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Abstract

GEneral Matrix Multiply (GEMM) is a central op-
eration in deep learning and corresponds to a large
chunk of the compute footprint. Therefore, im-
proving its efficiency is an active topic of research.
A popular strategy is the use of low bit-width in-
tegers to approximate the original matrix entries.
This allows efficiency gains, but often requires
sophisticated techniques to control the rounding
error. In this work, we first verify that when the
low bit-width restriction is removed, for a variety
of Transformer-based models, integers are, in fact,
sufficient for all GEMMs need – for both train-
ing and inference stages, and achieve parity (with
floating point). No sophisticated techniques are
needed. We find that while a large majority of
entries in matrices (encountered in such models)
can be easily represented by low bit-width inte-
gers, the existence of a few heavy hitter entries
make it difficult to achieve efficiency gains via
the exclusive use of low bit-width GEMMs alone.
To address this issue, we develop a simple algo-
rithm, Integer Matrix Unpacking (IM-Unpack),
to unpack a matrix with large integer entries into
a larger matrix whose entries all lie within the
representable range of arbitrarily low bit-width in-
tegers. This allows equivalence with the original
GEMM, i.e., the exact result can be obtained using
purely low bit-width integer GEMMs. This comes
at the cost of additional operations – we show that
for many popular models, this overhead is quite
small. Code is available at https://github.
com/vsingh-group/im-unpack.

1. Introduction
Calculating the product of two matrices using GEneral Ma-
trix Multiply (GEMM) is one of the most widely used opera-
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tions in modern machine learning. Given matrices A and B
of size n × d and h × d respectively, the output of a GEMM
is calculated as

C =AB⊺

Choosing the appropriate numerical precision or data type
(FP32, FP16, or BF16) for GEMM is often important, and
hinges on several factors including the specific application,
characteristics of the data, model architecture, as well as
numerical behavior such as convergence. This choice af-
fects compute and memory efficiency most directly, since a
disproportionately large chunk of the compute footprint of
a model involves the GEMM operator. A good example is
the large improvement in latency and memory achieved via
low bit-width GEMM, and made possible due to extensive
ongoing work on quantization (to low bit-width data types)
and low-precision training (Banner et al., 2019; Nagel et al.,
2019; Kim et al., 2021; Dettmers et al., 2022; Li & Gu, 2023;
Xiao et al., 2023; Dettmers et al., 2022; Liu et al., 2023b;a;
Lin et al., 2022; Li & Gu, 2023; Yuan et al., 2022; Ding et al.,
2022; Li et al., 2023; Wang et al., 2018; Wu et al., 2018; Zhu
et al., 2020; Wortsman et al., 2023). Integer quantization is
being actively pursued for inference efficiency, and the use
of low bit-width integers is universal to deliver the efficiency
gains. However, this strategy often incurs large rounding
errors when representing all matrix entries as low bit-width
integers, and explains the drop in performance and thereby,
a need for error correction techniques (Frantar et al., 2023;
Xiao et al., 2023; Chee et al., 2023; Adepu et al., 2024).
So how much of the performance degradation is due to (a)
rounding to integers versus (b) restricting to low bit-width
integers? To answer this question, it appears worthwhile to
check whether integer GEMMs will achieve parity without
sophisticated techniques (for the inference stage, and more
aspirationally, for training) for popular models if we do not
restrict to low bit-width integers.

Overview. The starting point of our work is to first ex-
perimentally verify that the aforementioned hypothesis –
that integer GEMM may work – is true (see §2). But by
itself, this finding offers no value proposition for efficiency.
Nonetheless, this experiment is useful for the following rea-
son. For a particular class of models (e.g., Transformers),
we can easily contrast the corresponding input matrices A
and B between (a) integer GEMM and (b) low bit-width
integer GEMM and probe if any meaningful structure can
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Figure 1. Overall Illustration. We verify the Efficacy of Integers (Contribution 1) in §2, but note that the integer matrices contain heavy
hitters (§3). Then, we describe our proposed algorithm, IM-Unpack (Contribution 2), to resolve these heavy hitters in §4.

be exploited. While there is a clear difference in the out-
puts of (a) integer GEMM versus (b) low bit-width integer
GEMM, we find that a large majority of entries of A and
B can be represented using low bit-width integers – and the
difference in the outputs can be attributed to a few heavy
hitter entries in A and B, that cannot be represented using
low bit-width integers. Other works have also run into this
issue of “outliers” and use high precision (Dettmers et al.,
2022) or a separate quantization for these entries (Yuan et al.,
2022; Xiao et al., 2023). Based on the observation that we
can represent a large integer by a series of smaller integers,
our algorithm, Integer Matrix Unpack (IM-Unpack), en-
ables unpacking any integer into a series of low-bit integers.
The benefit is that the calculation can be carried out en-
tirely using low bit-width integer arithmetic and thus unifies
calculations needed for heavy hitters and the other entries
(already amenable to low-bit integer arithmetic). Specifi-
cally, IM-Unpack unpacks an integer matrix such that all
values of the unpacked matrices always stay within the rep-
resentable range of low bit-width integers (bit-width can be
chosen arbitrarily, as low as two). We obtain the exact result
of the original integer GEMM using purely low bit-width
integer GEMMs. Since the bit-width of integer arithmetic is
independent of the actual range of the original matrices, the
construction will simplify the hardware/compiler support
by only needing support for one specific bit-width. The
structure/contributions of this paper is shown in Fig. 1.

Notations. To simplify the presentation, we will narrow
the scope of our discussion exclusively to Transformers.
We first define notations for all relevant GEMMs. For the
linear layer, let the input activation and parameter matrix
be X and W. Let the query, key, value matrices needed in
self-attention be Q,K,V. Below, we itemize all GEMMs:

Y =XW⊺ P =QK⊺ O =MV

where M is the attention score between Q and K defined
as M = softmax(P) (omitting scaling factors). Now, given
the gradient for Y,P,O denoted as ∇Y,∇P,∇O, the other
gradients are calculated via GEMMs as well:

∇X = ∇YW ∇Q = ∇PK ∇M = ∇OV⊺

∇W = ∇⊺YX ∇K = ∇⊺PQ ∇V =M⊺∇O

These notations will help refer to each type of GEMM later.

2. Round to Nearest: What do we lose?
Let us start by using the simplest Rounding To Nearest
(RTN) to map FP to integers, and check the extent to which
integer GEMMs work satisfactorily for both training and
inference, if we do not restrict to low bit-width integers.
Specifically, for matrix A, all entries of A are quantized via

Aq = round(0.5β/αp(A)A) (1)

where αp(A) gives the p-th percentile (see §A.1 for rea-
sons behind using percentile) based on the magnitude of
entries in A, i.e., p% of entries in A fall in the interval
[−αp(A), αp(A)]. We only need αp(A) as a meaningful
estimate of the approximate range of values, and so we set
p = 95% for all experiments except a few cases noted ex-
plicitly. The hyperparameter β is the number of distinct
integers that we want to use to encode values that are within
[−αp(A), αp(A)]. Then, after quantization, the GEMM
for the original matrices can be approximated (because we
incur a rounding error) in the quantized domain using inte-
ger GEMMs. The approximated GEMM is computed using
the quantized A and B:

C ≈
αp(A)αp(B)
(0.5β)2

AqB
⊺
q (2)

The scaling factor in (2) is used to undo the scaling in (1).
Here, AqB

⊺
q is an integer GEMM, as desired. For notational

simplicity, if clear from context, we will drop the q subscript
from A and B.

In §2.1–§2.2, we evaluate the efficacy of integer GEMMs as
a replacement to FP GEMMs by evaluating how well simple
RTN works for inference and training (error analysis of
RTN is discussed in §A.2). We do not strictly constrain the
quantized integers to be within the representable range of
certain bit-widths (the maximal value of quantized integers
can be very large, up to maximum of INT32), so we use
INT without specifying bit-width to denote the data type
used in RTN in these subsections. The use of integers with
specific bit-widths will be discussed later in §3–§4.

2.1. Efficacy of Integers: Inference

A majority of the literature on quantized low precision calcu-
lations focuses on inference efficiency (Frantar et al., 2023;
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Table 1. Inference: Comparison on LLaMA-7B zero-shot perfor-
mance and ViT ImageNet classification when quantize parameter
only. Bits is the average bit required to store a weight parameter.
HS: HellaSwag, WG: WinoGrande.

L
L

aM
A

-7
B

Method β Bits ARC-c ARC-e BoolQ HS PIQA WG

Full-Precision - 16 43.1 76.3 77.8 57.2 78.0 68.8

GPTQ - 4 37.4 72.7 73.3 54.9 77.9 67.9
LLM-FP4 - 4 40.4 74.9 74.2 55.8 77.8 69.9
QuIP - 2 22.3 42.8 50.3 34.0 61.8 52.6

RTN+HE 5 2.5 39.3 72.8 69.9 53.4 74.9 66.4
7 2.9 42.6 73.9 72.3 55.9 77.0 67.4
11 3.5 43.9 76.1 77.3 56.3 77.3 69.3
15 4.0 43.0 75.7 77.5 57.0 78.0 69.2
31 5.0 42.7 76.1 76.1 57.3 77.3 69.3

V
iT

Method β Bits Tiny Small Base Large Huge

Full-Precision - 32 75.5 81.4 85.1 85.8 87.6

PTQ4ViT - 3 18.3 36.2 21.4 81.3 78.9

RTN+HE 3 1.8 0.5 8.3 63.6 81.9 83.3
5 2.4 38.2 69.0 81.1 84.9 86.7
7 2.9 63.6 76.7 83.6 85.4 87.2
15 4.0 73.4 80.5 84.8 85.7 87.6

Chee et al., 2023; Liu et al., 2023a; Yuan et al., 2022; Frantar
et al., 2023; Chee et al., 2023; Liu et al., 2023a; Yuan et al.,
2022; Lin et al., 2022; Li & Gu, 2023; Yuan et al., 2022;
Ding et al., 2022; Li et al., 2023). Here, given a trained
model, quantization seeks to reduce the precision of parame-
ters and input activations to low precision. This allows faster
low precision arithmetic for compute efficiency while main-
taining model performance. So, we first evaluate how well
RTN preserves model performance compared to baselines in
this inference regime using downstream tasks: ARC (Clark
et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers
et al., 2019), PIQA (Bisk et al., 2020), and WinoGrande
(Sakaguchi et al., 2021). (§A.3 includes more experiments).
Most quantization schemes for LLMs focus on quantizing
GEMMs in the Linear layers, while quantization methods
for Vision Transformers are more ambitious and quantize
all GEMMs in a Transformer. We follow this convention
for baselines, but present all variants for RTN.

Quantize Parameters Only. One direction of quantization
research focus on quantizing the parameters for better stor-
age and memory usage (Frantar et al., 2023; Chee et al.,
2023). We also evaluate how well RTN works for storage
and memory efficiency. After quantization, the quantized
Wq usually contains a few hundreds of distinct integers.
Simply representing Wq in plain integer format would not
be efficient and usually requires larger than 8 bits per value
for memory. By inspecting the value distribution of Wq,
we fing that a few values occur much more frequently than
others, which create a clear opportunity for compression.
We simply apply Huffman Encoding (HE), which was also
used in (Han et al., 2016) to compress models for memory
efficiency, to use shorter encoding for more frequent values.
As shown in Table 1, with RTN and HE, we are able to
significantly reduce the average bits per value with small

Table 2. Inference: Comparison on LLaMA-7B zero-shot per-
formance and ViT ImageNet classification when quantize com-
putation in all linear layers. The super-script ‡ indicates that
LLM.int8() uses mixed-precision (INT8+FP16) to process out-
liers using FP16.

L
L

aM
A

-7
B

Method β Type ARC-c ARC-e BoolQ HS PIQA WG

Full-Precision - BF16 43.1 76.3 77.8 57.2 78.0 68.8

LLM.int8() - INT8‡ 43.8 75.5 77.8 57.4 77.6 68.7
SmoothQuant - INT8 37.4 74.4 74.0 55.0 77.5 69.6
LLM-QAT - INT4 30.2 50.3 63.5 55.6 64.3 52.9
LLM-FP4 - FP4 33.6 65.9 64.2 47.8 73.5 63.7

RTN 5 INT 39.3 72.8 69.9 53.4 74.9 66.4
7 INT 42.6 73.9 72.3 55.9 77.0 67.4
11 INT 43.9 76.1 77.3 56.3 77.3 69.3
15 INT 43.0 75.7 77.5 57.0 78.0 69.2
31 INT 42.7 76.1 76.1 57.3 77.3 69.3

V
iT

Method β Type Tiny Small Base Large Huge

Full-Precision - FP32 75.5 81.4 85.1 85.8 87.6

RTN 5 INT 3.9 36.9 78.7 83.6 85.3
7 INT 41.0 70.9 82.8 84.9 86.7
15 INT 71.4 79.8 84.6 85.6 87.5

Table 3. Inference: Comparison on LLaMA-7B and ViT when
quantize computation in all GEMMs. ∗: PTQ4ViT uses a twin
uniform quantization so GEMMs cannot be performed on INT6
directly and requires some modifications.

L
L

aM
A

-7
B

Method β Type ARC-c ARC-e BoolQ HS PIQA WG

Full-Precision - BF16 43.1 76.3 77.8 57.2 78.0 68.8

RTN 5 INT 23.5 34.3 54.8 32.5 57.6 49.7
7 INT 34.2 64.0 64.6 50.1 70.3 61.2
11 INT 41.6 72.4 68.7 55.1 75.4 65.1
15 INT 44.0 75.0 74.6 56.4 77.0 66.3
31 INT 43.4 75.8 76.8 57.5 77.4 68.4

V
iT

Method β Type Tiny Small Base Large Huge

Full-Precision - FP32 75.5 81.4 85.1 85.8 87.6

FQ-ViT - INT8 - - 83.3 85.0 -
I-ViT - INT8 - 81.3 84.8 - -
PTQ4ViT - INT6∗ 66.7 78.3 82.9 84.9 86.6
APQ-ViT - INT4 17.6 48.0 41.4 - -
RepQ-ViT - INT4 - 65.1 68.5 - -

RTN 5 INT 3.5 28.5 76.9 83.2 84.9
7 INT 39.0 69.9 82.1 84.7 86.5
15 INT 71.1 79.8 84.5 85.6 87.5

or no performance degradation and result in significantly
better efficiency compared to baselines (Frantar et al., 2023;
Chee et al., 2023; Liu et al., 2023a; Yuan et al., 2022) for
both Transformer based LLMs and Vision Transformers.

Quantize GEMMs in Linear layers. It is common (Xiao
et al., 2023; Liu et al., 2023a) to try and quantize the weight
and input activation of linear layers to low precision for
compute efficiency. We summarize our comparisons in Tab.
2. Here, we compare RTN to (Xiao et al., 2023; Dettmers
et al., 2022; Liu et al., 2023b;a). As shown in Tab. 2,
a simple RTN works remarkably well compared to other
baselines. We use INT as a data type for RTN here; in
§4, we show that we can compute integer GEMMs of any
bit-widths using arbitrarily low bit-width GEMMs.

Quantize all GEMMs. A more ambitious goal is to quan-
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Figure 2. Training: Comparison of RoBERTa loss curves.

Figure 3. Training: Comparison of ViT-Small. † and ∗: we set
β = 16383 and β = 1023, respectively, for the set {∇Y,∇P,∇O}.

Table 4. Training: Validation log perplexity of RoBERTa.
Size FP32 BF16 β = 255 β = 31 β = 15

Small 1.869 1.868 1.823 1.840 1.891
Base 1.611 - - 1.601 -

Table 5. Training: Validation top-1 accuracy of ViT-Small.
FP32 FP16 β = 63† β = 31† β = 31∗

78.91 79.16 78.94 79.33 79.17

tize every GEMM in a Transformer model for higher effi-
ciency. The comparison results with (Lin et al., 2022; Li
& Gu, 2023; Yuan et al., 2022; Ding et al., 2022; Li et al.,
2023) are summarized in Tab. 3. We can draw a similar
conclusion that a simple RTN offers strong performance.

2.2. Efficacy of Integers: Training

The transition from FP32 to FP16 and BF16 for GEMMs
has doubled the compute efficiency of modern deep learn-
ing models. However, far fewer efforts have focused on
low precision training (relative to inference) and this usu-
ally requires more sophisticated modifications (Wang et al.,
2018; Wu et al., 2018; Zhu et al., 2020; Wortsman et al.,
2023). In this subsection, we evaluate how well quantizing
all GEMMs (both forward and backward pass) using RTN
works for training Transformer models. To ensure that the
updates can be properly accumulated for the parameters, we
use FP32 for storing the parameters and use the quantized
version for GEMMs. To limit the amount of compute but
still gather useful feedback, we evaluate RTN on RoBERTa
(Liu et al., 2019) pretraining using masked language model-

ing (Devlin et al., 2019) on the English Wikipedia corpus
(Foundation) and ImageNet classification (Deng et al., 2009)
using ViT (Dosovitskiy et al., 2021) (and see T5-Large (Raf-
fel et al., 2020) finetuning in §A.3). All hyperparameters
(including random seed) are the same for full-precision and
RTN quantized training. See §A.3 for more details of train-
ing configurations.

RoBERTa. As shown in Fig. 2, when p = 95%, for both
Small and Base models, the RTN quantized training gives
an almost identical log perplexity (loss) curves as FP32
training for β ∈ {15,31,255}. For larger β, the the curve is
even closer to the FP32 training curve. We see that β = 31
already gives a remarkably good result. Surprisingly, despite
a marginally higher training log perplexity when using RTN,
the validation log perplexity of RTN (β = 31 and β = 255)
is marginally lower than FP32 and BF16, see Tab. 4.

ViT. For ViT, compared to RoBERTa pretraining, we found
that it may be necessary to allow the gradients ∇Y,∇P,∇O

of the model to have higher bit-widths. As shown in Fig.
3, when β is the same (β = 31 and β = 127 for the set
{X,W,Q,K,M,V} and {∇Y,∇P,∇O}, we see diver-
gence in the middle of training. Alternatively, when using a
larger β for only the set {∇Y,∇P,∇O}, the loss curve of
RTN quantized training is almost identical to FP32 train-
ing. Surprisingly, we observed similar results as RoBERTa
training: despite marginally higher training loss when using
RTN, the validation top-1 accuracy of RTN is higher than
FP32 as shown in Fig. 3 and Tab. 5.

3. What happens with Low Bit-Width?
Converting floating point to integers alone will not provide
efficiency benefits. Rather, we want to use a representation
that can be efficiently computed (and this is why low bit-
width integers are common in integer quantization). Notice
that as a direct consequence of RTN, by (1), 95% of values
can be represented using β distinct numbers, which requires
only log2(β + 1) bits. For example, if β = 15, then we can
represent these 95% of values with 4-bit signed integers,
which is already low bit-width. So, is there still a problem?

It turns out that the challenge involves dealing with the re-
maining 5% of entries. To get a sense of how large these
values are, we calculate the ratio α100(⋅)/α95(⋅) between
the maximum and 95th-percentile of the magnitude of each
matrix in GEMMs when performing (a) inference (forward
pass) of LLaMA-7B and ViT-Large and (b) training (for-
ward pass and backward pass) of RoBERTa-Small at differ-
ent training phases. We can check the ratios in Tab. 6 and
Tab. 7, respectively. We see extremely large values across
both training and inference and across the entire duration of
training, so simply increasing the representation bit width
of low precision integers by a few more bits will not be

4



Training and Inference with Arbitrarily Low Precision Integers

Table 6. Maximal ratios between the maximum and 95-percentile
of magnitudes of each matrix involved in GEMMs.

Model X W Q K M V

LLaMA-7B 141312.0 47.8 8.4 8.1 4448.0 36.2
ViT-Large 284402.4 34.8 4.3 4.3 120.0 8.9

Table 7. Maximal ratios between the maximum and 95-percentile
of magnitudes of each matrix involved in GEMMs during the
training of RoBERTa-Small.

Progress X W ∇Y Q K ∇P M V ∇O

1/3 28.7 7.1 292.5 3.7 3.0 309365.2 3924.6 3.1 25.8
2/3 25.7 13.8 235.4 4.2 2.7 283742.8 2283.3 3.3 32.4
3/3 22.0 16.0 290.3 4.0 3.0 218376.0 2018.6 3.4 28.9

Table 8. Catastrophic performance degradation when restricting
outliers to a representable range of quantized domain or clipping
the outliers on zero-shot inference of LLaMA-7B and ImageNet
classification of quantized ViT models. p = 100 means we keep
outliers within representable range of β distinct integers. β =∞
means that we do not quantize the values. Clip means we clip the
values that are larger than p-percentile.

L
L

aM
A

-7
B

p β Clip ARC-c ARC-e BoolQ HS PIQA WG

Full-Precision 43.1 76.3 77.8 57.2 78.0 68.8

100 255 No 35.8 66.2 57.8 47.4 71.3 63.9
99.5 ∞ Yes 21.4 25.5 60.2 25.8 53.5 49.9

95 31 No 43.4 75.8 76.8 57.5 77.4 68.4

V
iT

p β Clip Tiny Small Base Large Huge

Full-Precision 75.5 81.4 85.1 85.8 87.6

100 127 No 53.9 69.1 72.0 81.6 83.6
99.5 ∞ Yes 11.3 24.1 9.0 15.8 0.6

95 15 No 71.1 79.8 84.5 85.6 87.5

sufficient to represent these heavy hitters.

We performed experiments studying different ways of han-
dling these heavy hitters when quantizing all GEMMs (lin-
ear layers and self-attention computation) in Transformer
models. Unless β is inordinately large (based on Tab. 6
and Tab. 7, more than 105 times larger than our choice of
β for p = 95%), simply ensuring that the heavy hitters lie
within the representable range of β for β = 255 or β = 127
results in a huge performance drop as shown in Tab. 8. On
the other hand, clipping the extreme heavy hitters (at the
99.5-percentile) also fails as shown in Tab. 8. Our observa-
tions for training are similar – we can see the loss curves for
p = 100%, β = 255 and p = 95%, β = 31 in Fig. 2.

As briefly mentioned earlier, some ideas have been pro-
posed to process these so-called outliers. The approach
in Dettmers et al. (2022) exploits the location structure of
where these outliers occur and moves the columns or rows
of each matrix (with these outliers) into a different matrix,
then GEMM is performed using FP16. The authors in Xiao
et al. (2023) propose to smooth the outliers in activation
and mitigate the quantization difficulty to parameters via a
transformation. These strategy requires GEMM hardware

A AuΠA ×=

Figure 4. Illustration of unpacking row vectors. The solid, dashed,
and dotted arrows correspond to lines 5, 4, and 6 in Algo. 1

support for different precisions or may lower the perfor-
mance as shown in our baseline comparisons in §2.1.

Goals. We desire an approach that does not alter the results
of integer GEMMs; in other words, all results in §2.1 and
§2.2 must remain exactly the same, yet we should not need
calculations using different precisions. This may appear
unrealistic but our simple procedure, IM-Unpack, allow rep-
resenting heavy hitters using low bit-width integers. Calcu-
lations are carried out using low bit-width integer arithmetic.
Specifically, IM-Unpack unpacks a matrix containing heavy
hitters into a larger unpacked matrix (we study how large
the expansion will be in §4.2) whose values are all rep-
resentable by low bit-width integers. IM-Unpack obtains
the exact output of the original GEMM using purely low
bit-width integer GEMMs on these unpacked matrices.

4. IM-Unpack: Integer Matrix Unpacking
Our approach starts with a simple observation that, for ex-
ample, a 32-bit integer v can be represented as

v = v0 + 128v1 + 1282v2 + 1283v3 + 1284v4

where vi are 8-bit integers. Multiplication/addition of two
32-bit integers can be performed on these decomposed 8-bit
integers followed by some post-processing steps (scaling
via bit shifting and accumulation). Note that while this un-
packing enables performing high bit-width arithmetic using
lower bit-width, it does need more operations. For example,
one 32-bit addition now becomes five 8-bit additions with
some follow up processing, and one 32-bit multiplication
becomes twenty five 8-bit multiplications (distributive law).

Remark 4.1. The reason why this unpacking is still useful
is because the additional work depends on the number and
spatial distribution of the heavy hitters/outliers. We harvest
gains because outliers account for a very small portion of
the matrices that appear in practice in training/inference
stages of Transformer models. Exploitation of the sparsity
of outliers in quantization can also be found in Dettmers
et al. (2022); Xiao et al. (2023).

Let b be the target bit-width of low bit-width integers and
s = 2b−1 be the representable range of bit-width b: b-bit
integers can represent a set {−s+1,⋯,0,⋯, s−1}. We refer
to any integers inside of this set as In-Bound (IB) values and
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Algorithm 1 UnpackRow(A, b)
1: Let Π← I and s← 2b−1 and i← 0
2: while A[i, ∶] exists do
3: if A[i, ∶] contains OB entries then
4: Append floor(A[i, ∶]/s) as a new row to A
5: A[i, ∶]←A[i, ∶] mod s
6: Append sΠ[∶, i] as a new column to Π
7: end if
8: i← i + 1
9: end while

10: return A,Π

any integers outside of this set as Out-of-Bound (OB) values,
which will be used in later discussion to refer to the values
that need to be unpacked. We will first show how to unpack
a vector to multiple low bit-width vectors. Then, we will
discuss how to unpack a matrix using different strategies
to achieve better results in different cases in §4.1. Lastly,
we will evaluate how well IM-Unpack works in §4.2, and
provide an end to end quantization baseline comparison
and discuss model speedup in §A.3 when employing our
IM-Unpack as supplement to §2.

Unpacking an integer vector. Let v be an integer vector
and define a function:

m(v, s, i) = floor(v/si) mod s (3)

such that for all i, all entries of m(v, s, i) are bounded (IB),
i.e., lie in the interval [−s+1, s−1]. When s is clear from the
context, we shorten the LHS of (3) to just m(v, i). Then,

v =
∞
∑
i=0

sim(v, i) (4)

Note that v/si decreases to 0 exponentially fast, so we are
able to unpack a vector with just a few low bit-width vectors.

4.1. Variants of Matrix Unpacking

In this subsection, we discuss different strategies of matrix
unpacking for different structure-types of matrices. First,
we discuss the case where A is the matrix containing OB
values to be unpacked and B is a matrix whose values are
all IB. Next, we discuss how unpacking works when both
A and B contains OB values.

Unpacking row vectors. We start with the simplest means
of unpacking a matrix: unpacking the row vectors. Given a
matrix A, if one row of A contains OB values, we can un-
pack the row to multiple rows whose entries are all bounded.
The exact procedure is described in Alg. 1 and illustrated
in Fig. 4. In Fig. 4, when the second row in A contains
OB values, we can unpack it to two row vectors (the second
and fifth row) and the post-processing step takes the form
of applying ΠA to the unpacked matrix Au.

Reconstructing A. A can be reconstructed using the un-
packed matrix Au whose entries are IB and a sparse matrix

Figure 5. Left: Failure case for unpacking rows. Right: Failure
case for unpacking rows or columns alone.

Π whose column contains only one non-zero:

Au,ΠA = UnpackRow(A, b)
A =ΠAAu

Here, applying ΠA to Au can be efficiently computed easily
(for example, via torch.index add).

Are we done? If we do not care about maximizing effi-
ciency, then the above scheme already provides a way to
perform high bit-width GEMM using low bit-width GEMM.
However, this might not be the optimal unpacking strategy
for some matrices. For example, consider the left matrix
shown in Fig. 5. Since every row of this matrix contains
OB values, every row needs to be unpacked, resulting in a
much larger matrix. In this case, it might be better to try
and unpack the column vectors. Let us apply a similar idea
of unpacking row vectors to unpack column vectors of A:

A =A′uΠ′A
AB⊺ =A′uΠ′AB⊺

(5)

While unpacking column vectors is reasonable, the sparse
matrix Π′A creates an issue when performing a GEMM of
two lower bit-width matrices: Π′A has to be applied to A′u
or B⊺ before GEMM, but the result/output may contain
OB entries after application, disabling low bit-width integer
GEMM. This problem is similar to the per-channel quantiza-
tion. It is not simple to handle and becomes more involved
when B also need to be unpacked.

Unpacking column vectors. Alternatively, let us look at
how AB⊺ is computed via outer product of column vectors:

C =AB⊺ =
d

∑
i=1

A[∶, i]B[∶, i]⊺

Let us look at the i-th outer product. Let us try unpacking
A[∶, i] using (4), then we have

A[∶, i]B[∶, i]⊺ =
∞
∑
j=0

sjm(A[∶, i], j)B[∶, i]⊺

Suppose that m(A[∶, i], j) = 0 for j ≥ k, then we can un-
pack one outer product to k outer products. This is equiva-
lent to appending m(A[∶, i], j) for 0 ≤ j < k to the columns
of A, appending k identical B[∶, i] to the columns of B, and
maintaining a diagonal matrix to keep track of the scaling
factor sj . The exact procedure is described in Alg. 2, and
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=A × B⊤ Au × × B⊤
eSu

Figure 6. Illustration of unpacking column vectors. The blue solid, dashed, and dotted arrows correspond to lines 5, 4, and 7 in Algo. 1,
and the gray dashed arrow corresponds to line 6 in Algo. 1.

Algorithm 2 UnpackColumn(A,B,S, b)
1: Let s← 2b−1 and i← 0
2: while A[∶, i] exists do
3: if A[∶, i] contains OB entries then
4: Append floor(A[∶, i]/s) as a new column to A
5: A[∶, i]←A[∶, i] mod s
6: Append B[∶, i] as a new column to B
7: Append sS[i, i] as a new diagonal entry to S
8: end if
9: i← i + 1

10: end while
11: return A,B,S

Algorithm 3 ScaledMatMul(A,B,S)
1: Let C← 0
2: for all distinct diagonal entry si in S do
3: Let I be the index set where S[j, j] = si for j ∈ I
4: C←C + siA[∶,I]B[∶,I]⊺
5: end for
6: return C

Fig. 6 shows a visualization of unpacking columns. Using
column unpacking, we have

Au,Be,Su = UnpackColumn(A,B, I, b)
AB⊺ =AuSuB

⊺
e

Naively, this still suffers from the same problem as discussed
in (5) in that there is a diagonal scaling matrix between two
low bit-width matrices making low bit-width GEMMs diffi-
cult. However, since Su is a diagonal matrix whose diagonal
entries consist of a few distinct factors in {1, s, s2, ...}, we
can easily compute one GEMM for each distinct diagonal
entry as shown in Alg. 3.

AB⊺ = ScaledMatMul(Au,Be,Su)

Further, since s is a power of 2, the scaling can be efficiently
implemented via bit shifting.

Are we done yet? Unpacking columns is efficient for the
left matrix shown in Fig. 5. However, neither unpacking
rows nor unpacking columns will be efficient for unpacking
the right matrix shown in Fig. 5. All rows and columns
contains OB values. Unpacking rows or columns alone
will not be ideal. For the right matrix in Fig. 5, a better
strategy is to unpack the second row and the second column
simultaneously.

Unpacking both rows and columns simultaneously. Our

Algorithm 4 UnpackBoth(A,B,S, b)
1: Let s← 2b−1 and
2: while True do
3: Let (c0, i), (c1, j) be the tuples of top OB count in

row/column vectors and corresponding index
4: if c0 = 0 and c1 = 0 then
5: break
6: else if c0 ≥ c1 then
7: Append floor(A[i, ∶]/s) as a new row to A
8: A[i, ∶]←A[i, ∶] mod s
9: Append sΠ[∶, i] as a new column to Π

10: else
11: Append floor(A[∶, j]/s) as a new column to A
12: A[∶, j]←A[∶, j] mod s
13: Append B[∶, j] as a new column to B
14: Append sS[j, j] as a new diagonal entry to S
15: end if
16: end while
17: return A,B,S,Π

final strategy combines row and column unpacking together
and selectively performs row unpack or column unpack
based on the number of OB values that can be eliminated.
The procedure is described in Alg. 4, and we provide an
illustration of unpacking both dimensions in Fig. 7. With
this procedure, we can obtain the output of high bit-width
GEMM using low bit-width as:

Au,Be,Su,ΠA = UnpackBoth(A,B, I, b)
AB⊺ =ΠAAuSuB

⊺
e

(6)

Here, AuSuB
⊺ can be calculated via Alg. 3, and applying

ΠA can be carried out efficiently as discussed.

Combining everything. Since we have different strategies
for unpacking, let us first define a unified interface in Alg.
5. One can verify that for any strategies sA:

Au,Be,Su,ΠA = Unpack(A,B, I, b, sA)
AB⊺ =ΠAAuSuB

⊺
e

(7)

In the previous discussion, B was assumed to have all val-
ues IB. When B contains OB values, we note that B can
be unpacked in a similar manner, and the choice of un-
packing strategies for B is independent of the unpacking
strategy for A. For example, A can be unpacked row-wise,
while B is unpacked column-wise. By taking the unpacked
Au,Be,Su,ΠA from (7), we can further unpack B using

7
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=A × B⊤ Au × × B⊤
eSu×ΠA

Figure 7. Illustration of unpacking both rows and columns based on the OOB counts. The red solid, dashed, and dotted arrows correspond
to lines 8, 7, and 9 in Algo. 4. The blue solid, dashed, and dotted arrows correspond to lines 12, 11, and 14 in Algo. 4, and the gray
dashed arrow corresponds to line 13 in Algo. 4.

Algorithm 5 Unpack(A,B,S, b, strategy)
1: if strategy is UnpackRow then
2: Au,ΠA ← UnpackRow(A, b)
3: Su,Be ← S,B
4: else if strategy is UnpackColumn then
5: Au,Be,Su ← UnpackColumn(A,B,S, b)
6: ΠA ← I
7: else
8: Au,Be,Su,ΠA ← UnpackBoth(A,B,S, b)
9: end if

10: return Au,Be,Su,ΠA

strategy sB :

Beu,Aue,Suu,ΠB = Unpack(Be,Au,Su, b, sB)
AB⊺ =ΠAAueSuuB

⊺
euΠ

⊺
B

Here, values in both Aue and Beu are IB, and the result can
be obtained similar to discussion in Eq. (6).

As we noted during the discussion, ΠA,ΠB ,Suu are spe-
cial sparse matrices. ΠA and ΠB are sparse matrices whose
column contains only one non-zero, and Suu are diagonal
matrices whose diagonal entries consist of a few distinct
factors. As a result, AueSuuB

⊺
eu is computed via Alg. 3

using GEMMs on Aue and Beu, and applying ΠA and ΠB

is possible simply via torch.index add.

Summary. We introduced three strategies to unpack a ma-
trix to low bit-width integer matrices for different structures
of OB values in a matrix. While these strategies work for
arbitrary matrices, we can clearly see that these unpacking
strategies are most efficient when the OB values concentrate
in a few columns and rows. Luckily, the matrices of interest
in Transformer models indeed have this property, which
is studied and exploited in several works (Dettmers et al.,
2022; Xiao et al., 2023).

4.2. Evaluating Unpacking Overhead

The idea of IM-Unpack is to use more low bit-width arith-
metic operations to compute a high bit-width operation.
As we see in the description of IM-Unpack algorithm, the
number of row and column vectors will increase, so the
unpacked matrices Aue and Beu is larger in terms of size
compared to A and B, which obviously increases the com-
putational cost of low bit-width GEMMs. In this subsection,
we evaluate how much this cost will increase. For two ma-

Table 9. Averaged unpack ratios of each type of GEMMs in
LLaMA-7B: linear layers (computing Y), attention score (comput-
ing P), and attention output (computing O) when using different
unpack strategies and integer bit-width b under quantization β
settings. AS: Attention Score, AO: Attention Output.

β 5 15 31

Integer Bits b 3 4 5 4 5 6 5 6 7

L
in

ea
r(
Y

)

X

Row

W

Row 2.67 1.93 1.57 2.47 2.02 1.73 2.12 2.00 1.74
Row Col 10.76 2.35 1.61 9.91 5.36 1.84 8.44 5.62 1.86
Row Both 5.46 1.95 1.57 5.15 2.20 1.73 4.71 2.24 1.75
Col Row 3.80 1.32 1.06 3.98 1.64 1.16 3.93 1.68 1.17
Col Col 15.40 1.62 1.09 16.00 4.01 1.25 15.69 4.33 1.27
Col Both 5.21 1.34 1.06 6.04 1.76 1.16 5.98 1.82 1.17

Mix 2.6 1.27 1.06 2.44 1.4 1.15 2.1 1.42 1.16

A
S

(P
)

Q

Row

K

Row 1.97 1.60 1.0 2.00 1.87 1.15 2.00 1.87 1.18
Row Col 3.22 1.64 1.0 5.35 2.07 1.17 5.36 2.09 1.20
Col Row 1.81 1.04 1.0 2.91 1.14 1.01 2.91 1.15 1.01
Col Col 3.36 1.08 1.0 8.66 1.32 1.03 8.67 1.35 1.03

Mix 1.72 1.03 1.0 1.95 1.13 1.01 1.95 1.14 1.01

A
O

(O
)

M

Row

V

Row 6.02 4.18 3.27 4.72 3.65 3.02 3.93 3.24 2.81
Row Col 15.10 4.53 3.35 18.21 4.64 3.16 15.07 4.21 2.95
Col Row 16.29 8.14 5.12 11.28 6.98 4.91 8.41 5.84 4.42
Col Col 42.21 8.76 5.21 43.57 9.11 5.09 32.31 7.74 4.61

Mix 5.98 4.11 3.16 4.7 3.62 2.97 3.92 3.22 2.77

Table 10. Averaged unpack ratios of each type of quantized
GEMMs in both forward and backward of a RoBERTa-Small when
using different integer bit length b at different training phrases of
the β = 31 experiment in Fig. 2. The optimal strategies (Mix as in
Tab. 9) for each GEMM is used.

Progress 1/3 2/3 3/3

Integer Bits b 5 6 7 5 6 7 5 6 7

L
in

ea
r Y 2.00 1.31 1.08 2.00 1.32 1.07 2.00 1.32 1.05

∇X 1.50 1.31 1.15 1.50 1.30 1.16 1.50 1.30 1.15
∇W 1.98 1.25 1.04 1.98 1.25 1.03 1.98 1.25 1.03

A
S

P 1.66 1.04 1.00 1.42 1.05 1.0 1.40 1.04 1.00
∇Q 2.22 1.90 1.71 2.22 1.91 1.7 2.24 1.92 1.71
∇K 1.79 1.06 1.00 1.49 1.07 1.0 1.45 1.07 1.00

A
O

O 3.11 2.71 2.30 3.10 2.68 2.24 3.10 2.62 2.22
∇M 1.21 1.10 1.04 1.21 1.10 1.04 1.21 1.10 1.04
∇V 2.88 2.52 2.12 2.87 2.48 2.10 2.86 2.41 2.09

trices A and B, the complexity of a GEMM is O(ndh).
Similarly, let n′, d′ be the size of Aue and h′ be the number
of rows of Beu. The cost of AueSuuB

⊺
eu is O(n′d′h′), we

can directly measure the unpack ratio

r = n′d′h′

ndh
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= 20 × +21 × +22 × +23 × +24 ×

Sparsity in bit representation
Figure 8. Illustration of the bit representation of a matrix. Heavy-hitters have higher order non-zero bits. When a matrix contains
heavy-hitters, its bit representation has a sparsity structure in the higher order bits as illustrated.

Table 11. Averaged ratios of quantized GEMMs (β = 15) in linear
layers on ViT-Large when using different strategies and a range of
integer bit-widths b to the lowest bit-width possible.

Integer Bits b 2 3 4 5 6 7

X

Row

W

Row 7.24 3.80 2.63 2.22 1.54 1.43
Row Col 194.89 27.52 10.46 4.31 1.62 1.43
Row Both 85.92 13.80 6.22 2.76 1.56 1.43
Col Row 19.27 4.85 3.06 1.46 1.25 1.12
Col Col 526.31 35.86 12.22 2.81 1.32 1.13
Col Both 27.06 13.31 7.59 1.78 1.26 1.13
Both Row 7.62 3.39 2.58 1.64 1.42 1.33
Both Col 206.32 24.45 10.27 3.15 1.49 1.34
Both Both 79.19 11.16 6.09 2.01 1.43 1.34

Mix 6.29 2.98 2.24 1.40 1.23 1.11

to understand by how much the cost for low bit-width
GEMMs increases. We uses LLaMA-7B to study the un-
pack ratio r when using different unpacking strategies (Tab.
9). Note that since unpacking both requires keeping track of
the OB count in each row and column vector which is not as
fast as the other two strategies, we only use it for unpacking
parameters W for inference since it can be performed once
when loading the model. The Mix in Tab. 9 means that for
each GEMM, we compare different strategies and choose
the optimal strategy that results in the smallest unpack ratio.
We note that the unpack ratios of computing Y and P are
quite reasonable, but the ratios of computing O is larger.
This is expected since the large outliers of the self-attention
matrix M mainly concentrate in the diagonal (Beltagy et al.,
2020). We also study the unpack ratios of each type of quan-
tized GEMMs at different training phases, and show the
results of Mix strategy in Tab. 10. The ratios stay relatively
unchanged as training progresses. Also, we can observe
similar high unpack ratio when computing O and ∇V since
these GEMMs involve the self-attention matrix M. Lastly,
we verify that we can unpack matrices to arbitrarily low
integer matrices (Tab. 11). The 2-bit setting is the lowest
bit width that can be used for symmetric signed integers
({−1,0,1}). In §A.1, we also describe a small adjustment
to reduce this 2-bit setting to 1-bit arithmetic.

4.3. Limitations

To simplify the presentation, we used the simplest RTN
quantization, which might not deliver the optimal perfor-
mance. More sophisticated techniques are likely to further
improve the results. For example, we may be able to remove
the demands of large β for the set {∇Y,∇P,∇O} for ViT

training. The current unpacking strategies cannot handle
the self-attention matrix M efficiently since the outliers
mainly concentrate on the diagonal region rather than rows
or columns; this needs further investigation.

5. Conclusions
In this paper, we verify the efficacy of integer GEMMs in
both training and inference for Transformer-based models
in language modeling and vision. A simple RTN quanti-
zation strategy works well compared to baselines. But the
presence of large outliers/heavy-hitters makes it difficult to
make use of efficient low bit-width integer GEMMs since
these outliers are much larger than the representable range
of low bit-width integers. We take a “multi-resolution” view
(Zeng et al., 2022) in how we extract a spectrum of bit-width
tradeoffs. This is loosely similar to sparsity but here, in-
stead of making a zero versus non-zero distinction between
the entries, our heavy-hitters (which need higher bit-width
representations) are analogous to “non-sparse” entries (as
illustrated in Fig. 8). To handle high bit-width heavy-hitters,
we develop an algorithm to unpack integer matrices that
contains arbitrarily large values to slightly larger matrices
with the property that all values lie within the representable
range of low bit-width integers and a procedure to obtain the
GEMM output of original matrices using only low bit-width
integer GEMMs on the unpacked matrices followed by some
scaling (using bit shifting) and accumulation. Our algorithm
can greatly simplify the design of hardware and improve the
power efficiency by only supporting low bit-width integer
GEMMs for both training and inference.
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Table 12. Standard deviation vs percentile when removing largest outliers. X has 2.25 × 107 entries and W has 1.68 × 107 entries.

Number of Largest Outliers Removed 0 10 102 103

W
Standard Deviation 0.0082 0.0082 0.0082 0.0082
95-Percentile 0.0177 0.0177 0.0177 0.0177

X
Standard Deviation 0.0330 0.0327 0.0320 0.0214
95-Percentile 0.0280 0.0280 0.0280 0.0278

A. Appendix
We provide more details about design choices and experimental setup as well as additional experiments that were omitted
from the main paper due to space.

A.1. Rationale behind certain design choices

Why Use Percentiles? We need a way of mapping the actual range of values in a floating point matrix to an integer range.
In this process, we should ensure that most values fall within the desired range and fill up the representable range as much
as possible, so we need a statistic to estimate the range of values in a FP matrix. We compared percentile and standard
deviation and inspected different parameter matrices W and the corresponding inputs X in the LLaMA-7B model (Touvron
et al., 2023). The outlier problem in W is moderate: we can see in Tab. 12, that both standard deviation and percentile
estimates are stable across columns. On the other hand, the outliers in X is a bit more problematic and includes a few entries
that are much larger than the non-outliers. The estimation of standard deviation varies much more as shown in Tab. 12: even
removing an extremely small subset of the largest outliers can sizably alter the estimates. In contrast, the percentile is more
stable. As a result, we choose percentile as the estimation of value range.

Can We Use as Low as 1-bit Encoding? As discussed in §4.2, we use 2 bits to encode {−1,0,+1} for symmetric encoding,
so the 2 bit setting is the lowest bit width that our method supports. However, with small adjustments, it is possible in
principle to derive a 1-bit encoding scheme for this 2-bit encoding. Given A and B matrices whose values are {−1,0,+1},
we can easily decompose

A =Ap −An

B = Bp −Bn

where Ap,An,Bp,Bn consist of values {0,1}. Then,

AB⊺ =ApB
⊺
p −AnB

⊺
p −AnB

⊺
p +AnB

⊺
n

becomes four 1-bit GEMMs, so 1-bit encoding is feasible in this sense.

One benefit of 1 bit quantization is that multiplication in GEMM becomes logic AND and accumulation becomes counting
the number of 1’s. Notice that similar benefits can be exploited in the 2-bit encoding for −1,0,+1. The mapping between
2-bit binary representation and decimal numbers is 00b = 0,01b = 1,10b = 0,11b = −1. We call the left bit a sign bit and
right bit a value bit. We note that the multiplication becomes logical XOR in the sign bit and logical AND in the value bit,
and accumulation becomes counting the number of 1’s in value bit and then subtracting the number of 11b. We have not
performed experiments evaluating this approach yet.

A.2. Analyzing the Error of Rounding to Nearest

Our method consists of two main steps: 1. Rounding to Nearest (RTN) integer, which maps floating-point entries in the
matrices to integer entries; and 2. Our main algorithm IM-Unpack, which unpacks integer matrices to the desired bit-width.
As described at the end of §3, Step 2 does not incur any loss and so, can be ignored in the discussion below.

We can perform a simple technical analysis for Step 1. Since the scaling in (1) and (2) will not affect the analysis, we can
assume, without loss of generality, that the scaling is simply set to 1. We are interested in the error

E =AB⊺ −AqB
T
q

We can examine a specific entry in the product C. Let u and v be the rows of A and B, respectively, whose inner product
∑d

i u[i]v[i] is a specific entry in C. In Step 1, each u[i] and v[i] is rounded to the nearest integer, û[i] and v̂[i], resulting
in a deviation of at most ±0.5 from the original entries.
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Let the error incurred in this i-th term due to rounding be denoted as

ϵ[i] = û[i]v̂[i] − u[i]v[i]

After some calculations, we see that the product û[i]v̂[i] of the rounded values will deviate by at most ±0.5(∣u[i]∣+ ∣v[i]∣+
0.5) from the product u[i]v[i] of the original values. Let c[i] = 0.5(∣u[i]∣ + ∣v[i]∣ + 0.5), and let c be a vector whose i-th
entry is c[i]. Then, it follows that −c[i] ≤ ϵ[i] ≤ c[i]. We can now examine the total error in the inner product ∑i u[i]v[i].

When ϵ[i] > 0, this term over-contributes, and when ϵ[i] < 0, it under-contributes. Assuming that these two scenarios are
equally likely, the cumulative error in ∑i u[i]v[i] can be represented as a sum involving a Rademacher-distributed variable
X (half-half chance of being +1 or −1), modulated by ϵ[i] as coefficients. Our interest is in the error ∑i x[i]ϵ[i], where
x[i] is a set of random variables following a Rademacher distribution. We want to check whether the probability of a bad
event, where this sum (error) exceeds a suitably high threshold, decays quickly as the threshold increases. This is related to
Tomaszewski’s conjecture, and in particular, we now know that

P(∑
i

x[i]ϵ[i] > t ∥ϵ∥2) < exp(−t
2/2) and P(∣∑

i

x[i]ϵ[i]∣ > t ∥ϵ∥2) < 2 exp(−t
2/2)

implying an exponential decay in the probability of the error exceeding a threshold as desired. By incorporating the maximal
possible error, denoted as c[i], we obtain:

P(∣∑
i

x[i]ϵ[i]∣ > t ∥c∥2) < 2 exp(−t
2/2)

Since −c[i] ≤ ϵ[i] ≤ c[i], we can also use Hoeffding’s inequality, which is less tight but has a similar form of dependency.

However, the concentration bounds do not adequately explain the strong empirical behavior. To assess impact on the impact
on training, if desired, we can use results such as the one in (De Sa et al., 2018) for convergence analysis but with some
modifications to the optimization. For example, if we use LP-SVRG in (De Sa et al., 2018) and just use stochastic rounding
instead of deterministic RTN (fixed point arithmetic in (De Sa et al., 2018) is the same as the integer arithmetic with scaling
that we use in (2)), then under the assumption that the objective function is µ-strongly convex with respect to parameters
(and an additional L-Lipschitz requirement), with an additional cost of variance reduction, we can get a linear convergence
rate.

A.3. Experimental Details and Additional Results

Additional details of training experiments. We run all of our experiments on NVIDIA RTX 3090. Below we provide
the training hyperparameters. RoBERTa-Small is a 4-layer Transformer encoder whose model dimension is 512, hidden
dimension is 2048, and number of heads is 8. For RoBERTa-Small models, we train each model for 200K steps with batches
of 256 512-length sequences. We use an AdamW optimizer with 1e-4 learning rate, 10,000 warm-up steps, 0.01 weight
decay, and linear decay. For RoBERTa-Base models, we train each model for 300K steps with batches of 128 512-length
sequences. We use an AdamW optimizer with 5e-5 learning rate, 10,000 warm-up steps, 0.01 weight decay, and linear
decay. We use timm to train our ViT-Small models. The hyperparameters of all experiments are the same: batch size 1024,
optimizer AdamW, learning rate 0.001, weight decay 0.05, augmentation rand-m9-mstd0.5-inc1, mixup 0.8, cutmix 1.0.

Unpack Ratios of ViT-Large. Similar to Tab. 9 in the main paper, we also evaluate the unpack ratios of ViT-Large, which
are shown in Tab. 13. The overall results are similar to what was observed in unpack ratios of LLaMA-7B (Tab. 9).

More Empirical Results on LLM Quantization. To evaluate how well RTN works for inference of different models and
different model sizes, beside the experiments shown in the main text, we also run experiments on LLaMA-13B (Touvron
et al., 2023), Mistral-7B (Jiang et al., 2023), and Phi-2 (Javaheripi et al., 2023). The results are summarized in Tab. 14,
Tab. 15, and Tab. 16. To minimize code change, we only evaluate the quantization of linear layers, consistent with
quantization-focused papers for Mistral-7B and and Phi-2.

More Empirical Results on Training. We wanted to understand how well RTN works for training of larger models but
wanted to avoid allocating a significant compute budget to perform such an experiment. So, we resorted to finetuning a
T5-Large model on the first 50K instance of the XSum summarization dataset (Narayan et al., 2018) using BF16 and RTN,
and show the results in Fig. 9. The validation metrics are shown in Tab. 17. We can draw a similar conclusion as in the main
paper that RTN quantized training gives similar results to BF16 training.
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Table 13. Averaged unpack ratios of each type of GEMMs in ViT-Large: linear layers (computing Y), attention score (computing P),
and attention output (computing O) when using different unpack strategies and integer bit length b under quantization β settings. AS:
Attention Score, AO: Attention Output.

β 5 7 15

Integer Bits b 3 4 5 3 4 5 4 5 6
L

in
ea

r(
Y

)

X

Row

W

Row 2.90 2.00 1.55 3.01 2.38 1.59 2.63 2.22 1.54
Row Col 10.97 2.32 1.56 12.34 4.12 1.65 10.46 4.31 1.62
Row Both 6.24 2.08 1.55 6.84 2.82 1.60 6.22 2.76 1.56
Col Row 2.33 1.39 1.20 3.38 1.51 1.26 3.06 1.46 1.25
Col Col 8.89 1.64 1.22 13.97 2.63 1.32 12.22 2.81 1.32
Col Both 4.99 1.44 1.20 7.99 1.76 1.27 7.59 1.78 1.26

Mix 2.60 1.27 1.06 2.44 1.40 1.15 2.10 1.42 1.16

A
S

(P
)

Q

Row

K

Row 1.84 1.07 1.00 2.01 1.35 1.00 1.99 1.40 1.00
Row Col 3.06 1.07 1.00 6.38 1.39 1.00 6.34 1.46 1.00
Col Row 1.34 1.01 1.00 2.50 1.04 1.00 2.49 1.05 1.00
Col Col 2.39 1.01 1.00 8.25 1.08 1.00 8.24 1.10 1.00

Mix 1.33 1.01 1.00 1.91 1.04 1.00 1.90 1.04 1.00

A
O

(O
)

M

Row

V

Row 2.84 2.07 1.65 3.07 2.24 1.80 2.56 2.11 1.78
Row Col 5.78 2.12 1.65 11.12 2.47 1.81 9.22 2.35 1.79
Col Row 3.98 2.26 1.64 4.69 2.57 1.81 3.58 2.33 1.77
Col Col 8.42 2.29 1.64 16.97 2.83 1.81 12.92 2.60 1.77

Mix 2.25 1.61 1.32 2.55 1.77 1.42 2.22 1.70 1.42

Table 14. Baseline comparison on LLaMA-13B when quantize computation in all linear layers.
Method β Type ARC-c ARC-e BoolQ HellaSwag PIQA WinoGrande

Full-Precision - BF16 48.0 79.5 80.6 60.0 79.2 72.1

SmoothQuant - INT8 45.5 76.3 76.5 58.0 78.0 72.1
- INT4 25.1 49.9 57.6 56.0 61.3 52.6

LLM-FP4 - FP4 39.9 71.7 71.9 53.3 74.8 66.7

RTN 5 INT 37.6 70.0 69.1 51.9 72.4 64.6
7 INT 44.1 76.1 73.5 57.3 76.7 67.6
15 INT 46.9 78.8 79.4 59.0 78.2 72.5
31 INT 48.0 79.7 80.2 59.9 78.0 71.3

Table 15. Baseline comparison on LLaMA-13B when quantize all GEMMs in a Transformer.
Method β Type ARC-c ARC-e BoolQ HellaSwag PIQA WinoGrande

Full-Precision - BF16 48.0 79.5 80.6 60.0 79.2 72.1

RTN 5 INT 25.1 44.4 54.8 37.7 57.9 52.0
7 INT 38.0 66.9 70.1 53.3 72.5 64.2
15 INT 45.9 77.6 80.0 59.5 77.5 71.5
31 INT 47.9 79.3 80.0 60.5 78.6 70.9

Table 16. RTN performance on Mistral-7B and Phi-2 when quantize computation in all linear layers.
Method β ARC-c ARC-e BoolQ HellaSwag PIQA WinoGrande

M
is

tr
al

-7
B Full-Precision - 50.3 80.9 83.6 61.3 80.7 73.8

RTN 5 38.1 70.5 69.9 53.9 73.3 61.4
7 44.9 75.0 76.0 58.7 77.8 68.6

15 48.8 79.7 80.3 60.8 79.6 73.2
31 50.3 80.1 83.5 61.5 80.7 74.4

Ph
i-

2

Full-Precision - 20.6 26.1 41.3 25.8 54.3 49.3

RTN 5 22.1 26.7 41.5 25.6 52.3 48.1
7 21.3 25.8 40.9 25.8 53.9 49.5

15 21.3 27.3 45.4 25.8 53.4 48.8
31 21.0 25.8 40.8 25.7 53.0 50.7
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Figure 9. Loss curves of T5-Large finetuning on 1/4 of XSum dataset for 1 epoch.

Table 17. Validation metrics of T5-Large finetuning on 1/4 of XSum dataset for 1 epoch.
Method β Type Loss Rouge1 Rouge2 Rougel Rougelsum

Full-Precision - BF16 1.65 36.12 13.00 29.21 29.20

RTN 31 INT 1.66 36.03 13.83 29.03 29.04

Table 18. Inference: end to end baseline comparison combining information from Tab. 2 and Tab. 9 for LLaMA-7B.
Method β Type r bits × r/16 ARC-c ARC-e BoolQ HS PIQA WG

Full-Precision - BF16 1 1 43.1 76.3 77.8 57.2 78.0 68.8

LLM.int8() - INT8+FP16 1 > 0.5 43.8 75.5 77.8 57.4 77.6 68.7
SmoothQuant - INT8 1 0.5 37.4 74.4 74.0 55.0 77.5 69.6
LLM-QAT - INT4 1 0.25 30.2 50.3 63.5 55.6 64.3 52.9
LLM-FP4 - FP4 1 0.25 33.6 65.9 64.2 47.8 73.5 63.7

RTN+IMUnpack 5 INT4 1.27 0.318 39.3 72.8 69.9 53.4 74.9 66.4
5 INT5 1.06 0.331 39.3 72.8 69.9 53.4 74.9 66.4
7 INT4 1.41 0.352 42.6 73.9 72.3 55.9 77.0 67.4
7 INT5 1.14 0.356 42.6 73.9 72.3 55.9 77.0 67.4
11 INT5 1.27 0.397 43.9 76.1 77.3 56.3 77.3 69.3
11 INT6 1.07 0.401 43.9 76.1 77.3 56.3 77.3 69.3
15 INT5 1.40 0.438 43.0 75.7 77.5 57.0 78.0 69.2
15 INT6 1.15 0.431 43.0 75.7 77.5 57.0 78.0 69.2
31 INT6 1.42 0.532 42.7 76.1 76.1 57.3 77.3 69.3
31 INT7 1.16 0.507 42.7 76.1 76.1 57.3 77.3 69.3

End-to-End Quantization Baseline Comparison. An end-to-end baseline comparison requires combining information
from Tab. 1, Tab. 2, and Tab. 3 with Tab. 9 and Tab. 13. As we change the bit-width of integers that we will use, the unpack
ratio r can be determined from Tab. 9 and 13. Since after unpacking, the calculation is similar or the same as standard
GEMMs (except that the input sizes are different), we could first estimate the runtime of GEMMs, and discuss the runtime
overhead of unpacking later.

Note that INT2, INT3, INT5, INT6, INT7 GEMM implementations are not yet publicly available. Although INT4 and INT8
are now available in NVIDIA’s CUTLASS, their integration (e.g., in PyTorch) is ongoing (more discussion below). As a
result, we can only estimate the runtime of these GEMMs based on publicly available information. According to NVIDIA,
INT4 offers a 4× performance bump compared to FP16, and INT8 is 2× performance compared to FP16. We measured
the runtime of INT4 and INT8 GEMMs in CUTLASS standalone, and the performance is indeed 4× and 2×, respectively,
compared to FP16. We can reasonably assume that the performance of x-bit INT GEMMs can approach 16

x
performance

compared to FP16, and the runtime approaches x
16

of the runtime of FP16. Further, the runtime of GEMMs is linearly
proportional to n × d × h for matrices of size n × d and h × d. When comparing runtime of GEMMs for different sizes, the
ratio r = n×d×h

n′×d′×h′ can give an accurate estimate of the runtime comparison when these GEMMs finally become available
(we verified this linear relationship in FP16 GEMMs for a contiguous range of matrix sizes, not just a power of 2). As a
result, we can use xr

16
as a proxy for the runtime of our GEMMs. In Tab. 18, we provided xr

16
values (bits × r/16 column)

for comparing across different baselines and the corresponding model accuracy. We see that our method has better model
accuracy with faster runtimes under the proposed proxy when not accounting for the runtime overhead of quantization.

The only remaining task is to check the runtime overhead of quantization and unpacking. Since the goal is to speed up
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Table 19. Runtime overhead of UnpackColumn and UnpackRow compared to GEMM and Clone for different bit-widths, unpack ratios r,
and input matrix shapes.

Shape n × d × h GEMM Clone UnpackCol UnpackRow
FP32 FP16 FP32 FP32 FP32

Bit Width - - - 2 4 8 2 4 8
Unpack Ratio - - - 1.21 1.44 1.21 1.44 1.21 1.44 1.21 1.44 1.21 1.44 1.21 1.44

213 × 213 × 213 63.4 5.0 0.8 1.0 0.9 1.0 1.0 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0
213 × 213 × 214 116.9 10.4 1.2 1.4 1.3 1.4 1.4 1.5 1.5 1.5 1.4 1.4 1.4 1.5 1.5
213 × 213 × 215 252.7 25.1 2.0 2.2 2.2 2.2 2.2 2.4 2.5 2.5 2.2 2.3 2.3 2.4 2.4
214 × 213 × 213 126.3 10.5 1.2 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.4 1.4 1.4 1.5 1.5
214 × 213 × 214 253.8 20.9 1.6 1.8 1.8 1.8 1.8 2.0 2.0 2.0 1.8 1.8 1.9 1.9 2.0
214 × 213 × 215 510.8 60.1 2.4 2.6 2.6 2.6 2.7 2.9 3.0 3.0 2.6 2.7 2.7 2.9 2.9
215 × 213 × 213 255.5 20.9 2.0 2.2 2.2 2.2 2.2 2.4 2.5 2.4 2.2 2.3 2.3 2.4 2.5
215 × 213 × 214 514.3 60.0 2.4 2.6 2.6 2.6 2.7 2.9 2.9 3.0 2.6 2.7 2.7 2.9 2.9
215 × 213 × 215 957.7 121.5 3.2 3.4 3.4 3.5 3.5 3.8 3.9 3.9 3.5 3.6 3.6 3.8 3.9

Table 20. Inference: estimated speedup of the entire model for LLaMA-7B.
Method β Type r bits × r/16 Speedup ARC-c ARC-e BoolQ HS PIQA WG

Full-Precision - BF16 1 1 - 43.1 76.3 77.8 57.2 78.0 68.8

RTN+IMUnpack 5 INT4 1.27 0.318 82% 39.3 72.8 69.9 53.4 74.9 66.4
7 INT4 1.41 0.352 74% 42.6 73.9 72.3 55.9 77.0 67.4
11 INT5 1.27 0.397 64% 43.9 76.1 77.3 56.3 77.3 69.3
15 INT6 1.15 0.431 57% 43.0 75.7 77.5 57.0 78.0 69.2
31 INT7 1.16 0.507 44% 42.7 76.1 76.1 57.3 77.3 69.3

GEMMs, the quantization overhead must be small or else, the overhead will eliminate the gain of faster GEMMs. As a
result, the code needs to be implemented as custom CUDA kernels to minimize the overhead. We implemented UnpackRow
and UnpackCol cuda kernels for FP32 matrices A and B. The supported unpack bit widths are 2, 4, 8 by packing the bit
representation of 16 INT2 or 8 INT4 or 4 INT8 into an INT32. For other bit-widths, an efficient implementation would need
additional hardware support. We expect the runtime of these kernels would be halved if the input date type is FP16.

We compare these kernels to the tensor.clone() operation. The clone operation is the simplest pytorch operation that copies
the values of a memory chunk (tensor) to another memory chunk (new tensor). The scaling and rounding operations in
common quantization methods share a similar runtime as clone operation. We profiled UnpackRow and UnpackCol kernels
(scaling and rounding are also computed within the kernel) for matrices of different sizes, bit-widths, and unpack ratio r.
The runtime overhead of quantization and unpacking together is only between 1× to 1.5× of the runtime of clone operation
applied to the matrices of the same size. The runtime ratio approaches 1 as the matrix size increases! We note that the
kernels are still not fully optimized, and therefore, further code optimization might further lower the runtime. The overhead
is very small relative to clone operation, so any other quantization scheme is unlikely to be much faster than our method in
terms of overhead. For estimating the overhead compared to GEMMs, we also provide runtime for FP32 GEMM and FP16
GEMM for these matrix sizes alongside the runtimes for clone, UnpackRow, and UnpackCol as shown in Tab. 19.

Estimated Overall Speedup of Entire Models. We have carefully calculated the speedup of the entire model runtime. We
measure the breakdowns of different operators in LLaMA-7B and LLaMA-70B for an input of shape [16, 512] where 16 is
the batch size and 512 is the sequence length. The overall model runtime of LLaMA-7B and LLaMA-70B is 1.84s and
18.92s, respectively. The overall runtime of GEMMs for Linear layers accounts for 77.32% and 88.96% of the overall model
runtime, respectively. We exclude GEMMs in attention computation for simplicity which are accounted for in the much
smaller 22.68% and 11.04% of the model’s runtime (this percentage includes GEMMs in attention computation, activation
functions, layer norm, residual connection, etc.). Let p be the percentage spent of GEMMs for Linear layers and h be the
runtime ratio of the runtime overhead of IM-Unpack compared to the runtime of GEMMs, if we use x

16
as runtime of INT-x

GEMM compared to FP16 GEMMs, we estimate the efficiency gain of using INT-x for model computation. The speedup of
the overall model runtime can be estimated via 1

( xr
16 +h)p+(1−p) using Amdahl’s law. We know from Tab. 19 that h < 0.1,

so we can populate the speedup of the overall model runtime in Tab. 20 using the worst possible overhead h = 0.1. Since
hardware and software support for different bit-widths is not publicly available, this estimate is based on calculations using
actual measurements and profiling.
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