
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Dissecting Transformers: A ‘CLEAR’
Perspective towards Green AI

Anonymous authors
Paper under double-blind review

Abstract

The rapid adoption of Large Language Models (LLMs) has raised significant
environmental concerns. Unlike the one-time cost of training, LLM inference
occurs continuously at a global scale and now dominates the AI energy
footprint. Yet, most sustainability studies report only coarse, model-level
metrics due to the lack of fine-grained measurement methods, treating
energy efficiency more as an afterthought than as a primary objective.
We present the first fine-grained empirical analysis of inference energy
across core components of transformer architecture. We propose a novel
methodology, Component-Level Energy Assessment via Repetitions
(CLEAR)1, to overcome temporal mismatch between microsecond(µ s) scale
component execution and monitoring of millisecond(ms) scale energy sensors.
Using CLEAR, we evaluate 15 models spanning four distinct architecture
types and consistently keep component-wise energy variance below 9.5%
while capturing more than 90% of the model’s total energy as individual
components. Our empirical analysis reveals that Attention blocks consume
significantly more energy per floating-point operation (FLOP), indicating
that energy consumption is not proportionally aligned with FLOP counts.
This shows that FLOPs alone fail to capture the true energy cost at a
component level. Our findings establish detailed component-level energy
baselines and provide insight as an initial step to build energy-efficient
transformer models through component-level optimizations.

1 Introduction

Large language models (LLMs) such as GPT-4, Gemini, and Claude have transformed natural
language processing, but their environmental costs are increasingly concerning. ChatGPT-4o
alone has been estimated to produce about 150,000 tons of CO2e in 2025, equivalent to
annual emissions of 30,000 gasoline powered cars or the carbon sequestration of a forest
the size of city of Chicago (Jegham et al., 2025). Beyond emissions, inference consumes
significant energy and water, Google reports that a single Gemini query uses up to nine
seconds of television viewing, with an associated reliance on water-intensive cooling that
strains local supplies (News, 2025; Google, 2025). While training and finetuning of LLMs is
a computationally heavy and energy intensive process, it occurs infrequently. Inference, by
contrast, happens continuously at a massive scale, with GPT models serving hundreds of
millions of queries daily (TechTarget, 2025; AceCloud, 2024). This makes reduction of per
inference energy consumption a primary objective for model’s performance optimization.
Current research focuses on model-level energy consumption, enabling high-level comparisons
across systems (Alizadeh and Castor, 2024; Sánchez-Mompó et al., 2025a). However, such
aggregate reporting obscures which architectural components e.g., Attention, or MLP blocks,
drive energy usage. Fine-grained energy measurement is essential for identifying energy-
intensive components, enabling targeted optimizations, and informing algorithm–hardware
co-design for sustainable deployment.
In this paper, we introduce CLEAR, a methodology for fine-grained energy measurement
of individual component blocks of the Transformer architecture during inference. Unlike

1Code: https://anonymous.4open.science/r/CLEAR-D487
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prior work limited to model-level reporting, our approach decomposes transformers into
constituent components, such as Embedding layer, Normalization blocks, Attention, and
feed-forward MLP and measures the energy consumed by each component. This allows us
to establish detailed energy baselines and to compare consumption patterns across model
architectures, sizes, input lengths, and floating point precisions. A central challenge arises
from the temporal granularity mismatch between component execution and energy sensor
monitoring as the transformer sub-operations complete within microseconds, whereas energy
sensor provides power updates at tens of milliseconds. To address this, CLEAR employs
an amplification strategy that stabilizes energy measurements. This design circumvents
limitations of current monitoring infrastructure and achieves component-level isolation at a
granularity previously inaccessible. Our contributions can be summarized as follows
1) We propose a novel methodology, CLEAR (Component-Level Energy Assessment via
Repetitions), to overcome temporal mismatch between execution of microsecond (µs) scale
components and milisecond (ms) scale energy sensors. CLEAR is deviced to measure energy
consumption of fine-grained components of Transformer architecture.
2) Using CLEAR, we measure component-level energy consumption for 15 models across
different model architectures with high consistency and completeness and perform an empirical
analysis across different input token lengths and floating point precisions.
3) Through our empirical analysis, we observe that energy consumed per FLOP of compu-
tation varies significantly across components, with Attention Block exhibiting the highest
energy consumed per FLOP. Empirically, we observe that energy consumption of components
can be decomposed into fixed overheads and FLOP-dependent costs enabling future research
to estimate it.

2 Related Work

The environmental footprint of large language models (LLMs) has become a central research
concern, with many studies quantifying the carbon emissions of training and inference.
LLMCarbon Faiz et al. (2024) provides one of the most comprehensive analyses to date,
modeling the end-to-end footprint of both dense and mixture-of-experts architectures across
training, inference, experimentation, and storage. Vidur Özcan et al. (2025) complements
this with GPU-based simulations, showing how batch size, sequence length, and parallelism
affect inference efficiency. Fernandez et al. (2025) extend this to real workloads, distinguishing
prefill and autoregressive decoding, and demonstrate that optimizations such as speculative
decoding, kernel compilation, and continuous batching can cut energy use by up to 73%.
Broader benchmarks, like How Hungry is AI? Jegham et al. (2025), evaluate energy, water,
and CO2 footprints across hardware platforms, while the BLOOM case study Luccioni
et al. (2023) was among the first to track emissions during the training and inference of a
176B parameter model. Collectively, these efforts have established robust methodologies
for characterizing the environmental impact of LLMs, but they report energy only at the
aggregate model level due to the absence of methods for fine-grained measurement, leaving
open the question of how energy is distributed across internal components
To improve accessibility, lightweight tools have emerged. CodeCarbon estimates emissions
from GPU/CPU usage and regional carbon intensity, while Carbontracker Anthony et al.
(2020) adds real-time monitoring and early prediction of training costs. These tools improve
transparency but remain oriented toward system-level aggregation. Recent fine-grained
approaches like Rajput et al. (2024) introduced FECoM, profiling TensorFlow APIs via
static instrumentation to build one of the first framework-level energy datasets. Pinnock
et al. (2025) proposed EdgeProfiler, an analytical framework for lightweight LLMs on
devices such as Raspberry Pi and Jetson Nano, showing that quantization can reduce memory
use by 70% and energy by 50%, but that I/O bottlenecks often dominate latency. Hugging
Face’s AI Energy Score Luccioni and collaborators (2025) benchmarks over 160 models on
10 tasks, reporting GPU energy use across preprocessing, prefill, and decode stages.
Overall, existing studies neither provide a detailed empirical analysis of fine-grained,
component-level energy consumption nor offer a reliable way to measure energy at such a
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Figure 1: CLEAR pipeline: (1) Store forward-pass activations in Activation Store, (2)
Measure per-component energy consumption by isolating each component (e.g., Attention
Block) and replaying stored activations, (3) Validate for consistency and completeness, and
(4) perform Empirical energy analysis across models.

small scale. Moreover, prior work often relies on FLOPs as a proxy for energy use, despite
its limitations. This paper aims to close these gaps by introducing a method to accurately
measure and analyze energy consumption at the component level.

3 Methodology

3.1 Activation Store

Our methodology, CLEAR, targets component-level energy measurement by focusing on
key computational primitives common to most transformer-based models as illustrated
in Figure 1. These include an Attention block that captures token-level dependencies,
feed-forward MLP blocks for dense nonlinear transformations, normalization blocks (Norm.),
the Embedding Layer which maps discrete tokens into continuous vector spaces and the
final Language Modeling Head (LM Head) that project hidden representations back to
the vocabulary space for output generation. To enable component-wise energy profiling, we
insert forward hooks at key points of the computation graph,

A = {attn in, mlp in, lm head in, layer norm in . . .},
and capture the input activations at each hook. During a single forward pass, the hooks
record for every component c ∈ A the corresponding activation tensor ac for all tokens,

A = {ac | c ∈ A}, ac ∈ Rd.

The Activation Store A (shown in Figure 1) serves as a cache of activations that allows
isolated re-execution of individual components under identical input statistics, enabling
fine-grained measurement of energy consumption. Refer to Appendix A for details about
Transformer architecture.

3.2 Amplification Strategy

Accurately measuring the energy consumption of individual components in a transformer-
based LLM is challenging because their execution time is typically much shorter than the
sampling period of GPU power sensors. For example, NVIDIA’s NVML has a sensor read
rate of about 20 to 50 ms. As shown in Methodology of Figure 1, the temporal mismatch
leads to two distinct sources of error:
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In case (a), when the component completes execution within a few microseconds, entirely
between two sensor samples, the monitoring sensor cannot update its reading in time due to
which the observed energy is reported as zero:

E2 − E1 = 0, (1)

even though the true component energy is non-zero. This results in a complete underestima-
tion of the component’s energy usage.
In case (b), if we supposedly measure energy after every sensor reading to capture the
component’s energy consumption, the result remains highly noisy. This is because the
measurement inevitably includes a significant amount of idle energy drawn by CUDA,
making it hard to separate the true component energy. Consequently, when the execution
only partially overlaps with a sensor’s sampling window, the observed energy is recorded as

E2 − E1 = Ec ± ε, (2)

where Ec is the component’s actual energy consumed and ε represents noise.
To address above challenges, we adopt an amplification strategy, illustrated in Methodology (c)
of Figure 1. As individual transformer components often complete the execution within 10–
100 µs, their energy consumption remains highly noisy to NVML’s coarse sampling window.
The goal is to minimize noise (ε) in the component energy measurement to obtain reliable
readings. This noise may arise from the model’s idle energy consumption or from inherent
errors in the sensor measurements. To achieve this, we repeatedly execute each component
back-to-back on the cached activations, with no gap between runs. This scales the effective
runtime so that the total energy of the repeated executions outweighs the idle background
consumption, making the noise comparatively negligible.
Concretely, for each component c with cached input ac, we measure the energy before and
after N consecutive executions:

Etot
c = MeasureEnergy

(
N∑

i=1
c(ac)

)
. (3)

The per-execution energy can then be obtained by averaging the total measured energy:

Êc = Eend − Estart

N
= Etot

c

N
± ε

N
, (4)

where ε denotes the measurement noise. By increasing N , the duration of the aggregated
workload extends to hundreds of milliseconds which is long enough for NVML’s power
sensor to capture it while the noise term ε/N diminishes proportionally, yielding significantly
reliable per-component energy estimates. (Refer Algorithm 1)
We repeat the amplified measurement for T trials with a brief pause between runs to let
the sensor reset, taking Average and Standard Deviation across trials to further smooth out
sensor noise and make the per-component energy estimate more reliable.

Algorithm 1 CLEAR - Component Level Energy Assessment via Repetitions
Require: Model M, components C, input x, iterations N , trials T
1: Register forward hooks on {c ∈ C} to capture activations
2: A← ForwardPassAndCache(M, x)
3: for each c ∈ C do
4: for t = 1 to T do
5: E

tot, (t)
c ← MeasureEnergy

(∑N
i=1 c(ac)

)
6: Ê

(t)
c ← Etot,(t)

c

N ± ε
N

7: end for
8: Ēc ← 1

T

∑T
t=1 Ê

(t)
c

9: end for
10: return {Ēc | c ∈ C}
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3.3 Validation

Since no existing literature has yet provided the energy consumption of individual components
within Transformer architectures, the goal is to validate our methodology along two key
dimensions 1) Consistency across trials and 2) Completeness of captured energy

StdDev
(
Ēc
)
→ 0, Ēmodel ≈

∑
c∈C

Ēc.

1) A standard deviation close to 0 indicates that repeated component-level energy measure-
ments remain consistent across trials demonstrating high precision in energy measurements
by CLEAR. 2) The near-equality between the total measured model energy and sum of
its per-component energies demonstrates that CLEAR is able to capture the component’s
energy usage in a comprehensive manner.

4 Experimental Details

4.1 Hyperparameter & Hardware Specifications

As part of our experimental protocol, we evaluate two floating-point precisions, FP32 and
FP16, while varying the input sequence length across 8, 32, 64, 96, and 128 tokens to study
scaling effects. Each configuration is run for a fixed set of 20 trials (T = 20) to capture
variability and validate precision. Assume FP16 precision unless explicitly stated
We also investigate the effect of the repetition count N on reliability of the energy readings. As
seen in Fig. 2, increasing repetitions N yields more stable readings and reduces measurement
failures i.e. cases where the recorded energy for a trial is spuriously 0 mJ due to sensor
granularity. Based on this analysis, we set the repetition count N = 10, 000 for measurements
of small components with execution time of order 100 µ s and N = 1, 000 for energy
measurements of the full model, balancing measurement accuracy with computational cost.
Experiments were conducted on NVIDIA Ada-Lovelace GPUs (RTX 5000 Ada, RTX 6000
Ada), which incorporate third-generation RT cores and fourth-generation Tensor Cores
supporting mixed-precision operations such as FP8 with sparsity NVIDIA (2023); PNY
(2023). The RTX 5000 Ada provides 12,800 CUDA cores, 32 GB ECC GDDR6 memory,
and a board power of 250 W, while the RTX 6000 Ada offers 18,176 CUDA cores, 48 GB
ECC GDDR6 memory, and 300 W board power. However, the NVML interface, which
typically updates power readouts only every 20–50 ms (Yang et al., 2024b; Nik et al., 2025) ,
introduced limitations in resolving microsecond-scale component execution, thereby requring
the CLEAR methodology for fine-grained energy attribution. Code is available here.

4.2 Metrics

4.2.1 Energy Consumption

The energy consumed by each model component is measured in milliJoules(mJ), matching
the ≈0.8mJ precision of the NVML sensor used. For validating our methodology, we define
two complementary metrics, Energy Captured (Capture) and Percentage Capture
(%Capture). Energy Captured (in mJ) represents the total energy measured across all the
major components of a given layer block or the entire model. Due to the limited precision
of the instrumentation, we neglect negligible contributors (e.g., residual connections) and
introduce %Capture to indicate how well the methodology accounts for the model’s overall
energy usage. Specifically, %Capture is the ratio of the measured Energy Captured to the
measured model’s energy consumption, expressed as a percentage:

Capture =
N∑

i=1
Ēi, %Capture =

∑N
i=1 Ēi

Ēmodel
× 100
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Figure 2: Energy Measurement across multiple trials (T) for varying repetition count N.
As N increases, number of reliable readings and precision increases significantly. Y-axis
corresponds to Energy Consumption(mJ) and X-axis represents the Trial Index.

4.2.2 Computational Efficiency

We use FLOPs to quantify the computations executed by each component for a given input.
The PyTorch Profiler is employed to measure both the FLOPs and the GPU execution time
(in µs), providing insights into the computational efficiency of each component. To assess
the energy cost per unit of computation, we define two metrics given as

E/FLOP = Energy [mJ]
FLOPs× 10−9 , ∆E/∆FLOP = ∆Energy [mJ]

∆FLOPs× 10−9 .

The first metric, E/FLOP (expressed in mJ/GFLOP), characterizes the average energy
cost per unit of floating-point computation. Lower values indicate higher energy efficiency,
whereas elevated values often signal memory-bound or communication-dominated operations,
where energy usage is not directly proportional to computational intensity. The second
metric, ∆E/∆FLOP, captures the marginal energy consumed (in mJ) per additional GFLOP
and isolates the energy sensitivity of a component to increases in computational demand.

4.3 Models

To conduct a systematic study of energy consumption across architectural paradigms, we
consider four representative classes of Transformer-based models namely Encoder- only
models, Decoder-only models, Encoder-Decoder models and sparse-activated Mixture
of Experts (MOE) variants. Our model selection aims to balance breadth of architectural
diversity with controlled comparisons of scale and design choices.
We evaluate eight widely-used Encoder only models namely BERT-base, BERT-large (Devlin
et al., 2019), ALBERT-base, ALBERT-large (Lan et al., 2020), RoBERTa-base, RoBERTa-
large (Liu et al., 2019) and distilled variants DistilBERT and DistilBERT (Sanh et al.,
2020). Base and large versions allow us to isolate the effect of model size on energy usage
where distilled counterparts enable comparison with lightweight compression techniques. To
represent contemporary LLMs i.e. Decoder-only models, we experiment with instruction-
tuned variants of four key open-source families namely LLaMA 3.2-3B (AI@Meta, 2024),
Gemma 3-4B (Team, 2024), Qwen 2.5-3B (Yang et al., 2024a), and Phi-4-4B (Abdin
et al., 2024). We focus specifically on single-token generation to control for variability in
output sequence length and to minimize cache based auto-regressive generation. We also

6
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Component 8 Tokens 32 Tokens 64 Tokens 96 Tokens 128 Tokens
Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

GPT-OSS 20B

Attention Block 53.261 1.677 64.147 0.686 75.161 0.76 93.91 0.779 100.701 1.045
MLP 685.408 12.61 776.905 3.166 867.687 0.867 958.134 1.406 1046.2 1.187

Norm. (All) 9.324 0.729 10.787 0.825 12.702 1.056 13.443 1.422 14.639 1.108
Captured (Block) 747.993 - 851.839 - 955.55 - 1065.487 - 1161.541 -

Block 731.905 12.456 856.309 1.428 951.869 0.805 1057.01 0.881 1157.197 1.181
% Capture (Block) 102.198 - 99.478 - 100.387 - 100.802 - 100.375 -
Embedding Layer 0.568 0.215 0.627 0.282 1.061 0.41 1.077 0.434 0.766 0.357

LM Head 443.391 1.108 452.139 0.988 460.383 0.988 475.22 1.265 483.515 1.242
Final Layer Norm. 4.695 0.368 5.14 0.361 6.071 0.496 6.625 0.525 7.221 0.466
Captured (Model) 18014.38 - 21009.32 - 23312.36 - 25851.15 - 28264.24 -

Model 18447.5 63.784 21366.69 103.479 24126.47 12.67 26634.05 15.33 28801.98 2.867
% Capture (Model) 97.652 - 98.327 - 96.626 - 97.061 - 98.133 -

Table 1: Energy Consumption for GPT-OSS-20B model across different token length with
%Capture (96+%) for Block and Full Model and Std. Deviation across 20 trials.

evaluate CLEAR on two well-established sequence-to-sequence models, namely BART (Lewis
et al., 2019) and FLAN-T5 (Chung et al., 2022) and a sparse-activated MoE, GPT-OSS-
20B (OpenAI, 2025)

5 Results

RQ1) How consistent are energy measurements across repeated trials, and
how complete is the captured energy relative to the total consumption?

Completeness of Energy Captured: Despite the omission of very small and negligible
components, the overall %Capture at both the block and model level consistently remains
above 90% (Refer Table 1) This demonstrates that summing the measured energies of
individual components provides a reliable and near-complete estimate of the total energy
consumption dictated by the model’s architecture. However we consistently observe low
%Capture(Block) capture of ALBERT variants possible due to factorized embeddings causing
higher idle energy consumption.
Consistency Across trials : Using CLEAR, we find that the average standard deviation of the
measured component energies consistently remains below 9.5% of the respective mean values
for components that consume > 5mJ of energy. Furthermore, we observe a clear empirical
trend, as both component size and execution time increases, the relative standard deviation
decreases. For example, components with energy consumption in the range of 0–5 mJ exhibit
around 20+% standard deviation, whereas those consuming 1 J show deviations as low as 0.1
% (Refer Fig 6 in Appendix). Such behavior is expected as shorter execution times result
in fewer sensor readings, making the measurements more susceptible to idle-energy noise.
Typically, measurements in the 0–5 mJ range are close to the sensor’s own precision limit,
causing higher % Std. Deviation with respect to the Average.

RQ2) How does the model behaves from an energy perspective under varying
floating-point precisions?

Empirically we observe that changing the floating-point precision from FP16 to FP32 increases
the absolute energy consumption, the relative share of energy consumed by the Attention,
MLP, and LM-Head components remains virtually unchanged. Across all model architectures,
we observe that normalization layers consume more energy in FP16 precision than in FP32
precision, even under identical settings. This stems from the common practice of casting
tensors to 32 bit floating point precision for numerical stability during normalization and
then converting back, with the type conversions introducing measurable energy overhead.
For most encoder-only models, the Attention and Feed-Forward blocks consume roughly
comparable amounts of energy (Refer Fig 7 and 8 in Appendix). However as model size
grows, the dense FFN layers scale up in parameters, so the Attention block accounts for a
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Figure 3: E/FLOP ratio for model components in Qwen-2.5-3B (left) and Gemma-3-4B
(right). Attention consistently shows highest E/FLOP ratio across all input lengths.

smaller share of the total energy, mirroring the pattern seen in large decoder-only models
(around 3–4 B parameters). (Refer Tables 4, 8, 9, 10 in Appendix)

RQ3) How does the Energy/FLOPs ratio vary across input token length?

As shown in figure 3, we find that across all input token lengths the Attention mechanism
consistently exhibits a higher energy-to-FLOPs ratio than an individual layer or the full model
as a whole. In contrast, the MLP and LM-head layers consume noticeably less energy per
FLOP, which means they perform more computations for every joule of energy spent. This
highlights that, from an energy-efficiency perspective, Attention is the most computationally
expensive sub-component. This inefficiency stems from the nature of attention computations.
Unlike the dense matrix multiplications in the MLP and LM head, which are regular, highly
parallelizable operations that GPUs are specifically optimized to accelerate whereas attention
involves query–key dot products, scaling, softmax operations, and complex memory access
patterns. These steps introduce memory traffic and synchronization overheads, causing the
hardware to spend proportionally more energy per unit of floating-point computation.
As shown in figure 4, the energy to FLOPs ratio for every individual component steadily
decreases as the input sequence length grows i.e. when we feed the model longer input
sequences, each FLOP consumes lesser energy, not only for the complete model, but also
for the Attention, MLP, and LM-head blocks. This trend reflects that the fixed costs of
computation and memory movement are amortized over more tokens. The per-token energy
overheads are diluted and the compute resources are utilized more effectively.

RQ4) Is number of floating-point operations (FLOPs) a reliable indicator of
a component’s energy consumption?

As shown in Fig. 4, the energy-to-FLOPs ratio (E/FLOPs) decreases consistently as the input
sequence length grows. As discussed in RQ3, the trend points to the presence of a fixed energy
overhead, that is a baseline energy cost E0 likely independent of the number of floating-point
operations. Such a cost likely stems from non-scaling aspects of the computation, including
memory movements, cache initialization, and kernel-launch overheads, all of which incur an
essentially constant energy expenditure regardless of token count.
To quantify the marginal energy required per unit of additional computation, we examined
the incremental energy cost per FLOP, ∆E/∆FLOPs. Unlike the absolute ratio E/FLOPs,
the marginal quantity remains approximately constant as the input sequence length increases
across all model components. This stability provides strong empirical evidence that FLOPs
are indeed the main driver of the variable portion of energy consumption. In other words,
while total energy can be decomposed as

E(L) ≈ E0 + k · FLOPs(L) (5)

with L denoting input length and k a constant of proportionality, only the second term grows
nearly linearly with the computational workload (FLOPs).

8
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Figure 4: Qwen-2.5-3B: E/FLOP(Row-1) and ∆E/∆FLOP(Row-2). Gemma-3-4B:
E/FLOP(Row-3) and ∆E/∆FLOP(Row-4). For both models, the E/FLOP ratio decreases
with input length, while marginal energy per FLOP remains nearly constant.

Notably, the marginal coefficient k is, however, component-dependent. It is noticeably higher
for the Attention mechanism than for other subsystems. This can be attributed to the
fact that Attention performs repeated key–value cache updates and experiences substantial
memory–compute synchronization overheads, both of which increase the effective energy cost
per FLOP.
Overall, the empirical observations indicate that energy consumption of different components
can be well approximated with two term model comprising of a fixed overhead and a FLOP
proportional component. This indicates that, the idea of measuring total energy consumed
by a model and then distributing it proportionally across components solely based on FLOPs
is overly simplistic. Both the existence of the fixed overhead and the component-specific
marginal cost k must be accounted for to estimate energy usage of each component accurately.

6 Discussion

Most sustainability studies have primarily focused on model-level or system-level energy
consumption treating LLMs as monolithic entities and only a little attention is paid to the
heterogeneity of it’s internal components from a sustainability perspective. CLEAR’s contri-
bution to measure energy consumtion at component-level granulity has direct implications

9
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for research community as it provides a systematic methodology to reliably measure internal
energy dynamics and enable targeted energy optimizations at the design level of model
architecture.
As discussed in RQ3 and RQ4, we observe that each component consumes energy dispro-
portionately, posing a threat to use FLOPs and related metrics as convenient proxies energy
consumption (Getzner et al., 2023; Özcan et al., 2025) as component-level disparities are
systematically obscured by model-level aggregate measurements. Appendix H for Limitations
As seen in RQ1, CLEAR demonstrates statistically reliable and sufficiently complete
component-wise energy profiling that can be employedto support comparative studies and
draw robust conclusions about energy implications of specific design choices, rather than
relying on estimates. CLEAR establishes a foundation for future work on predictive modeling
so that the energy costs can be computed based on architectural design choices like hidden
dimensions, number of layers, etc. allowing accurate, generalizable prediction of component-
wise energy dynamics in the early design stages. This aligns with the growing emphasis on
Green AI and the need for energy-aware, sustainable AI system design. (Bolón-Canedo et al.,
2024; Sánchez-Mompó et al., 2025b; Różycki et al., 2025)
Taken together, these findings underscore that sustainability in AI must be treated as a first-
class research objective rather than an afterthought. By moving beyond aggregate
model-level reporting to examine component-level dynamics, we aim to motivate the software
and AI research communities to pursue progress that is both holistic and environmentally
responsible, driven by a proactive rather than reactive mindset. Looking forward, we hope
this work inspires future research to integrate energy considerations into every stage of model
development, fostering AI systems that are not only performant but also sustainable.

7 Reproducibility statement

To ensure transparency and reproducibility, we are committed to making our research
accessible. We provide comprehensive experimental details in the paper, and all code will
be publicly released upon publication. All experiments were conducted using open-source
LLMs.

8 Ethics statement

This work presents a methodology for measuring energy consumption at the component level
in transformer architectures, a dimension that has not been systematically studied so far.
Using this methodology, we analyze how energy is distributed across different components
of a transformer. Our findings are intended to advance the development of more efficient
transformer architectures and reliable methods for energy estimation. Refer I for LLM Usage
statement
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Appendix

A Transformer Architectures

Despite architectural differences, the transformer based models share a set of common
computational primitives. The detailed flow of how the model produces its output is
illustrated in the following.
Let V denote the vocabulary space, and x = (x1, . . . , xT ), xt ∈ V be an input token sequence
of length T . A tokenizer T : V → {1, . . . , |V|} maps tokens to discrete indices. The indices
are embedded into a continuous space by the Embedding Layer E ∈ R|V|×d:

h0
t = E[xt] + Pt, t = 1, . . . , T,

where Pt ∈ Rd denotes the positional embedding and d is the hidden dimensionality. Embed-
dings are then passed to a set of Transformer layers each consisting of an Attention (Attn)
block followed by a position-wise Feed-Forward MLP block, interleaved with residual con-
nections and Normalization blocks for numerical stability, as depicted in the Transformer
block of Figure 1. For layer ℓ ∈ {1, . . . , L}, the computations are:

h̃ℓ = LN(hℓ−1), zℓ = hℓ−1 + Attn(h̃ℓ), hℓ = zℓ + FFN(LN(zℓ)).

However, the placement of Normalization blocks vary across different models and can be
applied at different stages within a layer block. Post all layers, the final hidden state
hL ∈ RT ×d is projected onto the vocabulary using the language modeling head:

ŷt = softmax(hL
t W ⊤

LM), WLM ∈ R|V|×d.

A.1 Encoder-Only

Encoder-only architectures (e.g., BERT, RoBERTa, AlBERT) compute contextualized token
representations using bidirectional self-attention. They are commonly used for classification,
token-level prediction and masked-language-modeling objectives. The encoder processes
the full input x in parallel, producing HL = (hL

1 , . . . , hL
T ) ∈ RT ×d which can be pooled or

projected to task heads.
Encoder-only architectures typically use a dense attention pattern, meaning that no causal
mask is applied to restrict attention. Formally, the attention operation is defined as

Attn(Q, K, V ) = softmax
(

QK⊤
√

dk

)
V, (6)

where every token can attend to every other token in the sequence. This design produces
symmetric contextualization, since information can flow bidirectionally across tokens. However,
it comes with a computational cost of O(T 2d) per layer (due to the pairwise interactions
between all tokens) and a memory cost of O(T 2) for storing the attention weights.
Different tasks attach specialized output heads on top of the final hidden states hL

t ∈ Rd.
For token-level classification, each token representation is projected into the label space
using a weight matrix Wtok. The predicted class distribution for token t is given by

ŷt = softmax
(
hL

t W ⊤
tok
)

.

For sequence-level classification, the hidden state of a special token such as [CLS] serves
as a summary vector for the entire sequence. This representation hL

cls is then passed through
a classifier, typically implemented as a multi-layer perceptron (MLP):

hL
cls 7→ MLP(hL

cls).

For masked language modeling (MLM), the prediction head reuses the input embedding
matrix E to tie input and output representations. In this case, the output weight matrix is
defined as

WLM = E.
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This weight sharing enforces consistency between how tokens are encoded and how they are
predicted.
Encoder-only designs maximize parallelizability during training as the whole sequence is
processed concurrently, but the T 2 attention cost and the need to store full-layer activations
drive both memory bandwidth and energy cost during training.

Model # of
Layers

Hidden
Dimension

Attention
Heads

Feed-Forward
Dimension Parameters Special Features

google-bert/bert-base-uncased 12 768 12 3072 110M Uses [CLS] token for
classification

google-bert/bert-large-uncased 24 1024 16 4096 340M Larger variant of BERT with
higher representational capacity

albert/albert-base-v2 12 768 12 3072 12M Parameter-sharing across
layers and factorized embedding

albert/albert-large-v2 24 1024 16 4096 18M Deeper network with the same
parameter-sharing strategy

distilbert/distilbert-base-uncased 6 768 12 3072 66M Distilled version of BERT with
40% fewer parameters

distilroberta/distilroberta-base 6 768 12 3072 82M Distilled version of RoBERTa
retaining most performance

FacebookAI/roberta-base 12 768 12 3072 125M Improved pretraining and
dynamic masking

FacebookAI/roberta-large 24 1024 16 4096 355M Larger RoBERTa model with
improved pretraining

Table 2: Architectural Details of Encoder-Only Models

A.2 Decoder-Only (Autoregressive)

Decoder-only (autoregressive) models (e.g. Llama3.1, GPT) perform next-token prediction
and are optimized for generative tasks. The decoder processes tokens causally with a
triangular mask in which each position can attend only to tokens at previous positions
(and itself) to enforce autoregressive factorization. The causal mask Mcausal has entries 0
for allowed positions and −∞ for disallowed future positions, implementing the triangular
attention.

Inference optimization: KV-caching. During autoregressive generation, previously
computed keys and values can be cached: for step t only the new query interacts with
stored K1:t−1, V1:t−1. This reduces per-step attention cost from O(t2d) to O(td) (amortized),
and reduces the energy per generated token substantially at inference time. Training a
decoder-only model still incurs full-sequence O(T 2d) attention cost, but inference benefits
from KV-caching. Energy per generated token at inference depends on cache memory
bandwidth and per-layer dot-product costs; thus memory movement for KV-cache and tiled
attention matmuls can dominate measured energy.
The set of activation hooksAdec defined similarly to the encoder case, but is adapted to handle
causal inputs and cached key-value states and it stores the intermediate activations αattn in

ℓ,t

and αkv
ℓ,t for each layer ℓ and time step t. For profiling isolated attention at generation-time,

replaying using cached KV tensors models the exact inference cost. For the purpose of our
analysis, we primarily consider the energy and computation associated with the generation
of a single token, where KV-caching is not utilized
Decoder-only models are majorly different from Encoder-only models as they prioritize
autoregressive causality in which causal masking changes attention sparsity and reduces
parallelism during sequence generation. KV-caching and rotary/relative positional encodings
are often used to support long-context amortized inference and decoder-only models commonly
use tied input/output embeddings to reduce parameter counts, and favor pre-norm residual
stacks for stability in deep networks. Refer Tables 4, 8, 9, 10

A.3 Encoder-Decoder

Encoder-Decoder models, also known as sequence-to-sequence (Seq2Seq) architectures, are
widely used for tasks requiring input-to-output transformations such as machine translation,
summarization, and code generation. Formally, given an input sequence x = (x1, . . . , xTin),
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Architecture Detail Qwen2.5-3B-
Instruct

Phi-4-Mini-Instruct Llama-3.2-3B-
Instruct

Gemma-3-4B-IT

Parameters 3.09B total (2.77B non-
embedding)

4B 3.21B 4B

Layers 36 32 28 34
Hidden Size / Head Dim 2048 hidden, 128 per

head
3072 hidden, 128 per
head

3072 hidden, 128 per
head

2560 hidden, 128 per
head

Attention Structure GQA: 16 query heads,
2 KV heads; RoPE;
QKV bias; output proj.
biasless

GQA: 24 query heads,
8 KV heads; Frac-
tional RoPE (25% pos-
agnostic); KV cache op-
timized

GQA: 24 query heads,
8 KV heads; RoPE; no
bias in projections

Local+Global atten-
tion mix; Q-proj:
2048-d, K/V-proj:
1024-d; q norm,
k norm applied

MLP / FFN Dimension SwiGLU, 11008
(up+gate), 2048 down

SiLU, 16384 (gate+up),
8192 down

SiLU, 8192 up, 3072
down

GELU-Tanh, 10240 up,
2560 down

Normalization RMSNorm, ϵ = 1e−6,
applied input + post-
attn

RMSNorm, ϵ = 1e−5,
input + post-attn

RMSNorm, ϵ = 1e−5,
input + post-attn

RMSNorm, ϵ = 1e−6,
input + post-attn +
pre/post-FFN

Embeddings 151,936 vocab, 2048-d,
tied in/out

200,064 vocab, 3072-
d, tied in/out (padding
idx=199999)

128,256 vocab, 3072-d,
tied in/out

262,208 vocab, 2560-d,
tied in/out, scaled em-
beddings

Context Length 32K tokens (gen up to
8K)

Long-context via KV
optimization, tested up
to ∼128K

128K tokens, efficient
GQA

128K tokens; local lay-
ers span 1K, 1 global
layer every 5 locals

Special Features RoPE, SwiGLU, QKV
bias, high multilingual
coverage

GQA w/ reduced KV
cache, fractional RoPE,
tuned LR schedule

Optimized transformer,
SFT+RLHF alignment,
multilingual

Local-global hybrid
attention, multimodal
(SigLIP image en-
coder), Pan & Scan for
variable resolution

Table 3: Detailed architectural comparison of Decoder-Only Qwen2.5-3B, Phi-4-Mini, Llama-
3.2-3B, and Gemma-3-4B instruction-tuned models.

the encoder maps it to a sequence of hidden representations H = (h1, . . . , hTin), and the
decoder generates an output sequence y = (y1, . . . , yTout) autoregressively, conditioned on H.
The encoder is a stack of Le Transformer layers that performs contextual embedding of the
input tokens. Each layer typically consists of:

• An Attention (Attn) mechanism that captures global dependencies within the input
sequence i.e. for layer ℓ

h̃ℓ−1 = LN(hℓ−1), h′ℓ = hℓ−1 + Attnℓ(h̃ℓ−1), hℓ = h′ℓ + FFNℓ(LN(h′ℓ)).

• Feedforward Network that adds per-position nonlinear transformation to learn
deeper features.

The encoder produces rich representations that capture semantic and syntactic relationships
within the input sequence.
The decoder is also a stack of Ld Transformer layers, each consisting of:

• Masked self-attention which ensures autoregressive generation by attending only
to previous positions.

• Encoder-decoder cross-attention mechanism to attend to the encoder hidden
states H, incorporating information from the entire input sequence into each decoding
step.

• A Feedforward network similar to the encoder.

Mathematically, for decoder layer ℓ:
ũℓ−1 = LN(uℓ−1), sℓ

self = Attncausal(ũℓ−1),

sℓ
cross = Attncross(LN(uℓ−1 + sℓ

self), H), uℓ = FFN(LN(uℓ−1 + sℓ
self + sℓ

cross)).

Compared to encoder-only models, the encoder-decoder architecture introduces a separate
decoder stack with cross-attention, which enables output generation conditioned on the
full input sequence. In contrast, encoder-only models produce fixed-length or token-level
representations that are typically used for classification or embedding tasks, without any
autoregressive generation.
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When compared to decoder-only models, encoder-decoder architectures separate the input
encoding from the output generation, whereas decoder-only models combine both within a
single autoregressive stack. This separation allows the encoder to process the entire input
sequence in parallel, improving training efficiency. Furthermore, in terms of residual and
attention patterns, encoder-decoder models incorporate both self-attention in the decoder
and cross-attention between the decoder and encoder outputs, whereas encoder-only and
decoder-only architectures contain only a single attention mechanism.
Energy Perspective: The two-stack design of encoder-decoder models increases the total
parameter count and memory footprint, resulting in higher energy consumption during
training compared to encoder-only models for sequences of the same length. However, the
input encoding phase can be fully parallelized across positions, and autoregressive decoder
computation can benefit from caching mechanisms during inference, which partially reduces
the per-token energy cost

A.4 Mixture of Experts (MoE)

Mixture-of-Experts (MoE) architectures extend standard Transformers by introducing con-
ditional computation i.e. instead of activating all parameters for every input token, only
a subset of ”expert” networks is selected dynamically. This allows scaling model capacity
substantially while keeping per-token computation and energy consumption manageable.
An MoE layer contains E independent feedforward networks, or Experts, each with parameters
θ1, . . . , θE . For a given token representation h ∈ Rd, the computation is routed through a
small subset of k < E experts, typically k = 2 or 3

mMoE(h) =
∑

i∈Top-k
gi(h) FFNi(h),

where gi(h) is the gating weight assigned by the Router. By activating only a few experts
per token, the effective FLOPs per token can be reduced from O(E · d · dff) to O(k · d · dff).
The Router is a lightweight module that predicts which experts should process a given token:

g(h) = softmax(hWr), g ∈ RE .

It selects the top-k experts according to the largest gi values. The Router can also include
auxiliary losses, such as load-balancing or importance losses, to encourage uniform expert
utilization and avoid stragglers, which would increase memory or energy spikes.
By increasing the total number of expertsE without increasing k, it is possible to scale the
model’s representational capacity while incurring only a small incremental energy cost per
token. In practice, expert computations for different tokens are often batched across devices,
but load imbalance can increase memory movement and create temporary energy spikes
due to which careful load-balancing and token assignment become necessary to maintain
efficiency.

B Hardware Specification

The experiments in this paper were carried out using NVIDIA’s Ada-Lovelace architecture
GPUs, namely the RTX 5000 Ada and RTX 6000 Ada, in order to assess compute and energy
performance. The Ada Lovelace architecture is fabricated on a custom 4 nm TSMC process
and includes third-generation RT cores and fourth-generation Tensor cores, enabling mixed
precision operations (including FP8 with sparsity) that are integral to efficient transformer
inference NVIDIA (2023). According to the official datasheets, the RTX 5000 Ada has 12,800
CUDA cores, 100 RT cores, 400 Tensor cores, 32 GB of ECC GDDR6 memory over a 256-bit
interface (providing ∼576 GB/s bandwidth), and a total board power of approximately 250 W
PNY (2023). The RTX 6000 Ada model offers 18,176 CUDA cores, 142 RT cores, 568
Tensor cores, 48 GB of ECC GDDR6 memory on a 384-bit interface (∼960 GB/s bandwidth),
and has a board power of around 300 W NVIDIA (2023). These hardware choices directly
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influence both the sustained compute throughput and the energy-per-FLOP metrics reported
in our results.
NVIDIA does not publish the precise NVML power sampling interval for the RTX 5000 Ada
or RTX 6000 Ada. Prior work has shown that on modern NVIDIA GPUs, NVML’s power
readouts are typically updated at a frequency of 20–50 Hz (i.e., every 20–50 ms), which
constrains the granularity of fine-grained energy attribution Yang et al. (2024b), Nik et al.
(2025).

Components
Qwen2.5-3B fp32 Qwen2.5-3B fp16 Llama-3.2-3B fp32 Llama-3.2-3B fp16 Gemma-3-4B fp32 Gemma-3-4B fp16
Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev

MLP 113.71 6.687 48.5 2.13 127.24 1.94 54.55 2.01 129.47 1.86 60.07 2.13
Attention 27.64 1.79 33.99 5.96 58.31 3.01 23.88 1.42 42.82 2.11 36.84 1.85
Input Layer Norm 2.59 0.24 6.42 1.02 3.2 0.25 3.61 0.41 3.74 0.45 4.42 0.43
Attention Layer Norm 2.81 0.33 6.8 0.97 3.2 0.32 3.85 0.41 3.49 0.33 4.52 0.36
Capture (Block) 146.75 - 95.71 - 191.95 - 85.89 - 186.54 - 114.83 -
Block 150.03 3.39 96.19 5.15 192.26 24.92 91.85 1.98 187.54 3.91 126.63 4.54
%Capture (Block) 97.81 99.50 99.84 93.51 99.47 90.68
Final Layer Norm 2.96 0.41 6.94 0.97 3.2 0.27 4.2 0.58 3.5 0.33 4.53 0.32
Embedding 0.81 0.26 0.74 0.06 0.69 0.23 0.68 0.24 1.52 0.29 1.28 0.27
LLM Head 459.66 2.18 214.29 3.56 602.02 2.97 374.92 2.96 1040.63 7.25 480.64 8.72
Model 5864.51 - 3684.81 - 5989.19 - 2951.6 - 7422.01 - 4791.87 -
Capture (Model) 5995.27 26.77 3685.95 29.11 6029.32 10.68 3261.5 30.99 8086.96 25.25 5248.99 89.34
%Capture (Model) 97.82 99.97 99.33 90.50 91.78 91.29

Table 4: CLEAR demonstrating similar performance on RTX 5000 GPU for Decoder-
only models(Qwen2.5-3B, Llama-3.2-3B, Gemma-3-4B) across fp16 and fp32 floating point
precisions.

C Nvidia RTX 5000 and RTX 6000

We validate our methodology across three models on the NVIDIA RTX 5000 ADA GPU
and observe a %Capture exceeding 90%, with minimal standard deviation across both fp16
and fp32 precisions. Interestingly, the energy consumption of normalization blocks remains
higher for fp16 compared to fp32, similar to the trend observed on the NVIDIA RTX 6000.
Refer Tables 4, 8, 9, 10

D Attention Variants & Optimizations

Using CLEAR, we compare three Attention implementations, namely Eager Attention, Scaled
Dot-Product Attention (SDPA), and Flash Attention. All Attention variants are computed
using equation 6 , but they differ in the way operations are executed on the GPU (hardware
layer).
Eager Attention uses separate kernels for each step, which increases memory transfers
and induces a launch-time overhead. SDPA reduces launch-time overhead by fusing some
operations, but it still creates the full attention matrix. Flash Attention goes further by
computing attention in tiled blocks without storing the entire matrix, which reduces memory
usage and improves efficiency.
We also evaluate three optimization strategies. Torch compile performs whole graph
optimizations and merges many small GPU kernels into larger fused kernels. Max Autotune
spends additional compilation time to recognize the best kernel implementations for the
current code execution. It runs many candidate kernels and selects the best-performing
one for the current hardware setup. Optimization using Max Autotune is achieved mainly
due to Aggressive kernel fusion which involves combining multiple operations into single
kernels and Autotuning that tries out different tile sizes, block sizes, memory layouts for
given hardware. Reduced Overhead removes profiling and extra synchronization steps to
simplify execution. It focuses on reducing kernel launch overhead and minimizes the time
spent switching between CPU and GPU.
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Model &
Input Length

Attention Setup
Energy Consumption

(mJ)
Std.

Deviation
FLOPs

(in GFLOPs)
Energy (mJ) / GFLOP

Qwen2.5 - 3B
64 input tokens

FP16 Flash Attention 38.609 0.348 1.208 31.950
FP16 Eager Attention 45.398 0.564 1.242 36.552
FP16 SDPA 35.061 0.378 1.208 29.014
FP16 Flash with torch.compile() 29.100 0.320 1.208 24.090
FP16 Eager with torch.compile() 31.675 0.163 1.242 25.513
BF16 Flash Attention 48.289 1.247 2.417 19.980
FP16 Eager Max Autotune 19.679 0.664 - -
F16 Eager Reduce Overhead 19.640 0.765 - -

Qwen2.5 - 3B
128 input tokens

FP16 Flash Attention 44.169 0.764 2.417 18.276
FP16 Eager Attention 53.766 1.506 2.551 21.074
FP16 SDPA 39.577 0.642 2.417 16.376
FP16 Flash with torch.compile() 33.337 0.441 2.416 13.799
FP16 Eager with torch.compile() 38.881 0.947 2.550 15.247
BF16 Flash Attention 48.289 1.247 2.417 19.980
FP16 Eager Max Autotune 24.977 0.318 - -
F16 Eager Reduce Overhead 24.233 0.881 - -

Qwen2.5 - 3B
256 input tokens

FP16 Flash Attention 56.665 1.131 4.834 11.723
FP16 Eager Attention 70.411 0.585 5.372 13.108
FP16 SDPA 62.223 1.319 4.834 12.873
FP16 Flash with torch.compile() 47.558 0.702 4.832 9.843
FP16 Eager with torch.compile() 59.949 0.818 5.369 11.166
BF16 Flash Attention 48.289 1.247 2.417 19.980
FP16 Eager Max Autotune 33.500 0.874 - -
F16 Eager Reduce Overhead 36.626 1.095 - -

Gemma3 - 4B
64 input tokens

FP16 Flash Attention 59.416 0.882 2.014 29.498
FP16 Eager Attention 66.962 0.694 2.048 32.699
FP16 SDPA 57.048 1.035 2.014 28.322
FP16 Flash with torch.compile() 32.953 0.461 2.013 16.368
FP16 Eager with torch.compile() 34.322 0.383 2.047 16.769
BF16 Flash Attention 67.633 0.986 2.014 33.577
FP16 Eager Max Autotune 23.842 0.762 - -
F16 Eager Reduce Overhead 23.827 0.841 - -

Gemma3 - 4B
128 input tokens

FP16 Flash Attention 69.228 0.749 4.029 17.184
FP16 Eager Attention 76.126 0.658 4.163 18.287
FP16 SDPA 65.785 0.504 4.029 16.330
FP16 Flash with torch.compile() 43.885 0.558 4.027 10.899
FP16 Eager with torch.compile() 44.267 0.562 4.161 10.639
BF16 Flash Attention 76.328 1.326 4.029 18.947
FP16 Eager Max Autotune 30.591 0.852 - -
F16 Eager Reduce Overhead 31.651 0.851 - -

Gemma3 - 4B
256 input tokens

FP16 Flash Attention 85.843 1.854 8.057 10.654
FP16 Eager Attention 100.152 2.179 8.594 11.653
FP16 SDPA 93.987 1.188 8.057 11.665
FP16 Flash with torch.compile() 58.833 0.814 8.053 7.306
FP16 Eager with torch.compile() 60.907 0.696 8.590 7.091
BF16 Flash Attention 101.571 3.304 8.057 12.607
FP16 Eager Max Autotune 41.614 0.619 - -
F16 Eager Reduce Overhead 44.674 0.161 - -

Table 5: Average Energy Consumption, FLOPs and Energy(mJ)/GFLOPs ratio for Gemma3-
4B and Qwen2.5-3B models across input token lengths of 64, 128 and 256. We demonstrate
results for 3 Attention Variants (SDPA, Eager, Flash) along with Optimizations such as
Torch Compile, Max Autotune and Reduced Overhead
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Results in Table 5 show that energy consumption does not increase in direct proportion to
FLOPs. Instead, the measurements match the relationship given by the equation 5 Here,
E0 includes kernel launch overhead, memory allocation, and setup costs. Because of the
fixed cost incurred due to launch overhead and memory allocation, the energy per GFLOP
decreases as the sequence length increases. In some hardware architecture, BF16 math
units are internally convert to FP32, while FP16 has more native support. These additional
conversion steps introduce marginally higher energy cost for BF16 as compared to FP16
precision.
As shown in results of Table 5, across all input token lengths, Flash Attention uses energy
comparable to SDPA but much lower than naive Eager Attention. Modern GPUs spend
a large portion of energy on memory access and kernel launches, and not just arithmetic
computations. Flash Attention reduces the memory traffic significantly and when combined
with Torch Compile, the fused kernels help to further reduce the energy and latency and
increase efficiency. Torch Compile allows for optimization of the Eager Attention mechanism
by merging many smaller GPU kernels into larger ones.
Optimizations such as Max Autotune and Reduced Overhead show a drastic drop in over-
all energy consumption. Such optimizations use fused execution paths that have fewer
intermediate operations helping to reduce computation and energy movement.
For the Max Autotune and Reduced Overhead settings, it is not possible to measure FLOPs
using standard profiling tools. As the above optimizations create execution graphs that
do not match the usual operator-level structure, many operations are fused or replaced by
hardware-specific kernels chosen at runtime. As the fused kernels do not correspond to
individual matrix multiplications or softmax operations, tools cannot assign a reliable FLOP
count.

E Multi-Token Generation

Using CLEAR’s methodology, we extend our evaluation beyond the single-token Prefill
stage to a more realistic multi-token generation for decoder-only transformer models. Unlike
single-token experiments multi-token generation encompasses both the Prefill phase and the
Decode phase but introduces new computational challenges due to Key–Value (KV) cache
optimizations.

Figure 5: Left: Energy Scaling of Prefill, Decode Stage (with KV Cache Enabled) and
Output Generation with input token lenghts for Qwen2.5-3B model (FP16). Right: Energy
Scaling of Attention Mechanism with and without KV Cache for Qwen2.5-3B model (FP16)

In decoder-based models, autoregressive generation proceeds a single token at a time. For
each new token, the model requires to compute Attention over entire input and previously
generated tokens. Without caching, it would require re-computing Key and Value projections
for the entire sequence at every step, incurring quadratic scaling in both FLOPs and energy.
KV Cache eliminates this computational redundancy by storing previously computed K and
V tensors and reusing them in subsequent decode steps.
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Input
Token
Length

With KV Cache Without KV Cache
Avg Energy

(mJ)
Std

Dev.
GFLOPS Avg Energy

(mJ)
Std

Dev.
GFLOPS

1 29.118 0.515 0.019 28.052 0.474 0.019
8 31.217 0.524 0.019 29.622 0.682 0.151
32 31.850 0.511 0.019 32.184 0.580 0.604
64 31.995 0.513 0.019 35.082 0.690 1.208
128 32.532 0.239 0.019 40.148 0.696 2.417
256 33.124 0.785 0.019 62.554 1.591 4.834
512 33.558 1.335 0.019 87.369 2.220 9.667

Table 6: Energy consumption and FLOP requirements for the attention mechanism in the
Qwen2.5-3B model with and without KV cache across varying input sequence lengths. When
KV cache is enabled, both energy usage and computational cost remain nearly constant,
whereas disabling the KV cache leads to a sharp increase in FLOPs and energy as sequence
length grows.

As shown in Table 7, multi-token generation exhibits markedly different scaling characteristics
across the Prefill phase, Decode phase, and complete Output Generation pipeline for a single
new token. The Prefill phase processes the complete input sequence and shows a near-linear
increase in both FLOPs and Energy Consumption as input length grows, consistent with the
need to compute fresh Q,K and V projections for all tokens. In contrast, the Decode stage
remains almost invariant to sequence length, maintaining constant FLOPs (6̃.17 GFLOPs)
and only a marginal rise in energy due to KV Cache reuse for larger sequences. KV Cache
eliminates the redundant computation by retrieving previously computed keys and values.
As shown in Figure 5, entire model.generate() pipeline scales similar to the Prefill stage
because computation of logits and framework-level overheads still depend on sequence length
and partially bypass cache optimizations. Collectively, the observations underscore that
KV Cache is a dominant factor to achieve long-context decoding, while Prefill and Output
Generation pipelines remain the primary contributors to energy growth in realistic generation
scenarios.
Table 6 reveals that for the Attention Mechanism, enabling the KV cache keeps both FLOPs
and Energy Consumption nearly constant, as the model only needs to process newly generated
token and can reuse all previously stored keys and values. In contrast, when the KV cache is
disabled, the computational costs rises sharply as the input sequence grows. Such behavior
arises because the Attention Mechanism needs to recompute all Q, K, V The ‘CLEAR’ gap
between the two behaviors demonstrates that KV Cache effectively eliminates redundant
computation and is essential for efficient, long-context Autoregressive Decoders.

F Variation in Standard Deviation

As shown in Fig. 6, the standard deviation of energy measurements exhibits a higher relative
deviation at lower energy values (around 1 mJ), primarily due to the limited precision of
the NVML energy sensor. For measurements above 5 mJ, the deviation stabilizes to an
acceptable range of approximately 9%, and further decreases below 5% for energies exceeding
20 mJ. This behavior arises because fixed sensor resolution introduces proportionally larger
errors at smaller measurement scales.

G Distribution of Energy across Components

We analyse 12 models using pie charts to show the Distribution of energy across components.
We empirically observe the following:
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Input
Token
Length

Prefill Next token Decode Stage Output Generation
Avg Energy

(mJ)
GFLOPs Avg Energy

(mJ)
GFLOPs Avg Energy

(mJ)
GFLOPs

1 4329.42 6.17 4472.20 6.17 4278.49 6.17
8 4531.80 49.38 4543.73 6.17 4517.82 45.02
32 4829.55 197.51 4600.39 6.17 4749.55 178.22
64 5273.63 395.03 4675.02 6.17 5254.10 355.82
128 6964.34 790.06 4749.80 6.17 6895.61 711.02
256 8959.38 1580.12 4839.23 6.17 8330.42 1421.42
512 13940.02 3160.24 5025.20 6.17 13730.38 2842.23

Table 7: Energy consumption and FLOP analysis of the Qwen2.5-3B model across varying
input sequence lengths. We report measurements for three important phenomena: Prefill,
Next-Token Decode (KV Cache Enabled) and Output Generation pipeline with 1 new token.
The results show that while the FLOPs of the decode step remain constant due to KV reuse,
its energy consumption increases only marginally with longer input lengths, in contrast to
the Prefill and Output Generation where energy consumption scales rapidly with the input
sequence length.

Figure 6: Standard Deviation across different Energy measurements. We observe a decrease
in Standard Deviation in our Energy Measurement Approach with increasing Energy Values.

In encoder-only models (Refer Fig.7), the Attention block accounts for a substantial share of
energy consumption (typically > 40%). However, in their larger variants (Refer Fig.8), the
share of energy attributed to MLP layers increases markedly. For decoder-only models (Refer
Fig.9), MLP layers consistently dominate, consuming more than 50% of the total energy.
The trend highlights that MLP energy usage is strongly tied to hidden dimension size and
the presence of projection layers within the block. In very large models (e.g., GPT-OSS-20B),
the Attention contribution becomes negligible relative to the MLP, driven by the dense
feedforward computations that scale with model size.
Across all models, normalization and embedding layers consume < 5% each, reinforcing that
the dominant energy trade-off is between MLP and Attention. The energy consumed by
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the LM Head is largely dependent on the Vocabulary space |V | of the model and increases
significantly in case of Gemma-3-4B and Phi-4-4B models as compared other decoder-only
models.
Across all models, the relative shares of MLP, Attention, and LM Head remain stable whether
FP16 or FP32 is used. We can thus observe that precision scaling reduces absolute energy
but preserves the internal proportion, keeping MLP the dominant bottleneck regardless of
precision.

H Limitations

While our study provides the first component-level view of energy consumption in Transformer
architectures, a few aspects merit further exploration. First, our energy estimates rely on
NVIDIA’s NVML interface and FLOP counts obtained via the PyTorch Profiler. These are
well-established tools, but like all measurement frameworks they may carry some inherent
uncertainties that may slightly affect the results by negligible margin.
Second, GPU hardware introduces additional variability. Different GPU families and gen-
erations apply their own low-level optimization, potentially affecting the energy profiles of
specific computational components. Extending this analysis across a wider range of hardware
would sharpen our understanding of how these optimizations influence component-wise
energy usage. While this is left for future work, to the best of our knowledge, our study
remains the first systematic investigation of component-level energy dynamics in Transformer
models, providing a foundational understanding of the challenges and opportunities present
on current hardware.
Finally, because prior literature offers little precedent for fine-grained energy measurement
of individual Transformer components, our validation protocol represents an initial step.
Future work can strengthen and expand these validation methods as the research community
develops more sophisticated benchmarks and measurement standards.

I LLM Usage

We used LLMs as writing assistants to help polish and clarify the text in this paper motivated
to improve clarity and consistency.
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Component 32 Tokens 64 Tokens 96 Tokens 128 Tokens
Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

Gemma-3 4B

Attention Block 47.312 1.421 53.619 1.672 64.300 1.381 65.488 1.050
MLP 73.218 1.043 75.700 0.872 81.383 0.776 83.230 0.995

Norm. (All) 26.144 0.533 27.853 0.456 30.892 0.394 32.878 0.877
Captured (Block) 146.674 - 157.173 - 176.575 - 181.596 -

Block 152.390 2.879 166.800 3.389 191.299 3.063 197.011 3.642
% Capture (Block) 96.249 - 94.229 - 92.303 - 92.176 -
Embedding Layer 1.916 0.399 2.078 0.430 2.147 0.451 2.258 0.454

LM Head 524.027 1.673 533.766 1.431 558.508 1.785 570.688 1.820
Final Layer Norm. 6.318 0.348 6.644 0.419 7.399 0.394 7.871 0.284
Captured (Model) 5713.511 - 6213.671 - 7072.219 - 7279.177 -

Model 6208.532 116.391 6752.334 88.871 7803.634 114.325 8047.096 104.472
% Capture (Model) 92.027 - 92.023 - 90.627 - 90.457 -

Qwen2.5 3B

Attention Block 29.281 1.056 32.595 1.417 58.270 1.295 67.588 1.540
MLP 68.649 1.394 71.329 1.926 163.531 0.565 167.899 0.807
Norm 10.560 2.141 11.796 1.939 21.905 2.161 22.756 2.172

Captured (Block) 108.490 - 115.721 - 243.706 258.242
Block 113.174 1.417 126.411 2.573 246.125 5.963 260.012 3.274

% Capture (Block) 95.861 - 91.543 - 99.017 99.319
Embedding Layer 1.047 0.407 2.514 0.937 2.648 1.108 2.794 1.014

LM Head 243.657 3.644 250.085 0.974 530.914 2.714 544.742 2.560
Final Layer Norm 5.149 1.057 5.451 0.426 10.769 1.012 11.206 1.117
Captured (Model) 4324.124 - 4808.860 - 9404.846 - 9919.159 -

Model 4772.004 105.363 5345.951 133.036 10322.788 66.151 10727.263 84.912
% Capture (Model) 90.614 - 89.953 - 91.108 - 92.467 -

Phi3 4B

Attention Block 67.834 1.684 72.138 1.266 81.806 1.367 89.256 1.127
MLP 134.556 1.434 148.118 1.147 155.105 1.371 168.813 0.799
Norm 20.899 2.071 21.425 2.088 22.952 2.187 23.385 2.118

Captured (Block) 223.289 - 241.681 - 259.864 - 281.453 -
Block 229.321 1.148 264.038 1.582 281.425 2.429 298.016 2.439

% Capture (Block) 97.370 - 91.533 - 92.338 - 94.442 -
Embedding Layer 2.773 1.058 2.731 1.043 2.769 1.089 2.948 1.142

LM Head 957.378 4.961 995.880 13.324 1057.904 12.474 1073.472 13.378
Final Layer Norm 10.237 0.979 10.525 1.048 11.284 1.109 11.640 1.096
Captured (Model) 8308.650 - 9458.356 - 10077.566 - 10624.575 -

Model 9204.600 57.325 10331.063 92.475 11397.891 93.548 11833.962 135.785
% Capture (Model) 90.266 - 91.553 - 88.416 - 89.780 -

Llama3.2-3B

Attention Block 45.932 0.763 54.380 0.706 61.239 0.839 66.667 0.868
MLP 71.231 0.909 73.539 1.012 81.115 0.827 83.050 0.827
Norm 11.340 1.014 13.562 0.886 14.683 1.140 15.614 1.178

Captured (Block) 128.503 - 141.480 - 157.038 - 165.331 -
Block 130.671 2.226 150.432 2.536 157.551 1.014 167.592 1.002

% Capture (Block) 98.341 - 94.049 - 99.674 - 98.651 -
Embedding Layer 1.070 0.420 1.177 0.439 1.090 0.412 1.109 0.424

LM Head 307.571 0.948 314.289 0.958 322.029 0.685 328.267 1.114
Final Layer Norm 5.327 0.471 6.259 0.435 6.993 0.510 6.993 0.510
Captured (Model) 3972.744 - 4533.818 - 4741.546 - 5028.947 -

Model 4295.739 80.010 4966.015 94.550 5156.262 8.688 5148.606 11.498
% Capture (Model) 92.481 - 91.297 - 91.957 - 97.676 -

Table 8: Energy of Decoder Model Components using CLEAR on RTX 6000 GPU for
models(Qwen2.5-3B, Llama-3.2-3B, Gemma-3-4B, Phi3-4B) with fp16 across token length.
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Components Qwen2.5 Llama3.2 Gemma 3 Phi-3 4B
Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

Attention Block 32.791 1.090 42.842 0.427 45.215 0.632 62.817 0.831
MLP 62.257 1.130 64.830 1.774 66.196 1.642 132.590 2.548

Norm. (All) 9.769 0.812 9.801 0.845 23.643 1.117 20.437 1.940
Captured (Block) 104.818 - 117.473 - 135.054 - 215.843 -

Block 113.095 1.855 121.860 2.067 149.414 3.911 214.413 1.106
%Capture(Block) 92.682 - 96.400 - 90.389 - 100.667 -
Final Layer norm 4.717 0.386 4.640 0.392 5.712 0.259 10.066 0.886
Embedding Layer 0.652 0.246 0.699 0.241 1.526 0.294 1.733 0.605

LM Head 238.235 0.911 301.543 1.161 514.961 1.677 909.761 3.865
Captured Model 4315.021 - 3718.967 - 5602.269 - 9069.265 -

Model 4489.638 24.041 3996.546 81.766 5941.196 72.389 8945.062 37.252
%Capture (Model) 96.111 - 93.055 - 94.295 - 101.389 -

Table 9: Energy of Decoder Model Components using CLEAR on RTX 6000 GPU for
models(Qwen2.5-3B, Llama-3.2-3B, Gemma-3-4B, Phi3-4B) with fp16 and 8 token length.

Components Qwen2.5 Llama Gemma Phi
Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

Attention Block 49.584 0.891 90.613 0.930 83.220 1.302 88.889 0.893
MLP 132.007 1.069 149.203 1.259 144.130 0.776 143.361 0.984

Norm. (All) 7.068 0.206 7.310 0.228 16.947 1.480 7.736 0.220
Captured (Block) 188.659 - 247.125 - 244.297 - 239.986 -

Block 187.446 1.181 241.463 0.959 257.972 6.467 249.932 6.578
%Capture (Block) 100.647 - 102.345 - 94.699 - 96.020 -
Final Layer norm 3.358 0.013 3.454 0.071 4.021 0.323 3.604 0.076
Embedding Layer 0.672 0.256 0.849 0.034 1.774 0.046 1.259 0.549
CLS + LM Head 493.335 0.977 641.738 2.972 1112.893 13.443 1159.335 14.785
Captured Model 7245.422 - 7407.010 - 9889.742 - 9162.032 -

Model 7538.858 4.374 7724.147 20.110 10685.492 28.237 9605.711 30.790
%Capture (Model) 96.108 - 95.894 - 92.553 - 95.381 -

Table 10: Energy of Decoder Model Components using CLEAR on RTX 6000 GPU for
models(Qwen2.5-3B, Llama-3.2-3B, Gemma-3-4B, Phi3-4B) with fp32 and 8 token length.
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Figure 7: Energy breakdown in large variants of encoder-only models. The first two charts
illustrate block-level distributions, while the latter two present distributions across the entire
model. FP-16 and FP-32 precisions for each model are shown.
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Figure 8: Energy breakdown in encoder-only models. The first two charts illustrate block-
level distributions, while the latter two present distributions across the entire model. FP-16
and FP-32 precisions for each model are shown.
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Figure 9: Energy breakdown in decoder-only models. The first two charts illustrate block-
level distributions, while the latter two present distributions across the entire model. FP-16
and FP-32 precisions for each model are shown.
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Components ALBERT BERT DistilBERT RoBERTa
Avg. Std. Dev Avg. Std. Dev Avg. Std. Dev Avg. Std. Dev

Attention Block 12.074 0.280 13.676 0.370 10.550 0.369 13.534 0.319
FFN (Intermediate) 1.510 0.441 2.765 0.192 8.764 0.442 2.565 0.321
FFN (Output) 1.848 0.050 4.944 0.343 4.875 0.401
Norm. (All) 7.317 0.531 6.216 0.845 7.135 0.369 6.352 0.623
Captured (Block) 22.748 - 27.601 - 26.449 - 27.326 -
Measured (Block) 30.627 0.562 29.802 0.607 28.551 0.448 29.797 0.642
%Capture (Block) 74.276 - 92.616 - 92.637 - 91.707 -
# of Layers 12 - 12 - 6 - 12 -
Embedding Layer 5.863 0.328 5.918 0.307 4.619 0.161 11.911 0.159
CLS + LM Head 11.687 0.455 23.666 0.979 18.396 1.009 41.081 0.907
Captured (Model) 385.068 - 387.205 - 194.320 - 410.555 -
Total 424.039 6.548 400.449 4.805 209.734 5.053 413.318 5.943
%Capture (Model) 90.810 - 96.693 - 92.651 - 99.332 -

Table 11: Comparison of FP16 Performance across ALBERT, BERT, DistilBERT, RoBERTa

Components ALBERT - Large BERT - Large Distil RoBERTa RoBERTa - Large
Avg. Std. Dev Avg. Std. Dev Avg. Std. Dev Avg. Std. Dev

Attention Block 14.861 0.423 16.903 0.397 13.226 0.349 15.547 0.370
FFN (Intermediate) 2.928 0.743 4.877 0.456 7.413 0.396 4.249 0.115
FFN (Output) 3.939 0.710 8.093 0.462 7.741 0.443
Norm. (All) 5.814 0.652 4.171 0.872 4.274 0.711 4.721 0.671
Captured (Block) 27.542 - 34.044 - 24.913 - 32.259 -
Block 34.293 0.493 34.590 0.709 28.670 0.511 33.854 0.833
%Capture (Block) 80.314 - 98.419 - 86.896 - 95.287 -
# of Layers 24 - 24 - 6 - 24 -
Embedding Layer 6.132 0.341 7.035 0.405 11.699 0.454 12.055 0.337
CLS + LM Head 12.142 0.671 30.928 0.831 39.096 0.908 52.381 0.721
Captured (Model) 841.313 - 868.134 - 222.813 - 876.937 -
Total 919.899 16.661 855.146 17.813 235.813 3.939 870.188 4.681
%Capture (Model) 91.457 - 101.519 - 94.487 - 100.776 -

Table 12: Comparison of FP16 Performance across variants- ALBERT Large, BERT Large,
DistilRoBERTa, RoBERTa Large

Components ALBERT BERT DistilBERT RoBERTa
Avg. Std. Dev Avg. Std. Dev Avg. Std. Dev Avg. Std. Dev

Attention Block 18.573 0.517 19.155 0.436 17.772 0.412 17.870 0.327
FFN (Intermediate) 4.969 0.980 7.163 0.880 17.486 0.774 6.446 0.724
FFN (Output) 5.066 0.935 9.528 0.646 8.829 0.620
Norm. (All) 5.267 0.432 4.023 0.972 5.872 0.861 4.721 0.671
Captured (Block) 33.875 - 39.869 - 41.130 - 37.867 -
Block 40.282 0.779 42.030 0.881 46.199 0.755 40.054 1.545
%Capture (Block) 84.095 - 94.858 - 89.028 - 94.540 -
# of Layers 12 - 12 - 6 - 12 -
Embedding Layer 6.326 0.362 6.395 0.304 4.317 0.398 11.463 0.213
CLS + LM Head 20.468 0.455 48.188 0.979 39.096 0.908 74.482 1.008
Captured (Model) 510.181 - 558.945 - 320.608 - 566.588 -
Total 562.878 9.828 595.044 9.741 350.642 6.380 638.949 13.632
%Capture (Model) 90.638 - 93.933 - 91.435 - 88.675 -

Table 13: Comparison of FP32 Performance across ALBERT, BERT, DistilBERT, RoBERTa
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Components ALBERT - Large BERT - Large Distil RoBERTa RoBERTa - Large
Avg. Std. Dev Avg. Std. Dev Avg. Std. Dev Avg. Std. Dev

Attention Block 23.380 0.545 25.777 0.546 19.888 0.493 24.569 0.572
FFN (Intermediate) 8.139 1.049 9.679 0.929 7.275 0.924 9.145 0.949
FFN (Output) 8.090 0.843 12.952 0.799 9.636 0.679 12.124 0.817
Norm. (All) 4.479 0.512 4.413 0.872 3.761 0.843 4.310 0.871
Captured (Block) 44.089 - 52.821 - 40.561 - 50.148 -
Block 60.662 0.918 58.006 0.841 42.234 1.687 55.608 1.023
%Capture (Block) 72.680 - 91.061 - 96.038 - 90.183 -
# of Layers 24 - 24.000 - 6.000 - 24.000 -
Embedding Layer 5.910 0.345 7.080 0.401 14.044 0.541 13.559 0.363
CLS + LM Head 20.003 0.500 62.534 1.021 75.561 0.936 97.300 0.746
Captured (Model) 1481.807 - 1461.768 - 343.009 - 1445.440 -
Total 1562.929 9.036 1485.891 13.015 350.642 6.380 1484.479 11.134
%Capture (Model) 94.810 - 98.376 - 97.823 - 97.370 -

Table 14: Comparison of FP32 Performance across large variants of ALBERT, BERT,
DistilBERT, RoBERTa
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Component 32 Tokens 64 Tokens 96 Tokens 128 Tokens
Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

ALBERT-Base

Attention Block 15.094 0.404 15.930 0.354 18.582 0.319 19.861 0.468
FFN (Intermediate) 2.306 0.448 2.205 0.475 3.341 0.308 3.650 0.594

FFN (Output) 2.361 0.423 2.891 0.599 4.608 0.837 4.162 0.751
Block 35.079 0.368 37.240 0.231 44.233 0.837 45.274 0.835

Embedding Layer 6.810 0.354 6.883 0.321 7.767 0.389 6.981 0.337
CLS + LM Head 13.384 0.691 14.438 0.564 17.171 0.588 19.246 0.888
Captured (Model) 441.146 - 468.198 - 555.734 - 569.510 -

Model 482.402 9.206 505.909 4.497 571.390 2.964 598.701 5.728
% Capture (Model) 91.448 - 92.546 - 97.260 - 95.124 -

BERT- Base

Attention Block 15.337 0.398 17.988 0.466 18.949 0.237 19.518 0.358
FFN (Intermediate) 3.472 0.393 3.695 0.186 4.628 0.494 5.626 0.653

FFN (Output) 5.210 0.374 5.947 0.361 7.450 0.290 8.774 0.272
Block 32.585 0.487 34.980 0.871 39.130 0.938 41.482 1.039

Embedding Layer 6.938 0.304 8.004 0.401 7.812 0.378 7.553 0.046
CLS + LM Head 24.876 0.906 31.174 0.798 31.497 0.615 39.772 0.897
Captured (Model) 422.840 - 458.936 - 508.874 - 545.111 -

Model 450.756 4.650 465.372 2.665 523.566 8.469 557.446 6.968
% Capture (Model) 93.807 - 98.617 - 97.194 - 97.787 -

DistilBERT

Attention Block 12.501 0.480 13.708 0.399 14.593 0.437 14.524 0.402
FFN 10.489 0.414 10.365 0.298 13.227 0.649 14.665 0.536
Block 32.794 0.791 34.432 0.775 38.200 1.049 39.894 0.579

Embedding Layer 5.322 0.258 5.503 0.352 5.583 0.276 5.043 0.137
CLS + LM Head 20.512 0.486 27.341 0.877 26.021 0.798 34.210 0.841
Captured (Model) 222.597 - 239.438 - 260.806 - 278.618 -

Model 234.498 4.466 245.985 4.135 279.116 4.422 304.458 5.907
% Capture (Model) 94.925 - 97.338 - 93.440 - 91.513 -

RoBERTa

Attention Block 14.996 0.398 17.547 0.438 18.979 0.426 18.479 0.332
FFN (Intermediate) 3.368 0.412 3.418 0.170 4.657 0.496 5.582 0.655

FFN (Output) 5.204 0.349 5.687 0.396 7.378 0.196 8.331 0.526
Block 32.960 0.703 35.684 1.005 40.294 1.569 41.712 1.503

Embedding Layer 12.383 0.360 14.455 0.541 15.189 0.778 12.794 0.345
CLS + LM Head 39.649 0.872 55.586 0.626 70.320 0.797 77.164 1.159
Captured (Model) 447.552 - 498.249 - 545.035 - 590.506 -

Model 470.720 5.510 506.925 5.836 553.857 4.894 594.927 7.070
% Capture (Model) 95.078 - 98.289 - 98.407 - 99.257 -

Table 15: Energy consumption trends with varying input token lengths tokens) for encoder
only (Base) models
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Component 32 Tokens 64 Tokens 96 Tokens 128 Tokens
Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

ALBERT-Large

Attention Block 17.730 0.472 19.696 0.645 22.541 0.529 24.279 0.435
FFN (Intermediate) 3.364 0.812 3.399 0.927 5.134 0.888 4.352 0.821

FFN (Output) 4.117 0.688 4.724 0.900 5.424 0.956 6.064 0.913
Block 39.912 0.474 44.930 1.058 51.089 0.969 55.649 0.597

Embedding Layer 7.881 0.163 7.846 0.417 7.849 0.397 7.914 0.383
CLS + LM Head 14.461 0.671 15.293 0.715 17.528 0.609 22.213 0.457
Captured (Model) 980.23 - 1101.46 - 1251.52 - 1365.71 -

Model 1029.60 5.731 1151.70 20.540 1320.18 9.018 1394.97 7.538
% Capture (Model) 95.205 - 95.638 - 94.799 - 97.903 -

BERT- Large

Attention Block 18.641 0.275 20.986 0.405 23.092 0.670 24.792 0.351
FFN (Intermediate) 5.424 0.208 6.216 0.630 7.962 0.797 7.189 0.766

FFN (Output) 8.593 0.491 9.499 0.541 12.091 0.859 12.533 0.752
Block 37.557 0.942 41.864 1.259 48.511 1.519 50.453 1.124

Embedding Layer 7.729 0.311 8.106 0.413 8.131 0.403 8.145 0.326
CLS + LM Head 32.645 0.943 39.421 0.926 41.166 0.892 40.203 0.470
Captured (Model) 941.732 - 1052.26 - 1213.56 - 1259.22 -

Model 932.191 13.932 1060.72 28.963 1206.09 13.967 1276.73 8.691
% Capture (Model) 101.024 - 99.202 - 100.620 - 98.628 -

Distil RoBERTa

Attention Block 15.753 0.276 17.618 0.401 18.913 0.426 18.517 0.365
FFN 3.499 0.374 3.542 0.343 4.595 0.508 5.488 0.679
Block 5.287 0.354 5.664 0.450 7.623 0.423 8.228 0.474

Embedding Layer 33.617 0.759 35.723 1.081 39.958 1.678 41.404 1.463
CLS + LM Head 12.882 0.307 14.689 0.416 14.714 0.358 12.636 0.346
Captured (Model) 39.648 0.854 55.718 0.776 70.263 0.816 77.483 1.026

Model 254.234 - 284.747 - 324.726 - 338.543 -
% Capture (Model) 270.513 4.867 292.914 3.888 319.139 5.044 341.740 5.520

RoBERTa-Large

Attention Block 18.648 0.346 20.390 0.353 22.573 0.386 24.780 0.474
FFN (Intermediate) 5.437 0.219 5.567 0.131 7.809 0.834 7.066 0.813

FFN (Output) 8.476 0.553 9.417 0.539 11.755 0.691 12.475 0.750
Block 36.273 0.979 40.831 1.651 47.154 1.870 50.343 1.970

Embedding Layer 14.251 0.372 14.534 0.406 14.647 0.411 14.609 0.391
CLS + LM Head 51.022 0.958 69.201 1.015 89.032 1.128 94.427 0.949
Captured (Model) 935.819 - 1063.67 - 1235.36 - 1317.27 -

Model 965.216 9.228 1054.90 6.207 1238.24 10.077 1347.08 23.636
% Capture (Model) 96.954 - 100.831 - 99.768 - 97.787 -

Table 16: Energy consumption trends with varying input token lengths tokens) for encoder
only (Large) models
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