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Rethinking Molecular Design: Integrating Latent Variable and Auto-Regressive
Models for Enhanced Goal Directed Generation
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Abstract
De novo molecule design has become a highly ac-
tive research area, advanced significantly through
the use of state-of-the-art generative models. De-
spite these advances, several fundamental ques-
tions remain unanswered as the field increasingly
focuses on more complex generative models and
sophisticated molecular representations as an an-
swer to the challenges of drug design. In this
paper, we return to the simplest representation
of molecules, and investigate overlooked limita-
tions of classical generative approaches, particu-
larly Variational Autoencoders (VAEs) and auto-
regressive models. We propose a hybrid model
in the form of a novel regularizer that leverages
the strengths of both to improve validity, condi-
tional generation, and style transfer of molecular
sequences. Additionally, we provide an in depth
discussion of overlooked assumptions of these
models’ behaviour.

1. Introduction
Molecule discovery tasks can be divided into two types.
Global optimization aims to find molecules with a specific
target property. Local optimization starts with an initial
molecule and searches for similar molecules that have the
desired property without deviating too much from the orig-
inal. Past advances in molecular design have primarily
leveraged either latent variable models or auto-regressive
models, each with distinct advantages and shortcomings.
While auto-regressive models excel in capturing conditional
distributions and generating valid molecules with desired
properties, they tend to overfit the training data, leading to a
limited number of novel molecules when trained on small
datasets (Mollaysa et al., 2020). Additionally, they lack
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the flexibility of latent variable models, which facilitate lo-
cal optimization and complex transformations such as style
transfer. On the other hand, latent variable models often
struggle to generate valid molecules unless more restrictive
and complex representations are applied, due to the chal-
lenges of generating valid molecules from a compressed
latent space (Gómez-Bombarelli et al., 2016; Kusner et al.,
2017; Dai et al., 2018; Jin et al., 2018).

In this work, instead of relying on increasingly complex
generative models and sophisticated representations as so-
lutions for every challenge, we return to the simple string
based representation SMILES. By combining the strength
of auto-regressive models and latent variable models, we
aim to resolve the performance gap in conditional genera-
tion and enable effective style transfer without sacrificing
the generative model’s validity. We introduce a theoretical
framework that combines the robust conditional distribu-
tion modeling capability of auto-regressive models with the
flexible representational power of latent variable models.
Our approach involves a dual-training mechanism where
the auto-regressive model informs the training of the latent
variable model, ensuring that the generative process respects
both the desired property of the generated samples as cap-
tured by the auto-regressive model and the local structural
coherence enforced by the latent variable.

The core of our methodology is a hybrid generative model
that employs a conditional VAEs architecture with an em-
bedded auto-regressive model to guide the decoder (gen-
erative distribution). The model is trained using a novel
objective function that incorporates a regularizer to ensure
the generation of valid molecules with desired properties.
The regularizer is implemented in two forms: a calibra-
tion regularizer, which is a Kullback-Leibler divergence
term between the marginalized generative distribution and
a target distribution defined by the auto-regressive model;
and a reward-based regularizer, which rewards the genera-
tive model for producing molecules with high probability
under the target distribution. Each regularizer guides the
generative model, enhancing its ability to produce valid
and conditionally appropriate molecules. Our contribution
includes:

• We present a comprehensive analysis of the limitations
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associated with latent generative models in molecular
design, particularly focusing on their ability to perform
conditional generation and style transfer.

• We propose a hybrid generative framework that effec-
tively combines the strengths of auto-regressive and
latent variable models, offering a balanced approach to
molecular design.

2. Methods
Suppose we are given a training set of pairs D =
{(xi,yi)}; i = 1, . . . , N , where xi corresponds to a
molecule and yi represents its corresponding molecular
properties. Goal directed molecule design can be formu-
lated as learning the conditional distribution p(x|y) which
allow us to set a value for y and generate a diverse set of
molecules exhibiting the specified properties. Additionally,
this task can be framed as local optimization, where we
start with a prototype molecule and modify it to achieve
the intended property without deviating (structurally) too
far from the original molecule. We refer to this as style
transfer over molecules, where we aim to modify x to x′

such that x′ exhibits property y′. This can be achieved with
a latent variable model p(x|y, z) that allows us to control
latent factors corresponding to certain molecular structures.
The style transfer task can then be defined as follows:

pθ(x
′|y′,x) =

∫
pθ(x

′|y′, z)qϕ(z|x)dz. (1)

Concretely, this involves fitting a joint generative model
of the form pθ(x,y, z) = pθ(x|y, z)p(y)p(z) and a vari-
ational distribution qϕ(z|x) to infer the latent variable z.
This model can be trained with the standard ELBO objec-
tive function:

LELBO(θ, ϕ) =

N∑
i=1

{
Eqϕ(zi|xi)[log pθ(xi|yi, zi)]

−DKL(qϕ(zi|xi)||p(zi))
}

(2)

which corresponds to learning a supervised (conditional)
VAE (Kingma et al., 2014).

Such models are often trained to generate molecules in
one shot (Kusner et al., 2017; Dai et al., 2018), meaning
the decoder assumes p(x|y, z) =

∏T
t=0 p(xt|y, z). This

was set to avoid using a strong decoder(auto-regressive net-
work trained with teacher forcing) that assumes p(x|y, z) =∏T

t=0 p(xt|y, z, x0,1...,t−1) as it leads to generative model
p(x|z,y) ignoring the latent variable z and defaulting to
p(x|y) (Gómez-Bombarelli et al., 2016). As a result, often
the generative model p(x|z,y) is trained in a non-auto re-
gressive fashion, which makes the task very challenging and
often under performs compared to auto-regressive models

that designed to learn to model p(x|y) which is trained to
predict the next token.

Additionally, the task of conditional generation becomes
challenging when using standard conditional VAEs to model
the generative distribution p(x|z,y). The standard objective
(Eq.2) focuses only on reconstruction loss and a KL term,
and has the potential to lead to scenarios where p(x|z,y)
may disregard y, relying solely on z for molecule recon-
struction. This often results in poor conditional genera-
tion performance, as the model effectively converges to
p(x|z) and loses control over the properties of the generated
molecules. Furthermore, the style transfer task also tends
to perform poorly due to the lack of supervision during the
training. The models are not exposed to examples where
a latent z from a prototype molecule combines with a new
property y to predict what a molecule with structure z and
property y would look like. This gap in training results in
the model’s inability to effectively handle style transfer.

Our observations indicate that an auto-regressive model,
which directly learns the conditional distribution p(x|y),
demonstrates superior performance in conditional genera-
tion. This enhancement is attributed to its effective learn-
ing of the conditional distribution p̃(x|y) ≈ p(x|y). By
using this learned distribution as an approximation to the
true conditional distribution, we can effectively guide our
VAE model. This guidance enables the VAE to generate
molecules that have a high probability under the learned
distribution p̃(x|y).

2.1. Proposed Regularizer

We propose the use of a pretrained auto-regressive model
p̃(x|y) as a surrogate for the true conditional distribution.
This surrogate distribution can then be employed to direct
the generative network, encouraging the generative model
generate molecules that have a high probability under the
surrogate model. To achieve this, we augment the super-
vised VAE objective with one of the regularizer terms out-
lined below.

Calibration Regularizer To achieve this constraint, we
introduce a Kullback-Leibler (KL) divergence term that
aligns the marginalized generative distribution pθ(x|yi) of
a conditional VAE with the surrogate distribution p̃(x|yi).

R1(θ) = min
θ

DKL(pθ(x|yi)||p̃(x|yi)) (3)

where the marginalized conditional distribution is given by:

pθ(x|yi) =

∫
pθ(x|yi, z)p(z) dz = Ez∼p(z)pθ(x|yi, z)

Given we do not have direct access to the marginal-
ized distribution pθ(x|yi), we estimate it using Monte
Carlo integration approach: p̂θ(x|yi) ≈ p̂θ(x|yi) =

2
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1
N

∑N
n=1 pθ(x|yi, zn) and then apply the Kullback-Leibler

(KL) divergence on the approximated distribution:

DKL(p̂θ(x|yi) ∥ p̃(x|yi)) =
∑
x

p̂θ(x|yi) log
p̂θ(x|yi)

p̃(x|yi)

Reward-based regularizer The supervision of the gener-
ative distribution using the surrogate distribution can also
be formulated using reward formulation:

R2(θ) = max
θ

N∑
i=1

Ez∼p(z)Ex∼pθ(x|yi,z) log p̃(x|yi)

= max
θ

N∑
i=1

M∑
j=1

Ex∼pθ(x|yi,zj) log p̃(x|yi) (4)

This regularizer can be seen as expected reward objec-
tive where log p̃(x|yi) can be seen as reward function and
pθ(x|yi, zj) is the policy of the action, where we want to
learn a policy model that maximize our reward. The regu-
larzier can be optimized using the score function gradient es-
timate, i.e., Ex∼pθ(x|yi,zj) [log p̃(x|yi)∇θ log pθ(x|yi, zj)]
However, the score function gradient estimator is known to
be noisy and unstable unless wen use large samples and con-
trol variate techniques. To avoid excessive computational
complexity, we propose an alternative approach to achieve
the same regularization. We reformulate our regularizer
as maxθ Ex∼pθ(x|yi,zj)p̃(x|yi), using p̃(x|yi) as a positive
reward function. This allows us to express the regularizer
as:

max
θ

Ex∼pθ(x|yi,zj)p̃(x|yi) = max
θ

∫
pθ(x|yi, zj)p̃(x|yi)dx

= max
θ

Ex∼p̃(x|yi)pθ(x|yi, zj) (5)

2.2. Incorporating the regularizer

We incorporate our regularzier in the standard conditional
VAE objective (Eq.2). To achieve this, we first train an
LSTM-based model to learn p̂(x|y). This pre-trained model
is then integrated into the training process of the condi-
tional VAE (cVAE). Our final training objective consists of
the standard ELBO (Eq. 2) and an additional regularizer,
L(θ, ϕ) = LELBO(θ, ϕ) + λR(θ). where R(θ) refers to
either the calibration regularizer or the reward-based regu-
larizer. Depending on which regularizer is used, it is either
minimized together with the negative ELBO or its negative
form is used when applying the reward-based regularizer.
It is important to note that during training of our model,
the regularizer updates only the parameters of the gener-
ative model (decoder). The parameters of the surrogate
distribution p̂(x|y) remain fixed.

3. Experiments
Dataset We conducted a preliminary investigation of the
regularizers’ behaviour on the QM9 dataset (Blum & Rey-
mond, 2009). We use the octanol-water partition coefficient
(LogP) as the conditioning property. Preprocessing details
and data analysis are available in Appendix C .
Models We implemented a baseline conditional VAE
along with three versions of the regularizer: the Calibra-
tion regularizer, which uses the KL divergence and is re-
ferred to as cVAE-KLD, and the two implementations of
the reward-based regularizer (referred to as cVAE-Pol1 and
cVAE-Pol2). For each of these we trained three versions
with different decoding strategies (details provided in Ap-
pendix D.1): a one-shot decoder, where the sampling of
the current token does not depend on the previous token
(denoted as cVAE); an auto-regressive decoder, which uses
an auto-regressive structure and explicitly samples next to-
kens at each generation step trained without teacher forcing
(EXP-cVAE); and an auto-regressive decoder that employs
teacher forcing during training to provide input tokens for
the sequence (EXP-cVAE-TF). We used an LSTM model as
the surrogate. Full details on model architecture and training
parameters are in Appendix D.

Evaluation Conditional generation performance was eval-
uated using validity, novelty, and uniqueness, while con-
ditional generation was assessed with the MAE between
target and generated properties. Style transfer performance
was measured by the proportion of valid style transferred
molecules (style transfer validity), the proportion of trans-
fers where the source molecule was reproduced (PCT Fail),
Tanimoto similarity of Morgan fingerprints of source and
target molecule (Tan) compared with two baselines as lower
bounds (Tan-B1 and Tan-B2), and the MAE between tar-
get and generated properties. Examples of successful style
transfer are provided in Appendix B. Details on metric com-
putation and sampling are provided in Appendix E.

3.1. Experimental results

Performance of One-Shot Decoder Models The results
of our experiments for each regularizer type (KLD, Pol1,
Pol2) are presented in Tables 1-6. Notably, as table 1 shows
the conditional performance of the versions of the models
trained with the one-shot version of the decoder perform
poorly, with the KLD, and Pol2 versions failing to generate
a large proportion of valid molecules. Upon further inspec-
tion, the large property error scores can be attributed to long
model outputs without termination tokens that were valid by
chance. This aligns with the findings of (Gómez-Bombarelli
et al., 2016). Despite this poor performance, the one-shot
versions of the models performed better at the style transfer
task (see Table 2), implying latent points and their neigh-
bourhoods belonging to the posterior distribution learned by
qϕ(z|x) are meaningful under the decoder.

3
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Model Recon Valid Uniq Novelty Prop MAE
LSTM - 0.97 1.0 0.3024 0.3211
cVAE 0.6605 0.018 0.7111 0.8444 20.3636
cVAE-KLD 0.8418 0.0036 1.0 0.8888 1.9087
cVAE-Pol1 0.894 0.1644 0.2993 1.0 38.5748
cVAE-Pol2 0.8585 0.0056 1.0 0.8571 0.8061
(Gómez-Bombarelli et al., 2016) 0.0361 0.1030 - 0.9000 -

Table 1. Conditional generation performance of models trained
with one-shot decoders

Model PCT Valid PCT Fail MAE Tan Tan-B1 Tan-B2
cVAE 0.854 0.4272 0.6021 0.3592 0.01646 0.06603
cVAE-KLD 0.8916 0.6218 0.6899 0.3632 0.03470 0.06531
cVAE-Pol1 0.894 0.6307 0.6792 0.3627 0.004535 0.06475
cVAE-Pol2 0.9056 0.6806 0.7388 0.3636 0.04366 0.06463

Table 2. Style transfer performance of cVAE with one-shot de-
coders

Auto-regressive decoder models To ensure alignment
with the surrogate target distribution used in the regular-
izer, which is trained auto-regressively, we also investigated
the behavior of the regularizer and the learned latent repre-
sentation when using auto-regressive decoder models. To
prevent latent representation degradation we abstained from
using teacher forcing. Instead, at each step, we sampled
from the model’s own prediction, forcing the decoder to
rely on the latent representation during generation. The
results are presented in Tables 3, 4, 5, and 6. Table 3 demon-
strates promising results for the calibration regularizer in
the EXP-cVAE-KLD model. It successfully improves both
the validity and uniqueness compared to the baseline model
(EXP-cVAE). The lower novelty of this model can be at-
tributed to the low novelty of the LSTM model ( Table 1).

Overall, the regularizer has clearly guided the genera-
tive/decoder distribution to better approximate the distri-
bution induced by the auto-regressive model. Comparing
the models’ style transfer performance (Table 4), it shows
both models are able to successfully perform style transfer
(low PCT Fail). The overall low similarity of style trans-
fer molecules can be attributed to the small molecules, as
a change in one or two atoms can significantly lower the
similarity score. Surprisingly, the calibration regularizer is
significantly less likely to fail to change the source molecule.

Model Recon Valid Uniq Novelty Prop MAE
EXP-cVAE 0.5535 0.0856 0.4813 0.8598 17.4750
EXP-cVAE-KLD 0.1782 0.9268 0.9918 0.3949 0.1655
EXP-cVAE-Pol1 0.1936 0.0456 0.6140 0.8772 15.6166
EXP-cVAE-Pol2 0.1908 0.9784 0.01145 1.0 34.7762

Table 3. Conditional generation performance of models trained
with auto-regressive decoders without teacher forcing

Model PCT Valid. PCT Fail MAE Tan Tan-B1 Tan-B2
EXP-cVAE 0.8376 0.3505 0.5547 0.3529 0.003819 0.06651
EXP-cVAE-KLD 0.7296 0.0948 0.5521 0.2862 0.06644 0.06401
EXP-cVAE-Pol1 0.7122 0.0901 0.5785 0.2822 0.008178 0.06596
EXP-cVAE-Pol2 0.7512 0.07641 0.5499 0.2916 0.002795 0.06517

Table 4. Style transfer performance of cVAE with auto-regressive
decoder trained without teacher forcing

In our final exploration, we extended the decoder to use full
teacher forcing (Tables 5, 6). As expected, the introduction
of teacher forcing significantly improves the decoder’s abil-
ity to generate valid molecules. However, its conditional
generative performance remains low. The introduction of
the calibration regularize greatly improves both the propor-
tion of valid molecules and the conditional performance
of the model. In terms of style transfer performance we
see a similar trend to the non teacher forcing case, with
the regularized version of the model having a much lower
proportion of failed style transfer attempts. To illustrate this
we have included a plot of the style transfer performance of
both models (EXP-cVAE-KLD-TF and EXP-cVAE-TF) in
Appendix B.

Model Recon Valid Uniq Novelty Prop MAE
EXP-cVAE-TF 0.8281 0.1228 0.3290 0.8111 2.9578
EXP-cVAE-TF-KLD 0.3843 0.5836 0.9965 0.6292 0.4582
EXP-cVAE-TF-Pol1 0.3495 0.034 0.5647 0.8941 9.1231
EXP-cVAE-TF-Pol2 0.4198 0.9832 0.005288 1.0 35.0501
Lim et. all.-TF 0.4381 0.5700 0.9863 0.9520 0.4510

Table 5. Conditional generation performance of models trained
with auto-regressive decoders with teacher forcing

Model PCT Valid PCT Fail MAE Tan Tan B1 Tan B2
EXP-cVAE-TF 0.9188 0.1441 0.1951 0.2732 0.006704 0.06701
EXP-cVAE-TF-KLD 0.91 0.0567 0.2002 0.2167 0.06823 0.06688
EXP-cVAE-TF-Pol1 0.9004 0.06821 0.9187 0.2175 0.01447 0.06635
EXP-cVAE-TF-Pol2 0.9056 0.07641 0.1966 0.2171 0.002696 0.06708
Lim et all-TF - 0.0210 0.3439 0.1424 0.08160 0.11450

Table 6. Style transfer performance of cVAE with auto-regressive
decoder trained with teacher forcing

Note that the results of the auto-regressive decoder (trained
with teacher forcing) contradict the common assumption
that a “strong decoder” could degrade the latent space.
Therefore, we conducted a more in-depth analysis, which
we provide in Appendix Section A.4. We conclude when
trained in an auto-regressive fashion with teacher forcing,
the latent representation is utilized until a certain length of
the sequence, beyond which the decoder does not rely on
the latent representation to generate the rest of the sequence.

4. Conclusions
Our framework addresses key limitations in classic genera-
tive methods, particularly enhancing conditional generation
and style transfer. Novel regularizers, such as the calibration
and reward-based regularizers, guide the generative process,
improving the fidelity and validity of generated molecules.
This work is intended to return to fundamental models based
on simple SMILES representations to investigate commonly
accepted hypotheses and provide in-depth analysis. Experi-
mental results demonstrated the potential of the proposed
regularizers, however, further investigation and testing are
still needed. Our work also provided insights about the
models and assumption used in molecular design, paving
the way for future research in more complex settings.
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A. Literature review
A.1. Auto regressive models on Smiles

Early auto-regressive approaches to molecule generation (Segler et al., 2017) (Bjerrum & Threlfall, 2017) showed that
auto-regressive model can successfully learn a distribution of SMILES strings and generate realistic candidates with high
accuracy. Furthermore, Segler et al. (2017) proposed conditional generation be achieved by filtering the generated molecules
for candidates with desirable properties or by fine tuning the model on a curated dataset of desirable molecules. Methods
have also been developed to directly control the conditioning and avoid the need for further fine-tuning. For example,
concatenating conditional information to inputs at the first or every generation step and encoding conditional information
into the model’s initial hidden state (Kotsias et al., 2020).

A parallel approach to guiding auto-regressive models for conditional generation uses policy optimization and a set
of objective functions to fine-tune auto retrogressive models. The seminal examples in this direction are REINVENT
(Olivecrona et al., 2017) and ReLeaSe (201, 2017). More recent has incorporated various other innovations from the field of
reinforcement learning such as (Thiede et al., 2020) and curriculum learning (Mokaya et al., 2022).

Following their success in the field of natural language processing, the majority of recent publications have adopted various
transformer based architectures. Wang et al. (2019) and Grechishnikova (2019) propose transformer based approaches to
structure based drug design. Finally, Wang et al. (2021) propose a multi-step pipeline where knowledge is distilled from a
transformer model to an RNN-based model which is then further fine-tuned using reinforcement learning.

Although these have been found to outperform older architectures such as RNN and LSTM, the difference is minimal in
simpler settings. For this reason and to maintain a similar architecture between the VAE decoder and auto-regressive model
and prior VAE based models, we have opted to employ a conditional LSTM model in this study.

A.2. latent variable models on Smiles

The seminal implementation of a latent variable model for SMILES (Gómez-Bombarelli et al., 2016) is based on a conditional
VAE that encodes SMILES as continuous latent vectors. It also uses a network to predict molecular properties from latent
vectors, allowing for efficient property optimization. Lim et al. (2018a) propose an approach based on a conditional VAE for
simultaneous control of multiple properties. Although successful, the smiles generated by the model are prone to syntactic
and semantic errors. Following works aimed to address this by operating on grammar rules for generating SMILES (Kusner
et al., 2017), and later on attribute grammars (Dai et al., 2018) (to address errors that are still possible when using a regular
CFG). These models were able to generate a much higher proportion of valid smiles at the cost of computational and
implementation complexity.

Others works such as Simonovsky & Komodakis (2018), Jin et al. (2018), You et al. (2018) and Liu et al. (2018) explored
models that operate on graph representations, largely improving the ability to generate valid molecules. A notable example
is JT-VAE (Jin et al., 2018) witch is able to guarantee validity of generated molecules by constructing molecules from a
library of fragments.

A.3. Auto regressive model with latent variable

There have been several attempts to introduce latent variables into RNNs such VRNN (Chung et al., 2015), and others
(Bayer & Osendorfer, 2014; Boulanger-Lewandowski et al., 2012; Fabius & van Amersfoort, 2014). However, the goal of
such latent variables is to introduce more stochasticity into the model as a standard RNN has limited power to model the
variability observed in highly-structured data. Integrating latent variables into the hidden state of the RNN aims to be able
to model more variability that is observed in the structured data. When used to model the conditional distribution p(x|y),
while such models help to learn a distribution with more diverse samples compared to standard RNN models, they do not
provide sufficient control over the style of the generated samples. Recently, an approach similar to VRNN, Bird & Williams
(2019) also introduces a latent variable z into RNNs, in addition to modelling more variability of sequences, this paper aims
to capture sequence-specific features through latent the variable z and use it to perform style transfer. The latent variable z
is inferred from input output sequence pairs and the parameters of the RNN are made dependent on z. This enables each
sequence to be modelled as a single dynamical system and capture instance-specific variation through z which later helps
us to perform style transfer over sequences. Due to auto-regressive models’ strong conditional generation performance, it
would be interesting to perform style transfer with auto-regressive models in an unsupervised fashion without the need of
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Condition Reconstruction
Standard (using z throughout) 0.4351
Using z up to 15th step 0.4312
Using z up to 10th step 0.3922
Using z up to 1st step 0.0025
Not using z (prior from step zero) 0.0000

Table 7. Reconstruction Rates with Different Conditions

constructing a paired dataset.

A.4. Strong decoder

It has been assumed or stated by (Gómez-Bombarelli et al., 2016) that when trained with teacher forcing, the auto-regressive
decoder tends to ignore the encoded z and recover the next token purely from the current token. However, this assumption
was overlooked by (Lim et al., 2018b), who proceeded with a similar type of model featuring a strong decoder (an RNN
trained with teacher forcing). Mathematically, it is reasonable to assume that if one can learn p(x|y) using an auto-regressive
model trained to predict the next token (Segler et al., 2017), then when training a generative model p(x|z,y) through a
VAE using the same model as a decoder, the generative model could easily converge to the auto-regressive model p(x|y)
by ignoring z. This is because it is easy to recover the next token p(xt|y, x1, . . . , xt−1, z) without relying on z at all.
This assumption has been generally accepted in subsequent research papers, which have trained p(x|z,y) without the
auto-regressive component when using latent variable models to avoid degenerated latent representations.

To investigate the impact of the latent variable z, we took the model from (Lim et al., 2018b) and tested if their model
leads to degraded latent representation. The first reliable measure would be reconstruction, but they did not report the
reconstruction performance of their model. Since the model training is very slow, we retrained their model on the QM9
dataset as a proof of concept.

The model performance is reported in Tables 5 and 6. It shows that we have a reconstruction rate of 0.43. Note that y also
carries some information about x. Therefore, to test further, we tried the reconstruction with latent z that is sampled from
the prior instead of sampled from the posterior. This resulted in a 0% reconstruction rate, which further validates that the
latent variable z does carry useful information about the encoded x.

After investigating whether the learned latent variable z carries meaningful information, we discovered that it does, but only
up to a certain step in the auto-regressive generation process. For instance, with the QM9 dataset, where the maximum
sequence length T is under 40, the decoder operates in an auto-regressive setting. During reconstruction, while decoding
progressively, we observed the following results presented in Table 7:

This indicates that z carries information that is utilized only until the 16th step, after which it becomes ineffective. This
behavior arises from the auto-regressive training with teacher forcing. Initially, when generating the next token conditioned
on y and the current token, there are many possible characters that could be the next token, each leading to a SMILES string
with the property y. Therefore, it is crucial for z to guide the decoding process to ensure the generation of the specific x
that was used to encode z. This makes z essential for generating the next token at the beginning of the sequence. However,
as the sequence progresses, the number of possible next tokens significantly reduces, making it clear what the next token
should be based on the current token. Consequently, z becomes less useful, leading the model to utilize z primarily for
encoding the initial structure of the original SMILES string, but not for the entire sequence.

A.5. Reward based Regularizer Behaviour

The two versions of the reward based regularizer (Pol1, Pol2) fail to produce a high proportion of valid or unique molecules
respectively. This result is also fixed regardless of the decoder structure. A possible cause of this is high variance during
training. In future work we intend to explore this by modifying the sampling strategy and greatly increasing the number of
samples. Another solution we will explore is sampling latent points for the regularizer by encoding smiles from the training
set, as the discrepancy between it’s conditional generation and style transfer property errors implies that the effect of the
regularizer is overpowering the effect of the reconstruction loss in regions of the search space outside the vicinity of the
aggregate posterior of the encoder.
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A.6. Analysis

1. Can we actually disentangle the latent variable z and property y First of all, unlike in the space of image where we
can actually annotate the variations in the data, molecular space is much more complicated. When we apply vanilla VAE to
encode molecules to a latent space, we can assume that z encodes the molecular structure, and previous works have shown
that points that are close in the latent space result in molecules that are structurally similar. However, once we assume a
molecule is generated from a property variable y and some other latent factor z where y and z are independent under the
prior, p(x,y, z) = p(x|y, z)p(z)p(y), then we can not really say what z encodes. Therefore, it is not really clear what
z encodes in this setting. Even though we still assume z encodes some structural features of the molecules, for instance,
some functional groups that are not dependent on the property y, it is hard to clarify what aspect of the molecule that
z learns. However, it is clear is that z does not fully specify the molecule’s structure since the property of the molecule
is fully determined by the structure of the molecule, and we assume the learned z is disentangled from y. We can not
modify the property of a molecule without modifying its structure. However, note that z is a learned factor, assuming that
it is independent of the y. Therefore, z should not learn some variations in the molecule data that is independent of the
conditioning properties. However, in reality, for a given molecule, can we always modify its property to the value we want
and stay close to the original molecules in terms of structure.
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B. Examples of Style Transfer Molecules
Figure 1 shows five examples of successful style transfer with the EXP-cVAE-TF-KLD model where the generated molecule
successfully matched the target property. Figures 2 and 3 show the style transfer performance of the teacher forcing cVAE
with and without the KLD based regularizer for a random sample of molecules from the test set. Finally, Figure 4 plots the
properties attained from style transfer with the KLD-TF model for a range of target values. The molecules selected for this
plot were the molecules with the highest, lowest and median property scores from the test set.
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C. Dataset and Property Statistics
C.1. Dataset and Property Processing

Training used properties and canonical smiles extracted from the QM9 dataset file (provided as atom coordinates and types)
using the RDKit chemo-informatics package (version 2023.09.6), ignoring molecules that resulted in invalid smiles. The
resulting smiles were encoded as integers and augmented with start and end tokens. The remainder of each sequence was
padded with 0 tokens.

C.2. Data Splits

We withheld 10000 random molecules from the dataset for the validation set (tracking progress and determining early
stopping) and 10000 for the test set (performance metric computation). The remaining 113885 molecules were used as the
training set. The same test-train-validation split was used to train all models, including the baseline model from (Lim et al.,
2018a) and the LSTM model for the regularizers.

C.3. Data Exploration

All LogP values were normalized according to the distribution in the training-set (mean=0.2982513513338983,
std=1.0008837558144368). The distribution of unnormalized LogP values for the entire dataset is presented in Fig-
ure 5, and the distribution of sequence lengths in Figure 6. The frequencies of various characters in the entire dataset can be
found in Table 8.

Symbol Frequency Normalized Frequency
C 767830 0.38
O 177823 0.09
( 118216 0.06
) 118216 0.06
# 37027 0.02
N 98355 0.05
= 94597 0.05
1 259368 0.13
[ 12523 0.01
H 10568 0.01
3 35634 0.02
+ 1847 0.00
] 12523 0.01
- 1974 0.00
2 131751 0.07
c 78726 0.04
n 41409 0.02
o 10174 0.01
F 3314 0.00
4 4952 0.00
5 174 0.00

Table 8. Symbol Frequencies in Entire QM9 Dataset
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D. Model Architecture and Training Parameters
D.1. Decoder Structure

Our experiments employ three different decoder structures: the one-shot decoder (cVAE), explicitly auto-regressive decoder
without teacher forcing (EXP-cVAE) and explicit auto-regressive decoder with teacher-forcing:

• One-Shot: The decoder does not accept the tokens generated from previous steps as input and propagates sequential
information solely through the hidden state. Sequences are sampled from the model’s predictions by independently
sampling tokens with probabilities proportionate to each decoder output for each step in the sequence.

• Explicit/Auto-Regressive: At each step in the sequence t, a token is sampled proportionately to the decoders outputs
and provided as an input at t+ 1.

• Explicit/AR with Teacher Forcing: At each step in the sequence t, a token is sampled proportionately to the decoder
outputs. The token provided as input to the decoder at t+ 1 is taken from the ground truth SMILES string. During
inference the model is sampled in the same manner as the non-teacher forcing version (EXP-cVAE).

The auto-regressive model that constitutes the one-shot decoder

D.2. LSTM Parameters

For the surrogate distribution p̃(x|y), we trained a conditional LSTM model with a maximum likelihood objective until
convergence. The performance of this pre-trained model is shown in Table 3. The LSTM model consisted of an initial
embedding layer (47x512) three stacked LSTM layers with input feature size 513 and output feature size 512 and a final
linear layer with input size 512 and output size 47. Conditional information was provided by prepending it to the input at
each time step. LSTM layers were trained with a dropout probability of 0.2. Initial and final layer weights were initialized
using a xavier uniform initialization strategy.

D.3. VAE Architecture and Training

All VAE models shared a common architecture and parameters (except for regularizer specific parameters and weights).
Training was conducted for up to 500 epochs, with early stopping after 50 epochs without validation loss improvement.
Regularizer weights were determined so that the initial regularizer loss component was approximately an order of magnitude
smaller than the initial KL loss component.

The VAE model encoder consisted of an initial embedding layer followed by three 1 dimensional convolutional layers of
dimensions 47x9x9, 9x9x9 and 9x10x11, each followed by a ReLu activation function. These were fed into two linear
layers, one for predicting the embedding mean (435x56) and one for the log variance (435x56). The state decoder consisted
an initial embedding layer (47x56) followed by three stacked GRU layers (113x501, 501x501, 501x501) each followed and
a final output layer (501x47). The models were trained with gradient clipping above set to magnitude 0.2 and a learning rate
scheduler set to reduce learning rate on plateaus to a minimum of 1e-6. An overview of the training parameters is presented
in Table 9.

D.4. Implementation and Hardware Details

The model was implemented using the PyTorch library (version 2.2.1) and trained on a NVIDIA GeForce RTX 4090
graphics card using CUDA version 12.3.
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Parameter Value
Optimizer Adam
Batch Size 128

Learning Rate 1e-4
Std. for Reparameterization 0.01

ELBO KLD loss component weight 1.0
KLD Regularizer Weight 0.1
Pol1 Regularizer Weight 0.01

Pol1 MC Sample Size for Latent Points 4
Pol1 MC Sample Size for Decoder 10

Pol 2 Regularizer Weight 0.1
Pol2 MC Sample Size 5

Table 9. Training parameters for VAE models

E. Metric Computation Details
E.1. Conditional Generation Metrics

Conditional generation metrics were computed by sampling 500 random latent points and equipping each with a random
property value from the test set. Each pair was decoded 5 separate times to give the final sample. Validity was computed as
the proportion of all generated smiles that were parsed to valid molecules by RdKit, uniqueness was the number of unique
valid smiles out of all valid smiles and novelty as proportion of valid smiles who’s canonical form is not present in the train
set. Reconstruction was computed by encoding a molecule 5 separate times and decoding from it’s encoding and property 5
separate times. The final reconstruction is the proportion of smiles that are identical to the original.

E.2. Style Transfer Metrics

Style transfer metrics were computed by encoding 2500 source SMILES from the test set and equipping each with one of
2500 target properties sampled independently from the test set. The style transfer validity of the resulting set of generated
SMILES was computed as the proportion of generated SMILES that did not equal the source SMILES. The similarity was
computed as the Tanimoto similarity of each pair of source and generated SMILES according to their Morgan fingerprint
calculated with radius 3.

E.3. Baselines for Tanimoto Similarity

The first Tanimoto baseline was computed as the average similarity between the set SMILES generated through style transfer
and a paired set of generations using random latent points instead of the encoded source molecules. The second Tanimoto
baseline compared the similarity of two set of style transferred smiles with a shared set of target properties.
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Figure 1. Examples of Successful Style Transfer
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Figure 2. Random Sample of Style Transfer Attempts with EXP-CVAE-TF Model
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Figure 3. Random Sample of Style Transfer Attempts with EXP-cVAE-KLD Model
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Figure 4. Style Transfer Properties for a Range of Targets of KLD-TF Model

Figure 5. Distribution of Property Values
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Figure 6. Distribution of Seqence Lengths
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