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Abstract: We present Latent Theory of Mind (LatentToM), a decentralized dif-
fusion policy architecture for collaborative robot manipulation. Our policy allows
multiple manipulators with their own perception and computation to collaborate
with each other towards a common task goal with or without explicit commu-
nication. Our key innovation lies in allowing each agent to maintain two latent
representations: an ego embedding specific to the robot, and a consensus embed-
ding trained to be common to both robots, despite their different sensor streams
and poses. We further let each robot train a decoder to infer the other robot’s ego
embedding from their consensus embedding, akin to “theory of mind” in latent
space. Training occurs centrally, with all the policies’ consensus encoders super-
vised by a loss inspired by sheaf theory, a mathematical theory for clustering data
on a topological manifold. Specifically, we introduce a first-order cohomology
loss to enforce sheaf-consistent alignment of the consensus embeddings. To pre-
serve the expressiveness of the consensus embedding, we further propose struc-
tural constraints based on theory of mind and a directional consensus mechanism.
Execution can be fully distributed, requiring no explicit communication between
policies. In which case, the information is exchanged implicitly through each
robot’s sensor stream by observing the actions of the other robots and their effects
on the scene. Alternatively, execution can leverage direct communication to share
the robots’ consensus embeddings, where the embeddings are shared once during
each inference step and are aligned using the sheaf Laplacian. While we tested
our method using two manipulators, our approach can naturally be extended to an
arbitrary number of agents. In our hardware experiments, LatentToM outperforms
a naive decentralized diffusion baseline, and shows comparable performance with
a state-of-the-art centralized diffusion policy for bi-manual manipulation. Addi-
tionally, we show that LatentToM is naturally robust to temporary robot failure or
delays, while a centralized policy may fail.
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1 Introduction

Robotic arm manipulation refers to the process by which robotic arms perceive, grasp, move, ro-
tate, or otherwise interact with objects, typically to accomplish precise or complex tasks [1]. This
technology plays a critical role in a wide range of applications, including industrial automation [2],
warehousing, logistics [3], medical procedures [4], and agriculture scouting [5]. The growing in-
terest in humanoid robots [6, 7] has further highlighted the importance of advanced manipulation
capabilities, especially those involving dexterous and coordinated arm movements.
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Recently, the Diffusion Policy [8] has attracted the attention of the community as one of the state-
of-the-art robotic arm manipulation solutions. It excels in generating smooth, multi-modal, and
long-horizon trajectories, outperforming many existing methods [9, 10, 11, 12]. Since it inherits the
strong ability of the diffusion models [13] to process high-dimensional data, it can achieve decent
performance even when dealing with long-horizon dual-arm cooperative tasks. While centralized
frameworks are effective for current dual-arm applications, the lack of multi-agent training data and
their inherent fragility, such as poor scalability, difficulty in training, and sensitivity to failure, has
motivated the community to explore decentralized alternatives. In multi-arm [14] or multi-agent
systems [15, 16], a decentralized framework improves system robustness to outside disturbances
while providing more flexibility. However, achieving coherent and cooperative behavior in a de-
centralized manner is non-trivial. Each robotic arm operates with partial observations and may be
subject to domain shifts, making it difficult to maintain global consistency across the robotic arms.
Moreover, even a slight inconsistency between agents can easily lead to task failure, especially when
performing delicate cooperative tasks. Therefore, a key challenge is to design a consensus represen-
tation that captures overlapping information across all agents, despite the incompleteness of their
local observations. Specifically, in dual-arm scenarios, we need to stably and efficiently train two
decentralized policies that align partial information while maintaining independence.

To address this challenge, we propose LatentToM, a decentralized diffusion policy, that enables each
robotic arm to independently generate motion trajectories while maintaining coordination with oth-
ers through a shared consensus representation. We propose a structured separation of observations,
encoding and maintaining them independently to form an ego embedding and a consensus embed-
ding for each arm. By integrating insights from sheaf theory, we further impose consistency con-
straints on the consensus embedding derived from the observations of each robotic arm. Specifically,
by minimizing the sheaf 1-cohomology, the two arms are encouraged to produce globally consistent
interpretations from the consensus embedding. This ensures that both arms develop a unified under-
standing of key shared states, which is important for decentralized collaborative decision-making.
To achieve this sheaf-theoretic consistency during training, we introduce a sheaf consistency loss as
an auxiliary objective [17], penalizing discrepancies in the implicit representations of overlapping
observations. The objective is to reduce coordination errors caused by inconsistent interpretations
of the same scene. For example, when one arm makes an action, the other arm can synchronously
understand this change and make reactive decisions to ensure the completion of the task. To further
ensure that the resulting consensus embedding is not only numerically consistent but also expressive,
we incorporate two additional constraints:

• Theory of Mind (ToM)-inspired constraint: Each agent is trained to use its own consensus
embedding to infer the other’s ego embedding, encouraging the representation to retain rich
and discriminative information and preventing it from collapsing into trivial solutions.

• Directional consensus mechanism: We guide the lower-confidence embedding to align with
the higher-confidence one, thus reducing the risk caused by uncertain representations and
maintaining information richness.

For more stable performance, we use a classic bidirectional consistency synchronization operator
as sheaf Laplacian. This operator adjusts the consensus embeddings of multiple arms via online
post-processing to promote consensus. The trade-off is that this approach requires the arms to be
capable of communication and to perform one round of information exchange before every decision.
Through comprehensive comparisons with the vanilla diffusion policy and its naive decentralized
variant, we demonstrate the effectiveness of our approach in achieving consistent, expressive, and
collaborative behavior in cooperative multi-arm tasks. In addition, we integrated our code into the
vanilla diffusion policy codebase to provide a training dataset, making it easy for anyone interested
in our approach to use and deploy directly.

2 Related Work
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Figure 1: Multi-arm robotic system.
In our setup, the system consists of
two robotic arms, each equipped with
an end-effector camera, represented by
the red and green areas indicating their
respective fields of view. Addition-
ally, a third-person camera observes
the overlapping workspace between the
two arms, shown in gray. The bot-
tom part illustrates the consensus em-
beddings generated using sheaf theory
from our collected data.

Building upon the success of diffusion models in high-
dimensional domains like image and audio generation,
diffusion policies have emerged as one of the most ad-
vanced visuomotor policies for robotic arm manipula-
tion [8]. By modeling robot motion as a conditional de-
noising diffusion process, they can generate multi-modal,
smooth, and long-horizon trajectories for a wide range of
tasks. In particular, since they learn from expert demon-
strations, they are especially useful for solving complex
problems where data collection is costly or difficult to
quantify through hand-engineered rewards [18, 8]. Sev-
eral variants, such as 3D diffusion [19] and equivariant
diffusion policy [20, 21], further enhance their data effi-
ciency and generalization ability by leveraging improved
input structures and equivariant representation learning,
respectively. Others improve their ability to solve long-
horizon or multi-task objectives by applying learning
techniques [22, 23, 24], using methods such as high-level
task planners [25], subproblem decomposition [26] or tra-
jectory guidance [27]. Likewise, due to their effectiveness
in manipulation tasks, there has also been a push towards
improving their precision [28] and their ability to adapt
based on environmental factors [29, 30].

Typically, these approaches have focused on controlling up to two agents through a centralized pol-
icy. The policy is trained from data collected from a single user controlling both agents [31, 32]
and is usually provided a fused multi-view and action representation [8, 32]. However, reliance on
a centralized framework introduces limitations: training becomes increasingly difficult and system
reliability will deteriorate as the scale of the system grows. This challenge is further complicated
by the scarcity of multi-arm datasets that include explicit, necessary, and compelling examples of
collaboration, as well as the difficulty of collecting such data. This has led to a widely recognized
shift in the multi-agent learning community, from centralized to decentralized methods [33, 34].
A well-known example is multi-agent planning, where, despite the availability of well-established
centralized solvers [35, 36, 37], research increasingly favors decentralized frameworks due to their
superior robustness and scalability in real-world deployments [14, 15]. Recent studies also achieved
complex coordination among multi-agent behaviors through diffusion models based on attention
mechanisms [38]. A core challenge in decentralized frameworks lies in enabling effective collabo-
ration among individual agents. Specifically, agents should reach a consensus, either on global task
goals or local coordination states, to execute cooperative behaviors effectively. Sheaf theory [39, 40]
offers a principled mathematical framework to address this challenge, by providing tools for inte-
grating locally distributed information into a globally consistent structure [41]. It aligns naturally
with decentralized learning paradigms, where agents operate on partial observations or interact with
neighbors to coordinate their behaviors [42]. In our context, we leverage sheaf theory to formal-
ize the global task representation and extract consistent intermediate embeddings across agents,
enabling decentralized policies to maintain coherence among local policies and complete complex
cooperative tasks.

3 Method

3.1 Model Training

The architecture of our decentralized diffusion policy, LatentToM, is designed to accommodate sys-
tems comprising of N independent robotic arms, where each arm maintains its own neural network.
In this section, we illustrate the detailed workings of our LatentToM architecture using a two-arm
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robotic system as an example. As depicted in Fig 1, each robotic arm is equipped with local sensing
capabilities, including an end-effector-mounted camera and pose sensors, and shares global scene
information captured by a fixed third-person view camera.1 We define the dual-arm system as a
graph G = (V, E), where each robotic arm is represented as a node u, v ∈ V , and an edge exists
between two nodes if their respective workspaces and tasks overlap. Each node u/v has an obser-
vation space ou/v , which we explicitly divide into two subspaces: ou = [oegou , oconu ]. Here, oegou

consists of the arm’s end-effector image and pose, while oconu corresponds to the third-person view.
We employ two visual encoders [8], ϕegou and ϕconu , to process the private and shared observations
separately. This results in a complete embedding hu = [hegou , hconu ], where hegou = ϕegou (oegou ) and
hconu = ϕconu (oconu ).

Next, we formalize the dual-arm system as a cellular sheaf2 F defined over the graph G. Specifically,
the sheaf F assigns a vector space to each node u ∈ V as: F(u) = hconu ⊆ Rdcon . For each edge
e = (u, v) ∈ E , we define the corresponding restriction map as:

ρu→e : F(u) → F(e), ρv→e : F(v) → F(e) (1)

where F(e) denotes the overlapping subspace associated with edge e. In our context, we assume
that the overlapping subspace is aligned with the consensus embedding space, i.e., F(e) = Rdcon .
To achieve numerical consistency between nodes in the consensus embedding space, we minimize a
loss function derived from the first-order cohomology defined in sheaf theory, which is:

Lnc =
∑

e=(u,v)∈E

||ρu→e(h
con
u )− ρv→e(h

con
v )||22. (2)

According to sheaf theory, this loss function measures the first-order cohomology of the sheaf F .
Minimizing Lnc encourages the system to approach a more coherent state (i.e., approaching a global
section) in which the consensus embeddings across all nodes achieve global consistency in the nu-
merical perspective, thereby naturally yielding a form of consensus learning.

Although Equation 2 enforces strict numerical consistency between nodes (i.e., arms in our context),
this constraint alone may lead to representation collapse, where the consensus embedding hconu (i.e.,
consensus), degenerates into a constant or overly simplified vector, thus limiting its expressiveness
and information capacity. To preserve the richness and expressiveness of the consensus embedding
hconu , we draw inspiration from the concept of ToM, which is the ability of an agent u to internally
reason about the states, intentions, and goals of others v. Specifically, we require each arm to use its
own consensus embedding hconu to infer the ego embedding of the other arm hegov . This encourages
the consensus embedding to carry sufficient information about the global context, thus preventing
trivial or collapsed solutions. Building upon Equation 2, we introduce an additional loss function
Ltom:

Ltom =
∑

(u,v)∈E

||hegov − ψu→v(h
con
u , hegov )||22 + (v ↔ u) (3)

where hegov is the ego embedding of arm v. ψu→v : Rdcon → Rdego defines a cross-agent predic-
tion function (i.e., ToM predictor)3, which is used by node u to predict the ego embedding ĥegov|u of
node v. In the context of sheaf theory, this serves as an explicit structural constraint on the restric-
tion maps ρu→e. In other words, the consensus embedding at each node must not only satisfy the
global consistency required for consensus but also retain enough semantic information to be mean-
ingfully mapped into the ego feature space F(v) of neighboring nodes, thereby ensuring that global
information is preserved in consensus F(e).

Although Equations 2 and 3 constrain the alignment and information prediction consistency be-
tween consensus embeddings hconu and hconv , ensuring that the learned consensus retains sufficient
expressiveness, they implicitly assume that the two embeddings have equal representational quality.
However, in real-world scenarios, certain arms may have higher-quality observations due to factors

1We clarify these architecture choices and provide additional explanations in Appendix C.
2For a more in detailed explanation on Sheaf theory, we refer the readers to [43].
3Implementation details about ToM predictor can be found in Appendix A.1.
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such as a better field of view, more stable motion, or more task-relevant sensory inputs. This raises
an important question: who should guide the alignment when the quality of consensus embeddings
is unequal? To address this, we introduce a directional consensus mechanism, in which each arm
learns a confidence score cu/v ∈ [0, 1] to indicate the reliability of its consensus embedding.4 This
enables a directionally asymmetric alignment, also referred to as one-way consistency, in which
the lower-confidence embedding is guided toward the higher-confidence one. To implement this
mechanism, we define a confidence loss Lconf as follows:

Lconf = (1 + |∆c|)︸ ︷︷ ︸
difference-weighting

·[1cu≥cv · ||hconv − hconu ||+ 1cv≥cu · ||hconu − hconv ||]

+ λent · [H(cu) +H(cv)],

(4)

with ∆c = cu − cv and H(c) = −c log c− (1− c) log (1− c). The use of the difference-weighting
term in Equation 4 aims to dynamically adjust the penalty on embedding alignment errors based on
the confidence difference between two nodes u and v. In other words, if the confidence scores of
the two agents are similar, indicating that they are “mutually reliable”, there is little need to apply
a strong penalty during alignment. However, if there is a significant confidence gap (e.g., one node
is highly reliable while the other is not), then the alignment error should be penalized more heavily,
encouraging the less trustworthy node to more closely align with the more reliable one. In addition,
we introduce a confidence entropy term λent · [H(cu) +H(cv)] as a soft regularization mechanism
to prevent the confidence scores from collapsing into extreme values. This not only stabilizes the
optimization process during the early stages of training but also enhances the model’s ability to
distinguish between reliable and unreliable embeddings over time. Since the embedding distribution
tends to be noisy and unstable at the beginning of training, directly applying one-way consistency
based on early confidence differences may lead to unreliable guidance. By incorporating this entropy
term, the initial confidence values are naturally encouraged to remain near 0.5, effectively avoiding
premature overconfidence and allowing the model to learn a more robust confidence estimation as
training progresses. In summary, the total auxiliary loss used during training is given by Ltot =
αLnc + βLtom + γLconf , where α, β, and γ are hyperparameters that must be carefully tuned to
suit different tasks.

3.2 Model Inference

The training paradigm described in the previous subsection yields a fully decentralized model that
operates without any explicit information exchange or communication. Each node is able to infer
a consensus and coordinate its actions using only its own partial observations. However, during
inference, the diffusion policy model requires a relatively long rollout time to generate and execute
an action sequence based on current observations. In a decentralized setting, this can lead to prob-
lematic behaviors such as mutual avoidance, excessive waiting, or repeated local actions, ultimately
resulting in livelocks. For instance, one arm may take an action that is misinterpreted by the other,
leading to an unnecessary reaction. This can trigger a series of back-and-forth adjustments between
the arms, without ever reaching a clear resolution, resulting in an oscillating or indecisive policy.
This issue arises because, unlike the perfectly synchronized setting during training, we cannot guar-
antee that the consensus embeddings of the two arms remain fully synchronized during inference.

To mitigate such decision-making deviations caused by local inconsistencies, we introduce the sheaf
Laplacian [44, 45] as an online adjustment mechanism during inference. This method provides a
lightweight, model-agnostic “consensus repair” process that does not require modifying the trained
model. By iteratively updating the consensus embeddings of the two nodes, the sheaf Laplacian
gradually brings them closer together, promoting consistency and behavioral stability. Specifically,
we use a classic bidirectional consistency synchronization operator:[

hconu,t+1

hconv,t+1

]
=

[
1− η η
η 1− η

]
︸ ︷︷ ︸

consistency operator

·
[
hconu,t

hconv,t

]
,

(5)

4Implementation details about confidence predictor can be found in Appendix A.2.
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Figure 2: Cooperative Manipulation Tasks. In (a), the yellow dots and lines represent the ideal
trajectory of the T-shaped block, with the expectation that its orientation remains largely unchanged
throughout the motion. In (b), the gray dots and solid lines indicate the past trajectories of the two
arms, while the green dots and dashed lines depict their future planned trajectories.

which is equivalent to performing a low-order sheaf Laplacian step on the two embeddings5. The
final adjusted embeddings hconu,T , hconv,T are then used for downstream decision-making. It is worth
noting that if the sheaf Laplacian method described in Equation 5 is used for online consensus
adjustment, a one-step information exchange (communication) between the two nodes is required.

4 Experimental Results

4.1 Experiment Setting

We define a cooperative task as one that requires the collaboration of both arms to be successfully
completed. In such tasks, the actions of the two arms are interdependent, and the task cannot be
accomplished through independent behavior from either arm alone. Based on this definition, we
design two cooperative tasks, illustrated in Fig 2. Task 1: Push-T. Unlike the traditional Push-T
task, which only requires pushing the T-shaped block to a target location, our version imposes an
additional constraint: the block is expected to maintain its initial orientation throughout the move-
ment. Specifically, we require the T block to remain parallel to its initial posture during the entire
trajectory, including at the final target position. This demands precise coordination between the two
arms to apply force symmetrically and prevent rotation. Task 2: Pouring coffee beans. In this task,
the two arms start from fixed positions, collaboratively pour coffee beans from a cup into a small
pot, and then return to a safe resting position. Since the task does not have a fixed target pose for
the arms, success depends on the arms correctly interpreting each other’s intentions in real time. A
misalignment in timing or trajectory can result in spillage, making the task a clear example of action
interdependence and requiring tightly coupled coordination.

4.2 Results

(a) (b) (c)

Figure 3: T block in the fully InD (3a,3b)
and partially OOD (asymmetric friction
coefficients, 3c) cases.

In this section, we conduct comparative experiments
using five methods across Tasks 1 and 2: (1) Central-
ized Diffusion Policy (i.e., vanilla diffusion policy);
(2) Naive Decentralized Diffusion Policy (where we
only use its own end-effector and third-view cameras
during training for each arm’s policy); (3) Naive Con-
sensus based Decentralized Diffusion Policy (without
structural separation of ego and consensus embeddings, and lacking ToM constraints and directional
consensus); (4) LatentToM without communication; and (5) LatentToM with Sheaf Laplacian (to
achieve more stable performance at the cost of one communication step).

4.2.1 Task 1: Push T-shaped Block

In Task 1, we explored each method’s ability to collaborate when confronted with a T-block that is
visually in distribution (InD) (see Fig 3a) but has out-of-distribution (OOD) asymmetric dynamics

5Proof can be found at Appendix B.
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Figure 4: Rollout results of different methods under unbalanced friction setup as shown in Fig 3. The
transparent image shows the final position pushed by CDP, which we treat as the expected position
for comparing the outcomes of other methods.

(see Fig 3c). More specifically, the underside of the block was modified so that each side would
have distinct coefficients of friction, thereby exacerbating any error due to poor coordination. The
qualitative results for each approach are shown in Fig 4.6 As expected, the Centralized Diffusion
Policy (CDP), with its complete information, is able to account for the mismatch in dynamics and
complete the task near-perfectly. Whereas, the Naive Decentralized Diffusion Policy (NDDP) fails
to complete the task with a large rotational error. This is likely due to the small positional errors
normally observed during deployment being amplified by the different and unique coefficients of
friction used on each side. Similarly, we observe that the Naive Consensus based Decentralized
Diffusion Policy (NCDDP) also fails to complete the task. Although NCDDP is trained to produce
a shared consensus embedding, it is not guaranteed that this embedding is informative. Therefore,
we suspect that it was not enough to capture the change in dynamics.

Unlike the other two decentralized methods, our methods LatentToM and LatentToM with sheaf
Laplacian are able to partially and fully complete the task respectively. We believe that our use of
Theory of mind and a directional consensus mechanism ensures that the learned consensus embed-
ding will be informative, therefore allowing the agents to react to environmental changes, while the
sheaf Laplacian further helps mitigate the effect of noise, thereby allowing the agents to account for
OOD changes and reach high levels of consensual collaboration.

4.2.2 Task 2: Pouring Coffee Beans Table 1: Pouring coffee beans results.

Methods FS NR SO AC CF

CDP 15 0 0 0 0

NDDP 7 0 0 0 8

NCDDP 9 0 1 1 4

LatentToM 13 2 0 0 0

LatentToM w/ SL 14 0 1 0 0

In addition to reporting the overall success rate, we pro-
vide a more fine-grained analysis of outcomes in the cof-
fee bean pouring task. As shown in Table 1, we clas-
sify each trial into one of five mutually exclusive outcome
types: (1) Fully Successful (FS): The cup is aligned cor-
rectly and all coffee beans are poured into the pot without
spillage. (2) Clear Failure (CF): A large amount of beans
is spilled due to significant misalignment between the arms. (3) No Return (NR): At least one arm
fails to return to the resting position after pouring, indicating delayed or incomplete execution. (4)
Spill Out (SO): A minor spill occurs (typically in NR cases), but the main pouring is largely aligned.
(5) Arm Collision (AC): The two arms collide during the task, indicating poor spatial coordination.
We evaluated five methods over 15 independent rollouts each. As expected, Centralized Diffusion
Policy (CDP) is able to complete the pour task without any errors. Meanwhile, the Naive Decen-
tralized Diffusion Policy (NDDP) performed the worst, with only 7 fully successful cases and 8
clear failures, demonstrating frequent miscoordination. In contrast, the Naive Consensus based De-

6We provide quantitative results and analysis of Task 1 in Appendix D.
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Figure 5: Representative rollout results for Task 2 (coffee bean pouring). As shown in the figure,
although both NNDP and NCDDP resulted in failures, NNDP clearly spilled more coffee beans
than NCDDP (red area vs. blue area). For our method, Latent w/o SL exhibits an issue where, after
completing the task, the arm may holding the cup fails to return to the resting position and remains in
a risky posture, potentially causing additional spillage (highlighted in the yellow area). In contrast,
DDP w/ SL successfully returns to a safe resting position, as indicated by the green area. However,
for the same fully successful (FS) cases, CDP often completes the task more quickly.

centralized Diffusion Policy (NCDDP) reduced failure cases by half, with only 4 clear failures and
1 collision, but still lacked robust recovery mechanisms. We believe this result provides prelimi-
nary evidence that well-maintained consensus can lead to effective performance improvements. Our
method, LatentToM w/ Sheaf Laplacian (SL), achieved 14 fully successful trials out of 15, with
only 1 minor failure caused by delayed arm retraction due to bean dynamics rather than coordina-
tion error. Even the LatentToM model without any communication performed reliably, with 13 full
successes and only 2 cases of minor non-return behavior, both of which did not lead to any collisions
or major spillage. Notably, our method outperformed NDDP baseline by 46.7% in full success rate,
considering only fully successful (FS) cases as successes and treating all other outcomes as failures.
These results confirm that structured coordination mechanisms not only improve task success, but
also eliminate subtle failure modes that naive methods cannot resolve.

5 Conclusion
In this work, we propose a decentralized diffusion policy architecture called LatentToM to deal with
multi-arm cooperation manipulation tasks. Our key innovation lies in enabling each robot to explic-
itly maintain two distinct latent representations: an ego embedding, which encodes robot-specific
information, and a consensus embedding, trained to capture shared, scene-level information across
robots. By leveraging the 1-cohomology from sheaf theory to guide consensus representation learn-
ing and introducing structural constraints inspired by Theory of Mind and a directional consensus
mechanism, our method achieves both consistency and expressiveness in decentralized coordina-
tion. Our experimental results demonstrate that LatentToM achieves competitive cooperative per-
formance, matching state-of-the-art centralized baselines while significantly outperforming naive
decentralized approaches. We further proposed to use the sheaf Laplacian as an optional online
adjustment method to further enhance stability during inference without requiring model modifi-
cations. We believe our approach offers an effective pathway for scaling diffusion-based control
policies to larger and more complex multi-robot systems, paving the way for future research into
robust and scalable decentralized collaboration frameworks.
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Limitations

In this work, due to physical and computational hardware constraints, our current experiments were
conducted with two robotic arms only. While our approach is theoretically extensible to larger-
scale multiarm systems, we have not yet evaluated its scalability beyond two agents in real-world
settings. Scaling up would likely require better model performance, but also pose significant chal-
lenges in data collection and system integration. In future work, given adequate hardware support,
we plan to design tasks involving highly homogeneous but larger-scale multiarm systems, such as
object-passing scenarios among multiple arms. These tasks can potentially be trained using data
from smaller subsystems and then fine-tuned for deployment in larger setups, offering a scalable
training-to-deployment pipeline. Additionally, our current method relies on a fixed third-person
camera to generate shared observations to construct consensus embeddings. In environments with
occlusions or limited camera coverage, the quality of the consensus embedding may degrade, po-
tentially impacting coordination. Future work may also explore fusing multiple third-person views
or developing view-invariant representations to improve robustness in such scenarios.
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A Implementation Details

In this section, we provide detailed implementation details about the ToM Predictor and Confidence
Predictor introduced in Section 3.1, where the main focus is the neural network architectures em-
ployed in our experiments. While these architectures are used in our current setup, they are not
mandatory and can be reasonably adapted or improved in future research.

A.1 ToM Predictor

The Theory of Mind (ToM) predictor is a neural network ψu→v that aims to predict the ego embed-
ding hegov , representing the internal state/intention, of another arm v, based on the shared observation
embedding hconu .

Figure 6: ToM Predictor.

As illustrated in Fig 6, we design the ToM predictor using a multi-head attention architecture. In this
design, the consensus embedding of the ego arm hconu serves as the query, while the ego embedding
of v acts as both the key and value. This design reflects the core idea of Theory of Mind: an agent
(the query) actively reasons about another agent’s internal state by attending to observable cues (the
key-value pairs). Moreover, this attention-based structure is inherently scalable and can be naturally
extended to settings where the ego arm interacts with multiple neighboring arms. Since the roles
and tasks of each arm may differ significantly, we do not share parameters between ToM predictors.
Instead, each direction u → v and v → u is modeled with its own independent network ψu→v and
ψv→u.

A.2 Confidence Predictor

In Section 3.1, we introduce a directional consensus mechanism, in which each arm learns a confi-
dence score cu/v ∈ [0, 1] to assess the credibility of its embedding hconu/v ∈ Rdcon for alignment and
collaboration within a multi-arm system. To achieve this, we design a lightweight confidence pre-
dictor. This predictor follows a shared trunk with head-specific bias architecture, aimed at sharing
the underlying environmental representation while allowing each arm to maintain independent con-
fidence judgments. The Specifically, the confidence module consists of a shared multi-layer feature
extractor followed by agent-specific prediction heads:

zu/v = ReLU(W2ReLU(LN(W1h
con
u/v))), cu/v = σ(Wu/vzu/v) (6)

where W1, W2 are the fully connected layers shared across arms, and Wu/v is specific to each arm.
LN is the LayerNorm operator. σ(·) is the Sigmoid function.

B Proof

Equation 5 serves as an optional, classic bidirectional consistency synchronization operator pro-
vided during the model inference stage. For clarity and ease of reading in this section, we omit the
superscript con and change the number of iterations t from subscript to superscript. For example,
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we use htu to denote hconu,t from Equation 5. The clear form is given as follows:[
h
(t+1)
u

h
(t+1)
v

]
=

[
1− η η
η 1− η

]
︸ ︷︷ ︸

consistency operator

·

[
h
(t)
u

h
(t)
v

]
.

(7)

Theorem 1. Equation 7 is equivalent to performing a low-order sheaf Laplacian step on the two
embeddings.

Proof. For an edge e = (u, v) ∈ E , if these two nodes u and v have their own embedding hu and
hv , and have and restriction maps like:

ρu→e : F(u) → F(e), ρv→e : F(v) → F(e) (8)

According to sheaf theory, Then the consistency error on edge e can be represented as:
euv = ρu→e(hu)− ρv→e(hv) (9)

The aggregate update of the Sheaf Laplacian for node u is:

∆Fhu =
∑

v∈N (u)

ρ−1
u→e(ρu→e(hu)− ρv→e(hv)) (10)

which is the combination of structural consistency deviations. When the restriction map is identity
map (i.e. ρu/v→e = I), Equation 10 can be simplified as:

∆Fhu =
∑

v∈N (u)

(hu − hv), (11)

which is one of the most common low-order form of the combinatorial graph Laplacian applied to
the sheaf. For the dual-arm system with two nodes in the graph, the above equation can be written
as:

∆Fhu = hu − hv, ∆Fhv = hv − hu = −∆Fhu (12)
The Sheaf Laplacian then becomes:

h(t+1)
u = h(t)u − η ·∆Fhu = h(t)u − η(h(t)u − h(t)v )

h(t+1)
v = h(t)v − η ·∆Fhv = h(t)u − η(h(t)v − h(t)u )

(13)

By reorganizing the above equations into matrix form, we obtain the classic bidirectional consistency
synchronization operator, as shown in Equations 5 and 7.

According to the above proof, we can claim that the bidirectional consistency synchronization oper-
ator is a special case of sheaf Laplacian operator.

C Detailed Results

Intuitively, agents in a decentralized system should each have their own observations, including their
own third-person views. In practice, however, our implementation uses a shared third-person view
across agents, primarily due to hardware constraints. Ideally, each arm would be equipped with
an independent third-person view and a hand (wrist) view, which is not only more natural but also
facilitates scalability to larger teams. Our initial design reflected this principle: we split the shared
third-person view into separate inputs for each arm and successfully trained the system with good
performance (see Fig 7). In this setup, each arm’s field of view covered two-thirds of the shared
view, allowing for partial overlap while leaving parts about the partner’s observation incomplete.
We also validated this design in simulation using the RoboMimic [10] Transport task (Fig 8), where
each arm had its own wrist and shoulder cameras.

In real-world experiments, however, the limited availability of cameras made physically separating
third-person views impractical and redundant. Consequently, we adopted the current design with a
shared third-person view combined with separate wrist views. Nevertheless, based on our results, we
emphasize that LatentToM fully supports independent third-person views per arm when hardware
resources permit.
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Figure 7: Split third person views in hardware
experiments.

Figure 8: Independent third person views in
simulation.

Table 2: Quantitative Results for Push-T Experiment.

Method CDP NDDP NCDDP LatentToM LatentToM w/ SL

Success 15 1 7 11 13
Imperfection 0 0 2 3 2

Failed 0 14 6 1 0

D Quantitative Results for Push-T Experiment

In addition to the qualitative experiments presented in Section 4.2.1, we also show the quantitative
results of Task 1 in this section. Specifically, we conducted quantitative evaluations of Push-T
under both out-of-distribution (OOD) and in-distribution (InD) settings. Our OOD experiment was
implemented by modifying the friction coefficient at the base of the T-shaped block while keeping
the surface which can be observed by the camera (Fig 3). In other words, the OOD condition here
primarily reflects changes in the environment’s unexpected dynamics. Under this OOD setting, each
method was evaluated over 15 trials, and the results (Table 2) are consistent with the qualitative
findings reported in the main manuscript. For the InD setting, we omitted results because the Push-
T task proved trivial for all methods, each achieving a 100% success rate across 15 trials, offering
little comparative insight. To better demonstrate in-distribution performance differences, we instead
refer reviewers to the coffee-bean-pouring task in Section 4.2.2, where performance gaps between
methods are more evident and informative.
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