Under review as a conference paper at ICLR 2024

IMPLICIT REINFORCEMENT LEARNING PROPERTIES IN
SUPERVISED TRANSFORMER-BASED OBJECT DETEC-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

We identify the presence of exploration and exploitation dilemma during the train-
ing of one of the best models of supervised transformer-based object detection,
DINO. To tackle this challenge, we propose a new approach to integrate rein-
forcement learning into supervised learning. Specifically, we apply the e-greedy
technique directly to the query selection process in DINO, without heavily mod-
ifying the original training process. This approach, which involves only a few
lines of code, results in a noteworthy performance enhancement of 0.3 AP in the
standard configuration with 6 layers of encoder/decoder, 4 scales, and 36 epochs,
as well as a large margin of 1.8 AP improvement in the configuration with 2 lay-
ers of encoder/decoder, 4 scales, and 12 epochs. We attribute these improvements
to the implicit reinforcement learning properties inherent within design of DINO.
To substantiate this assertion, we illustrate the presence of implicit reinforcement
properties within supervised learning by framing the problem of box proposal as
a multi-armed bandit problem. To demonstrate its viability, we transform Monte
Carlo policy gradient control of multi-armed bandit problem into a supervised
learning form through a series of deductive steps. Furthermore, we establish an
experimental support for our findings by visualizing the improvements achieved
through the e-greedy approach.

1 INTRODUCTION

Object detection stands as a foundational task in the field of computer vision. Advanced computer
vision algorithms usually test their ability on object detection, and significant advancements have
been made in this domain over the past decade. Recently, DETR(DEtection TRansformer) has
introduced Transformers and offering a new concise approach to fulfill object detection, without
many hand-designed components.

In our investigation of DINO, one of the best DETR-based models, we find intriguing patterns in
query usage and boxes which queries produced. Among the 900 queries selected from feature maps,
which contain approximately 10,000 queries, we observed instances where the model employed
queries that were clearly inappropriate for predicting corresponding objects. As illustrated in Figure
there are instances of using queries of large initial box to predict small objects. In this case, the
model has used some proper queries to do prediction. However, using seemingly improper queries
could waste part of representation capacity, potentially hindering overall prediction quality.

We attribute this pattern to that those unused queries are left nearly untouched in the training process.
Therefore, the model tends to depend on familiar queries to do prediction once familiar queries are
good enough. We make this assumption since the queries selection contains top-K selection, and
following decoder doing box refinement by operations of deformable attention. The former passes
only selected queries to following operation and leaves unused queries completed untouched. The
latter make the selected queries attend only those queries around them (Zhu et al., 2020). These two
factors limit model to know the result of taking other queries.

The pattern of using clearly inappropriate queries and our proposed explanation for this behavior
remind us the exploration and exploitation dilemma which frequently encountered in reinforcement
learning. The dilemma is about to exploit what model has already experienced in order to obtain

Under review as a conference paper at ICLR 2024

R RN

R o R KN
PSSk TR Ptk
i i

D

T

ﬂ‘a‘

(a) Ground Truth (b) DINO (c) DINO(e-greedy)

Figure 1: these heatmaps represent results of DINO and DINO with e-greedy. The green part
represents queries not used in box proposal. The box of white dotted line shows size of initial box
proposal(anchor). Boxes of this size are obviously not suitable for predict small object like airplanes
in this image. However, the DINO model leverages these boxes to do prediction. Here we show only
box proposal of the largest initial box. The detail comparison of feature maps of all size of box is
shown in Figure 5]

reward, but model also has to explore in order to make better action selections in the future (Sutton
& Barto, 2018)). If the model focuses too much to exploit its knowledge to maximize the reward, the
model will stick to some sub-optimal strategies which it familiar with, ignoring potential opportunity
to get better reward. This exploitation behavior shows similarities to what we find in training DINO.
First, both of situations show pattern that using sub-optimal queries/strategy. Second, the reasons of
both situations are lack of exploration of potential better queries/strategy.

Inspired by the similarities between these two situations, we decide to solve the problem using
clearly inappropriate queries by adapting reinforcement learning techniques. One of the most
straightforward solution to deal with exploration and exploitation dilemma is e-greedy, which en-
force the reinforcement learning agent to explore strategy which agent won’t take. To adapt this
technique, we have to find a reasonable transform to turn a supervised learning problem into a rein-
forcement learning problem.

To bridge the gap between supervised learning and reinforcement learning, we have to formulate
query selection in DINO as a multi-armed bandit problem. A multi-armed bandit problem is a game
that player try to optimize payoffs by concentrating its actions on the best levers of slot machines.
For each box proposal on points of feature maps, we consider it as one arm of a multi-armed bandit
problem. The action is using box proposal on the point or not, based on classification logit on the
point. We illustrate these correspondences in Figure[2] And we take advantage of update gradient
as reward, to encourage model to find the greatest gradient update in batch, which will lead to
lower loss. Building on these assumptions, we discover a viable transformation that allow us to find
Monte-Carlo policy-gradient control in DINO. This suggests that implicit reinforcement learning
properties may exist within the framework of original supervised learning formulation.

Exploiting this transformation, we could introduce e-greedy approach to DINO. By introducing
noise into the top-K selection, we force DINO to occasionally consider unfamiliar queries, mitigat-
ing the use of seemingly inappropriate queries. The impact of this modification is readily apparent,
as shown in Figure([I} it is obvious that DINO with e-greedy no longer employs the largest initial box
to predict small object. Besides the improvement on visualization, e-greedy approach also enhances
performance of DINO by 0.3 AP in the standard configuration with 6 layers of encoder/decoder, 4
scales, and 36 epochs, as well as a large margin of 1.8 AP improvement in the configuration with 2
layers of encoder/decoder, 4 scales, and 12 epochs.

Together, the experimental and theoretical findings support presence of reinforcement properties in
supervised learning, including the trade-off between exploration and exploitation, choosing actions
to influence their environments (in this case, decoder and loss computation), and updates involving
only the taken action at a given time rather than all possible actions. Further details of our research
and analysis are discussed in the subsequent sections of this paper.

Under review as a conference paper at ICLR 2024

77

Environment
Transformer
Decoder
Static Content Ié"% Action
Query
Init Anchors
(Positional Query)
Query Selection Slot Machines Actor]

ﬂﬁ&&&ﬁﬁ& mo %A
PR TERRT sceed

(a) DINO (b) Bandit Problem

Figure 2: This figure depicts the correspondences between DINO and bandit problem.

2 RELATED WORK

2.1 TRANSFORMER-BASED END-TO-END OBJECT DETECTORS

DETR (Nicolas Carion & Zagoruyko, 2020) is the first model to successfully solve the set prediction
problem in object detection, ushering in a new era of end-to-end object detection with transformers.
In contrast to classical object detectors (Redmon & Farhadi, 2016; |Abdullal 2017; Ren et al., 2015;
Tian et al.,|2019; Lin et al.| 2018} Bochkovskiy et al., [2020; |Ge et al.,|2021)), DETR does not depend
on hand-designed components like anchor design and non-maximum suppression. Instead, DETR
employs a standard Transformer encoder-decoder architecture to transform the input featuremaps
into be features representing a set of object queries. Next, a feed-forward network detection head
takes the object queries features to produce bounding box prediction. Finally, the bounding box
prediction and corresponding label are then utilized to compute a set-based Hungarian loss. Via
bipartite matching, it force model to learn unique prediction for each ground-truth bounding box.

Despite the attractive fully learnable design without the need for hand-designed components, DETR
suffers from low performance on small objects and slow convergence. Consequently, researchers
have proposed various methods to improve DETR. DN-DETR (Li et al.|[2022) introduces denoising
training to address the slow convergence issue of the one-to-one set matching strategy. Deformable-
DETR (Zhu et al.,[2020) leverages multi-scale deforamable attention to improve both performance
and training efficiency. Efficient-DETR (Yao et al., 202 1)) enhances decoder queries by selects top K
positions from encoder’s dense prediction. DAB-DETR (L1u et al.|[2022) introduces advanced query
formulation to further enhance performance. DINO (Zhang et al., 2022) combines the strengths of
these previous researches and incorporates an improved contrastive denoising technique. In this
work, we adopt DINO as base object detector.

2.2 REINFORCEMENT LEARNING AND SUPERVISED LEARNING

Reinforcement learning has demonstrated its superior ability in numerous domains. In real-time
strategy games, for instance, model equipped with reinforcement learning have outperform even
professional player (Arulkumaran et al.l 2019} [Silver et al., |2017). As a result, researchers have
made many attempts to integrate reinforcement learning into existing algorithms, including object
detection. For instance, approach in (Uzkent et al.l |2020) used reinforcement learning to select
appropriate resolution in order to efficiently process very large image, while solution of (Bellver
et al.,|2016) utilizes reinforcement learning to focus parts of the image containing richer information.
Additionally, SSE (Dai et al., [2018)) also leverages reinforcement learning to directly optimize to
the objective function of combinatorial optimization problems over graphs. (Caicedo & Lazebnik
(2015); Mathe et al.| (2016) proposes the use of reinforcement learning to do objects localizing,
aiming to replace man-made localizing rules. Furthermore, drl-RPN (Pirinen & Sminchisescul 2018)

Under review as a conference paper at ICLR 2024

has employed reinforcement learning to replace classical RPN using greedy selection from class-
agnostic NMS.

At the same time, some supervised learning tasks have been shown to have a close relationship
with reinforcement learning. [Pfau & Vinyals|(2017) proposes that a generative adversarial network
(GAN)(Goodfellow et al., 2014) could be view as actor-critic methods in an environment where the
actor cannot affect the reward. This observation has inspired us to apply reinforcement learning
tricks to supervised learning.

3 BACKGROUND

In this section, we provide a concise introduction to the key components of two areas that are used to
provide theoretical support of formulate end-to-end object detection with transformers to reinforce-
ment learning.

3.1 END-TO-END OBJECT DETECTION WITH TRANSFORMERS

The structure of DINO model could be separated into 6 functional blocks. That is backbone, trans-
former encoder, query selection, transformer decoder, bipartite matching, denoising part. Too keep
the comparison of two different learning easy to read, we illustrate only the query selection relating
parts, namely transformer encoder, query selection and transformer decoder in left part of Figure 2]

The transformer encoder process features from backbone, the query selection selects features come
from encoder and make box proposal, the decoder refine the box and do final prediction. Here, in
convenience of explanation, we include box proposal into query selection.

In our research, we adopt a mixed query selection approach proposed by DINO, which initiates
positional queries from top-K encoder features (called dynamic), while leave the content queries
independent from input (called static). But since we’re deal with query selection in mixed query
selection approach, we use only dynamic query in our deduction. For dynamic queries, the q has
priors from encoder features, the dynamic queries could be express by:

qdynamic = Q(St) (1)
where () is query selection function, s, is features of all feature maps of transformer encoder.

In order to see how the q g, affect the training, we express the loss computation as:

loss = L(DEC(s¢t, Qynamic)))

In Equation 2| the encoder feature s; and q,;,,,, 4. are sent to decoder to do prediction, and predic-
tion is sent to loss function £ to compute loss. With this loss computation, a supervised gradient
descent update step could be:

a(‘C(DEC(St’ qdynamic)))
00

where 6 is parameter of model, for example, parameter of query selection. « is update step size.

3)

9n+1 = Gn —

3.2 REINFORCEMENT LEARNING

The reinforcement learning is an optimization problem of how to map environment state to agent
action, in order to maximize reward signal. The learner’s objective is to explore and remember
which actions result in the highest rewards through a process of trial and error.

To enhance the learning ability of reinforcement learning algorithms, various update methods have
been developed. One of the simplest versions is Monte-Carlo policy-gradient control (Sutton &
Bartol2018)), which update model once for each episode (from start to termination). In this approach,
the update amount is proportional to the full Monte Carlo return G, which is the sum of rewards
obtained throughout the episode. The formula to update parameter of policy by Monte-Carlo policy-
gradient control is:

Under review as a conference paper at ICLR 2024

Vﬂ'(At‘St, 9,5)

0i11 =0+ G
t+1 t t 7(A7]Sy, 62)

“4)

where 6 is parameter of policym, « is update step size, A; for action taken, S; for state been seen.
The action policy of an agent is usually described in two aspects, first is how it produces action a
from state s by parameter 6, and probability to take the action:

a = my(s) and probability of A; as my(A¢|s) (5)

3.3 &-GREEDY

One of the primary challenges that arise in reinforcement learning is the trade-off between explo-
ration and exploitation(Sutton & Barto, 2018). A simple and effective approach to addressing this
dilemma is e-greedy method. The e-greedy is designed to behave greedily most of the time. But
with small probability ¢, the agent selects randomly from all the actions with equal probability,
independent of model’s policy.

4 ALGORITHM

In this section, we outline how we reframe the problem of box proposal in object detection as a
multi-armed bandit problem. Additionally, we briefly describe the deduction steps to convert Monte
Carlo policy gradient control of the multi-armed bandit problem into a supervised learning approach.
Detail of deductions are provided in the appendix.

4.1 PROBLEM REFORMATION

To reformulate the problem, we map the key components in the DINO model to the framework
of a reinforcement learning problem. In reinforcement learning, three fundamental elements are
identified: sensation, action, and goal (Sutton & Barto, 2018)). Also, we explain one common trait
of reinforcement learning of sequence decision making.

Sensation: The objective of object detection based on an image remains unchanged. Therefore,
the sensation corresponds to the input image.

Action: We associate query selection with the concept of taking action. Figure [2]illustrates the
correspondence between each component of the DINO model and the multi-armed bandit problem.
On the left side of the figure, it depicts the process that model passes queries to the decoder through
the query selection operation, with each query proposing a bounding box. On the right side of the
figure, it depicts the process that reinforcement learning model passes actions to the environment
through the actor, with each lever of a slot machine being pulled or left untouched. With these
correspondences, we can consider query selection as analogous to a player, and each point on feature
maps acts like one lever on a slot machine. The query selection operation selects queries from K
points, resembling the action of pulling K levers. In the multi-armed bandit problem, the player
must decide which levers to pull in order to maximize their reward from the machine. Similarly,
query selection chooses queries to influence the prediction process, aiming to minimize the loss.
The influence of query selection on prediction is the reason we consider it as action.

Goal: To minimize modifications to the original process, we only use the original loss function.
Under this setup, we define the goal in reinforcement learning form as maximizing of the negative
loss of object detection. This goal makes the reward becomes negative gradient of original object
detection loss w.r.t. query selection. This transform actually does not modify any training operation.
This is because the update direction of reinforcement learning and supervised learning will be the
same since loss minimization is equivalent to negative loss maximization.

Under review as a conference paper at ICLR 2024

Sequence Decision Making While the player in the bandit problem could receive reward imme-
diately after taking an action, the bandit problem is not solely about maximizing rewards in a single
step. Instead, it seeks to maximize the cumulative reward in the long run (n steps). Corresponding
to this property, even though we employ batch gradient descent in our object detection task, the
primary objective is to minimize the loss for all data points. For bandit problem described in (Sutton
& Barto, |2018), algorithm performance is evaluated over 1,000 time steps across 2,000 independent
bandit problems. Then we describe the update process of object detection as time steps (i.e., steps
in 36 epochs) and each data point (i.e., an image) as an independent bandit problem.

4.2 TRANSFORMATION FORMULATION

With the problem reformulation, we could set three basic assumptions about sensation, action and
goal, which represented by reward. Firstly, we ignore the image input as sensation here since it is
straightforward. Secondly, we assume the query q,,,,,q,,. i$ action:

= At ~ W(St) (6)

qdynamic

Thirdly, we use the negative gradient as reward:

3(*£(DEC(st, qdyn(unic)))
ap(qdynamic‘st? 9)
We deduct the transformation from reinforcement learning end to supervised learning end. Here

we substitute return G; with reward in Equation [7] and substitute policy = with query preference
(classification logit) PP, in Monte Carlo policy gradient formula, Equation[d] The formula becomes:

(7

ry =

a(i‘a(DEC(Sh qdynamic))) vp(qdynamic‘sh 9)

Ot 1= Gt + (8)
M ap(qdynamic|st7 0) P(qdyn,amic|8t7 9)

Rewrite the VP into partial derivative as follows:

0t+1 _ gt + a(_‘c(DEC(Stvqdynami,c))) ap(‘]dynamic"st’g) 1 9)

ap(qdy71amic|st7 9) 00 ,P(qdynam,ic‘sh 0)
Finally, by the chain rule, we simplify Equation [0}
O(L(DEC(S¢, Qyynamic 1
61— 6, (L(DEC(st, Qaynamic))) (10)
o0 P(qdynamic|5t’ 9)

Comparing Equation [T0] with Equation [3] of supervised update step of DINO, apparently Equation
is a supervised update, except Monte-Carlo policy-gradient is normalized by P(qdynamic|st, 0)
fo avoid in favor of frequently used actions. Now it is clear that updating 6 by the Monte-Carlo
policy-gradient control could be transformed to updating 6 by supervised learning, and vice versa.

4.3 e-GREEDY IN QUERY SELECTION

We have explored various alternatives to the original random action selection process within the e-
greedy framework. Among these alternatives, we have found shifted top-K with ¢ probability yields
the best results.

To express shifted top-K query selection, first we look closer to the top-K operation. We could write
the top-K selection into a general form:

PisPis1s - Pipi = topK(p, i) (1)

for ¢ indicate start index of the top-K selection, p for probability logit of each query. By this equation,
ordinary top-K could be deemed as special case of start index 7 is 0:

Under review as a conference paper at ICLR 2024

SR
PtV Sty s

{\\LY [\
B ian) | o

SR
oy g
[PA\DP [
j

(b) mixed query selection(DINO)

ES £ 4 S

& & & «

———

NN

prant Y SAY
o

ST
A\

() ground truth boxes s '_.‘.‘.::m‘ ggi\l\l\\\\“\\\

Pt Sy

| F\ALY

T

(c) mixed query selection with e-greedy

Figure 3: This figure shows heatmaps of queries which the mixed query selection and mixed query
selection withe-greedy selecting. For [3b] and from left to right, they are result of small to big
bounding box queries, each for featuremap of different scale. Each square block of heatmap (blue
to purple to red) represents a query, while region of no heatmap (green) is for queries not used. The
color of heatmap represents value of normalized classification logits. Red for higher value, blue for
lower value. We show the size of the initial box with a white dotted box for each of the feature map.

Q(s¢,1) = q; ,where j for p; € topK (Pe(st),1),1 =0 (12)

If we set a probability € for that start index will shift by an amount d, then ¢ could be represented by
a function I (e, s). We further substitute (&, s) into Equation[12]as:

Q(st,1) = q; ,where j for p; € topK (Py(st),), i = I(e,d) (13)

Equation|I3|means the query selection will pick the g ,, 4, Of length K from q which have greatest
p- But with a small probability, it chooses q,,,,q,,; Which start from dth largest p. In implementa-
tion, we simply modify the top-K operation that take 900 queries based on their logit values to take
the queries ranging from 200th greatest to 1100th greatest, during the nongreedy exploration.

5 EXPERIMENTS

The visualization of query usage helps us to find the pattern of using clearly inappropriate queries,
and we make an assumption of implicit reinforcement learning properties within DINO. Extending
from the original visualization experiment, we visualize the query usage to verify the exploration and
exploitation dilemma is mitigated with e-greedy, and conduct experiment of DINO, to see how our
solution enhance performance of DINO. In addition to individual image analysis by visualization,
we conducted a statistical analysis to estimate behavior differences across all validation data. The
COCO performance enhancement by introducing e-greedy also providing a strong experimental
support to our assumption. The detail of training setting is provided in the appendix.

5.1 VISUALIZATION OF EXPLORATION AND EXPLOITATION DILEMMA

A way to directly demonstrate existence of the exploration-exploitation dilemma is showing there’s
a better choice of action for current state for a converged strategy. Figure [5]illustrated a heatmap of
dynamic queries both DINO and DINO with e-greedy selecting. Each of them is standard 4 scales
DINO, trained for 36 epoch. These heatmaps compromise two parts. First part is heatmap with

Under review as a conference paper at ICLR 2024

—— original_DINO
—— DINO_with_epsilon_greedy

classification logit value
|
N

0 200 400 600 800
queries from lowest classification logit to largest

Figure 4: This figure displays classification logit values for selected queries, arranged in ascending
order of rank. The solid lines represent the mean logit value across the validation set, while the
shaded regions indicate the logit variance over the validation set. For x axis of Figure[d] it represents
the rank of classification logit values for the selected queries, ordered from small to large. For the y
axis, it represents the value of classification logit.

color from blue to red for queries model selected. Second part is region for queries not used, which
directly shows ground truth in the background with color of green.

For DINO, first we could easily observe that DINO choose many queries of large box featuremap(4th
from the left) for an airplane object on the top, even though the airplane is not a large object, com-
paring to the initial box of white dotted line. Furthermore, the large box featuremap have its highest
classification logit value locating at region of sky, not on the airplane. It is very clear that a better
strategy is to use queries of smaller box featuremap and put highest classification logit value right on
the airplane. In contrast, we observe no usage of large box for DINO with e-greedy for the airplane,
and also it puts the highest classification logit value on the airplane for feature maps, except the large
box feature map it don’t use.

Additionally, the queries of DINO with e-greedy are tightly clustered around the airplanes. By con-
trast, the queries of original DINO usually exhibit irregular shapes. Moreover, the queries of highest
classification logit value of DINO are nearly isolated, indicating a lack of neighboring queries. These
observations support that DINO with e-greedy has explored potential better queries for prediction,
just like what we expect for e-greedy. We provide more examples of this analysis in the appendix.

5.2 ANALYSIS OF BEHAVIOR DIFFERENCE

In addition to the visualization of individual images, we conducted an examination of the behavioral
differences between DINO and DINO with the e-greedy strategy across all validation data, employ-
ing statistical tools. Figured]llustrates a notable behavioral difference: DINO with e-greedy assigns
higher classification logit values to a greater number of queries. This observation aligns with our
expectation that model with e-greedy explores a wider range of queries, resulting in being famil-
iar with more queries. This analysis demonstrates that e-greedy affects query selection not only in
visualization of single image, as we showing in Figure 5]

5.3 IMPROVEMENT ON COCO OBJECT DETECTION DATASET BY £-GREEDY

To show existence of phenomenon that e-greedy mitigates the negative effect of exploration and
exploitation dilemma, we have conducted experiments with various noise setting. First, we show
that with specific design, e-greedy improves DINO performance in standard setting. Second, we
demonstrate that a broad range of noise implementation will help model to perform better, in setting
of shallower layers.

Performance Improvement on standard DINO: In Table |I} we present the results of testing
DINO with e-greedy model in a fully converged setting of object detection training. For our baseline
model DINO, it converges at 36 epochs. Therefore, we compare the performance of DINO with e-
greedy model also under the same 36 epochs setting. And we observe an improvement in AP by 0.3,
resulting in a performance of 51.2 AP.

Under review as a conference paper at ICLR 2024

Model EpOChS AP AP50 AP75 APS APM APL
Faster-RCNN 108 42.0 624 442 205 458 61.1
DETR(DCS) 500 43.3 63.1 459 225 473 61.1
Deformable-DETR 50 46.9 - - 29.6 50.1 61.6
DAB-Deformable-DETR 50 46.9 66.0 508 30.1 504 625
DN-Deformable-DETR (4scale) 50 48.6 674 527 31.0 520 63.7
DINO-4scale(e2/d2) 12 41.9 587 455 250 453 548
DINO-4scale 12 49.0 66.6 535 320 523 63.0
DINO-4scale 36 50.9 69.0 553 346 541 64.6
DINO-4scale(e2/d2) with e-greedy 12 43.7(+1.8) 609 478 268 469 57.0
DINO-4scale with e-greedy 12 49.2(+0.2) 665 535 319 523 639
DINO-4scale with e-greedy 36 51.2(+0.3) 689 558 349 543 655

Table 1: Results for DINO with e-greedy in different model depth and training period. This figure
shows DINO with e-greedy surpass original DINO in COCO 4scale, ResNet-50 for all setting

Model AP AP50 AP75 APS APM APL
DINO-4scale(e2/d2) 41.9 58.7 455 250 453 548
DINO(with e-greedy 0.05, shifted-top-K) 433(+1.4) 603 472 263 46.7 55.7
DINO(with e-greedy 0.3, shifted-top-K) 42.3(+04) 59.2 46.1 253 453 549

DINO(with e-greedy 0.05, uniform distribution) 43.1(+1.1) 60.3 46.7 252 462 564

Table 2: this table shows detection result of various noise setting, with 2 layers of encoder and 2
layers of decoder, with backbone of ResNet-50, trained for 12 epochs. Here we observe an overall
enhancement with arbitrary noise setting.

During the training process, the original strategy based on pure supervised learning tends to rely
on greedy actions, which can lead to sub-optimal strategies. However, by introducing the e-greedy
approach, which enforces exploration, we observe performance improvements in the models. This
indicates that the models are now capable of exploring potentially better strategies and avoiding
being stuck in sub-optimal solutions, which result in the improvement. These findings provide
strong evidence for the existence of the exploration and exploitation dilemma in the training process,
supporting that our implicit reinforcement learning properties concept is true.

Test on various noise implementation: Our results, shows in Table@] under the configuration of
2 layers of encoder and 2 layers of decoder, with a ResNet-50 (He et al.| [2015) backbone.

For different possibility to take sub-optimal boxes, both probability 0.05 and 0.3 result in perfor-
mance improve at +1.4AP and +0.4AP, respectively. Additionally, explored an alternative approach
by replacing the top-K shifting by random selection of dynamic queries using uniform distribution,
with probability 0.05 to happen. This approach also achieved enhancement of +1.1AP.

These results consistently demonstrate performance improvements across different probabilities and
types of noise. These evidences are strongly support that exploration and exploitation dilemma
indeed happens in training of DINO object detection.

6 CONCLUSION

In this study, we investigate query usage in DINO, one of the leading transformer-based object de-
tection models. Our analysis reveals a pattern that could be sign of exploration and exploitation
dilemma. This finding motivates us to apply e-greedy technique to DINO, which is pure supervised
learning algorithm. To verify the viability, we represent evidences from both theoretical and experi-
mental perspectives. These pieces of evidence not only support the viability of our approach but also
suggest the presence of implicit reinforcement learning properties within supervised learning. This
finding opens up new avenues for applying reinforcement learning techniques directly to supervised
learning, without the need for explicit reinforcement learning training interactions.

Under review as a conference paper at ICLR 2024

REFERENCES

Waleed Abdulla. Mask r-cnn for object detection and instance segmentation on keras and tensorflow.
https://github.com/matterport/Mask_RCNN, 2017.

Kai Arulkumaran, Antoine Cully, and Julian Togelius. AlphaStar. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion. ACM, jul 2019. doi: 10.1145/3319619.
3321894. URL https://doi.org/10.1145%2F3319619.33211894.

Miriam Bellver, Xavier Giro-i Nieto, Ferran Marques, and Jordi Torres. Hierarchical object detection
with deep reinforcement learning, 2016. URL https://arxiv.org/abs/1611.03718,

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and
accuracy of object detection, 2020.

Juan C. Caicedo and Svetlana Lazebnik. Active object localization with deep reinforcement learning,
2015.

Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp- 248-255, 2009. doi: 10.1109/CVPR.2009.5206848.

Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series in
2021, 2021.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdfl

Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni, and Lei Zhang. Dn-detr: Accelerate
detr training by introducing query denoising. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13619-13627, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet,
Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), Computer Vision — ECCV 2014, pp.
740-755, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10602-1.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense object
detection, 2018.

Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, and Lei Zhang.
DAB-DETR: Dynamic anchor boxes are better queries for DETR. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
oMI 9P j0b9J1l

Stefan Mathe, Aleksis Pirinen, and Cristian Sminchisescu. Reinforcement learning for visual object
detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2894-2902, 2016. doi: 10.1109/CVPR.2016.316.

Gabriel Synnaeve Nicolas Usunier Alexander Kirillov Nicolas Carion, Francisco Massa and Sergey
Zagoruyko. End-to-end object detection with transformers. In European conference on computer
vision, 2020.

10

https://github.com/matterport/Mask_RCNN
https://doi.org/10.1145%2F3319619.3321i894
https://arxiv.org/abs/1611.03718
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://openreview.net/forum?id=oMI9PjOb9Jl
https://openreview.net/forum?id=oMI9PjOb9Jl

Under review as a conference paper at ICLR 2024

David Pfau and Oriol Vinyals. Connecting generative adversarial networks and actor-critic methods,
2017.

Aleksis Pirinen and Cristian Sminchisescu. Deep reinforcement learning of region proposal net-
works for object detection. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6945-6954, 2018. doi: 10.1109/CVPR.2018.00726.

Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. In Advances in Neural Information Processing Systems
(NIPS), 2015.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533—-536, Oct 1986. ISSN 1476-4687. doi: 10.1038/
323533a0. URL |https://doi.org/10.1038/323533a0.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent
Sifre, George Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of go without
human knowledge. Nature, 550:354-359, 10 2017. doi: 10.1038/nature24270.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object
detection, 2019.

Burak Uzkent, Christopher Yeh, and Stefano Ermon. Efficient object detection in large images
using deep reinforcement learning. In The IEEE Winter Conference on Applications of Computer
Vision, pp. 1824-1833, 2020.

Zhuyu Yao, Jiangbo Ai, Boxun Li, and Chi Zhang. Efficient detr: Improving end-to-end object
detector with dense prior, 2021.

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M. Ni, and Heung-Yeung
Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection, 2022.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

A APPENDIX

A.1 ALGORITHM BACKGROUND DETAIL

Here we provide more detail about knowledge of both reinforcement learning and DINO we used in
transformation deduction.

Reinforcement Learning: The reinforcement learning is an optimization problem of how to map
environment state to agent action, in order to maximize reward signal. The learner’s objective is to
discover and remember which actions result in the highest rewards through a process of trial and
error.

To enhance the learning ability of reinforcement learning algorithms, various update methods have
been developed. One of the simplest version is Monte-Carlo policy-gradient control (Sutton &
Bartol |2018), which update model once for each episode(from start to termination). In this approach,
the update amount is proportional to the full Monte Carlo return G, which is the sum of rewards
obtained throughout the episode. The formula to update parameter of policy by Monte-Carlo policy-
gradient control is:

Vﬂ'(At‘St, Ht)

0,11 =0, +aG
t+1 t t (41155, 6)

(14)

11

https://doi.org/10.1038/323533a0

Under review as a conference paper at ICLR 2024

where 0 is parameter of policyr , « is update step size, A; for action taken, S; for state been seen.
The action policy of a agent is usually described in two aspects, first is how it produce action a from
state s by parameter 6:

a=my(s) (15)

and what is the probability of a action taken:

probability of A; as mg(A¢|s) (16)

End-to-End Object Detection with Transformers: In end-to-end object detection with trans-
formers models, the decoder input queries consist of two components: content queries and positional
and content queries. In the original version of DETR, these queries are initialized as zero vectors
and embedding vectors, respectively, without directly incorporating information from the encoder
features extracted from the input image. This approach is referred to as static queries. On the other
hand, dynamic queries take advantage of information from the input by considering the encoder fea-
tures. For instance, Deformable DETR introduces a query selection variant that utilizes the top-K
encoder features from the last encoder layer as priors.

In our research, we adopt a mixed query selection approach proposed by DINO, which initiates
positional queries from top-K encoder features, while leave the content queries static. For this
paper, for simplicity, we show only positional queries as q.

First, we formulate DETR detection as:

ﬁdec = DEC(St7 qstatic) (17)

where s; is all feature maps of transformer encoder from image input, DEC is transformer decoder,
Qraric TOT static queries, Sge. is final box proposal from transformer decoder. For dynamic queries
like mixed query selection, the q has priors from encoder features. The dynamic queries could be
express by:

Yaynamic = Q(St) (18)
where @ is query selection function.

The query selection prioritizes features based on their value of logits. Let P represent function for
producing logits p from encoder features, 8 be parameter of P :

P = Po(st) (19)

With p.the mixed query selection now can be express as:

Q(s1) = g ;where j for p, € topK (Py(s1)) (20)

where topK produce K largest elements of a set. Equation [20] means we choose q,,,q/ic from
original dynamic queries q according ranking of p. For the convenience of reading, we represent the
topK (Py(s:)) and selection of p with S:

qdynami(: = S(qv P(st)) 2D

Incorporate Equation[I7] loss function £ and set the queries dynamic, a one step forward of end-to-
end object detection with transformers with dynamic queries can be express as:

loss = L(DEC(s¢, Q4ynamic)) (22)
By Equation [22] that model now is been separated to 3 modules. First is encoder to produce encoder

feature s;. Second is functions to control query generation and selection. Third is the controlled
decoder and loss function.

Usually, for a supervised gradient descent update step for Equation it should be:

12

Under review as a conference paper at ICLR 2024

6(£(DEC(St’ qdynamic)))

00 3)

9n+1 = Hn —
where 6 is parameter of model, for example, parameter of P. « is update step size.

A.2 TRANSFORMATION DEDUCTION DETAILS

Here we provide a complete deduction steps of proposed transformation.

End-to-End Object Detection with Transformers to Reinforcement Learning: First, we as-
SUME {4,y 41, 1S aCtion:

= At ~ W(St) (24)

qdynamic

And although the Equation [20]is a deterministic process, here we conceptual regard it as a sample
process, then:

qdynam,ic ~ S((L Pe(St)) (25)

Therefore,

’/T(At‘sta et) = ’P(qdynamic"st» 9) (26)

and @ now is 0, S is s¢, At 1S Qgy,qmic- All states and actions here are seen and produced in one
update step. Now the probability that encoder selects a q g, ,, 4. 1S €quivalent to a policy choose an
action.

Second, to rewrite Equation[22]into reinforcement learning form, we have to make loss minimization
become reward signal maximization. We consider the original minimization is equal to finding
greatest negative gradient of final prediction, in respect to P(q 4, qmiclSt, @) - And we take negative
sign to turn minimization to maximization, and Equation 22]becomes:

a(_‘C(DEC(St’ qdynamic)))
IP()

27

ry =
qdynamic

Then this supervised learning optimization step could be deemed to a one step reinforcement trajec-
tory, which means the episode ends after taking only one action. The reason of this interpretation
comes from samples of COCO dataset are independent of each other. It is just like each indepen-
dent bandit problem. Furthermore, this interpretation will make decoder and loss function belong to
environment, and the function) belong to agent.

By Equation[27], since episode terminates immediately, the 7 is G. This is corresponding to bandit
problem that updates right after taking one action. We ignore discount factor v and set step size «
to 1. Then we substitute the Equation [7)into Equation [I4]to replace G:

8(_[’(DEC(St’ qdynamic))) VW(At |Sta at)

0,01 =6, + (28)
o ! 8P(qdynamic|3t7 9) W(At ‘Stv 915)
Next, according to Equation [26] we substitute = with P:
0t+1 -0, + a(_‘c(DEC(stvqdyn,ami,c))) Vp(qdynamic‘sh 9) (29)

a,P(qdynmnic|Si§7 9) P(qdynamic|st7 0)

Rewrite the VP into partial derivative as follows:

13

Under review as a conference paper at ICLR 2024

0 -0, + 6(_‘C(DEC(3t7 qdynamic))) 8P(qdynamic|3t7 0) 1 (30)
t+1 — Ut
* ap(qdynamic|$t? 0) a0 ,P(qdynamic‘sh 9)
Finally, by the chain rule, we simplify Equation 30}
0 -0, — a(ﬁ(DEC(Shqdynamic))) 1 (31)
ik ' o0 P(qdynamic|st’ 9)

Comparing Equation [31| with Equation [23] apparently Equation [31]is a supervised learning update,
which usually later will be expanded by back-propagation (Rumelhart et al., [1986) for update 6.
Now it is clear that update 6 by the Monte-Carlo policy-gradient control is equivalent to update 6
by supervised learning. The only different is the former is weighted by P(q 4, ,qmic|St, @) to avoid
in favor of frequently used actions. Thus, turning qg,, 4. into a form of reinforcement learning
action a; is reasonable. In addition, for this trajectory has only one step, it naturally has the Markov

property.

A.3 IMPLEMENTATION DETAILS

Hyperparameter The models are implemented in Pytorch, based on implementation of DINO.
Table [3] shows detailed hyper-parameters of both 12 epochs and 36 epochs training. The upper

Item Value

Ir le-04
Ir_backbone 1e-05
weight_decay le-04
clip_-max_norm 0.1
pe_temperature 20M
enc_layers 6
dec_layers 6
dim_feedforward 2048
hidden_dim 256
dropout 0.0
nheads 8
num-queries 900
enc_n_points 4
dec_n_points 4
transformer_activation “relu”
batch_norm_type ”FrozenBatchNorm?2d”
set_cost_class 2.0
set_cost_bbox 5.0
set_cost_giou 2.0
cls_loss_coef 1.0
bbox_loss_coef 5.0
giou_loss_coef 2.0
focal_alpha 0.25
dn_box_noise_scale 0.4
dn_label noise_ratio 0.5

€ 0.05

shift d 200
reduce exploration(12 epochs) start at epoch 11
reduce exploration(36 epochs) start at epoch 29

Table 3: Hyper-parameters used for DINO with e-greedy

14

Under review as a conference paper at ICLR 2024

blocks are hyper-parameters used by DINO. The lower blocks are hyperparameters for our best
setting, which achieved 49.2AP and 51.2AP for 12 epochs and 36 epochs training, separately.

Dataset We perform our experiment on the COCO 2017 datasetLin et al|(2014). We report results

with ResNet-50 backbone pretrained on ImageNet-1K dataset Deng et al.| (2009); Krizhevsky et al.
(2012). Our comparing targets are also reported in same setting.

Training We follow the training protocol used by DINO for components of object detection. Our
model is trained on the COCO training set for 12 and 36 epochs, with batch size of 16. For e-greedy
tricks, we stop exploration 1 epoch before learning rate decay on epoch 30. We provide a detailed
setting of our implementation in the appendix, including the hyper-parameters and components used
in our models for those interested in replicating our results.

A.4 ADDITIONAL EXPERIMENTS

Visualization of Exploration and Exploitation Dilemma: We provide additional examples of
visualization analysis here. These images shown are results of first 20 images of coco 2017 val
dataset. Each sub-figures in this figure consists of three rows: the first row is for ground truth, second
row is for result of DINO, third row is result of DINO with e-greedy. We choose the figure 51 as
our example in main paper for DINO and DINO with e-greedy in figure [5f behave most differently.
But obviously e-greedy also affect other image pairs. By observing the differences across all the
examples, we could easily find two difference. First, queries of model with e-greedy tend to cluster
more closely around the objects. Second, the model with e-greedy tends to give queries lower
confidence. As a result, model with e-greedy have much fewer high confidence region(bright red).

(a) coco val 1

15

Under review as a conference paper at ICLR 2024

(c) coco val 3

16

Under review as a conference paper at ICLR 2024

(d) coco val 4

17

Under review as a conference paper at ICLR 2024

(e) coco val 5

Under review as a conference paper at ICLR 2024

(g) coco val 7

19

Under review as a conference paper at ICLR 2024

(i) coco val 9

20

Under review as a conference paper at ICLR 2024

(j) coco val 10

(k) coco val 11

21

Under review as a conference paper at ICLR 2024

(1) coco val 12

22

Under review as a conference paper at ICLR 2024

(n) coco val 14

23

Under review as a conference paper at ICLR 2024

e

.\
P
=

I

I

A

[

(p) coco val 16

24

Under review as a conference paper at ICLR 2024

(r) coco val 18

25

Under review as a conference paper at ICLR 2024

(s) coco val 19

26

Under review as a conference paper at ICLR 2024

ES ES &4 S

NN

sty o Sy oS

B AT

NN

ol

AR N
iV SNy e iy

A A A AN

(t) coco val 20

Figure 5: This figure shows heatmap of queries which the mixed query selection and mixed query
selection with e-greedy select. For every sub-figures in this figure, the first row is ground truth,
second row is result of DINO, third row is result of DINO with e-greedy. And for every sub-image
row from left to right, they are result of small to big bounding box queries, each for featuremap of
different scale. Each square block of heatmap (blue to purple to red) represents a query, while region
of no heatmap (green) is for queries not used. The color of heatmap represents value of normalized
classification logits. Red for higher value, blue for lower value.

27

	Introduction
	Related Work
	Transformer-Based End-to-End Object Detectors
	Reinforcement Learning and Supervised Learning

	Background
	End-to-End Object Detection with Transformers
	Reinforcement Learning
	-greedy

	Algorithm
	problem reformation
	transformation formulation
	-Greedy in Query Selection

	Experiments
	Visualization of Exploration and Exploitation Dilemma
	analysis of behavior difference
	Improvement on COCO Object Detection Dataset by -greedy

	Conclusion
	Appendix
	Algorithm Background Detail
	Transformation Deduction Details
	Implementation Details
	Additional Experiments

