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Abstract

Today’s computer vision models achieve human or near-human level performance
across a wide variety of vision tasks. However, their architectures, data, and learn-
ing algorithms differ in numerous ways from those that give rise to human vision.
In this paper, we investigate the factors that affect alignment between the repre-
sentations learned by neural networks and human concept representations. Human
representations are inferred from behavioral responses in an odd-one-out triplet
task, where humans were presented with three images and had to select the odd-
one-out. We find that model scale and architecture have essentially no effect on
alignment with human behavioral responses, whereas the training dataset and ob-
jective function have a much larger impact. Using a sparse Bayesian model of
human conceptual representations, we partition triplets by the concept that distin-
guishes the two similar images from the odd-one-out, finding that some concepts
such as food and animals are well-represented in neural network representations
whereas others such as royal or sports-related objects are not. Overall, although
models trained on larger, more diverse datasets achieve better alignment with hu-
mans than models trained on ImageNet alone, our results indicate that scaling
alone is unlikely to be sufficient to train neural networks with conceptual repre-
sentations that match those used by humans.

1 Introduction
Representation learning is a fundamental part of modern computer vision systems, but the paradigm
has its roots in cognitive science. When Rumelhart et al. [57] developed backpropagation, their goal
was to find a method that could learn representations of concepts that are distributed across neurons,
similarly to the human brain. The discovery that representations learned by backpropagation could
replicate nontrivial aspects of human concept learning was a key factor in its rise to popularity
in the late 1980s [65, 45]. A string of empirical successes has since shifted the primary focus of
representation learning research away from its similarities to human cognition and toward practical
applications. This shift has been fruitful. By some metrics, the best computer vision models now
outperform the best individual humans on benchmarks such as ImageNet [60, 8, 69]. However, the
extent to which the conceptual representations learned by these high-performing vision models align
with those used by humans remains unclear.
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Do models that are better at classifying images naturally learn more human-like conceptual represen-
tations? Prior work has investigated this question indirectly, by measuring models’ error consistency
with humans [18, 52, 21] and the ability of their representations to predict neural activity in primate
brains [71, 23, 59], with mixed results. Here, we approach the question of alignment between hu-
man and machine representation spaces more directly, using human similarity judgments collected
from an odd-one-out task, where humans saw triplets of images and selected the image most dif-
ferent from the other two [28]. These similarity judgments allow us to infer that the two images
that were not selected are closer to each other in an individual’s concept space than either is to the
odd-one-out. We define the odd-one-out in the neural network representation space analogously, and
measure neural networks’ alignment with human similarity judgments in terms of their odd-one-out
accuracy, i.e., the accuracy of their odd-one-out “judgments” with respect to humans’, under a wide
variety of settings. Based on these odd-one-out accuracies, we draw the following conclusions:

• Scaling ImageNet models improves ImageNet accuracy, but does not consistently improve align-
ment of their representations with human similarity judgments. Differences in alignment across
ImageNet models appear to arise primarily from differences in objective functions rather than
from differences in architecture or width/depth.

• Models trained on image/text data, or on larger, more diverse classification datasets than Ima-
geNet, achieve substantially better alignment with humans.

• We use a sparse Bayesian model of human mental representations [44] to partition triplets by
the concept that distinguishes the odd-one-out. While food and animal-related concepts can
easily be recovered from neural net representations, human alignment is weak for dimensions
that depict sports-related or royal objects, especially for ImageNet models.

We discuss related work more thoroughly in Appendix A.

2 Methods
Human

Figure 1: An example triplet from Hebart et al. [28],
where neural nets choose a different odd-one-out than
a human. The images in this triplet are copyright-free
images from THINGS + [64].

Data The images used in this paper are taken
from the THINGS database [27]. THINGS con-
sists of a collection of 1,854 object categories,
i.e., concrete nameable nouns in the English
language, along with representative images for
these categories. THINGS was curated to in-
clude categories that can be easily identified
as a central object in a natural image. Hebart
et al. [28] collected similarity judgments from
human participants on categories in THINGS,
which they then used to derive concept repre-
sentations. These similarity judgments came in the form of responses to a triplet task. In a triplet
task, images from three distinct categories are presented to a participant, from which the participant
selects the image that is most different from the other two (or equivalently the pair of images that are
most similar). The authors collected 1.46 million unique responses crowdsourced from 5,301 work-
ers. See Figure 1 for an example triplet. For presentation purposes, we have replaced the images
used in Hebart et al. [28] with images similar in appearance that are licensed under CC0 [64].

Models In our evaluation, we consider a diverse set of pretrained neural networks, including a wide
variety of self-supervised and supervised models trained on ImageNet-1K and ImageNet-21K [13];
a Vision Transformer trained on the proprietary JFT-3B dataset [73]; and models that were trained
on both image and text data such as CLIP [51], ALIGN [32], and BASIC [49]. See Table C.1 for
a comprehensive list of all models. In our plots, we determine the ImageNet top-1 accuracy for
networks not trained on ImageNet-1K by training a linear classifier on the network’s penultimate
layer using L-BFGS [41].

Zero-shot odd-one-out accuracy We examine the extent to which the odd-one-out can be identified
directly from the similarities between images in models’ representation spaces. Given representa-
tions x1, x2, and x3 of the three images that make up the triplet, we first construct a similarity matrix
S ∈ R3×3 where Si,j := xT

i xj/(∥xi∥2∥xj∥2), the cosine similarity between a pair of representa-
tions. We identify the closest pair of images in the triplet as argmaxi,j>i Si,j ; the remaining image
is the odd-one-out. We define zero-shot odd-one-out accuracy as the proportion of triplets where the
odd-one-out identified in this fashion matches the human odd-one-out response. When evaluating
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zero-shot odd-one-out accuracy, we report the better of the accuracies obtained from representations
of the penultimate embedding layer and logits (if the network has a logits layer). As we show in
Figure C.1, representations obtained from earlier network layers perform worse.

Probing In cases where a model’s zero-shot accuracy is low, decoding the information necessary for
downstream tasks may only require a linear transformation. Generally, linear probing yields insights
into the information encoded in neural net’s representation [61, 2].

To perform linear probing, we formulate the notion of the odd-one-out probabilistically, as in Hebart
et al. [28]. Given similarity matrix S and a triplet {i, j, k} (here the images are indexed by natural
numbers), the likelihood of a particular pair, {a, b} ⊂ {i, j, k}, being most similar, and thus the
remaining image being the odd-one-out, is modeled by the softmax of the image similarities,

p({a, b}|{i, j, k},S) := exp(Sa,b)/ (exp(Si,j) + exp(Si,k) + exp(Sj,k)) . (1)

We learn the linear transformation that maximizes the log-likelihood of the triplet odd-one-out judg-
ments plus an ℓ2 regularization term. Specifically, given triplet responses ({as, bs}, {is, js, ks})ns=1

we find a square matrix W yielding a similarity matrix Sij = (Wxi)
T (Wxj) that optimizes

argmin
W

− 1

n

n∑
s=1

log p ({as, bs}|{is, js, ks},S) + λ||W ||22. (2)

Here, we determine λ via grid-search during k-fold cross-validation (CV). To obtain a minimally
biased estimate of the odd-one-out accuracy of a linear probe, we partition the m objects into two
disjoint sets. Experimental details about the optimization process, k-fold CV, and how we partition
the objects can be found in Appendix B.1 and in Algorithm 1 respectively.

VICE Several of our analyses make use of human concept representations obtained by Variational
Interpretable Concept Embeddings (VICE), an approximate Bayesian method for finding concept
representations from human odd-one-out responses in a triplet task [44]. VICE uses mean-field VI
to yield a sparse representation for each image that best explains these responses. VICE does not
consider the content of the images and cannot provide representations for novel images. VICE shows
high reproducibility of representations across different random initializations, and has strong pre-
dictive power, achieving an odd-one-out accuracy of ∼ 64% on THINGS, which is only marginally
lower than the estimated ceiling accuracy of 67.22% [28].

3 Experiments
Here, we investigate how closely neural networks’ representation spaces align with humans’ concept
spaces, and whether concepts can be recovered from a representation via a linear transformation.

3.1 Odd-one-out vs. ImageNet accuracy
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Figure 2: Zero-shot odd-one-out accuracy as a function of ImageNet accu-
racy for THINGS (left) and CIFAR-100 coarse (right). Dashed diagonal lines
indicate a least-squares fit. Dashed horizontal lines reflect chance-level or
ceiling accuracy respectively.

We begin by comparing zero-
shot odd-one-out accuracy
for THINGS with ImageNet
accuracy for all models in Ta-
ble C.1. ImageNet accuracy
generally is a good predictor
for transfer learning perfor-
mance [35, 14, 17]. Thus,
we evaluate zero-shot odd-
one-out accuracy for all mod-
els in Table C.1 and compare
it with their ImageNet top-
1 accuracy. Figure 2 shows
results for both the THINGS
triplet task (left) as well as a
triplet task constructed using the 20 coarse classes of the CIFAR-100 dataset (right). To generate
CIFAR-100 triplets, we select two images from the same coarse class and one odd-one-out image
from a different class; see Appendix D for further details. While ImageNet accuracy is highly cor-
related with odd-one-out accuracy for the CIFAR-100 coarse task (r = 0.809), its correlation with
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Figure 3: Zero-shot odd-
one-out accuracy as a func-
tion of ImageNet accuracy
or number of model param-
eters. Top: Models on
the left have the same ar-
chitecture (ResNet-50) but
were trained with a dif-
ferent objective function or
different data augmentation.
Models on the right were
trained with the same objec-
tive function but vary in ar-
chitecture. Bottom: Per-
formance for different SSL
models on the left, and a sub-
set of ImageNet models with
their number of parameters
on the right. Dashed hor-
izontal lines reflect chance-
level or ceiling accuracy re-
spectively.
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accuracy on human odd-one-out judgments is much weaker (r = 0.131). This raises the question
whether there are model, task, or data characteristics that influence human alignment.

Architecture or objective? The top row of Figure 3 shows odd-one-out accuracy as a function of
ImageNet performance for models from two recent studies that investigated the transferability of
ImageNet pretrained representations that vary only in the architecture or training objective, with all
other hyperparameters fixed [35, 36]. We find that models with the same architecture (ResNet-50)
trained with different data augmentation or objective functions [36] yield substantially different zero-
shot odd-one-out accuracies. Conversely, models with different architectures trained with the same
objective function [35] - softmax cross-entropy -, achieve similar odd-one-out accuracies, although
their ImageNet accuracies vary significantly. This suggests that architecture does not affect odd-one-
out accuracy, while the objective function and the augmentation strategy have a significant impact.

Self-supervised learning The plot in the bottom left corner of Figure 3 compares zero-shot odd-
one-out accuracy of different SSL models with their linear probing ImageNet performance. The
non-Siamese models Jigsaw [46] and RotNet [22] show substantially worse alignment with human
judgments than other SSL models. This is not surprising given their poor performance on ImageNet.
For the Siamese methods SimCLR [11], MoCoV2 [26], Barlow Twins [72], SwAV [10], and VICReg
[6], however, ImageNet performance does not correspond to alignment with human judgments.

Model capacity The graph in the bottom right corner of Figure 3plots zero-shot odd-one-out accu-
racy against the number of model parameters for a subset of ImageNet models. While one typically
observes a positive correlation between model capacity and task performance in computer vision,
we do not observe any relationship between model width/depth and odd-one-out accuracy.

3.2 How much alignment can a linear probe recover?
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Figure 4: Zero-shot and probing odd-one-
out accuracies for the embedding layer of all
neural nets. Dashed line indicates x = y.

Probing and zero-shot odd-one-out accuracies are posi-
tively correlated, in the embedding (Figure 4; r = 0.645)
and logits layer (Figure E.2; r = 0.963). However,
there are models in Figure 4 that show poor zero-shot
and strong linear probing odd-one-out accuracies, such as
ALIGN, SWAV, EfficientNet B4 and ViT-L/16. ALIGN
is probably the most interesting candidate. Although
its zero-shot odd-one-out accuracy is average, this im-
age/text model achieves the highest probing odd-one-out
accuracy across all evaluated models.

As we show in Appendix E, the relationship between
probing odd-one-out accuracy and ImageNet accuracy is
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similar to the relationship between zero-shot odd-one-out accuracy and ImageNet accuracy de-
scribed above. The correlation between ImageNet accuracy and probing odd-one-out accuracy is
still weak (r = 0.213). Probing reduces the variance in odd-one-out accuracy among networks
trained with different loss functions and Siamese self-supervised learning methods, but there is still
no clear improvement in odd-one-out accuracy with better-performing architectures or larger model
capacities.

3.3 Human alignment is concept-specific

Figure 5: Zero-shot and linear probing odd-one-out accuracies for the embedding layer of all models for a
subset of three of the 45 VICE dimensions. Color-coding was determined by training data/objective. Violet:
Image/Text. Green: Self-supervised. Orange: Supervised (ImageNet-1K). Cyan: Supervised (ImageNet-21K).
Black: Supervised (JFT-3B).

In the following analysis, we evaluate both zero-shot and linear probing odd-one-out accuracy for
individual human concepts. We partitioned the original triplet dataset according to the VICE di-
mension shared between the two more similar images; see Appendix F for details. In Figure 5, we
show zero-shot and linear probing odd-one-out accuracies for three VICE dimensions, for all models
listed in Table C.1.

Although most image/text models and ViT-G/14 JFT showed a higher probing odd-one-out accu-
racy compared to self-supervised models or models trained on ImageNet, zero-shot odd-one-out
accuracy was somewhat less consistent. For dimension 10, ResNets from Kornblith et al. [36],
trained with a cosine softmax objective, were the best zero-shot performing models, whereas im-
age/text models’ zero-shot performance were among the worst. For dimension 4, an animal-related
concept, models pretrained on ImageNet clearly showed the worst performance, whereas this con-
cepts seems to be well represented in image/text models. After linear probing, results became less
ambiguous. For almost every human concept, image/text models and ViT-G/14 JFT were the best
human aligned models, whereas both AlexNet and EfficientNets achieved the lowest per-concept
odd-one-out accuracies. This difference between image/text models and ViT-G/14 JFT and the
other ImageNet-prerained models was particularly apparent for dimension 17 which summarizes
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sports-related objects. For this dimension, we observed a large performance gap after linear prob-
ing between image/text models and ViT-G/14 JFT and all remaining models. Analogously, in Ap-
pendix G we perform the same experiments using linear regression to predict representations from
VICE. These experiments corroborate the results obtained from linear probing.

4 Discussion

In this work, we evaluated the alignment of neural network representation with human concept
spaces through performance in an odd-one-out task. Before discussing our findings, we want to ad-
dress limitations of our work. One obvious limitation is the fact that we did not consider non-linear
transformations. It is possible that there exist families of simple non-linear transformations that can
provide better alignment for the networks we investigate. We plan to investigate such transforma-
tions more thoroughly in future work. Another limitation relates to the use of pretrained models
for our experiments. These models have been trained with a variety of objectives and regularization
strategies. We have mitigated this limitation by comparing controlled subsets of models in Figure 3.

Nevertheless, we can draw the following conclusions from our findings. First, scaling ImageNet
models does not lead to better alignment of their representations with human similarity judgments.
Differences in human alignment across ImageNet models are mainly attributable to the objective
function with which a model was trained, whereas architecture and model capacity are both insignifi-
cant. Second, models trained on image/text or more diverse data achieve much better alignment than
ImageNet models. Albeit not consistent for zero-shot odd-one-out accuracy, this is clear in both lin-
ear probing and regression results. Third, good representations of concepts that are important to
human similarity judgments can be recovered from neural network representation spaces. However,
representations of less important concepts, such as sports and royal objects, are more difficult to
recover.

How can we train neural networks that achieve better alignment with human concept spaces? Al-
though our results indicate that large, diverse datasets improve alignment, all image/text and JFT
models we investigate all attain probing accuracies of 57-58%. By contrast, VICE representations
achieve 64%, and a Bayes-optimal classifier achieves 67%. Since our image/text models are trained
on datasets of varying sizes (400M to 6.6B images) but achieve similar alignment, we suspect that
further scaling of dataset size is unlikely to close this gap. To obtain substantial improvements, it
may be necessary to incorporate additional forms of supervision when training the representation
itself. Benefits of improving human/machine alignment may extend beyond accuracy on our triplet
task, to transfer and retrieval tasks where it is important to capture human notions of similarity.
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humans and deep neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[19] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and Wieland Brendel. ImageNet-trained
CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In 7th International Conference on Learning
Representations, ICLR 2019. OpenReview.net, 2019.

[20] Robert Geirhos, Kristof Meding, and Felix A. Wichmann. Beyond accuracy: quantifying trial-by-trial behaviour of cnns and humans by
measuring error consistency. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information
Processing Systems, volume 33, pp. 13890–13902. Curran Associates, Inc., 2020.

[21] Robert Geirhos, Kantharaju Narayanappa, Benjamin Mitzkus, Tizian Thieringer, Matthias Bethge, Felix A. Wichmann, and Wieland
Brendel. Partial success in closing the gap between human and machine vision. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 23885–23899. Curran Associates,
Inc., 2021.

[22] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by predicting image rotations. In 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.
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A Related Work

Most work comparing neural networks with human behavior has focused on the errors made during
image classification. Although ImageNet-trained models appear to make very different errors than
humans [52, 20, 21], models trained on larger datasets produce more consistent errors [21], consis-
tent with our findings here. Compared to humans, ImageNet-trained models perform worse on dis-
torted images [54, 15, 31, 18] and rely more heavily on texture cues and less on object shapes [19, 5],
although reliance on texture can be mitigated through data augmentation [19, 30, 40], adversarial
training [21], or larger datasets [9].

Previous work has also compared human and machine semantic similarity judgments, generally
using smaller sets of images and models than we explore here. Jozwik et al. [33] measured the sim-
ilarity of AlexNet and VGG-16 representations to human similarity judgments of 92 object images
inferred from a multi-arrangement task. Peterson et al. [48] compared representations of five neural
networks to similarity judgments for six different sets of 120 images, obtained by asking subjects to
rate the similarities of pairs from 0 to 10. They report results both with and without rescaling of fea-
tures. Attarian et al. [4] learned constrained linear transformations of representations to improve the
fit of VGG-16 representations to similarity judgments for bird images, but found that unconstrained
transformations perform best. Aminoff et al. [3] found that, across 11 networks, representations of
contextually associated objects (e.g., bicycles and helmets) were more similar than those of non-
associated objects; similarity correlated with both human ratings and reaction times. Roads & Love
[55] collect human similarity judgments for the ImageNet validation set and evaluate triplet accu-
racy on these similarity judgments using 12 ImageNet networks. Most closely related to our work,
Marjieh et al. [42] compare similarity of representations of 611 models to cardinal pairwise human
similarity judgments. They find a weak correlation between parameter count and models’ similari-
ties with humans, and find that incorporating embeddings of both image and text models can further
improve the correlation. However, they do not attempt to systematically examine factors that affect
alignment between image models and human similarity judgments.

Other studies have focused on perceptual similarity rather than semantic similarity, where the task
measures perceived similarity between a reference image and a distorted version of that reference
image [50, 74], rather than between distinct images as in our task. Whereas the representations best
aligned with human perceptual similarity are obtained from intermediate layers of small architec-
tures [7, 74, 12, 39], the representations best aligned with our odd-one-out judgments are obtained
at final model layers, and architecture has little impact.

Our work fits into a broader literature examining relationships between in-distribution accuracy
of image classification and other model quality measures, such as accuracy on out-of-distribution
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data and downstream accuracy when transferring the model. Out-of-distribution accuracy correlates
nearly linearly with accuracy on the training distribution [53, 68, 43], although certain forms of
data augmentation can improve accuracy under some distribution shifts without an accompanying
improvement in in-distribution accuracy [29]. When comparing the transfer learning performance of
different architectures trained with similar settings, accuracy on the pretraining task correlates well
with accuracy on the transfer tasks [35], although differences in regularization, training objective,
and hyperparameters can have a substantial impact on linear transfer accuracy even if the impact
on pretraining accuracy is small [35, 36, 1]. In our study, we find that the training objective has
a significant impact, as it does for linear transfer. However, in contrast to previous observations
regarding out-of-distribution generalization and transfer, we find that better-performing architectures
do not achieve greater human alignment.

B Experimental details

B.1 Linear probing

Initialization We initialized the transformation matrix W ∈ Rp×p used in Equation 2 with a tem-
perature scaled identity matrix τI ∈ Rp×p such that W := τI at the beginning of the optimization
process. τ is model-specific and was found via grid search, minimizing the expected calibration
error (ECE) [24]. Details on temperature scaling are described in B.2.

Training We optimized the transformation matrix W via gradient descent, using Adam [34] with
a learning rate of η = 0.001. We performed a grid-search over the learning rate η, where η ∈
{0.0001, 0.001, 0.01} and found 0.001 to work best for all models in Table C.1. We trained the
linear probe for a maximum of 100 epochs and stopped the optimization process early whenever the
generalization performance did not change by a factor of 0.0001 for T = 10 epochs.

Cross-validation To obtain a minimally biased estimate of the odd-one-out accuracy of a linear
probe, we performed k-fold CV over objects rather than triplets. We partitioned the m objects into
two disjoint sets for train and test triplets. Algorithm 1 demonstrates how object partitioning was
performed for each of the k folds.

Note that the number of train objects that is sampled uniformly at random without replacement
from the set of all objects is dependent on k. We performed a grid-search search over k, where
k ∈ {2, 3, 4, 5}, and observed that 3-fold and 4-fold CV lead to the best linear probing results.
Since objects between train and test triplets were not allowed to overlap, loss of data was inevitable
(see Algorithm 1). One can easily see that minimizing the loss of triplet data, comes at the cost
of disproportionally decreasing the size of the test set. We decided to proceed with 3-fold CV
in our final experiments since using 2/3 of the objects for training and 1/3 for testing resulted
in a proportionally larger test set than using 3/4 for training and 1/4 for testing (∼ 433k train
and ∼ 54k test triplets for 3-fold CV vs. ∼ 616k train and ∼ 23k test triplets for 4-fold CV). In
general, the larger a test set, the more accurate the estimate of a model’s generalization performance.
To find the optimal strength of the ℓ2 regularization for each linear probe, we performed a grid-
search over λ for each k value individually. The optimal λ varied between models, where λ ∈
{0.0001, 0.001, 0.01, 0.1, 1}.

B.2 Temperature scaling

It is widely known that classifiers trained to minimize cross-entropy tend to be overconfident in their
predictions [66, 24, 56], which is in stark contrast to the high-entropy predictions of VICE. We found
it helpful to initialize the transformation matrices for the probing experiments using a temperature
parameter, as described in Appendix B.1. For this purpose, we performed temperature scaling [24]
on the model outputs for THINGS and searched over the scaling parameter τ for each model. In
particular, we considered temperature-scaled predictions

p({a, b}|{i, j, k}, τS) = exp(τSa,b)

exp(τSi,j) + exp(τSi,k) + exp(τSj,k)
,

where we multiply S in Equation 1 by a constant τ > 0 and Si,j is the inner product of the model
representations for images i and j, i.e. the zero-shot similarities. There are several conceivable
criteria that could be minimized to find the optimal scaling parameter τ from a set of candidates.
For our analyses we considered the following,
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Algorithm 1 Algorithm for object partitioning during k-fold CV
Input: (D,m) ▷ Here, D := ({as, bs}, {is, js, ks})ns=1 and m is the number of objects

[m] = {1, . . . ,m} ▷ |[m]| = m
Otrain ∼ U([m]) ▷ Sample a number of train objects uniformly at random without replacement
Otest := [m] \Otrain ▷ Test objects are the remaining objects
Dtrain := {} ▷ Initialize an empty set for the train triplets
Dtest := {} ▷ Initialize an empty set for the test triplets
for s ∈ {1, . . . , n} do

assignments ≜ list( ) ▷ For each triplet initialize an empty list to control object assignments
for x ∈ {is, js, ks} do

if (x ∈ Otrain) then
assignment ≜ “train”

else
assignment ≜ “test”

end if
assignments← assignment ▷ Append current assignment to the list of assignments

end for
if (len(set(assignments)) ̸= 1) then

continue ▷ If not all objects in a triplet belong to the same set of objects, discard triplet
else

assignment ≜ pop(set(assignments)) ▷ Get object set assignment of current triplet
if (assignment is “train”) then
Dtrain := Dtrain ∪ Ds ▷ Assign current triplet to the train set

else
Dtest := Dtest ∪ Ds ▷ Assign current triplet to the test set

end if
end if

end for
Output: (Dtrain,Dtest) ▷ Return both train and test triplet sets

• Average Jensen-Shannon (JS) distance between model zero-shot probabilities and VICE proba-
bilities over all triplets

• Average Kullback-Leibler divergence (KLD) between model zero-shot probabilities and VICE
probabilities over all triplets

• Expected Calibration Error (ECE) [24].

The ECE is defined as follows. Let D = ({as, bs} , {is, js, ks})ns=1 be the set of triplets and human
responses from Hebart et al. [28]. For a given triplet {i, j, k} and similarity matrix S we define
confidence as

conf ({i, j, k},S) := max
{a,b}⊂{i,j,k}

p ({a, b} | {i, j, k} ,S) .

This corresponds to the expected accuracy of the Bayes classifier for that triplet according to the
probability model from S with Equation 1. We define Bm(S) to be those training triplets where

conf ({is, js, ks} ,S) ∈
[
m− 1

10
,
m

10

]
.

For a similarity matrix, S, and a set of triplets with responses, D′ ⊂ D, we define acc (D′,S) to be
the portion of triplets in D′ correctly classified according to the highest similarity according to S.
Finally for a set of triplets D′ ⊂ D and similarity matrix S we define conf(D′) to be the average
confidence over that set (triplet responses are simply ignored). The ECE is defined as

ECE (τ,S) =

10∑
m=1

|Bm (τS)|
n

|acc(Bm (τS))− conf (Bm (τS))| .

Intuitively, the ECE is low if for each subset Bm(τS) the model’s accuracy and its confidence are
near each other. A model will be well-calibrated if its confidence in predicting the odd-one-out in a
triplet corresponds to the probability that this prediction is correct.
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Of the three considered criteria, ECE resulted in the clearest optima when varying τ , whereas KLD
plateaued with increasing τ and JS distance was numerically unstable, most probably because the
model output probabilities were near zero for some pairs, which may result in very large JS distance.
For all models, we performed a grid-search over τ ∈ {1 · 100, 7.5 · 10−1, 5 · 10−1, 2.5 · 10−1, 1 ·
10−1, 7.5 · 10−2, 5 · 10−2, 2.5 · 10−2, 1 · 10−2, 7.5 · 10−3, 5 · 10−3, 2.5 · 10−3, 1 · 10−3, 5 · 10−4, 1 ·
10−4, 5 · 10−5, 1 · 10−5}.

B.3 Linear regression

Cross-validation We used ridge regression, that is ℓ2-regularized linear regression, to find the trans-
formation matrix Aj,: and bias bj that result in the best fit. We employed nested k-fold CV for
each of the d VICE dimensions. For the outer CV we performed a grid-search over k, where
k ∈ {2, 3, 4, 5}, similarly to how k-fold CV was performed for linear probing (see B.1). For our
final experiments, we used 5-fold CV to obtain a minimally biased estimate for the R2 score of the
regression fit. For the inner CV, we leveraged leave-one-out CV to determine the optimal α for
Equation 3 using RidgeCV from Pedregosa et al. [47]. We performed a grid search over α, where
α ∈ {0.01, 0.1, 1, 10, 100, 1000, 10000, 100000, 1000000}.
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Figure C.1: Zero-shot odd-one-out accuracy at different layers for
a subset of selected models.

First, we evaluate supervised mod-
els trained on ImageNet [58], such
as AlexNet [37], various VGGs
[62], ResNets [25], EfficientNets
[67], ResNext models [70], and Vi-
sion Transformers (ViTs) trained on
ImageNet-1K[16] or ImageNet-21K
[63] respectively. Second, we an-
alyze recent state-of-the-art models
trained on image/text data, CLIP-
RN & CLIP-ViT [51], ALIGN [32]
and BASIC-L [49]. Third, we
evaluate self-supervised (SSL) mod-
els that were trained with a con-
trastive learning objective such as
SimCLR [11] and MoCo [26], recent
SSL models that were trained with
a non-contrastive learning objective
(no negative examples), BarlowTwins [72], SwAV [10], and VICReg [6], as well as earlier SSL,
non-Siamese models, Jigsaw [46], and Rotnet [22]. Last, we evaluate the largest available ViT [73],
trained on the proprietary JFT-3B image classification dataset, which consists of approximately three
billion images belonging to approximately 30,000 classes [73]. See Table C.1 for further details re-
garding the models used. Figure C.1 shows the odd-one-out accuracy as a function of layer depth
in a neural network for a few different network architectures. Later layers generally perform better
which is why we performed our analyses exclusively for the logits or penultimate/embedding layers
of the models in Table C.1.

D CIFAR-100 triplet task

Figure D.1: An example triplet from the CIFAR-100
coarse dataset. The left two images are from one of
the two CIFAR-100 “vehicle” superclasses, so the right-
most image is the odd-one-out.

In a similar vein to the THINGS triplet task, we
constructed a reference triplet task from the CI-
FAR-100 dataset [38]. To show pairs of images
that are similar to each other, but do not de-
pict the same object, we leverage the 20 coarse
classes of the dataset rather than the original
fine-grained classes. For each triplet, we sam-
ple two images from the same and an one odd-
one-out image from a different coarse class. We
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Model Source Architecture Dataset Objective ImageNet Acc.

AlexNet [37] AlexNet ImageNet-1K Supervised (softmax) 56.52%
ALIGN [32] EfficientNet ALIGN dataset Image/Text (contrastive) 85.11%
Basic-L [49] CoAtNet ALIGN + JFT-5B Image/Text (contrastive) 89.45%
CLIP ResNet-50 [51] ResNet CLIP dataset Image/Text (contrastive) 73.30%
CLIP ViT-B/32 [51] ViT CLIP dataset Image/Text (contrastive) 76.10%
DenseNet-121 [35] DenseNet ImageNet-1K Supervised (softmax) 75.64%
DenseNet-169 [35] DenseNet ImageNet-1K Supervised (softmax) 76.73%
DenseNet-201 [35] DenseNet ImageNet-1K Supervised (softmax) 77.14%
EfficientNet B0 [67] EfficientNet ImageNet-1K Supervised (softmax) 77.69%
EfficientNet B1 [67] EfficientNet ImageNet-1K Supervised (softmax) 78.64%
EfficientNet B2 [67] EfficientNet ImageNet-1K Supervised (softmax) 80.61%
EfficientNet B3 [67] EfficientNet ImageNet-1K Supervised (softmax) 82.01%
EfficientNet B4 [67] EfficientNet ImageNet-1K Supervised (softmax) 83.38%
EfficientNet B5 [67] EfficientNet ImageNet-1K Supervised (softmax) 83.44%
EfficientNet B6 [67] EfficientNet ImageNet-1K Supervised (softmax) 84.01%
EfficientNet B7 [67] EfficientNet ImageNet-1K Supervised (softmax) 84.12%
Inception-ResNet V2 [35] Inception ImageNet-1K Supervised (softmax) 80.26%
Inception-V1 [35] Inception ImageNet-1K Supervised (softmax) 73.63%
Inception-V2 [35] Inception ImageNet-1K Supervised (softmax) 75.34%
Inception-V3 [35] Inception ImageNet-1K Supervised (softmax) 78.64%
Inception-V4 [35] Inception ImageNet-1K Supervised (softmax) 79.92%
MobileNet-V1 [35] MobileNet ImageNet-1K Supervised (softmax) 72.39%
MobileNet-V2 [35] MobileNet ImageNet-1K Supervised (softmax) 71.67%
MobileNet-V2 (1.4) [35] MobileNet ImageNet-1K Supervised (softmax) 74.66%
NASNet-L [35] NASNet ImageNet-1K Supervised (softmax) 80.77%
NASNet-Mobile [35] NASNet ImageNet-1K Supervised (softmax) 73.57%
ResNet-50-BarlowTwins [72] ResNet ImageNet-1K Self-sup. (non-contrastive) 71.80%
ResNet-50-Jigsaw [46] ResNet ImageNet-1K Self-sup. (non-Siamese) 48.57%
ResNet-50-MoCo-v2 [26] ResNet ImageNet-1K Self-sup. (contrastive) 66.40%
ResNet-50-RotNet [22] ResNet ImageNet-1K Self-sup. (non-Siamese) 48.20%
ResNet-50-SimCLR [11] ResNet ImageNet-1K Self-sup. (contrastive) 69.68%
ResNet-50-SWAV [10] ResNet ImageNet-1K Self-sup. (non-contrastive) 74.92%
ResNet-50-VICReg [6] ResNet ImageNet-1K Self-sup. (non-contrastive) 73.20%
ResNet-18 [25] ResNet ImageNet-1K Supervised (softmax) 69.76%
ResNet-34 [25] ResNet ImageNet-1K Supervised (softmax) 73.31%
ResNet-50 [25] ResNet ImageNet-1K Supervised (softmax) 76.13%
ResNet-101 [25] ResNet ImageNet-1K Supervised (softmax) 77.37%
ResNet-152 [25] ResNet ImageNet-1K Supervised (softmax) 78.31%
ResNet-101 [35] ResNet ImageNet-1K Supervised (softmax) 78.56%
ResNet-152 [35] ResNet ImageNet-1K Supervised (softmax) 79.29%
ResNet-50 [35] ResNet ImageNet-1K Supervised (softmax) 76.93%
ResNet-50 [36] ResNet ImageNet-1K Supervised (softmax) 77.42%
ResNet-50 (extra weight decay) [36] ResNet ImageNet-1K Supervised (softmax+) 77.82%
ResNet-50 (label smoothing) [36] ResNet ImageNet-1K Supervised (softmax+) 77.63%
ResNet-50 (logit penality) [36] ResNet ImageNet-1K Supervised (softmax+) 77.67%
ResNet-50 (mixup) [36] ResNet ImageNet-1K Supervised (softmax+) 77.92%
ResNet-50 (AutoAugment) [36] ResNet ImageNet-1K Supervised (softmax) 77.64%
ResNet-50 (logit norm) [36] ResNet ImageNet-1K Supervised (softmax+) 77.83%
ResNet-50 (cosine softmax) [36] ResNet ImageNet-1K Supervised (softmax+) 77.86%
ResNet-50 (sigmoid) [36] ResNet ImageNet-1K Supervised (sigmoid) 78.18%
ResNet-50 (softmax) [36] ResNet ImageNet-1K Supervised (softmax) 76.94%
ResNet-50 (squared error) [36] ResNet ImageNet-1K Supervised (squared error) 77.13%
ResNeXt-101 32x8d [70] ResNeXt ImageNet-1K Supervised (softmax) 79.32%
ResNeXt-50 32x4d [70] ResNeXt ImageNet-1K Supervised (softmax) 81.11%
VGG-11 [62] VGG ImageNet-1K Supervised (softmax) 69.02%
VGG-13 [62] VGG ImageNet-1K Supervised (softmax) 69.93%
VGG-16 [62] VGG ImageNet-1K Supervised (softmax) 71.59%
VGG-19 [62] VGG ImageNet-1K Supervised (softmax) 72.38%
ViT-B/16 I1K [63] ViT ImageNet-1K Supervised (sigmoid) 77.66%
ViT-B/16 I21K [63] ViT ImageNet-21K Supervised (sigmoid) 83.77%
ViT-B/32 I1K [63] ViT ImageNet-1K Supervised (sigmoid) 72.08%
ViT-B/32 I21K [63] ViT ImageNet-21K Supervised (sigmoid) 79.16%
ViT-L/16 I1K [63] ViT ImageNet-1K Supervised (sigmoid) 75.11%
ViT-L/16 I21K [63] ViT ImageNet-21K Supervised (sigmoid) 83.13%
ViT-S/32 I1K [63] ViT ImageNet-1K Supervised (sigmoid) 72.18%
ViT-S/32 I21K [63] ViT ImageNet-21K Supervised (sigmoid) 72.93%
ViT-G/14 JFT [73] ViT JFT-3B Supervised (sigmoid) 89.01%
ViT-B-16 [16] ViT ImageNet-1K Supervised (softmax) 81.07%
ViT-B-32 [16] ViT ImageNet-1K Supervised (softmax) 75.91%

Table C.1: Pretrained neural networks that we considered in our analyses.

restrict ourselves to examples from the CIFAR-
100 train set and exclude the validation set. We randomly sample a total of 50,000 triplets which is
equivalent to the size of the original train set. Figure D.1 shows an example triplet for this task.
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E Linear probing

In the left plot of Figure E.1, we show probing odd-one-out accuracy as a function of ImageNet
accuracy for all models in Table C.1. Similarly to the findings depicted in Figure 2, we observe a
low Pearson correlation coefficient (r = 0.241) between ImageNet accuracy and probing odd-one-
out accuracy. As a reference, here we show again ImageNet accuracy as a function of zero-shot
odd-one-out accuracy on the CIFAR-100 coarse triplet task. In Figure E.2 we compare probing odd-
one-out accuracy with zero-shot odd-one-out accuracy for models pretrained on ImageNet-1K or
ImageNet-21K. We observe a strong positive correlation of r = 0.963 between probing odd-one-out
and zero-shot odd-one-out accuracy.
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Figure E.1: Probing odd-one-out accuracy as a function of ImageNet accuracy. Dashed diagonal line indicate
a least-squares fit. Dashed horizontal lines reflect chance-level or ceiling accuracy respectively.
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Figure E.2: Probing odd-one-out accuracy as a function of zero-shot odd-one-out accuracy for the logits layer
of all ImageNet models in Table C.1. Dashed line indicates x = y line.

F Human alignment is concept specific

To examine how well neural nets represent human concepts, we partitioned the original triplet dataset
D into two sets D∗ and D†, with D∗ containing triplets correctly predicted by VICE and D† con-
taining those which are not. The triplets in D† mostly have high entropy, i.e., chosen odd-one-out
is not consistent for humans. The triplets in D† are not used in the following analysis. We further
partitionedD∗ into 45 subsets according to the 45 VICE dimensions,D∗

1 , . . . ,D∗
45. A triplet belongs

to D∗
j when the sum of the VICE representations for the two most similar objects in the triplet, xa,

xb, attains its maximum in dimension j, i.e. j = argmaxj′ xa,j′ + xb,j′ .
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Figure E.3: Probing odd-one-out accuracy for THINGS as a function of ImageNet accuracy or number of model
parameters. Top: Models on the left have the same architecture (ResNet-50) but were trained with a different
objective function [36]. Models on the right were trained with the same objective function but vary in archi-
tecture [35]. Bottom: Performance for different SSL models on the left, and a subset of ImageNet models
with their number of parameters on the right. Dashed horizontal lines reflect chance-level or ceiling accuracy
respectively.

G Linear regression

G.1 Overall performance

In Figure G.1, we compare odd-one-out accuracies after linear probing with zero-shot odd-one-out
accuracies and probing odd-one-out accuracies for logits vs. embedding layers of ImageNet models.
The results are consistent with the results from linear probing shown in Figure 4.
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Figure G.1: Left: Zero-shot and regression odd-one-out accuracies for the embedding layer of all neural nets.
Right: Regression odd-one-out accuracy for the embedding and logits layer for all supervised models trained
on ImageNet-1K or ImageNet-21K. Dashed line indicates x = y.

G.2 Can human concepts be recovered via linear regression?

In addition to linear probing, we performed ℓ2-regularized linear regression to examine models’
ability to predict VICE dimension. This analysis helped us to further understand whether human
concepts can be recovered from a neural network’s representation space. Here, for each of the 45
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representation dimensions, j, from VICE, we minimized the following least-squares objective

argmin
Aj,:,bj

m∑
i=1

(Yi,j − (Aj,:xi + bj))
2
+ αj∥Aj,:∥22, (3)

where Yi,j is the value of the jth VICE dimension for image i, xi is the neural network representation
of image i, and αj > 0 is a regularization hyperparameter. Each dimension was optimized separately
with αj selected via CV using grid search (details are in Appendix B.3).
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Figure G.2: Regression as a function of probing odd-
one-out accuracies for all models in Table C.1

The results from this analysis corroborate the
findings from § 3.2: models trained on im-
age/text data and ViT-G/14 JFT consistently
provided the best fit for VICE dimensions,
while AlexNet and EfficientNets showed the
poorest regression performance. Furthermore,
we investigated whether the recovered VICE
dimensions show better alignment than the
original network embeddings. All models were
evaluated on the THINGS triplet task using a
similarity matrix S with Sij := (Axi +
b)T (Axj + b), where A and b are obtained
by stacking the optimizers from Equation 3, so
Ax + b is a linear regression from a neural
network representation to the VICE representa-
tion. In Figure G.2, we compare odd-one-out accuracies after linear probing and regression respec-
tively. The two performance measures are highly correlated for both the embedding (r = 0.960) and
logits (r = 0.966) layers. Note that odd-one-out accuracies are slightly higher for regression. We
hypothesize that this is due to VICE being trained on all objects in the data so the transformation
matrix learned in linear regression indirectly has access to all objects opposed to the transformation
matrix learned during probing. Moreover, 2/3 of the objects were used for training the linear probe,
whereas 4/5 of the objects were used to fit linear regression.

Figure G.3 shows the R2 score for fitting a the same subset of VICE dimensions used in Figure 5
from embedding-layer representations.
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Figure G.3: R2 scores for all models in Table C.1 after fitting an ℓ2-regularized linear regression to predict
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