
Under review as a conference paper at ICLR 2024

VARIATIONAL QUANTUM ADABOOST WITH SUPER-
VISED LEARNING GUARANTEE

Anonymous authors
Paper under double-blind review

ABSTRACT

Although variational quantum algorithms based on parameterized quantum cir-
cuits promise to achieve quantum advantages, in the noisy intermediate-scale
quantum (NISQ) era, their capabilities are greatly constrained due to limited num-
ber of qubits and depth of quantum circuits. Therefore, we may view these vari-
ational quantum algorithms as weak learners in supervised learning. Ensemble
methods are a general technique in machine learning for combining weak learn-
ers to construct a more accurate one. In this paper, we theoretically prove and
numerically verify a learning guarantee for variational quantum adaptive boost-
ing (AdaBoost). To be specific, we theoretically depict how the prediction error
of variational quantum AdaBoost on binary classification decreases with the in-
crease of the number of boosting rounds and sample size. By employing quantum
convolutional neural networks, we further demonstrate that variational quantum
AdaBoost can not only achieve much higher accuracy in prediction, but also help
mitigate the impact of noise. Our work indicates that in the current NISQ era,
introducing appropriate ensemble methods is particularly valuable in improving
the performance of quantum machine learning algorithms.

1 INTRODUCTION

1.1 BACKGROUND

Machine learning has achieved remarkable success in various fields with a wide range of applications
(Mohri et al., 2018; Jordan & Mitchell, 2015; Butler et al., 2018; Genty et al., 2021). A major
objective of machine learning is to develop efficient and accurate prediction algorithms, even for
large-scale problems (Zhang et al., 2022; Ergun et al., 2022; Lyle et al., 2022). The figure of merit,
prediction error, can be decomposed into the summation of training and generalization errors. Both
of them should be made small to guarantee an accurate prediction. However, there is a tradeoff
between reducing the training error and restricting the generalization error through controlling the
size of the hypothesis set, known as Occam’s Razor principle (Rasmussen & Ghahramani, 2000;
Mohri et al., 2018).

For classical machine learning, empirical studies have demonstrated that the training error can of-
ten be effectively minimized despite the non-convex nature and abundance of spurious minima in
training loss landscapes (Livni et al., 2014; Du et al., 2019; Arora et al., 2018). This observation has
been explained by the theory of over-parameterization (Jacot et al., 2018; Nitanda & Suzuki, 2021;
Zhang et al., 2017; Arora et al., 2020; 2019; Oymak & Soltanolkotabi, 2020). However, it is still
difficult to theoretically describe how to guarantee a good generalization, which is one of the key
problems to be solved in classical machine learning.

Owing to the immense potential of quantum computing, extensive efforts have been dedicated to
developing quantum machine learning (Biamonte et al., 2017; Carleo & Troyer, 2017; Dunjko &
Briegel, 2018; Carleo et al., 2019; Cerezo et al., 2022; Qi et al., 2023). However, in the noisy
intermediate-scale quantum (NISQ) era, the capability of quantum machine learning is greatly con-
strained due to limited number of qubits and depth of the involved quantum circuits. Algorithms
based on parameterized quantum circuits (PQCs) have become the leading candidates to yield po-
tential quantum advantages in the era of NISQ (Landman et al., 2023; Jerbi et al., 2021; Du et al.,
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2020). The basic idea behind them is that these parameterized quantum models can provide rep-
resentational and/or computational powers beyond what is possible with classical models (Schuld
et al., 2021; Liu et al., 2021; Huang et al., 2021). There are mainly three kinds of parameterized
quantum models (Jerbi et al., 2023): (a) explicit models (Cerezo et al., 2021a; Benedetti et al., 2019),
where data are first encoded into quantum states, after undergoing a PQC, the quantum states are
measured and the information is used to update the variational parameters through a classical rou-
tine; (b) implicit kernel models (Havlı́ček et al., 2019; Schuld & Killoran, 2019), where the kernel
matrices of the encoding data are computed through quantum circuits, and then used to label data;
(c) re-uploading models (Pérez-Salinas et al., 2020), where encoding and parameterized circuits are
interleaved. A unified framework has been set in Jerbi et al. (2023) for the three quantum mod-
els, and it was pointed out that the advantages of quantum machine learning may lie beyond kernel
methods. They found that although kernel methods are guaranteed to achieve a lower training error,
their generalization power is poor. Thus, both the training and generalization errors should be taken
into account when evaluating the prediction accuracy.

It has been proved in Caro et al. (2022) that good generalization can be guaranteed from few training
data for a wide range of quantum machine learning models. However, in contrast to the classical
case, training quantum models is notoriously difficult as it often suffers from the phenomena of
barren plateaus (McClean et al., 2018; Haug et al., 2021; Cerezo et al., 2021b; Ortiz Marrero et al.,
2021; Wang et al., 2021a; Zhao & Gao, 2021), where the cost gradient vanishes exponentially fast,
and there exist (exponentially) many spurious local minima (Anschuetz, 2022; Anschuetz & Kiani,
2022; You & Wu, 2021). In this sense, most quantum learning algorithms can be viewed as weak
learners in the language of supervised machine learning.

To improve the performance of quantum algorithms, we can employ ensemble methods as inspired
by the classical ensemble learning. There are various kinds of ensemble methods, e.g., bagging
(Breiman, 1996), plurality voting (Lam & Suen, 1997; Lin et al., 2003) and boosting (Freund et al.,
1999). It has been suggested in Jiang et al. (2020) that an optimized weighted mixture of concepts,
e.g., PAC-Bayesian (McAllester, 1999), is a promising candidate for further research. Thus, adaptive
boosting (AdaBoost), which adaptively adjusts the weights of a set of base learners to construct a
more accurate learner than base learners, is appropriate for improving the performance of quantum
weak learners. For classical machine learning, there has been a rich theoretical analysis on AdaBoost
(Freund & Schapire, 1997; Bartlett et al., 1998; Mohri et al., 2018; Grønlund et al., 2019), and it
has been shown to be effective in practice (Sun et al., 2021; Drucker et al., 1993; Li et al., 2008;
Zhang et al., 2019). In this paper, we provide the first theoretical learning guarantee for binary
classification of variational quantum AdaBoost, and then numerically investigate its performance
on 4-class classification by employing quantum convolutional neural networks (QCNNs), which are
naturally shallow and particularly useful in NISQ era.

1.2 RELATED WORK

Various quantum versions of classical AdaBoost have been proposed, such as Arunachalam & Maity
(2020); Wang et al. (2021b); Ohno (2022). In their works, they employed quantum subroutines, e.g.,
mean estimation and amplitude amplification, to update quantum weak classifiers and estimate the
weighted errors to reduce the time complexity. Therefore, the realizations of these quantum versions
of AdaBoost are beyond the scope of current NISQ circuits. In contrast, in this work we utilize
variational quantum classifiers realized on the current NISQ circuits, which are obtained through a
quantum-classical hybrid way.

Recently, ensemble methods have been proposed to enhance the accuracy and robustness of quantum
classification with NISQ devices. Variational quantum AdaBoost and variational quantum Bagging
have been empirically investigated in Li et al. (2023); Incudini et al. (2023) with hardware-efficient
ansatz. It was demonstrated via simulations that quantum AdaBoost not only outperforms quantum
Bagging (Li et al., 2023), but also can save resources in terms of the number of qubits, gates, and
training samples (Incudini et al., 2023).

1.3 OUR CONTRIBUTIONS

In this paper, we theoretically and numerically investigate the performance of variational quantum
AdaBoost by focusing on classification. Our contributions are summarized as follows.
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Figure 1: The schematic of a PQC with K independent trainable gates. Each trainable gate is
parameterized by a multi-qubit rotational gate which is efficiently implementable.

1) For binary classification, we provide the first theoretical upper bound on the prediction error
of variational quantum AdaBoost, demonstrating how the prediction error converges to 0 as the
increase of the number of boosting rounds and sample size.

2) We numerically demonstrate that variational quantum AdaBoost can achieve a higher level of
prediction accuracy as compared to quantum Bagging, classical AdaBoost and classical Bagging.
We further demonstrate that with only few boosting rounds variational quantum AdaBoost can
help mitigate the impact of noises and achieve better performance than noiseless models, which
is particularly valuable for potential applications, especially in the NISQ era.

The paper is organized as follows. In Section 2, we briefly introduce the quantum classifier and
variational quantum AdaBoost. In Section 3, we present our theoretical and empirical results on the
performance of variational quantum AdaBoost. Section 4 concludes the paper.

2 QUANTUM CLASSIFIER AND ADABOOST

2.1 QUANTUM CLASSIFIER

We start with briefly introducing some quantum notation. In quantum computing, information is
described in terms of quantum states. For an N -qubit system, the quantum state ρ can be mathe-
matically represented as a positive semi-definite Hermitian matrix ρ ∈ C2N×2N with Tr [ρ] = 1.
The elementary quantum gates are mathematically described by unitary matrices. A quantum gate
U acting on a quantum state ρ takes the state to the output state as UρU† where U† is the conjugate
and transpose of U . When measuring an observable O (a Hermitian operator) at quantum state ρ, its
expectation is Tr [Oρ].

For a D-class classification problem, suppose that both the training and test data are independent
and identically distributed (i.i.d.) according to some fixed but unknown distribution D defined over
the sample and label space X ×Y . When the sample set S = {(xi, yi)}ni=1 are classical, we can first
choose a quantum encoding circuit to embed the classical data xi into quantum state ρ (xi) (Lloyd
et al., 2020; Schuld et al., 2021; Goto et al., 2021), which is the explicit quantum model under
consideration. Without loss of generality, we only consider the case where the data are quantum
in the following, namely, S = {(ρ (xi) , yi)}ni=1 ⊂ X × Y . For a D-class classification, Y =

{1, · · · , D} ≜ [D].

To label ρ(x), a quantum hypothesis or classifier hθ(·) can be described in the form of

hθ (x) = argmax
d∈[D]

Tr
[
PdU (θ) ρ (x)U† (θ)

]
. (1)

Here, {Pd}Dd=1 are disjoint projectors with Pd relating to the d-th class for d ∈ [D], and U (θ)
describes the action of a PQC with θ being the trainable or variational parameters.

To be specific, as illustrated in Fig. 1, suppose that the employed PQC is composed of a total num-
ber of K independent parameterized gates and non-trainable gates {Vk}Kk=0, whose action can be
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(a) (b)

Figure 2: Hardware-efficient implementations of multi-qubit rotational gates. (a) The module of 2-
qubit rotational gate RZZ (θ) around the Pauli operator Z⊗Z. (b) The module of 3-qubit rotational
gate RZZZ (θ) around the Pauli operator Z ⊗ Z ⊗ Z.

described as

U (θ) =

K∏
k=1

[
VkR

(ik,jk)
k (θk)

]
· V0, (2)

where θ = (θ1, · · · , θK) denotes a K-dimensional parameter vector. For each k, the trainable gate
R

(ik,jk)
k (θk) denotes a rotational gate with angle θk around a jk-qubit Pauli tensor product operator

Pk, which acts non-trivially on the ik-th through to (ik + jk − 1)-th qubits, namely,

R
(ik,jk)
k (θk) =I

⊗(ik−1) ⊗ e−i
θk
2 Pk ⊗ I⊗(n−ik−jk+1)

=I⊗(ik−1) ⊗
(
cos

θk
2
I⊗jk − i sin θk

2
Pk

)
⊗ I⊗(n−ik−jk+1).

In practice, these multi-qubit rotational gates can be implemented by a series of single-qubit gates
and typical 2-qubit controlled gates, which are efficient to realize. For example, as illustrated in
Fig. 2, the multi-qubit rotational gates around z axis can be implemented by a single-qubit rotational
gate around z axis and some 2-qubit CNOT gates.

The prediction error or expected risk of the quantum hypothesis function hθ is defined as

R (hθ) = E
(x,y)∼D

Ihθ(x)̸=y = P
(x,y)∼D

[hθ (x) ̸= y ]. (3)

The prediction error of a hypothesis is not directly accessible, since both the label of unseen data
and the distribution D are unavailable. However, we can take the training error or empirical risk of
hθ as a proxy, defined as

R̂S (hθ) =
1

n

n∑
i=1

Ihθ(xi )̸=yi . (4)

The difference between the prediction error R (hθ) and the training error R̂S (hθ) is referred to as
the generalization error, which reads

gen (hθ) = R (hθ)− R̂S (hθ) . (5)

It is clear that to make accurate predictions, both the training and generalization errors should be
small.

2.2 VARIATIONAL QUANTUM ADABOOST

We denote by H the hypothesis set which is composed of base classifiers hθ (·) in the form of
Eq. (1). Inspired by classical multi-class AdaBoost (Hastie et al., 2009), the procedure of variational
quantum AdaBoost is presented in Algorithm 1, which is similar to that in Li et al. (2023).

Algorithm 1 has the input including a labeled sample set S = {(ρ (xi) , yi)}ni=1, the number of
boosting rounds T typically selected via cross-validation, and maintains a distribution over the in-
dices [n] for each round. The initial distribution is assumed to be uniform, i.e., D1 (i) =

1
n . At each

round of boosting, i.e., for each t ∈ [T ], given a classifier ht ∈ H, its error ϵt on the training data
weighted by the distribution Dt reads

ϵt =

n∑
i=1

Dt (i) Iht(xi )̸=yi . (6)
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Algorithm 1: D-Class Variational Quantum AdaBoost
input: Hypothesis setH = {hθ}

Sample set S = {(ρ (xi) , yi)}ni=1
Boosting rounds T
Distribution D1 (i) =

1
n , for i ∈ [n]

for t← 1 to T do
ht ← base classifier inH with error ϵt < D−1

D

αt ← log 1−ϵt
ϵt

+ log (D − 1)

for i← 1 to n do
Dt+1 (i)← Dt (i) exp

[
αtIyi ̸=ht(xi)

]
end

normalize {Dt+1 (i)}ni=1
end
f ← argmax

d∈[D]

∑T
t=1 αtIht=d

output: Predictor f

We choose a weak classifier ht such that ϵt < D−1
D , which is easily satisfied. Then the distribution

is updated as Dt+1 (i) ∝ Dt (i) exp
[
αtIyi ̸=ht(xi)

]
, where αt = log 1−ϵt

ϵt
+ log (D − 1). After T

rounds of boosting, Algorithm 1 returns the D-class quantum AdaBoost classifier.

3 MAIN RESULTS

3.1 BINARY VARIATIONAL QUANTUM ADABOOST GUARANTEE

For multi-class classification, an alternative approach is to reduce the problem to that of multiple
binary classification tasks. For each task, a binary classifier is returned, and the multi-class classifier
is defined by a combination of these binary classifiers. Two standard reduction techniques are one-
versus-the-rest and one-versus-one (Aly, 2005; Mohri et al., 2018). In this subsection, we focus on
the basic binary variaitonal quantum AdaBoost, and theoretically establish its learning guarantee.

For binary classification, it is more convenient to denote the label space by Y = {−1,+1}. The

base quantum hypothesis hθ (·) can be defined in terms of the Pauli-Z operator Z =

(
1 0
0 −1

)
as

hθ (x) = Tr
[
ZU (θ) ρ (x)U† (θ)

]
, (7)

whose range is [−1,+1], and its sign is used to determine the label, namely, we label −1 when
hθ (x) ≤ 0; otherwise, it is labeled as +1.

It is straightforward to verify that for a sample (ρ (x) , y), the following important relation holds:
Iy ̸=hθ(x) = Iyhθ(x)≤0. (8)

By employing Eq. (8) and inspired by the classical binary AdaBoost (Mohri et al., 2018), we can
modify Algorithm 1 slightly to make it more suitable for binary classification as presented in Algo-
rithm 2, and further establish the learning guarantee for the binary variational quantum AdaBoost.

Different from Algorithm 1, the hypothesis setH in Algorithm 2 is composed of quantum hypothesis
in the form of Eq. (7). At each round of boosting, a new classifier ht ∈ H is selected such that its
error ϵt < 1

2 , and the distribution update role

Dt+1 (i) =
Dt (i) exp (−αtyiht (xi))

Zt

is different from what is used in Algorithm 1. It can be verified that αt = 1
2 log

1−ϵt
ϵt

is chosen

to minimize the upper bound of the empirical risk R̂S (f) of the binary variational quantum Ad-
aBoost (Mohri et al., 2018).
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Algorithm 2: Binary Variational Quantum AdaBoost
input: Hypothesis setH = {hθ}

Sample set S = {(ρ (xi) , yi)}ni=1
Boosting rounds T
Distribution D1 (i) =

1
n , for i ∈ [n]

for t← 1 to T do
ht ← base classifier inH with���small error ϵt < 1

2

αt ← 1
2 log

1−ϵt
ϵt

Zt ← 2[ϵt (1− ϵt)]
1
2 % normalization factor

for i← 1 to n do
Dt+1 (i)← Dt(i) exp [−αtyiht(xi)]

Zt

end
end
f ← sgn

(∑T
t=1 αtht

)
output: Predictor f

The performance of the binary variational quantum AdaBoost is guaranteed by the following theo-
rem, whose proof can be found in Appendix B.

Theorem 3.1. For the binary variational quantum AdaBoost Algorithm 2, assume that there exists
γ > 0 such that ϵt ≤ 1

2 − γ, for each t ∈ [T ], and the employed PQC has a total number of K
independent parameterized gates. Then for any δ > 0, with a probability at least 1−δ over the draw
of an i.i.d. n-size sample set, the prediction error R (f) of the returned binary variational quantum
AdaBoost classifier f satisfies

R (f) ≤ e−2γ2T + 12

√
K log 7K

n
+ 4

√
K

n
+

√
log 1

δ

2n
. (9)

It is clear that Theorem 3.1 provides a solid and explicit learning guarantee for binary variational
quantum AdaBoost classifier. The first term in the RHS of Eq. (9) describes the upper bound of
the empirical error R̂S (f), which decreases exponentially fast as a function of the boosting rounds
T owing to the good nature of AdaBoost. The last three terms describe the upper bound of the
generalization error gen (f). Here, in contrast to the classical case, our success in bounding the
generalization error owes to the good generalization property of quantum machine learning. As the
number of independent trainable gates K increases, the hypothesis set H becomes richer. Thus, the
second and third terms in the RHS of Eq. (9) depict the penalty of the complexity of the hypothesis
setH on the generalization.

In the NISQ era, it is important to take into account of the effect of noise originating from various
kinds of sources. From the detailed proof of Theorem 3.1, it can be verified that for noisy PQCs, as
long as there is an edge γ > 0 between our base classifiers and the completely random classifier,
that is ϵt < 1

2 −γ for all t ∈ [T ], the learning performance of the variational quantum AdaBoost can
also be guaranteed. However, it is worth pointing out that this edge assumption will become hard to
be met when there is very large noise.

3.2 NUMERICAL EXPERIMENTS FOR 4-CLASS CLASSIFICATION

In this subsection, we numerically investigate the performance of 4-class variational quantum Ad-
aBoost. To be specific, our task is to perform a 4-class classification of the handwritten digits
{0, 1, 2, 3} in MNIST datasets (LeCun et al., 1998). In our numerical experiments, we employ
QCNN as our PQC, which has been proven free of barren plateau (Pesah et al., 2021) and has been
widely used as quantum classifiers (Wei et al., 2022; Chen et al., 2022; Hur et al., 2022).
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Figure 3: The architecture of QCNN. After amplitude encoding, a set of universal rotational gates
are applied to each qubit, followed by two blocks of convolutional (Conv) and pooling (Pool) layers.
The pooling layers not only reduce the system size, but also provide non-linearity for the whole
circuit.

For theD-class variational quantum AdaBoost algorithm (hereD = 4), at each round t ∈ [T ] where
T > 1, to find a base classifier ht such that its error ϵt < D−1

D , we need to optimize the variational
parameters in QCNN. To do this, we optimize the following weighted cross-entropy loss function:

min
θ
L (θ;S) = −

n∑
i=1

Dt (i)y⊤
i log (pi), (10)

where each label yi ∈ [D] has been transformed into a D-dimensional one-hot vector denoted by
yi, and pi = [pi,1, · · · , pi,D]⊤ with

pi,d = Tr
[
PdU (θ) ρ (xi)U

† (θ)
]

for each d ∈ [D].

We employ Adam (Kingma & Ba, 2015) with learning rate 0.05 as the optimizer and compute
the loss gradient using the parameter-shift-rule (Romero et al., 2018; Mitarai et al., 2018; Schuld
et al., 2019). We initialize the parameters of PQC according to standard normal distribution and stop
optimizing when reaching the maximum number of iterations, which is set as 120. The base classifier
having the minimum training error ϵt in 120 iterations is returned as ht, whose error always satisfies
ϵt <

D−1
D in our experiments. When illustrating our results, like most of practical supervised

learning tasks, we adopt the accuracy as the figure of merit, which is simply equal to 1 minus error.

In our first experiment, we employ a noiseless 8-qubit QCNN as the base classifier as illustrated
in Fig. 3. We randomly sample two different 8000-size sample sets for training and testing, re-
spectively. For each sampled image in MNIST, we first downsample it from 28 × 28 to 16 × 16
and then embed it into the QCNN using amplitude encoding. We conduct five experiments in total.
Since the results of the five experiments are similar, to clearly demonstrate the difference between
the training and test accuracy, we only randomly select one experiment and illustrate the results
in Fig. 4. To demonstrate the positive effect of boosting operations, we also consider a classifier
without any boosting which is referred to as QCNN-best. For QCNN-best, we optimize the QCNN
for at most 3000 iterations, the same number as that in variational quantum Adaboost with T = 25
boosting rounds, and return the classifier having the best training accuracy. The prediction accuracy
of QCNN-best is illustrated in Fig. 4 by the black dotted line. Without boosting QCNN-best can
only achieve a prediction accuracy of 0.87. It is clear that quantum Adaboost outperforms QCNN-
best only after 3 rounds of boosting, and its performance can exceed 0.97 after T > 20 rounds of
boosting. Thus, to improve the prediction accuracy, boosting is much better than simply increasing
the number of optimizations. Moreover, variational quantum AdaBoost maintains a good general-
ization throughout the entire training process as the differences between the training and prediction
accuracy are always below 0.01.

We further compare our variational quantum AdaBoost (QCNN+AdaBoost) with three other en-
semble methods. The first one is variational quantum Bagging (QCNN+Bagging), the second is
classical neural networks (CNN) with AdaBoost, referred to as CNN+AdaBoost, and the third
one is CNN powered by Bagging, abbreviated as CNN+Bagging. The CNN takes the form of
f(x) = σ(W2σ(W1x+b1)+b2), where σ(·) denotes the softmax function andW1 ∈ R3×256,W2 ∈
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Figure 4: Accuracy of 4-class classification of variational quantum AdaBoost and QCNN-best in the
noiseless case. The blue solid (red dashed) line depicts the training (testing) accuracy of variational
quantum AdaBoost versus the boosting round T . The black dash-dotted (dotted) depicts the training
(testing) accuracy of QCNN-best. It is clear that variational quantum AdaBoost can achieve a higher
level of prediction accuracy (exceeding 0.97 when the boosting round T > 20). During the whole
process, the differences between the training and testing accuracy of AdaBoost are always below
0.01, which indicates a good generalization of variational quantum AdaBoost.

R4×3, b1 ∈ R3, b2 ∈ R4. For Bagging methods, each base classifier is trained on a subset obtained
by resampling the original training dataset for 8000 times, and the predictions of base classifiers
are integrated through voting (Breiman, 1996). For the four ensemble methods to be compared, we
utilize the same experimental setting. Specifically, the learning rate is set to be 0.05 and all the
parameters are initialized according to standard normal distribution. We select the classifier having
the smallest training error over 120 optimization iterations as the base classifier. The final strong
classifier is chosen to be the one with the best training accuracy among the rounds from 1 to 25.
We perform each ensemble method for five times, and demonstrate the results in Table 1. Note that
there are 120 parameters in QCNN, while the number of paramters in CNN is 787. We find that
although having more parameters, the training accuracy of classical ensemble methods is higher
than their quantum counterparts. However, owing to the quantum advantage in generalization, our
variational quantum AdaBoost (QCNN+AdaBoost) has the best prediction accuracy among the four
ensemble methods. Although the training accuracy of QCNN+Bagging is poor, its generalization
error is smaller than those of the classical ensemble methods. This is also attributed to the quantum
advantage in generalization.

Table 1: Comparison between four different ensemble methods. The first row represents the training
accuracy (acc.), the second row represents the prediction accuracy, and the third row describes the
prediction accuracy of the first base classifier for different ensemble methods. The values in the
table represent the mean values ± standard deviation.

QCNN+AdaBoost QCNN+Bagging CNN+AdaBoost CNN+Bagging
Training Acc. 0.975±0.002 0.898±0.006 0.980±0.004 0.982±0.004

Prediction Acc. 0.973±0.001 0.888±0.005 0.967±0.003 0.965±0.002
Base Classifier 0.861±0.019 0.851±0.020 0.876±0.051 0.872±0.045

In addition, we investigate the performance of variational quantum AdaBoost in the presence of
noise. In practice, single-qubit gates can be implemented with a high level of fidelity, while the
fidelity of implementing 2-qubit gates remains relatively lower. To take into account of this effect,
we simulate a noisy 6-qubit QCNN, and consider three typical classes of noises: depolarizing noise,
amplitude damping noise, and phase damping noise. After each involved 2-qubit gate we add a noise
channel with noise probability p = 0.03. We randomly sample two different 1000-size sample sets
for training and testing, respectively. For each sampled image, we first downsample it from 28× 28
to 8×8 and then use the amplitude encoding to embed it into the QCNN. We illustrate the prediction
accuracy of variational quantum AdaBoost in Fig. 5. For comparison, we also consider another two
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Figure 5: Prediction accuracy of variational quantum AdaBoost in the presence of noise. (a) QCNN
with depolarizing noise. (b) QCNN with amplitude damping noise. (c) QCNN with phase damping
noise. The blue solid line depicts the performance of variational quantum AdaBoost. The green
dash-dotted line describes the prediction accuracy of the classifier employing the noisy QCNN,
while the red dashed line depicts that with the ideally noiseless QCNN. Both of them do not take
boosting operation. Variational quantum AdaBoost outperforms the noiseless classifier after at most
5 rounds of boosting implying that AdaBoost can help mitigate the impact of different kinds of
noise.

classifiers having no boosting operations. One (red dashed) is returned by using an ideally noiseless
QCNN, and the other (green dash-dotted) is obtained by employing the noisy QCNN. For both of
them, we optimize the PQC for at most 840 iterations, which is the same number as that in 7 rounds
of variational quantum AdaBoost, and return the classifier having the best testing accuracy. The
reason why their prediction accuracy is lower than that in Fig. 4 is that here we compress the images
into 8 × 8 format, while the images in Fig. 4 are compressed into 16 × 16. Excessive compression
leads to loss of information, thus reducing the overall prediction accuracy of the classifier. We find
that for the three typical classes of noises, variational quantum AdaBoost outperforms the noiseless
classifier after at most 5 rounds of boosting. This implies that AdaBoost can help mitigate the
impact of different kinds of noises, which is particularly useful in the NISQ era. The reason is
twofold. First, in variational quantum AdaBoost, weak classifiers can be boosted to obtain a strong
classifier as long as the weak classifiers are slightly better than random guess. Noise may degrade
the weak classifiers, however, as long as they are still better than random guess, they can be boosted
to obtain a strong classifier. Second, as PQCs are shallow, quantum classifiers are weak, but also,
the classifiers are less affected by noise due to shallow circuits.

4 CONCLUSION

In the current NISQ era, quantum machine learning usually involves a specification of a PQC and
optimizing the trainable parameters in a classical fashion. Quantum machine learning has good
generalization property while its trainability is generally poor. Ensemble methods are particularly
appropriate to improve the trainability of quantum machine learning, and in turn help predict accu-
rately. In this paper we theoretically establish the prediction guarantee of binary variational quan-
tum AdaBoost, and numerically demonstrate that for multi-class classification problems, variational
quantum AdaBoost not only can achieve high accuracy in prediction, but also help mitigate the
impact of noise. For future work, it is interesting to incorporate ensemble methods to solve other
practical tasks.
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A TECHNICAL LEMMAS

In this section, we present several lemmas that will be used in our proof of Theorem 3.1.

We first introduce a lemma that can be used to bound the training error of binary quantum AdaBoost.

Lemma A.1. (Theorem 7.2, Mohri et al. (2018)) The training error of the binary classifier returned
by AdaBoost verifies:

R̂S (f) ≤ exp

[
−2

T∑
t=1

(
1

2
− ϵt

)2
]
. (11)

Furthermore, if for all t ∈ [T ], ϵt ≤ 1
2 − γ, then

R̂S (f) ≤ e−2γ2T . (12)

Then we recall a well-known result in machine learning which provides an upper bound on the
generalization error.

Lemma A.2. (Theorem 3.3, Mohri et al. (2018)) Let G be a family of functions mapping from Z
to [0, 1]. Then, for any δ > 0, with probability at least 1 − δ over the draw of an i.i.d. sample set
S = {zi}ni=1 according to an unknown distribution D, the following inequality holds for all g ∈ G:

E
z∼D

[g (z)] ≤ 1

n

n∑
i=1

g (zi) + 2Rn (G) +

√
log 1

δ

2n
,

where Rn (G) denotes the expectation of the empirical Rademacher complexity R̂S (G) of G, defined
as

Rn (G) = E
S∼Dn

[
R̂S (G)

]
= E
S∼Dn

E
σ

[
sup
g∈G

1

n

n∑
i=1

σig (zi)

]
, (13)

where σ = (σ1, · · · , σn)⊤, with σis independent uniform random variables taking values in
{−1,+1}.

The following lemma relates the empirical Rademacher complexity of a new set of composite func-
tions of a hypothesis in H and a Lipschitz function to the empirical Rademacher complexity of the
hypothesis setH.

Lemma A.3. (Lemma 5.7, Mohri et al. (2018)) Let Φ1, · · · ,Φn be l-Lipschitz functions from R to R
and σ = (σ1, · · · , σn)⊤ with σis independent uniform random variables taking values in {−1,+1}.
Then, for any hypothesis setH of real-valued functions, the following inequality holds:

1

n
E
σ

[
sup
h∈H

n∑
i=1

σi (Φi ◦ h) (xi)
]
≤ l

n
E
σ

[
sup
h∈H

n∑
i=1

σih (xi)

]
.

In our work, the hypothesis set H =
{
hθ : θ ∈ [0, 2π]

K
}

, which is composed of PQC-based hy-
pothesis hθ defined in the form of Eq. (7). We provide an upper bound of its Rademacher complexity
in the following lemma (see Appendix C for a detailed proof).

Lemma A.4. For the quantum hypothesis set H =
{
hθ : θ ∈ [0, 2π]

K
}

with hθ being defined
as in Eq. (7), its Rademacher complexity can be upper bounded by a function of the number of
independent trainable quantum gates K and the sample size n:

Rn (H) ≤ 6

√
K log 7K

n
+ 2

√
K

n
. (14)

14



Under review as a conference paper at ICLR 2024

B PROOF OF THEOREM 3.1

Proof. From Eqs. (3) and (8), it is straightforward to verify that evaluating the prediction error of
the binary quantum AdaBoost classifier returned by Algorithm 2 is equivalent to evaluating R (f)

with f =
∑T
t=1 αtht without the sign function.

Note that the quantum hypothesis set H =
{
hθ : θ ∈ [0, 2π]

K
}

is composed of hθ being defined

as in Eq. (7), with range belonging to [−1, 1]. Thus, in general, f =
∑T
t=1 αtht does not belong to

H or its convex hull which is defined as

conv (H) =
{

p∑
k=1

µkhk : p ≥ 1, µk ≥ 0, hk ∈ H,
p∑
k=1

µk ≤ 1

}
. (15)

However, we can consider the normalized version of f , denoted by

f̄ =
f

∥α∥1
=

f∑T
t=1 αt

, (16)

which belongs to the convex hull of H. Moreover, since sgn (f) = sgn
(
f̄
)
, from Eqs. (3) and (8),

we have
R (f) = R

(
f̄
)
, and R̂S (f) = R̂S

(
f̄
)
. (17)

To bound R
(
f̄
)
, let

G =

{
Iyf̄(x)≤0 : (ρ (x) , y) ∈ X × Y, f̄ =

∑T
t=1 αtht
∥α∥1

, ht ∈ H, t ∈ [T ]

}
. (18)

Then according to Lemma A.2, it yields

R
(
f̄
)
≤ R̂S

(
f̄
)
+ 2Rn (G) +

√
log 1

δ

2n
. (19)

Since the zero-one loss function is 1-Lipschitz, from Lemma A.3, we have

Rn (G) ≤ Rn (conv (H)) . (20)

Moreover, according to Lemma 7.4 in Mohri et al. (2018),

Rn (conv (H)) = Rn (H) . (21)

Now we can combine Eqs. (17), (19)-(21) to yield

R (f) ≤ R̂S (f) + 2Rn (H) +

√
log 1

δ

2n
. (22)

Thus, if for all t ∈ [T ], ϵt ≤ 1
2 − γ, we can derive Theorem 3.1 by leveraging Lemma A.1 and

Lemma A.4 to further bound Eq. (22).

C PROOF OF LEMMA A.4

We first introduce the notion of covering number, which is a complexity measure that has been
widely used in machine learning.
Definition C.1. (Covering nets and covering numbers Dudley (2014)) Let (H, d) be a metric space.
Consider a subset K ⊂ H and let ϵ>0. A subset N ⊆ K is called an ϵ-net of K if every point in K
is within a distance ϵ of some point of N , i.e.,

∀ x ∈ K, ∃ y ∈ N : d (x, y) ≤ ϵ.
The smallest possible cardinality of an ϵ-net ofK is called the covering number ofK, and is denoted
by N (K, ϵ, d).
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For example, for Euclidean space
(
RK , ∥ · ∥∞

)
, the covering number N

(
[−π, π]K , ϵ, ∥ · ∥∞

)
is

equal to ⌈π/ϵ⌉K , where ⌈·⌉ denotes the rounding up function. Intuitively, the hypercube [−π, π]K
can be covered by a number of ⌈π/ϵ⌉K K-dimensional hypercubes whose sides have the same
length 2ϵ.

Then we introduce several technical lemmas that will be used in the proof of Lemma A.4.

The following lemma relates the distance between two unitary operators measured by the spectral
norm to the distance between their corresponding unitary channels measured by the diamond norm.
Lemma C.2. (Lemma 4, Supplementary Information for Caro et al. (2022)) Let U (ρ) = UρU† and
V (ρ) = V ρV † be unitary channels. Then,

1

2
∥U − V∥⋄ ≤ ∥U − V ∥.

Here, ∥ · ∥ denotes the spectral norm, and the diamond norm of a quantum unitary channel U is
defined as

∥U∥⋄ = max
|ψ⟩⟨ψ|

∥U (|ψ⟩⟨ψ|) ∥1,

with ∥A∥1 = Tr
[√

A†A
]

being the trace norm.

The following lemma translates the distance between J-qubit rotational operators to the distance of
their corresponding angles.
Lemma C.3. (Distance between rotational operators) Given an arbitrary J-qubit Pauli tensor prod-
uct P ∈ {I,X, Y, Z}⊗J and two arbitrary angles θ, θ̃ ∈ [0, 2π], the corresponding J-qubit rota-

tional operators are R (θ) = e−i
θ
2P and R

(
θ̃
)
= e−i

θ̃
2P , respectively. Then, the distance between

the two operators measured by the spectral norm can be upper bounded as∥∥∥R (θ)−R
(
θ̃
)∥∥∥ ≤ 1

2
|θ − θ̃|.

Proof. According to the definition of rotational operators, we have

R (θ)−R
(
θ̃
)
=

(
cos

θ

2
− cos

θ̃

2

)
I⊗J − i

(
sin

θ

2
− sin

θ̃

2

)
P,

whose singular value is 2
∣∣∣sin θ−θ̃

4

∣∣∣ with 2J multiplicity. Thus,∥∥∥R (θ)−R
(
θ̃
)∥∥∥ = 2

∣∣∣∣∣sin θ − θ̃4

∣∣∣∣∣ ≤ 1

2
|θ − θ̃|.

In the main text, we only consider the ideally unitary channel for simplicity, namely, the PQC-based
hypothesis is in the form of hθ (x) = Tr

[
ZU (θ) ρ (x)U† (θ)

]
. To describe the noise effect, a

general quantum channelA is defined by a linear mapA : L (HA)→ L (HB), which is completely
positive and trace preserving (CPTP). For a quantum channel A, the diamond norm is defined as

∥A∥⋄ = sup
ρ∈D(HRA)

∥ (IR ⊗A) (ρ) ∥1,

where D (HRA) denotes the set of density operators acting on the Hilbert spaceHRA = HR⊗HA,
and IR is the identity map on the reference system HR, whose dimension can be arbitrary as long
as the operator IR ⊗A is positive semi-definite.

The following lemma can help generalize the results of Lemma A.4 and Theorem 3.1 from the case
of unitary quantum channels described in the main text to those of noisy quantum channels. This
means that the hypothesis functions can be generalized to hθ (x) = Tr [ZEθ (ρ (x))], where the
noisy channel Eθ is composed of K trainable multi-qubit rotational gates and arbitrarily many non-
trainable gates. Notice that the general case can be reduced to the ideally unitary case by letting
Eθ (ρ) = U (θ) ρU† (θ).
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Lemma C.4. (Subadditivity of diamond distance; Proposition 3.48, Watrous (2018)) For any quan-
tum channels A, B, C, D, where B and D map from n-qubit to m-qubit systems and A and C map
from m-qubit to k-qubit systems, we have

∥AB − CD∥⋄ ≤ ∥A− C∥⋄ + ∥B − D∥⋄.

The following lemma enables us to employ the covering number of one metric space to bound the
covering number of another metric space.
Lemma C.5. (Covering numbers of two metric spaces; Lemma 3, Barthel & Lu (2018)) Let (H1, d1)
and (H2, d2) be two metric spaces and f : H1 → H2 be bi-Lipschitz such that

d2
(
f (x) , f (y)

)
≤ Kd1 (x, y) ,∀ x, y ∈ H1,

where K is a constant. Then their covering numbers obey the following inequality as

N (H2, ϵ, d2) ≤ N (H1, ϵ/K, d1) .

According to the above lemmas, we can derive the covering number of general noisy quantum
models.
Lemma C.6. (Covering number of noisy quantum models) If each element of θ is selected from
[−π, π], then the covering number of the set of quantum channels {Eθ}, each of which is composed
of K trainable multi-qubit rotational gates and arbitrarily many non-trainable quantum channels,
can be upper bounded as

N (Eθ, ϵ, ∥ · ∥⋄) ≤
⌈
πK

ϵ

⌉K
.

Proof. From the structure of Eθ, we have

∥Eθ − Eθ̃∥⋄ ≤
K∑
k=1

∥∥∥Rk (θk)−Rk (θ̃k)∥∥∥
⋄

(23)

≤ 2

K∑
k=1

∥∥∥R(ik,jk)
k (θk)−R(ik,jk)

k

(
θ̃k

)∥∥∥ (24)

≤
K∑
k=1

|θk − θ̃k| (25)

= ∥θ − θ̃∥1 (26)

≤ K∥θ − θ̃∥∞, (27)

where Rk (θk) denotes the quantum channel corresponding to the J-qubit rotational operator
R

(ik,jk)
k (θk). Here, Eq. (23) is derived by repeatedly using Lemma C.4 to erase the non-trainable

quantum channels, Eqs. (24) and (25) are obtained from Lemma C.2 and Lemma C.3, respectively,
and Eq. (27) owes to the relation between the l1-norm and l∞-norm for vectors in RK .

Thus, according to Lemma C.5, we have

N (Eθ, ϵ, ∥ · ∥⋄) ≤ N
(
θ,

ϵ

K
, ∥ · ∥∞

)
=

⌈
πK

ϵ

⌉K
.

Now we prove Lemma A.4 by leveraging the technique of proving Theorem 6 in Supplementary
Information of Caro et al. (2022).

Proof. To bound the Rademacher complexity

Rn (H) = E
S∼Dn

E
σ

[
sup
hθ∈H

1

n

n∑
i=1

σihθ (xi)

]
,
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the main idea is to use the chaining technique to bound the empirical Rademacher complexity

E
σ

[
sup
hθ∈H

1

n

n∑
i=1

σihθ (xi)

]
in terms of covering number.

First, with respect to the diamond norm, for each j ∈ N0, there exists an 2−j-covering net denoted
by Nj for the set of quantum channels {Eθ}, satisfying Nj ≤

⌈
2jπK

⌉K
. To be specific, for each

j ∈ N and every parameter setting θ, there exists a quantum operator Eθ,j ∈ Nj such that

∥Eθ − Eθ,j∥⋄ ≤
1

2j
.

For j = 0, the 1-covering net of {Eθ} is N0 = {0}. Moreover, according to Lemma C.6, the
covering number Nj can be upper bounded by

⌈
2jπK

⌉K
.

Then, for any k ∈ N, we have

Eθ = Eθ − Eθ,k +
1∑
j=k

Eθ,j − Eθ,j−1,

and

E
σ

[
sup
hθ∈H

1

n

n∑
i=1

σihθ (xi)

]
=E

σ

[
sup
hθ∈H

1

n

n∑
i=1

σiTr [ZEθ (ρ (xi))]
]

≤ 1

2k
+

6√
n

k∑
j=1

1

2j

√
logNj (28)

≤ 1

2k
+

6√
n

k∑
j=1

1

2j

√
K log⌈2jπK⌉ (29)

≤ 1

2k
+ 12

√
K

n

∫ 1
2

1

2(k+1)

√
log

⌈
πK

α

⌉
dα, (30)

≤ 1

2k
+ 12

√
K

n

∫ 1
2

1

2(k+1)

√
log

7K

2α
dα, (31)

where Eq. (28) is derived following a similar analysis as that in Supplementary Information of Caro
et al. (2022).

By taking the limit k →∞, we obtain

E
σ

[
sup
hθ∈H

1

n

n∑
i=1

σihθ (xi)

]
≤ 12

√
K

n

∫ 1
2

0

√
log

7K

2α
dα (32)

=12

√
K

n

[√
log 7K

2
+

7
√
πK

4
erfc

(√
log 7K

)]
, (33)

≤ 6

√
K log 7K

n
+ 2

√
K

n
, (34)

where Eq. (33) is derived by using the integral∫ √
log

1

α
dα = α

√
log

1

α
−
√
π

2
erf

(√
log

1

α

)
, (35)

with the error function defined by erf (x) = 2√
π

∫ x
0
e−t

2

dt and the complementary error function
erfc (x) = 1− erf (x). Besides, we notice that the function Kerfc

(√
log 7K

)
decreases monotoni-

cally with K ∈ N and is upper bounded by erfc
(√

log 7
)
≤ 0.0486, so we have Eq. (34).

Thus, by taking expectations of both sides of Eq. (34) over the training sample set S, we have
Eq. (14).
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