identifies such tokens either through learned modules or
attention scores [34, 52, 28, 21], and prunes them at each layer. Although transformers can handle
variable sized inputs, these methods require padding as token counts change unpredictably with
each layer. Other works combine tokens instead of pruning them ([5, 37, 31, 51]). Most of these
works require training a model for pruning or merging, with the exception of Token Merging [5],
which demonstrates strong results at inference time. Inspired by the success of masked pre-training
([17, 45, 43, 15]), another line of work uses random masking to speed up training. Although masking
leads to worse performance after the same number of batches, the dramatic speedup enables training
for more epochs in less time [1, 10, 27, 50]. In contrast, our method matches the performance of
base models with the same amount of data with large speedups, and can be stacked with random
masking for even more speed benefits. Closely related to our method are EVEREST [18] and STA
[36] which both exploit temporal similarity to identify redundant tokens. However, like [5] both these
works require setting a constant number of tokens to remove from each video, while RLT can remove
varying numbers of tokens based on the video content.

3 Method

Consider a vision transformer that takes as input a video V ∈ RC×T×H×W . The standard tok-
enization scheme splits V into a set P of uniformly sized, non-overlapping patches, each with size
C×Dx×Dy ×Dt, with Pt called the tubelet size. These patches are projected to a lower dimension
dembed with an MLP E , resulting in NP tokens, with each corresponding to a distinct spatiotemporal
location. This results in the same number of tokens for any input video that has the same size.

In contrast, our goal is to to identify input patches that are extremely similar, then compress these
redundant patches, increasing throughput and training time. Our approach is illustrated in Figure 2.
In particular, we focus on temporally consecutive patches, those which have the same x, y location

3



and differ by one timestep. These “static patches” correspond to visual content that does not change
or move over time, and such tokens can be easily compressed.

3.1 Removing Static Patches

Token Similarity. Unlike prior works, we aim to reduce the number of total input tokens by
comparing patches rather than tokens. By operating on patches, we do not need to run the patch
embedding E or any layer of the model. As a result, we do not need to freeze parts of the model or
propagate gradients through the pruning operation, which would require padding and negate potential
speedups. This contrasts with prior works which progressively prune or combine tokens after each
layer in the transformer. Furthermore, by identifying redundant patches, we can pre-compute the
token distributions of various datasets and sizes of examples, allowing us to employ techniques like
example-packing [23]. Finally, operating on visual patches is more interpretable and is similar to the
heuristics used by video encoders [41, 46].

We next define a criterion for determining whether two consecutive patches are static. Consider
two temporally consecutive patches P1, P2 that correspond to spatial location (x, y) and temporal
locations t1, t2 with t2 = t1 + Dt. For tubelet sizes with value Pt > 1, each patch consists of
multiple frame crops, so that P1 = [P t1

xy, P
t1+1
xy , ...P t1+Dt−1

xy ]. Given a threshold τ , we consider P1

and P2 static if
∥P t2+Dt−1

xy − P t1
xy∥1 < τ (1)

with P t2+Dt−1
xy being the temporally last spatial crop of in P2 and P t1

xy the first spatial crop of P1.
This operation compares the “start” of the P1 to the “end” of P2, with the idea being that if the first
crop of token P1 matches the last crop of token P2, the patches in between likely match as well.
Notably, τ is a hyperparameter that needs to be tuned, but is dataset-agnostic; it simply encodes
how much change between patches is allowed before they are considered different. τ controls the
trade-off between speed and accuracy; while higher values reduce significantly more tokens, they
treat tokens that are perceptibly different as being the same, reducing accuracy. We use τ > 0 since
imperceptible artifacts can occur, and follow standard procedure by running ImageNet normalization
before comparing patches. We typically use τ = 0.1, and provide experiments and visualizations on
its effect in Section 4.3 and Appendix B.

Pruning Procedure. To identify all static tokens, we run the prior comparison on all pairs of tem-
porally consecutive patches in P obtaining their differences and only retaining those with difference
less than τ . We always include the entirety of the first frame since there is no previous patch to
compare it to. This results in a binary mask Mstatic, which we can then apply with

P′ = P ◦Mstatic (2)

with P ′ containing NP ′ tokens and P consisting of NP tokens. Note that NP ′ ≤ NP is always
true; with RLT, we can never have more tokens than in the standard tokenization procedure, so
the worst-case performance matches the standard vision transformer. RLT also incurs essentially
no overhead as the entire process can be implemented entirely with parallelizable PyTorch [32]
operations on the GPU, so training and inference are strictly faster.

The simplicity of RLT is a major advantage: in contrast to other methods, we can take advantage of
transformers’ ability to handle variable input sizes, and do not need to provide any additional padding.
Because we make no changes to the model itself, a video transformer using RLT can make use of
hardware optimizations like Flash Attention [8, 9] and memory efficient kernels [25].

Notably, the pruning procedure is content-aware: some videos with large amounts of static content
will result in significantly fewer input tokens than videos with significant amounts of camera or
subject motion. This is a desired outcome, and we discuss how to handle training with dynamic input
sizes in Section 3.3.

3.2 Run-length Positional Encoding

Although we have reduced the number of input patches, we know that each patch represents a ‘run’
of static patches, with length 1 corresponding to no static content, and length T corresponding to
input time dimension length. Without information about the length of the ‘run’ of static patches, the
transformer may not be able to compensate for information removed during the pruning procedure.
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To address this, Bolya et al. [5] introduced Proportional Attention, which weights each token by the
number of tokens in each group. On the other hand, we opt to let the model learn this information:
we treat each token as having variable length that we can communicate through a new positional
encoding. Specifically, we use a factorized encoding, described in Dehghani et al. [10], with one
encoding ϕxyt containing positional information and the other ϕL corresponding to the length. We
use a learnable length bias ϕL consisting of a single parameter of size (T, dembed). For a given ‘run’
of repeated patches, we always retain the initial patch Pxyt, and thus can compute the new length ℓi
as the distance from xyt to the nearest 1 entry in Mstatic along the t-axis. Concretely, for Pxyt

ℓi = min
t′

(t′ − t), where Mstatic(x, y, t
′) = 1, t′ > t (3)

This operation can also be efficiently implemented on the GPU, adding no overhead. Then, the full
positional encoding becomes

ϕ(Ti) = ϕxyt(Ti) + ϕL[ℓi] (4)
with the ϕL[ℓi] representing the indexing operator. We add the positional encoding ϕ(Ti) to each
token after running the patch embedding network E . Unlike the pruning procedure, since we use
a learnable length encoding ϕL, we propagate gradients to the positional embedding, enabling the
model to learn how to optimally encode variable length tokens during fine-tuning.

3.3 Handling Dynamic Input Sizes

Since RLT is content-aware, the number of tokens varies significantly per example. Although
transformers can natively handle any input size [44], prior methods like DynamicViT [34] or A-
ViT[52] produce different numbers of tokens at each layer; this requires padding or attention masking
to handle batched inference during training. In our case, only the input token count is variable, but
the number of tokens stays constant throughout the network, closer to the setting of NaViT [10].
Furthermore, since we know the input size before running the network, we can employ example
packing [23], an idea from language modeling where multiple inputs with variable sizes are packed
together, and tokens from individual examples attend only to each other.

At training time, the input to the transformer consists of a batch of tokenized videos, V1, V2, ...VB ,
each with size T1, T2, ...TB . Rather than pass an input (B,maxi Ti, dembed) to the network,
we concatenate the video tensors to produce V ′ = V1 ⊕ V2 ⊕ V3...VB , resulting in input size
(1,

∑B
i=1 Ti, dembed). We then construct a block-diagonal attention mask so that tokens only attend

to other tokens from the same video, which we add during the attention operation. Since every token
in V ′ is attending only to tokens from the same example, this does not reduce throughput and is
also compatible with existing hardware-efficient attention implementations. To compute the class
prediction in action recognition, we split each example out and compute its prediction as the mean
of each example token, as in [43]. We then project it to dimension NC , resulting in output of size
(B,NC) to which we can apply standard cross-entropy losses during training.

We note that typically example packing results in a constant number of input tokens, with a variable
number of input examples. A key difference between RLT and Dehghani et al. [10] is that data
augmentations such as RandAugment [7] can alter the visual content and thus number of tokens of
input videos, rendering greedy example packing strategies inapplicable during data loading. We opt
to use a constant number of examples per GPU, with high enough batch size sufficiently reducing
variance in input size.

4 Experimental Results

To analyze RLT’s impact on performance and speed, we conduct several experiments on standard
action recognition tasks. We measure the speedup on model training at several scales in Section 4.1
as well as RLT’s effect as a drop-in addition at inference time in Section 4.2. We perform ablations in
Section 4.3, then evaluate RLT’s effect on higher FPS videos and long video datasets in Section 4.4.
Finally, we provide qualitative visualizations in Section 4.5.

4.1 Training

In Table 1 we evaluate RLT’s impact on the performance of video transformers during training and its
resulting speedup. We fine-tune ViT-B and ViT-L from pre-trained VideoMAE [43, 45] checkpoints,

5



Kinetics-400 Something-Something-v2
Model Acc FT time(8 GPU) Speedup Acc FT time(8 GPU) Speedup

ViT-B 80.1 14.4h 1.0× 70.3 10.1h 1.0×
ToMer64 80.0 13.4h 1.1× 69.7 9.4h 1.1×
Random (0.7) 79.2 10.2h 1.4× 69.3 7.2h 1.4×
RLT (Ours) 80.1 10.2h 1.4× 70.2 7.2h 1.4×
ViT-L 84.8 21.6h 1.0x 74.3 15.2h 1.0×
ToMe 84.4 18.3h 1.2× 74.3 12.9h 1.2×
Random 83.1 15.4h 1.4× 74.3 10.8h 1.4×
RLT (Ours) 84.7 15.4h 1.4× 74.4 10.8h 1.4×

Table 1: Training results on action recognition. RLT significantly reduces fine-tuning time with
comparable performance to the baseline on both Kinetics-400 and Something-Something-v2.

comparing the speed and performance with standard tokenization, random masking, and RLT. We
evaluate random masking by removing k tokens, with k being the mean number of tokens pruned by
RLT on a given dataset. For the most fair speed comparison, all evaluated models are trained with
mixed-precision, memory-efficient attention and Flash Attention where possible using an 8xH100
node, as well as the optimized data loader from AVION [54] to avoid data loading bottlenecks. We
use the standard Vision Transformer rather than more complex architectures such as TimesFormer [3]
or MViT [26]; we found that it was significantly simpler and more efficient, matching observations
from Ryali et al. [38]. We limit our analysis to fine-tuning due to computational constraints. We
compare against the baseline vision transformer, as well as Token Merging and STA [36]. We also
include a random masking baseline where the masking fraction is set to the average number of tokens
removed by RLT, which is a stronger baseline than using a fixed standard fraction such as 0.5.

Compared to standard tokenization, RLT achieves a speed-up of up to 40%, even with heavily
optimized implementations. RLT achieves the best trade-off between performance and speed, with
better performance than random masking while achieving the same speedup. This demonstrates that
the choice of which tokens to remove makes a nontrivial difference, and that properly identifying
redundant tokens is important.

Compared to standard tokenization, RLT achieves a speed-up of up to 40%, even with heavily opti-
mized implementations. RLT achieves the best trade-off between performance and speed, with better
performance than random masking while achieving the same speedup. In particular, RLT is much
faster to train than Token Merging since it is compatible with hardware-optimized implementations
such as Flash-Attention [8, 9]. Unlike random masking, RLT matches the performance of the baseline
ViT after the same number of training batches, while random masking requires significantly more
epochs to catch up. RLT matches baseline performance across multiple scales, indicating that RLT
does not degrade performance while considerably accelerating training.

4.2 Inference-Time Results

Although RLT was designed to speed up training, it can be used as a drop-in replacement for standard
tokenization, similar to Token Merging[5]. In Table 2 we compare the top-1 accuracy, GFLOPs and
throughput with RLT to standard tokenization and Token Merging [5]. We also compare against
random masking for completeness, although it is intended only for training time [27]. For the most
fair comparison, we randomly mask out P tokens for each example, where P is the mean number of
tokens used by RLT; for Kinetics-400 and SSv2 this was P = 0.72. We do not compare to learned
pruning methods like A-ViT [52] since those only present results on images. We measure throughput
in clips-per-second, with each model running on a single clip at a time. In practice, video models are
evaluated on multiple temporal and spatial crops; following VideoMAE[43] we measure GFLOPs on
single clip and measure accuracy with 4 temporal and 3 spatial crops.

Across model sizes, RLT consistently delivers the best tradeoff between speed and accuracy. The
benefit becomes more pronounced as model size increases, as at larger parameter counts, the attention
operation begins to dominate the computation. Compared to baselines, RLT is significantly faster than
Token Merging and outperforms all other baselines on accuracy. Token Merging cannot make use of
Flash Attention and other optimizations due to its reliance on a weighted attention operation, slowing
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Kinetics-400 Something-Something-v2
Model Acc GFLOPS Clips/s Speedup Acc GFLOPS Clips/s Speedup

ViT-B 80.5 180 31.4 1.0× 70.8 180 31.4 1.0×
ToMer64 80.4 131 34.4 1.09× 69.1 131 34.4 1.09×
STAr64 80.4 131 34.4 1.09× 69.1 131 34.4 1.09×
Random 80.1 120 53.0 1.68× 69.3 120 53.0 1.68×
RLT (Ours) 80.6 120 52.6 1.67× 69.8 120 52.6 1.67×
ViT-L 84.8 598 11.5 1.0× 74.3 598 11.5 1.0×
STAr64 80.4 308 34.4 1.09× 69.1 308 34.4 1.09×
ToMer64 84.3 285 19.3 1.68× 73.6 285 19.3 1.68×
Random 84.1 405 18.8 1.63× 73.3 405 18.8 1.63×
RLT (Ours) 84.6 405 18.71 1.62× 74.1 405 18.71 1.62×
ViT-H 86.8 1192 6.65 1.0× - - - -
ToMer32 86.1 766 8.51 1.27× - - - -
STAr64 80.4 611 34.4 1.09× - - - -
Random 85.1 816 9.66 1.45× - - - -
RLT (Ours) 86.3 816 9.66 1.45× - - - -

Table 2: Inference-only results on action recognition. With batch size 1, RLT with τ = 0.1
consistently achieves the closest performance to the baseline, comparable or faster than Token
Merging or random masking. We omit ViT-H results on Something-Something-v2 due to lack of
existing pre-trained checkpoints.

Figure 3: Varying Difference Thresh-
old. When comparing the tradeoff between
speedup factor and accuracy, RLT is close
to baseline performance for low values of τ ,
with a sharp drop-off after τ = 0.1.

Model Acc FT Time

ViT-B 80.1 14.4h
RLT (no length) 80.1 10.2h
RLT 80.1 10.2h
RLT (no length, w/random) 79.3 8.1h
RLT (w/random) 79.8 8.1h

ViT-L 84.8 21.6h
RLT (no length) 84.6 15.4h
RLT 84.6 15.4h
RLT (no length, w/random) 84.2 11.3h
RLT (w/random) 83.3 11.3h

Table 3: Effect of length encoding. When fine-
tuning with RLT only, length encoding has mini-
mal effect, but helps significantly when combined
with random masking.

it down in comparison to RLT. Although worse than RLT, random masking performs surprisingly
well, likely due to the fact that most tokens in videos are redundant. Random masking can also be
combined with RLT for further speed benefits, with smaller resulting performance gaps than in [27].
However, achieving the optimal performance-throughput tradeoff with random masking requires
tuning for each dataset, while RLT is natively content-aware, achieving higher accuracy at similar
speeds without tuning. Similarly, Token Merging [5] requires changing the r parameter based on the
model size and is not content aware, limiting its speed-up in highly static videos.

4.3 Ablations

We ablate our design choices for RLT in Figure 3 and Table 3, measuring the impact of the difference
threshold and length encoding design choices at multiple model scales during training.
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Dataset FPS #Tokens RLT

K400 7.5 3.8 ×108 2.7× 108 (-29%)
K400 15 7.5 ×108 4.8× 108 (-36%)
K400 30 1.5 ×109 8.2× 108 (-45%)

SSv2 7.5 2.6 ×108 1.8× 108 (-31%)
SSv2 15 5.2 ×108 3.2× 108 (-38%)
SSv2 30 1.0 ×109 5.7× 108 (-48%)

EK-100 3.5 1.1 ×108 7.2 ×107 (-36%)
COIN 30 9.8× 109 2.8× 109 (-71%)
Breakfast 15 1.3× 109 2.7× 108 (-79%)

Table 4: Per-Dataset Token Reduction. RLT
reduces tokens significantly across datasets, with
higher reductions on higher FPS. On long-video
datasets like COIN and Breakfast with mostly
static content, RLT achieves almost 80% reduction,
demonstrating its promise for scaling training.

Model FPS Acc FT Time

ViT-L 7.5 84.8 21.6h
RLT 7.5 84.6 15.4h 1.41×
ViT-L 15 85.8 45.2h
RLT 15 85.8 27.4h 1.72×
ViT-L 30 86.3 110h
RLT 30 86.2 52.3h 2.1×
ViT-L 7.5 74.3 15.1h
RLT 7.5 74.4 10.8h 1.39×
ViT-L 15 75.4 41.4h
RLT 15 75.3 24.1h 1.7×
ViT-L 30 76.1 99.8h
RLT 30 76.1 47.5h 2.0×

Table 5: Training at higher FPS. RLT en-
ables training efficiently for higher FPS, al-
lowing us to go beyond the standard low FPS
paradigm. As FPS increases, RLT delivers
larger and larger speed-ups over the baseline
for training, with no decrease in accuracy.

Difference Threshold. The only tunable hyperparameter in RLT is the threshold τ , which controls
the sensitivity to change between temporally consecutive tokens. Lower values of τ indicate higher
sensitivty to change. We vary tau and compare the final action recognition accuracy vs. throughput
and wall-clock time for several configurations, both for training and inference. These results are
shown in Figure 3. We find that using τ = 0.1 offered the best tradeoff in speed and performance: it
matches the baseline performance while delivering a 37% speedup in training. Lower values of τ lead
to similar performance, but with less of a speedup, while high values deliver larger speedups at a cost
to performance. We attribute this to the existence of a ‘difference cut-off’: at some point, the tokens
are too different to be grouped together, and the resulting tokens do not obey the assumptions made
by RLT. We also note that τ is dataset-agnostic: it simply describes how much pixel difference is
needed to consider two 16x16 patches different, and the same value of τ leads to different reductions
across datasets based on the video content.

Length Encoding. We ablate the effect of our length encoding mechanism in Table 3. When
using RLT by itself, length encoding has minimal effect. However, when combining RLT with
random masking, we note a clear improvement. Due RLT’s structured and predictable pruning, length
encoding may be unnecessary: the transformer is able to mostly understand the length of various
tokens by their associated spatial positional encoding. However, once random masking is introduced,
the structure is removed, and the length encoding adds crucial information. Since including the length
encoding is strictly more information and has no negative effect, we default to including it.

4.4 Longer Videos and Higher FPS

Standard action recognition datasets consist of short clips with downsampled FPS; an input example
typically spans 2 seconds. One potential advantage of RLT is that by reducing the total number of
tokens, training becomes more tractable for both longer videos and higher FPS. We evaluate the
effect of training with RLT in Table 5 on action recognition datasets with higher FPS along with
their training time. As before, we fine-tune these models from pre-trained VideoMAE checkpoints.
Although these checkpoints were pre-trained at 7.5 FPS, we can still compare with the baseline
performance to observe differences in training time or quality. Similar to the result from Table 1,
we find that ViTs trained with RLT can match performance but train significantly faster, with the
speed-up increasing with the FPS.

We next analyze the number of total tokens in RLT compared to the baseline for several video datasets
in Table 4, including datasets with longer videos as well as higher FPS. Matching the result from
Table 5, at higher FPS, RLT consistently reduces the tokens by a higher proportion. This matches
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Figure 4: Sample Visualizations. Tokens that are compressed are visualized in gray. RLT retains
tokens that change between frames while removing redundant tokens. In the top example, RLT
captures the static background, and in the bottom example, due to camera motion and the motion of
the girl, almost no tokens are modified. Video visualizations are available at the project page.

our intuition, since tokens between two redundant tokens at lower FPS are likely to be similar and
also be removed. Furthermore, on longer video datasets, RLT can reduce the number of tokens by
significantly larger margins, with reductions of up to 80% on COIN and Breakfast. These datasets in
particular consist of videos filmed with fixed cameras and largely static backgrounds, demonstrating
RLT’s potential to drastically speed up transformers on these types of videos. Although in practice,
researchers do not typically train on raw videos with large number of frames due to the heavy cost
of video decoding on academic clusters, RLT presents a promising way to efficiently train on these
videos at scale.

4.5 Visualizations

We provide some qualitative visualizations of the tokens RLT removes in Figure 4. As desired, input
patches that are repeated over time are pruned by RLT. This intuitively matches with how humans
often pay less attention to static tokens over time. In the top example, most of the background is black,
with some motion taking place in the foreground. RLT is able to remove the constant black portions,
drastically reducing the number of tokens. Similarly in the second example, RLT ensures that the
tokens containing motion, with the boy’s hands and instrument, are not modified, but prunes the static
background. In the lower two examples, the person using the drill and the girl in the foreground move
around significantly, reducing the amount of tokens that can be compressed. In such cases where
there is significant subject or camera motion, RLT removes fewer tokens, resulting in similar token
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Figure 5: Effect of τ . With low values of τ , the clearest repeated patches are ablated, but imperceptible
variations can prevent some visibly similar tokens from being pruned. Above τ = 0.1, some tokens
with slight movement are pruned.

counts to standard tokenization. However, the sensitivity of RLT to small perturbations and motion
depends entirely on the τ hyperparameter. We provide further example visualizations and visualize
the effect of different values of τ in Appendix B and on our project page. In Figure 5 we demonstrate
the effect that the τ hyperparameter has on the input tokens. We see that as τ increases, more and
more patches are included, and after τ = 0.1, some patches that have change in them are pruned
incorrectly. On the other hand, τ = 0 includes many patches with essentially imperceptible change,
which is also undesired.

5 Conclusion

Summary We present Run-Length Tokenization (RLT), a simple alternative to standard video
tokenization for video transformers that replaces temporally redundant tokens with a single token of
variable length. RLT decreases transformer training and inference wall-clock time by up to 40%m
achieves a better speed-accuracy tradeoff than prior works, and is simple to implement and combine
with other methods. RLT demonstrates strong results during finetuning, especially at higher FPS, and
even works well when applied to models without any training.

Limitations Though RLT works well, it relies on a heuristic to compare temporally consecutive
tokens, which could include extra tokens that are unused by the transformer. While RLT speeds up
video transformers significantly, it cannot be used for dense vision tasks, such as point tracking or
video generation, that require the same number of output tokens as input tokens; RLT reduces tokens
before running the model and does not replace them. Furthermore, RLT does not handle camera
motion well: in a video with constant camera motion, few tokens will be removed, leading to no
speedup. Future work will be necessary to overcome these limitations, and we hope that RLT can
inspire more research on efficient video transformers.
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A Implementation Details

Our code, demos and associated blog post are all located on our project page. In this section, we
provide further details on implementation details of our experiments.

Architecture. All models used were based on the timm [47] Vision Transformer implementation,
and all fine-tuning experiments were done with pre-trained checkpoints from VideoMAE [43] and
VideoMAEv2 [45]. As mentioned in 3.3, we compute output predictions for action recognition by
taking the mean across the output tokens, rather than producing a separate class token.

Baselines. The baselines we compared to are Token Merging [5] and random masking [27]. For all
random masking experiments, we set the masking ratio ρ to match the mean RLT token reduction for
the given dataset. For example, on Kinetics-400 at 7.5 FPS, RLT with τ = 0.1 reduces the number of
tokens by 28%, so we randomly drop 28% of the tokens during training. We use the recommended
values of r from the Token Merging paper, except on ViT-H, where we use r = 32 due to the larger
depth of the model.
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Datasets. We train and evaluate RLT on Kinetics-400 (K400) [19] and Something-Something-v2
(SSv2) [16]. Both datasets are video classification datasets, with K400 having 400 classes and SSv2
having 174. K400 has 240k training examples and 40k test examples, while SSv2 has 170k training
examples and 30k test examples. We also included experiments measuring the token reduction on
the Breakfast [24] and COIN [42] datasets, both of which are smaller-scale datasets involving longer
videos that range from 2-5 minutes. In particular, these datasets contain lots of fixed-camera videos
with static backgrounds, leading to particularly high token reductions from RLT.

Training Recipe. We do not change hyperparameters when finetuning models with different
tokenization strategies, as we found the provided set to be optimal in our experiments. We follow
the recommended training recipes from VideoMAE for each model size, namely training for up to
100 epochs, with batch size 256, learning rate with warm-up to 1× 10−3 for 5 epochs, then cosine
annealing down to 1 × 10−6. We also use RandAugment, random erasing, CutMix, and standard
cropping/scaling and flipping. We do not use MixUp since it can severely affect the efficacy of
RLT, and we found that removing it and only using CutMix did not affect our experiments. We also
used random erasing with a single value rather than noise, enabling some of the erased tokens to be
removed by RLT.

All experiments were conducted with 8xH100 Nvidia GPUs with 128 CPU cores, with 16 workers
per GPU. The inference-time results were computed on a single GPU, along with the throughput and
FLOPS analysis. One important detail is that data loading is often a bottleneck. We mainly relied
on the fast video data loader from AVION [54], but NVIDIA DALI also works very well. However,
we only recomend to use DALI on A100 or newer chips, as earlier generations have an insufficient
number of dedicated decoder hardware. Each training run for the paper is specified in hours, but this
does not include a few months of work testing and debugging. We used a single node for all work on
this paper.

B More Visualizations

We include some additional visualizations here to qualitatively demonstrate which tokens RLT prunes,
as well as to analyze the qualitative effect of varying the difference threshold τ . In each figure, the
whitened patches represent those RLT identified as static, and that are not passed to the transformer.
In Figure 6, we visualize a diverse range of samples and note that RLT consistently prunes out patches
that repeat across consecutive frames. One case where RLT fails to remove many tokens is the 4th
example from the top, which is from a ski jumper using a GoPro; the constant camera motion means
that RLT is unable to identify almost any repeated patches.

We highly encourage readers to visit our project page for video visualizations that better convey the
effect of RLT.
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Figure 6: More examples. We visualize RLT’s effect on videos ranging from TV shows, movies,
action sequences on a GoPro, and sports. RLT consistently prunes out tokens that are repeated and
static, and includes all patches that change between frames, retaining as much information as possible
while cutting the number of tokens significantly.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims in the abstract and introduction are concretely linked to results in
our Results section, and aspirational goals are clearly denoted.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a limitations section at the end of the paper and discuss some of
the weaknesses of our method that we hope future work can address.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our paper includes no theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper includes detailed technical instructions, lists of hyperparameters and
model architectures and experimental results. We also include our code in this submission
and will open-source the code upon releasing the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the code in the submission which has all the necessary files to run
the experiments from the paper. We have no dataset contribution and thus do not include
any data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include data splits, hyperparameters and rational for choosing them in the
Implementation details section of the appendix. This is also provided with the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our experiments are deterministic, and none of the experiments require statis-
tical significance analysis; we ensure all experiments are random-seeded and reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include details about our compute usage in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We reviewed and adhere to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The impact of our work is simply to speed up existing methods, in this case
vision transformers. We do not see any clear way for this to be maliciously used or for this
to directly negatively impact society and thus did not discuss this in the main text.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: Our experiments are relatively small-scale and based on existing pre-trained
models, and thus requires no such safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All pre-trained models were cited for their authors, along with the codebases
used. We reference these in the main text, supplement and code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide details about our method in the main text and supplement, and the
code contains documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We include no human subject research in our work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We have no user studies and thus did not need an IRB.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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