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ABSTRACT
This work introduces RevSilo, the first reversible bidirectional multi-scale feature fusion module. Like other
reversible methods, RevSilo eliminates the need to store hidden activations by recomputing them. However,
existing reversible methods do not apply to multi-scale feature fusion and are, therefore, not applicable to a large
class of networks. Bidirectional multi-scale feature fusion promotes local and global coherence and has become
a de facto design principle for networks targeting spatially sensitive tasks, e.g., HRNet (Sun et al., 2019a) and
EfficientDet (Tan et al., 2020). These networks achieve state-of-the-art results across various computer vision
tasks when paired with high-resolution inputs. However, training them requires substantial accelerator memory for
saving large, multi-resolution activations. These memory requirements inherently cap the size of neural networks,
limiting improvements that come from scale. Operating across resolution scales, RevSilo alleviates these issues.
Stacking RevSilos, we create RevBiFPN, a fully reversible bidirectional feature pyramid network. RevBiFPN
is competitive with networks such as EfficientNet while using up to 19.8x lesser training memory for image
classification. When fine-tuned on MS COCO, RevBiFPN provides up to a 2.5% boost in AP over HRNet using
fewer MACs and a 2.4x reduction in training-time memory.

1 INTRODUCTION

State-of-the-art (SOTA) computer vision (CV) networks
have large memory requirements that complicate training
and limit scalability. Tan & Le (2019) and Dollár et al.
(2021) show how compound scaling, i.e., scaling input
resolution, network width, and depth, results in efficient
networks across a wide range of parameters and MAC
(multiply-accumulate) counts. Even when resources are
optimally allocated, scaling networks produce large feature
maps. Thus, training requires a large amount of accelera-
tor memory (Figure 1). While low-resolution intermediate
representations work well for classification tasks (LeCun
et al., 1998; Krizhevsky et al., 2012; Simonyan & Zisser-
man, 2015; Tan & Le, 2019), dense prediction tasks, such
as detection and segmentation, require the construction of
spatially informative, high-resolution feature maps which
further exacerbates memory issues.

U-Net (Ronneberger et al., 2015), used for segmentation,
was one of the first multi-scale feature fusion networks.
Initially, detection networks would perform multi-scale in-
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REVBIFPN-S4 83.0% 11B 0.11
EFFICIENTNET-B5 83.6% 10B 1.44

REVBIFPN-S5 83.7% 22B 0.23
EFFICIENTNET-B6 84.0% 19B 2.61

REVBIFPN-S6 84.2% 38B 0.25
EFFICIENTNET-B7 84.3% 37B 5.05
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EfficientNet-B7

S4 S5 RevBiFPN-S6

Figure 1. MACs vs. Measured Memory Usage for ImageNet
Training: RevBiFPN significantly outperforms EfficientNet at all
scales. In particular, RevBiFPN-S6 achieves comparable accuracy
(84.2%) to EfficientNet-B7 on ImageNet while using compara-
ble MACs (38.1B) and 19.8x lesser training memory per sample.
Details in Tables 4 and 12.

ference by processing every scale of an image pyramid
independently. But, they soon adopted multi-scale feature
fusion to directly produce a feature pyramid, i.e., multi-scale
features (Lin et al., 2017a;b; Redmon & Farhadi, 2018).
Bidirectional multi-scale feature fusion networks iteratively
merge information between high and low-resolution feature
maps, producing robust (Hendrycks & Dietterich, 2019)
scale-invariant models. These models promote local and
global coherence by iteratively aligning the semantic rep-
resentations of fine-grained and high-level features. As
a result, these networks are often the backbone of SOTA
computer vision systems (Liu et al., 2018; Cai & Vascon-
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Multi-Scale Feature Generation
eg: VGG, ResNet, EfficientNet, ...

Multi-Scale Feature Fusion Network
eg: U-Net, Mask R-CNN, RetinaNet, YOLO, ...

Bidirectional Multi-Scale Feature Fusion Pyramid Network
eg: RevBiFPN, HRNet, EfficientDet (BiFPN), U-Net++, ...

Input Image
Width

Height

Figure 2. Connectivity of multi-scale networks: Features are depicted as boxes, and the lines represent the possible connectivity of
networks processing features at multiple scales. Networks like VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2016), and
EfficientNet (Tan & Le, 2019) can generate multi-scale features (yellow box). These features are often fused by networks such as
U-Net (Ronneberger et al., 2015), Mask R-CNN (He et al., 2017), or YOLO (Redmon & Farhadi, 2018) for completing spatially sensitive
tasks (green box). Low-resolution features communicate global information, while high-resolution features capture detailed local features
such as texture and object boundaries. By iteratively mixing these features, bidirectional multi-scale feature fusion networks such as
HRNet (Sun et al., 2019a), EfficientDet (Tan et al., 2020), and UNet++ (Zhou et al., 2018) promote local and global coherence, boosting
performance (red box). See Appendix A for more details.

celos, 2018; Sun et al., 2019a; Tan et al., 2020). But, the
memory requirements of backpropagating through multi-
scale feature fusion complicate training and limit scalability.
Training CV networks push the memory bounds of mod-
ern hardware, with hardware memory setting a hard limit
on how far researchers scale these networks, enforcing an
upper bound on network performance.

Hidden activations are needed to compute the gradient of
the loss with respect to a neural network’s parameters. Tra-
ditionally, the activations computed during the forward pass
are cached for use in the backward pass. While this method
of neural network training has worked well in the past, the
growth of neural networks has outpaced increases in accel-
erator memory. Motivated by flow structures (Dinh et al.,
2017; Kingma & Dhariwal, 2018), Gomez et al. (2017)
recognized that if a network is designed using a series of
invertible operations, the activations can be recomputed
during the backward pass. Using this paradigm, reversible
networks perform “backpropagation without storing activa-
tions” (Gomez et al., 2017), reducing their activation mem-
ory complexity with respect to depth from linear to constant.
Although reversible structures have been successfully used
in image classification (Gomez et al., 2017; Jacobsen et al.,
2018) and language modeling (Kitaev et al., 2020; MacKay
et al., 2018), they have yet to be used where they are needed
most: in multi-scale feature fusion networks to produce
high-resolution feature maps.

1.1 Contributions

To address the memory challenges of training models for
spatially sensitive tasks, this work introduces the RevSilo
and the network built with it, RevBiFPN. The main contri-
butions of this work are:

1. The RevSilo (Figure 3), the first bidirectional multi-scale
feature fusion module that is invertible.

2. RevBiFPN (Figure 4) is the first fully reversible bidirec-

tional multi-scale feature fusion pyramid network. It is
built using the RevSilo and uses a fraction of the mem-
ory compared to the same network without reversible
recomputation (Figures 5 and 6).

3. With a classification head, RevBiFPN is pretrained on
ImageNet (Deng et al., 2009) to accuracies competitive
with networks designed specifically for classification
(Figure 1 and Section 5.1).

4. To our knowledge, this work is the first to fine-tune a
reversible backbone on downstream CV tasks. With
the appropriate heads, RevBiFPN is competitive with
similar networks on detection and segmentation tasks
while using a fraction of the accelerator memory for
training (Section 5.2).

The reference implementation and model checkpoints
for ImageNet are available at https://github.com/
CerebrasResearch/RevBiFPN.

2 BACKGROUND

Systems using low-resolution features were often applied
to image pyramids for detection (Girshick, 2015; Ren et al.,
2015; Redmon et al., 2016; Redmon & Farhadi, 2017). Lin
et al. (2017a) augment a pretrained classification network
with a low-resolution to a high-resolution decoder to per-
form multi-scale feature fusion similar to the U-Net design.
Rather than a single high-resolution feature map, the net-
work outputs features from multiple spatial resolutions to
create a feature pyramid. The success of the Feature Pyra-
mid Network (FPN) motivated similar methodologies to be
used throughout the computer vision community (Redmon
& Farhadi, 2018; Bochkovskiy et al., 2020; He et al., 2017;
Lin et al., 2017b; Goyal et al., 2021). Bidirectional multi-
scale feature fusion pyramid networks (BiFPNs) further
improve performance by iteratively applying multi-scale
feature fusion modules (Tan et al., 2020; Ghiasi et al., 2019;
Liu et al., 2018; Cai & Vasconcelos, 2018; Chen et al.,

https://github.com/CerebrasResearch/RevBiFPN
https://github.com/CerebrasResearch/RevBiFPN
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Table 1. Memory and computational complexity of different memory-saving methods with respect to the depth of the network (D). When
training in layer pipeline mode (Pétrowski et al., 1993; Kosson et al., 2021), activation complexity is quadratic with respect to depth. While
gradient checkpointing decreases activation memory complexity from O(D2) to O(D1.5) (Yang et al., 2021), reversible recomputation
decreases it to O(D). Both methods have a O(D) overhead in the backward pass to re-materialize or recompute the activations.

MEMORY COMPUTE
LAYER SEQUENTIAL PIPELINED PARALLEL FORWARD PASS BACKWARD PASS

SGD BASELINE O(D) O(D2) O(D) O(2D)

WITH CHECKPOINTING O(
√
D) O(D

3
2 ) O(2D) O(2D)

WITH REVERSBLE RECOMPUTATION O(1) O(D) O(2D) O(2D)

2018b). This allows local information from high-resolution
feature maps to be repeatedly fused with global information
from low-resolution feature maps (Figure 2).

FPNs are often created using feature fusion modules to aug-
ment existing classification networks that are not designed
for feature fusion. However, Zhou et al. (2015), Jacobsen
et al. (2017), Ke et al. (2017), Huang et al. (2018b), Sun
et al. (2019a), Sun et al. (2019b), Wang et al. (2020), Cheng
et al. (2020), Fan et al. (2021), and Li et al. (2021) advo-
cate for treating bidirectional multi-scale feature fusion as
a first-class design principle in computer vision networks
and show the effectiveness of this approach for classifica-
tion, detection, and segmentation. Bidirectional multi-scale
feature fusion networks reduce the semantic gap between
consecutive feature maps (Zhou et al., 2018). By outputting
a feature pyramid, these networks are also scale invariant.
This improves performance, but their memory requirements
complicate training and limit scalability.

Achieving SOTA results frequently requires bidirectional
multi-scale feature fusion pyramid networks, or BiFPN style
networks, to process mega-pixel images. This can result
in a single sample’s activations consuming all accelerator
memory (Tao et al., 2020). Distributed training setups can
accelerate these workloads but impose other limitations.
For instance, using small batch sizes precludes using Batch
Normalization (Ioffe & Szegedy, 2015), requiring different
normalization methods (Wu & He, 2018; Chiley et al., 2019;
Rao & Sohl-Dickstein, 2020; Labatie et al., 2021). Alter-
natively, researchers can adopt model parallel approaches
to scaling models, but this often results in hardware utiliza-
tion or network optimization issues (Huang et al., 2019;
Chen et al., 2018a; Narayanan et al., 2019; Kosson et al.,
2021). Another way to alleviate accelerator memory usage
is to offload activations to host (Rajbhandari et al., 2021).
However, for bandwidth-constrained systems, this results in
poor FLOP utilization. When performing operations with
low arithmetic intensity, such as non-linearities or depth-
wise convolutions (Lu et al., 2021; Qin et al., 2018), limited
device bandwidth memory already results in poor FLOP
utilization. Offloading activations to host uses bandwidth
which is even further constrained, exacerbating the issue.

Alternatively, Volin & Ostrovskii (1985), Griewank &
Walther (2000), Zweig (2000), Lewis (2003), Dauvergne
& Hascoët (2006), Griewank & Walther (2008), Gruslys
et al. (2016), Chen et al. (2016), Jain et al. (2020), and Feng
& Huang (2021) propose gradient (or reverse) checkpoint-
ing where a subset of activations are recomputed instead of
being stored. Network activations are needed to compute
parameter gradients. Storing them produces an activation
memory complexity that is linear in network depth. Check-
pointing can reduce this complexity from O(D) to O(

√
D)

(Chen et al., 2016).

Reversible models (Gomez et al., 2017; MacKay et al., 2018;
Brügger et al., 2019; Pendse et al., 2020; Yamazaki et al.,
2021; Sander et al., 2021; Chun et al., 2020; Kitaev et al.,
2020; Nestler & Gill, 2021) save memory by recomputing
activations instead of storing them. This decreases the activa-
tion memory complexity from linear to constant. Reversible
recomputation enables SOTA research without needing hard-
ware with the latest memory capacity, which prolongs the
useful life of existing hardware. As a result, less e-waste
is produced, but it comes at the cost of recomputing ac-
tivations, contributing to the carbon footprint of training
reversible models. Table 1 shows the theoretical compute
and memory complexity of training neural networks with
different memory-saving techniques. Section 5.1 shows the
effect this has in practice.

It should be noted that reversible networks relying on Re-
versible Residual Block (RevBlock) (Gomez et al., 2017) are
not fully reversible. RevBlock cannot operate across differ-
ent dimensionalities. Therefore RevNet (Gomez et al., 2017)
and other networks built using RevBlocks, must cache ac-
tivations in computational blocks that change tensor shape.
Fully reversible models have the added benefit of being
used for generation with Normalizing Flows (Dinh et al.,
2014; Germain et al., 2015; Dinh et al., 2017; Kingma et al.,
2016; Papamakarios et al., 2017; Kingma & Dhariwal, 2018;
Huang et al., 2018a; Jacobsen et al., 2018; Keller et al.,
2021) but are often not as efficient. For instance, the injec-
tive variant of i-RevNet (Jacobsen et al., 2018) is a fully
reversible variant of RevNet but requires a 7x increase in
size to match RevNet’s performance. Other approaches to
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reversible recomputation impose architectural limits (Bai
et al., 2019), limit optimization (Behrmann et al., 2019;
Thangarasa et al., 2019), or are computationally expensive
(Behrmann et al., 2019). While any reversible model or
method could be used for saving activation memory, none
were previously applicable to bidirectional multi-scale fea-
ture fusion.

As existing reversible structures keep tensor dimensional-
ity constant, they cannot be directly applied to multi-scale
networks such as EfficientDet. One approach to produc-
ing high-resolution feature maps would be to apply the
reversible residual block (Gomez et al., 2017) to an entire
subnetwork, such as each hourglass of the Stacked Hour-
glass Network (Newell et al., 2016). While feasible, the en-
tire subnetwork of activations would still need to be stored,
limiting memory savings (Appendix B.1). The specific case
of the hourglass design also produces high MAC count net-
works (Appendix B.2) and does not provide bidirectional
multi-scale feature fusion with a feature pyramid output.

3 REVERSIBLE RESIDUAL SILO

The Reversible Residual Silo, or RevSilo, generalizes both
affine coupling (Dinh et al., 2014) and the reversible residual
block (Gomez et al., 2017) to create an invertible module for
bidirectional multi-scale feature fusion. Figure 3 shows the
two halves of the RevSilo with N = 4 spatial resolutions.

Figure 3. An N = 4 RevSilo. Fj can be any transformation; gj
can be any potentially parameterized, invertible transformation.

The left half communicates information down the feature
pyramid, and the right half sends information up the feature
pyramid. gj can be any potentially parameterized, invertible
transformation. In this work, gj is element-wise addition,
and therefore its inverse, g−1

j , is element-wise subtraction
for all j (Appendix C). If hi and hj are on the same row, i.e.,
i%N == j %N , the RevSilo’s residual structure requires
that the shape of hi equals the shape of hj . Otherwise,
Fj should transform the shape of its inputs to match the
shape of hj . Besides this shape constraint, Fj can be any
transformation. The RevSilo construct remains invertible
even if some inputs are 0. Setting h3 to 0 can, for example,
be used to expand an N = 3 feature pyramid into an N = 4

feature pyramid. The equations for the N = 4 RevSilo are:

h4 = h0 (1)
h5 = g5 (h1, F5(h0)) (2)
h6 = g6 (h2, F6(h1, h0)) (3)
h7 = g7 (h3, F7(h2, h1, h0)) (4)

followed by:

h8 = g8 (h4, F8(h7, h6, h5)) (5)
h9 = g9 (h5, F9(h7, h6)) (6)
h10 = g10 (h6, F10(h7)) (7)
h11 = h7 (8)

The corresponding inverse equations are:

h7 = h11 (9)

h6 = g−1
10 (h10, F10(h7)) (10)

h5 = g−1
9 (h9, F9(h7, h6)) (11)

h4 = g−1
8 (h8, F8(h7, h6, h5)) (12)

followed by:

h0 = h4 (13)

h1 = g−1
5 (h5, F5(h0)) (14)

h2 = g−1
6 (h6, F6(h1, h0)) (15)

h3 = g−1
7 (h7, F7(h2, h1, h0)) (16)

For the N = 4 RevSilo, Equations (1) to (8) are used to
compute the forward pass. Instead of storing activations,
they can be recomputed during the backward pass using
Equations (9) to (16). While the inverse equations must be
computed in order, the forward equations allow the N hid-
den tensors of the RevSilo to be computed simultaneously.
This enables more parallelism in the resulting inference
network.

It should also be noted that if, for all i, hi is a scalar, gj is ad-
dition, and Fj is the dot product operation for all j; then the
forward equations can be rewritten as matrix-vector prod-
ucts with unitriangular matrices. The underlying structure
that makes unitriangular matrices invertible (Thoma, 2013),
makes all coupling structures (Kingma et al., 2016; Germain
et al., 2015; Papamakarios et al., 2017; Huang et al., 2018a;
Dinh et al., 2014; Gomez et al., 2017) invertible.

4 REVBIFPN
Reversible Bi-directional Feature Pyramid Network, or
RevBiFPN, uses the RevSilo to create a fully reversible back-
bone that utilizes bidirectional multi-scale feature fusion and
produces a feature pyramid output. Using a reversible multi-
scale feature fusion module, RevBiFPN circumvents the
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Reversible
Residual

Silo Reversible
Residual

Silo Reversible
Residual

Silo

RevBiFPN Backbone

Reversible
Residual

Silo

Reversible
Residual

Silo

Reversible
Downsample

Figure 4. A RevBiFPN that creates an N = 4 feature pyramid. Given the output feature pyramid, all activations can be recomputed
going backward through the network. The I components are reversible residual blocks. The network builds an N = 4 multi-scale hidden
representation using 3 RevSilos and has an extra depth of d = 2 RevSilos for further feature fusion.

issues seen in the RevNet and i-RevNet design (Section 2).
The high-level network structure of RevBiFPN is shown in
Figure 4. The output feature pyramid can then be used as
an input to different task-specific heads (Section 4.2).

The network uses the invertible SpaceToDepth stem (Ridnik
et al., 2021; Shi et al., 2016; Dinh et al., 2017; Jacobsen
et al., 2018) to initially downsample the input by a factor
of 4 and produce c = 42 × 3 = 48 channels. The baseline
model (RevBiFPN-S0) uses c0 = 48, c1 = 64, c2 = 80,
and c3 = 160 channels in its N = 4 spatial resolutions.
As the network size increases, the input image channels
are duplicated to ensure the network is fully reversible re-
gardless of network width. The rest of the network has a
structure similar to HRNet (Sun et al., 2019a) where trans-
formations in the same spatial resolution use Reversible
Residual Blocks (Gomez et al., 2017).

For simplicity, the network uses the RevSilo variant shown
in Figure 19 (Appendix C). Here, the F operations inde-
pendently transform and sum each input. The network isn’t
designed with a specific hardware target in mind and there-
fore uses the MBConv block (Howard et al., 2017), a build-
ing block that efficiently utilizes parameters and MACs
(multiply-accumulates). 1 The MBConv block is used for
both transformations in the reversible residual block and the
F transformations of the RevSilo. Using the MBConv block
in network design produces networks with fast inference
speed on inference devices (Howard et al., 2017; Sandler
et al., 2018; Howard et al., 2019; Tan & Le, 2019; Mehta &
Rastegari, 2021).

Within its RevSilos, RevBiFPN upsamples and downsam-
ples features by factors of 2. To upsample a feature by
a factor of 2k, the depthwise convolution of the MBConv
block uses a stride of 1 and a kernel size of 3 or 5; this
is then followed by bilinear upsampling. To downsample
a feature by a factor of 2k, the depthwise convolution of

1Many research papers often report MACs as FLOPs, which is
incorrect. This work uses MAC to mean multiply-accumulate, as
FLOP is a single floating point operation.

the MBConv block uses a stride of 2k and a kernel size of
2k+1 ± 1. As a result, the network uses a diverse set of
kernel sizes as suggested by Tan et al. (2019). Network
parameters are initialized using Kaiming Initialization (He
et al., 2015). Batch Normalization biases are initialized to
zero, and weights are initialized to one, except the weights
of the last normalization layer, which are initialized to zero
to promote stability (Kingma & Dhariwal, 2018).

The network uses the MBConv variant with squeeze-excite
layers (Tan & Le, 2019) and the hard-swish non-linearity
(Howard et al., 2019). The network has larger expansion ra-
tios on the lower resolution streams and uses larger squeeze-
excite ratios on the large resolution streams (Ridnik et al.,
2021). With a classification head, the resulting network has
a parameter and MAC profile similar to common classifica-
tion networks. RevBiFPN-S0 is then scaled (Section 4.3)
and compared to other network families on the commonly
used ImageNet (Deng et al., 2009) benchmark. The RevB-
iFPN family of networks is pretrained on ImageNet and
fine-tuned with task-specific heads (Section 4.2) for object
detection and instance segmentation on MS COCO (Lin
et al., 2014).

4.1 Memory Savings

The activation memory complexity of training a CV network
is O(nchwd) where n is the batch size, c is the number of
channels representing the network’s width, h and w specify
the input resolution, and d denotes the depth of the network.
By decoupling depth from activation memory requirements,
reversible networks have an activation memory complexity
of O(nchw). Figure 5 shows the measured memory usage
of the RevBiFPN-S0 network as the network depth is scaled
with and without reversible recomputation. This demon-
strates that measured memory usage is approximately con-
stant when reversible recomputation is used but increases
linearly otherwise.

When scaling width, batch size, or input resolution, net-
works with and without reversible recomputation have the
same complexity, but using reversibility creates a mem-
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Figure 5. Single GPU memory usage with batch size 64 for train-
ing RevBiFPN-S0 on ImageNet with and without reversible re-
computation (RevRecomp) as depth is scaled. Reversible recom-
putation decreases the activation memory complexity from linear
to constant. These memory savings can be reallocated to scaling
network width and input resolution to produce RevBiFPN S1-S6.
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Figure 6. The measured activation memory of training a network
using a batch size of 16 on a single GPU with and without re-
versible recomputation (RevRecomp) as the input resolution is
scaled. We observe that with RevRecomp, we can train with
higher input resolutions, which is useful in domains such as object
detection and segmentation.

ory offset that enables larger variants to be trained. As an
example, Figure 6 shows the measured memory usage of
RevBiFPN-S0 as the resolution is varied. The reversible
variant has an advantageous offset and can run resolutions
about 42 larger than is possible with a network without re-
versible recomputation. On a 16GB system, the largest im-
age a network without reversible recomputation can process
is just over 2K×2K. With reversibility, the same network
can process images with resolutions up to 8K×8K.

4.2 Network Heads

While the RevBiFPN backbone is fully reversible, it can
be used with non-reversible heads. Before each head is
applied, a set of MBConv blocks is used as a neck, with
reverse checkpointing, to transform the output channels of
RevBiFPN-S0 to 48, 64, 128, and 320. The dimensionality
of the neck and heads is scaled using the width multipliers
shown in Table 2 (Section 4.3). For the detection and seg-
mentation networks, the input resolution is also modified.

ImageNet classification is used to pretrain the RevBiFPN
backbone before it is fine-tuned for object detection and
segmentation. The backbone outputs a feature pyramid
transformed by the neck and non-reversible classification
head shown in Figure 7. In the head, the highest resolution
feature map is downsampled by a factor of 2 using an MB-
Conv block with stride 2 and is added to the next largest
feature map. This is repeated multiple times until all infor-
mation is aggregated into the lowest-resolution feature map.
A 1× 1 convolution is applied, followed by global average
pooling and a dense layer. This design is inspired by Sun
et al. (2019a) but uses the MBConv block.

Object detection and instance segmentation are done with
the Faster R-CNN and Mask R-CNN heads provided in
MMDetection (Chen et al., 2019).

MBConv

MBConv

MBConv

MBConv

MBConv

MBConv

MBConv

Conv Pool Dense

Figure 7. Neck and classification head with feature pyramid input.

Table 2. Network width multiplier (mw), depth (d), and input
height and width (h and w) of RevBiFPN variants trained on
ImageNet at different scales. Without reversibility, the training
setup must be modified to accommodate scales past RevBiFPN-S1.
Reversibility enables training RevBiFPN-S6 with an activations
that are about 24x larger than that of RevBiFPN-S1.3

MODEL mw d h AND w

REVBIFPN-S0 1 2 224
REVBIFPN-S1 1.3 2 256
REVBIFPN-S2 2 2 256
REVBIFPN-S3 2.7 3 288
REVBIFPN-S4 4 4 320
REVBIFPN-S5 5.3 4 352
REVBIFPN-S6 6.7 5 352

4.3 Network Scaling

Once the baseline network is designed, scaling the input
resolution, width, and depth generally results in better per-
formance. Classically, networks such as VGG (Simonyan
& Zisserman, 2015) and ResNet (He et al., 2016) focus
on scaling network depth. Tan & Le (2019) shows how
compound scaling, i.e., scaling all dimensions, results in

3Without reversible recomputation, the memory used for
activations, n × c × h × w × d, dominates memory usage.
|RevBiFPN-S6| / |RevBiFPN-S1| = (n× 6.67c× 352× 352×
5)/(n× 1.33c× 256× 256× 2) = 23.7.
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Table 3. Single-crop, single-model ImageNet accuracy.

MODEL PARAMS MACS TOP1

REVBIFPN-S0 3.42M 0.31B 72.8%
REVBIFPN-S1 5.11M 0.62B 75.9%
REVBIFPN-S2 10.6M 1.37B 79.0%
REVBIFPN-S3 19.6M 3.33B 81.1%
REVBIFPN-S4 48.7M 10.6B 83.0%
REVBIFPN-S5 82.0M 21.8B 83.7%
REVBIFPN-S6 142.3M 38.1B 84.2%

efficient networks at all parameters and MAC counts. Dol-
lár et al. (2021) shows how to scale such that the network
run-time is minimized for large networks. Equations (4)
and (5) of Dollár et al. (2021) produce a “family of scaling
strategies parameterized by α.”

This work uses these scaling strategies but sets α = 2/3.
While Dollár et al. (2021) recommends α = 4/5, they also
show α = 2/3 is nearly as fast but prioritizes depth and
resolution scaling. This gives added memory benefits in the
reversible setting (Section 4.1). Given the outputs of the
scaling strategy, mw is chosen such that channel counts are
multiples of 16, the depth is rounded to the nearest integer,
and the resolution is set to a multiple of 25 (Table 2).

5 EXPERIMENTS

5.1 ImageNet Classification

Setup. The ImageNet dataset is used to pretrain the net-
work before variants are fine-tuned on downstream tasks.
All RevBiFPN variants are pretrained for 350 epochs using
8 GPUs with a per GPU batch size of 64. This enables
higher throughput for training while amortizing the costs
of reverisble recomputation. SGD is used with a learn-
ing rate of 0.1 and momentum of 0.9, and an exponential
moving average (EMA) of the network parameters is used
with a decay of 0.9999. A 5 epoch learning rate warm-
up is used with a starting learning rate of 10−3 followed
by cosine decay (Loshchilov & Hutter, 2017). The last
ten epochs use a constant learning rate of 10−4. The net-
work uses batch normalization with a momentum of 0.9 and
epsilon of 10−3. Training is regularized using label smooth-
ing (Szegedy et al., 2016), weight decay, dropout (Srivastava
et al., 2014), stochastic depth (Huang et al., 2016), Cut-
Mix (Yun et al., 2019), mixup (Zhang et al., 2018), and Ran-
dAugment (Cubuk et al., 2020). Tuning these parameters
could result in further improvement (details in Appendix E).

Results. Although RevBiFPN-S0 and RevBiFPN-S1 can
be trained without reversible recomputation, unless other-
wise stated, all of the results are shown for networks trained
with reversible recomputation. Table 3 summarizes Ima-
geNet classification results showing top1 accuracy, parame-

Table 4. Training Memory (GB) used per sample. The training
resolution used for RevBiFPN-S6 is 352 and EfficientNet-B7 is
trained with a resolution of 600.

MODEL INPUT RESOLUTION

TRAIN RES 224 384

REVBIFPN-S6 0.254 0.086 0.291
EFFICIENTNET-B7 5.047 0.673 1.786

Table 5. Slowdown of using reversible recomputation. Theoret-
ically reversible recomputation adds a 33% compute overhead
(Table 1). In practice, with more memory, training can be opti-
mized and can use a larger batch size to help efficiency.

MODEL SLOWDOWN

REVBIFPN-S0 25.02%
REVBIFPN-S2 21.96%
REVBIFPN-S4 15.73%
REVBIFPN-S6 12.73%

ter counts and MACs used at evaluation. While not designed
primarily for classification, RevBiFPN still produces results
comparable to classification-specific networks. RevBiFPN-
S6 uses 38.1B MACs and achieves 84.2% ImageNet Top1
accuracy, making it comparable to EfficientNet-B7, which
uses 37B MACs to achieve 84.3% ImageNet Top1 accu-
racy. Table 12 in the appendix extends Table 3 to include
comparisons with other networks.

Table 4 shows that the GPU memory usage of RevBiFPN-S6
is a fraction of the memory used by EfficientNet-B7 at their
respective training resolutions and at input resolutions of
224 and 384, which are frequently used in CV backbones.

Table 5 shows the measured slowdowns from using re-
versible recomputation for different networks. We see that
as the networks get larger, the overheads reduce consider-
ably, making the technique efficient to use at scale.

5.1.1 Training With Reversibility

Under infinite precision, training with and without reversible
recomputation would produce identical results. Figure 8
shows that while there are differences when using finite pre-
cision, these are inconsequential. Training RevBiFPN-S0
with reversible recomputation requires only 2GB of acceler-
ator memory and produces results nearly indistinguishable
from regular training, which consumes 12GB of memory.

5.1.2 Architectural Ablations

As noted in Section 4, RevBiFPN is structurally similar to
HRNet. In this section, RevBiFPN is trained on ImageNet
for 150 epochs at an input resolution of 96×96 to ablate
architectural design decisions.
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Figure 8. ImageNet validation accuracy when training RevBiFPN-
S0 with and without reversible recomputation (RevRecomp).

Table 6. Down & Up Sampling Operation’s influence on Accuracy.

DOWN / UP SAMPLING PARAMS MACS TOP1

LD / SU 3.49M 75.7M 61.5%
SD / SU 3.28M 67.2M 60.8%
SD / LU 3.47M 69.5M 61.5%

Down and Up Sampling Operation. HRNet uses k stride
2 convolution blocks to downsample by 2k (LD). An alter-
native downsampling schema would use a single block with
stride 2k and an increased kernel size such that the entire
input is used to produce the output (SD). HRNet uses a
1×1 convolution paired with an upsample operation in the
‘nearest’ mode (SU) to upsample feature maps. The 1×1
convolution does not operate in the spatial domain, and the
upsample operation is in the ‘nearest’ mode. This is ablated
by changing the upsampling block to use a 3×3 convolution
paired with an upsample operation in ‘bilinear’ mode (LU).

While replacing LD with SD curbs accuracy on ImageNet,
augmenting this change by replacing SU with LU results
in a total MAC decrease of about 8% while not affecting
ImageNet accuracy (Table 6).

Backbone Stem. Common practice dictates using a convo-
lutional stem for neural network design. Ridnik et al. (2021)
proposes replacing this with the SpaceToDepth stem. Their
work shows this does not affect network accuracy while
increasing GPU throughput performance. Table 7 reaffirms
their results and highlights the resulting MAC decrease.

Squeeze-Excite. Ridnik et al. (2021) notes that when ap-
plied to “low-resolution maps, Squeeze-Excite does not
get a large accuracy benefit from the global average pool-
ing operation that SE provides.” They advocate for using
Squeeze-Excite on large spatial resolutions as opposed to
small spatial resolutions, as this provides a good accuracy
vs. throughput tradeoff. Table 8 affirms their result by show-
ing how Squeeze-Excite, when applied to the low-resolution
path, leaves accuracy relatively unaffected, but when applied
to the high-resolution path, improves performance.

Table 7. Stem’s influence on Accuracy.

STEM PARAMS MACS TOP1

CONVOLUTIONAL 3.49M 75.7M 61.5%
SPACETODEPTH 3.49M 73.7M 61.5%

Table 8. Influence of Squeeze-Excite.

SQUEEZE-EXCITE PARAMS MACS TOP1

NONE 3.40M 75.5M 61.3%
LOW-RES PATH 3.49M 75.7M 61.4%
HIGH-RES PATH 3.46M 76.1M 61.6%

5.2 MSCOCO Object Detection and Instance
Segmentation

Setup. Experimental results are presented on the MS COCO
2017 detection dataset, which contains about 118k images
for training and 5k for validation (minival). The aver-
age precision (AP) metric is adopted, which is the standard
COCO evaluation procedure. The multi-level feature rep-
resentations from RevBiFPN, as shown in Figure 4, are
applied for object detection. There is no additional data aug-
mentation besides standard horizontal flipping. For training
and testing, the input images are resized so that the shorter
edge is 800 pixels (Lin et al., 2017a). Evaluation is per-
formed using a single image scale.

RevBiFPN is compared with HRNet and ResNet. The
object detection performance is evaluated on COCO
minival under the two-stage anchor-based framework,
Faster-RCNN (Ren et al., 2015). Faster R-CNN models are
trained using RevBiFPN, HRNet, and ResNet-FPN as pre-
trained backbones on the MMDetection open-source object
detection toolbox (Chen et al., 2019) using the provided
training configurations. Figures 9 to 12 summarizes the re-
sults. Tables 13 and 14 in Appendix G extend these results
to show parameters, the evaluation MACs per sample, the
GPU memory usage during training, and scores. Similar
to Sun et al. (2019a), the GPU memory usage is measured
during training on a 4 GPU system, with an input size of
800×1333 and batch size of 8.

Baseline results are from Wang et al. (2020). RevBiFPN
is pretrained for 350 epochs whereas Wang et al. (2020)
pretrains for 100 epochs. He et al. (2019) shows how longer
fine-tuning schedules can eliminate the benefits of pretrain-
ing. Although not ideal, this provides a way to compare
networks trained for 100 epochs and fine-tuned with a 2x
schedule to networks trained for 350 epochs and fine-tuned
with a 1x schedule. Even though most works would only
compare networks fine-tuned with the same schedules, 1x
and 2x schedules are included to enable such comparisons.
Tan et al. (2020) fine-tunes networks for up to 600 epochs.
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Figure 9. Object detection results on COCO minival in the
Faster R-CNN framework as a function of memory used for train-
ing. Tables show results for 1x schedule.
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RevBiFPN-S2 210.49B 1.06 GB 33.7
RevBiFPN-S4 304.09B 2.05 GB 37.1
RevBiFPN-S6 518.50B 3.71 GB 38.7
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Figure 10. Instance segmentation results on COCO minival in
the Mask R-CNN framework as a function of memory used for
training. Tables show results for 1x schedule.
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Figure 11. Object detection results on COCO minival in the
Faster R-CNN framework as a function of evaluation MACs.
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Figure 12. Instance segmentation results on COCO minival in
the Mask R-CNN framework as a function of evaluation MACs.

As a result, EfficientDet (Tan et al., 2020) serves as a strong
baseline for work pursuing SOTA results. Being subject
to resource constraints, we do not make such comparisons
and instead focus on memory saving. However, note that
Tan et al. (2020) shows how longer training schedules fur-
ther differentiate networks using bidirectional multi-scale
feature fusion.

Results. Figures 9 to 12 show how RevBiFPN, with a 1x
fine-tuning schedule, uses less memory and compute4 than
the baseline networks at different network performance lev-
els even when those networks are fine-tuned using a 2x
schedule. In Figures 9 to 14, networks fine-tuning using a
1x are shown using solid lines, networks fine-tuning using a
2x are shown using dashed lines. RevBiFPN is fine-tuned
using the HRNet training configurations. Tuning the hyper-
parameters could further improve these results.

The Faster R-CNN (He et al., 2017) framework is used
to evaluate RevBiFPN for object detection on MS COCO.
The results are obtained on the MMDetection toolbox and
are summarized in Figures 9 and 11 and are extended in

4The tool used to analyze the evaluation MACs
per sample for the various models can be found here:
https://github.com/open-mmlab/mmcv/blob/
master/mmcv/cnn/utils/flops_counter.py

Table 13. Figure 9 shows that RevBiFPN-S5 achieves an
absolute gain of 3.3% in AP over HRNetV2p-W18 fine-
tuned using the 2x schedule while uses 0.75GB less mem-
ory. RevBiFPN-S3 achieves an absolute gain of 2.5% in
AP over HRNetV2p-W18 using fewer MACs and a ~2.4x
reduction in training-time memory usage and still outper-
forms HRNetV2p-W18 by 0.7% AP even if it is tuned using
a 2x schedule. When the scaled HRNetV2p-W48 is tuned
using a 2x schedule, it uses ~1.6x the memory and still does
not outperform the RevBiFPN-S6 variant tuned using the
1x schedule.

The Mask R-CNN (He et al., 2017) framework is used to
evaluate RevBiFPN for object detection and instance seg-
mentation on MS COCO. Results are obtained using the
MMDetection toolbox and are summarized in Figures 10
and 12 and are extended in Table 14. The overall perfor-
mance of RevBiFPN-S2 is comparable to HRNetV2p-W18
but uses ~1.2x fewer MACs and ~2.5x less GPU memory
during training. RevBiFPN-S6 outperforms HRNetV2p-
W32 by 2% Mask AP and 2.4% Bbox AP while using 1.6GB
less memory and still outperforms HRNetV2p-W32 when
it is fine-tuned using the 2x schedule. Generally, RevB-
iFPN enables larger batch sizes and image resolutions for
detection and segmentation.

https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/flops_counter.py
https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/flops_counter.py
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Figure 13. Object detection results on COCO minival in the
Faster R-CNN framework as a function of network parameters.
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Figure 14. Instance segmentation results on COCO minival in
the Mask R-CNN framework as a function of network parameters.

Figures 13 and 14 plot the performance of RevBiFPN as
a function of network parameters, comparing it to ResNet-
FPN and HRNet baselines. When fine-tuned with a 1x
schedule, RevBiFPN outperforms the baseline networks.
HRNet is only able to, per parameter, outperform RevB-
iFPN when fine-tuned with a 2x schedule (compared to
RevBiFPN fine-tuned with a 1x schedule). While HRNet
can be competitive when using parameter count as a met-
ric, Dehghani et al. (2021) and Mehta & Rastegari (2021)
show that network parameter counts produce misleading
notions of efficiency and should generally not be used for
comparing networks. The efficiency of RevBiFPN is better
communicated by Figures 11 and 12 where Figures 9 and 10
shows the memory saving provided by RevBiFPN.

6 CONCLUSION

Bidirectional multi-scale feature fusion has driven progress
in computer vision, but accelerator memory often limits
network scale. Reversible methods decrease the activation
memory complexity with respect to the depth from linear to
constant but were previously not applicable to bidirectional
multi-scale feature fusion. This work introduces RevSilo, a
reversible bidirectional multi-scale feature fusion module.
This enables the training of BiFPN-style networks without
storing activations. The RevSilo is used to design RevB-
iFPN, which is competitive on classification, segmentation,
and detection tasks, all while using a fraction of the mem-
ory for training. RevBiFPN applies to memory-constrained
settings such as high-resolution detection and segmentation
and enables SOTA research without needing hardware with
the latest memory capacity.

6.1 Future Work

RevBiFPN is developed to efficiently train networks that
drive semantic coherence across feature scales for tasks such
as object detection and semantic segmentation. Tasks such
as human pose estimation (Newell et al., 2016) and large-
scale medical segmentation (Zhou et al., 2018) can also

benefit from such efficiency gains. Awiszus et al. (2020)
argue that multi-scale processing is needed to generate im-
ages using Generative Adversarial Networks (GANs). Prior
to this work, bidirectional multi-scale feature fusion wasn’t
possible in flow models, but now the RevSilo and RevBiFPN
enable multi-scale fusions in flow-based generation.

While we focus on developing methods and networks for
efficient training, tuning models for inference efficiency is
also an active direction of research (Mehta & Rastegari,
2021; Sandler et al., 2018; Ding et al., 2021). To motivate
using alternate hardware accelerators, such as the Cerebras
Wafer Scale Engine (Lie, 2022b;a), we use MBConv as the
primary building block of the network. However, based
on the target inference device, one can also swap out the
basic building block to the ResNet (He et al., 2016) or Trans-
former block (Vaswani et al., 2017). Also, methods such as
pruning (Han et al., 2015b; Yu et al., 2017) and quantiza-
tion (Han et al., 2015a; Krishnamoorthi, 2018) are standard
for supporting real-world inference scenarios. The impact
of reversible recomputation on such methods has yet to be
explored in the context of the RevSilo. Finally, while we
rely on Fast Scaling (Dollár et al., 2021) for our models,
researchers can use alternative strategies to scaling models
such as Neural Architecture Search (Tan et al., 2019; Ghiasi
et al., 2019; Tan & Le, 2019), while adding memory con-
straints (Zhao et al., 2021) to derive model configurations
that satisfy inference requirements.
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Figure 15. Effective multi-scale connectivity of U-Net (Top) and RevBiFPN (Bottom).

A EXAMPLES MULTI-SCALE
CONNECTIVITY

Figure 2 encapsulates the connectivity of many network
types. Neural Networks have directed connectivity where
the network instantiation dictates the direction of the flow
of information and is therefore ambiguous unless pertaining
to a particular network instance. With an instantiation, the
connectivity can be directed. Figure 15 show two examples
of instantiated connectivity highlighted in red. The connec-
tivity in the red box can be iteratively applied to further
bridge the semantic gap between consecutive feature blocks.
For example, EfficientDet (Tan et al., 2020) can be formed
by adding all-to-all connectivity across each feature scale
and block.

B REVERSIBLE STACKED HOURGLASS
NETWORKS

The reversible residual block (Gomez et al., 2017) has only
been applied to networks with constant hidden dimension-
ality. Stacked Hourglass (Newell et al., 2016) networks
are built using a stack of hourglass structures that maintain
constant dimensionality. Placing each hourglass structure
inside a reversible residual block allows the network to pro-
duce high-resolution feature maps without storing hidden
activations. To enable comparisons with RevBiFPN vari-
ants, we implement a fully reversible Stacked Hourglass
Network, RevSHNet. RevSHNet uses the MBConv block, a
SpaceToDepth stem, channel counts similar to RevBiFPN-
S0 channel counts, and a comparable classification head.

B.1 Memory

Even with reversible recomputation enabled, RevSHNet
needs to store an entire hourglass of activations. An input
size of 224 results in a memory usage increase of about 40%
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Figure 16. Memory used by RevBiFPN and RevSHNet as depth
is scaled with and without reversible recomputation (RevRecomp).

2 3 4 5 6 7 8 9 10 11
Depth

2

4

6

8

10

12

14

16

M
ea

su
re

d 
M

em
or

y 
Us

ag
e 

(G
B)

Memory Limit
RevSHNet w/o RevRecomp
RevSHNet w/ RevRecomp
RevBiFPN w/o RevRecomp
RevBiFPN w/ RevRecomp

Figure 17. Recreates Figure 16 with an input resolution of 288.
RevBiFPN becomes more favorable as resolution is scaled.

when compared to RevBiFPN (Figure 16).

B.2 Compute Complexity

When the input size is increased to 288, RevSHNet uses
almost twice the memory used by RevBiFPN (Figure 17).
The increased memory usage limits memory savings and
how much the network can be scaled.

When RevSHNet is scaled, the produced network has a
high compute complexity (Figure 18). This is potentially
not optimal and wasteful when scaling networks to larger
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Figure 18. MACs vs Parameter count of RevBiFPN and RevSHNet
as depth is scaled.

sizes. It should be noted that the above analysis does not
consider network performance. Given comparable networks,
we expect RevBiFPN to outperform RevSHNet since RevB-
iFPN has full bidirectional multi-scale feature fusion with a
feature pyramid output, whereas RevSHNet does not.

C REVSILO WITH ADDITIVE COUPLING

While gj can be any invertible coupling function, as shown
in Figure 19 this work uses additive coupling and Fj =∑

i Fi,j (xi).

For instance Equation (4) is computed as:

h7 = h3 + (F2,7 (h2) + F1,7 (h1) + F0,7 (h0)) (17)

where the equivalent inverse equation computes

h3 = h7 − (F2,7 (h2) + F1,7 (h1) + F0,7 (h0)) . (18)

Figure 19. A RevSilo using additive coupling.

D CITYSCAPES SEMANTIC
SEGMENTATION

We present experimental results on the Cityscapes semantic
segmentation dataset (Cordts et al., 2016). The dataset
contains 5000 high-quality pixel-level finely annotated
images. The finely annotated images are divided into
2,975/500/1,525 for training, validation, and testing. There

Table 9. Initial dropout and RandAugment ops applied (N). Train-
ing initially uses a weight decay of 4× 10−5, label smoothing =
0.1, a RandAugment magnitude of 9, and mstd is set to 0.5, and the
network is trained without mixup, CutMix, or stochastic depth.

MODEL DROPOUT N

REVBIFPN-S0 0.25 2
REVBIFPN-S1 0.25 2
REVBIFPN-S2 0.25 2
REVBIFPN-S3 0.25 2
REVBIFPN-S4 0.4 4
REVBIFPN-S5 0.4 4
REVBIFPN-S6 0.5 5

are 30 classes, and 19 among them are used for evaluation.
The mean of class-wise intersection over union (mIoU) is
adopted as the evaluation metric.

Setup. We follow the same training protocol as Zhao et al.
(2017; 2018). The data are augmented by random cropping
(from 1024 x 2048 to 512 x 1024), random scaling in the
range [0.5, 2], and random horizontal flipping. We use the
SGD optimizer with a momentum of 0.9 and the weight
decay of 5 ∗ 10−4. RevBiFPN-S0 through S3 use a base
learning rate of 0.05; the rest of the networks use a base
learning rate of 0.02. The poly learning rate policy with a
power of 0.9 is used with a minimum learning rate of 10−4.
All the models are trained for 90k iterations with a batch
size of 16 across 8 GPUs and using SyncBN. The models
are trained using the MMSegmentation open-source seg-
mentation toolbox (MMSegmentation Contributors, 2020).
We use the provided FCN and OCR heads to evaluate the
capability of the backbone for segmentation tasks.

Results. Table 10 shows the results of training RevBiFPN
on the Cityscapes dataset in terms of parameters, compu-
tational complexity (evaluation MACs per sample5), mem-
ory used during training, and mIoU. Although competitive,
RevBiFPN can require larger model sizes to be as perfor-
mant as the HRNet baseline. Instead of using open-source
training configurations and segmentation heads, future work
can look at improving RevBiFPN’s performance (per re-
source used) for semantic segmentation.

E IMAGENET REGULARIZATION

Training is regularized using label smoothing (Szegedy
et al., 2016), weight decay, dropout (Srivastava et al., 2014),
stochastic depth (Huang et al., 2016), CutMix (Yun et al.,
2019), mixup (Zhang et al., 2018), and the timm library
(Wightman, 2019) variant of RandAugment (Cubuk et al.,
2020). Regularization increases with the network scale to
prevent larger scales of the network from overfitting. With-
out knowing how much augmentation was needed for each
network, training began with the regularization in Table 9.
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Table 10. Semantic segmentation results on the Cityscapes val set.

BACKBONE
FCN HEAD ORC HEAD

PARAMS MACS MEM MIOU PARAMS MACS MEM MIOU

REVBIFPN-S0 1.88M 52.72B 0.65 72.8 5.66M 503.5B 2.71 73.9
REVBIFPN-S1 2.97M 85.41B 0.74 74.1 7.49M 632.6B 2.95 75.7
REVBIFPN-S2 7.00M 200.78B 1.60 75.6 13.35M 990.5B 3.46 76.9
REVBIFPN-S3 14.36M 354.64B 2.01 77.4 22.34M 1356.9B 4.18 79.0
REVBIFPN-S4 39.52M 843.35B 3.10 79.3 51.04M 2309.5B 5.47 80.4
REVBIFPN-S5 68.04M 1463.74B 5.05 80.3 82.88M 3364.7B 6.21 80.8
REVBIFPN-S6 122.56M 2364.37B 6.17 80.4 140.86M 4719.6B 6.44 81.8

HRNETV2-W40 (WANG ET AL., 2020) 45.89M 536.46B 3.31 80.2 - - - -
HRNETV2-W48 (WANG ET AL., 2020) 65.86M 748.68B 3.33 81.1 70.3M 1206.3B 4.84 81.6

Table 11. Weight decay (WD), dropout, number of RandAugment ops applied (N), mixup, CutMix, and stochastic depth used at the end
of training. Label smoothing uses a coefficient of 0.1 and RandAugment uses a magnitude of 9 and mstd of 0.5.

MODEL WD DROPOUT N MIXUP CUTMIX STOCHASTIC DEPTH

REVBIFPN-S0 4× 10−5 0.25 2 0.00 0.0 0.00
REVBIFPN-S1 4× 10−5 0.25 2 0.00 0.0 0.00
REVBIFPN-S2 4× 10−5 0.3 3 0.00 0.0 0.00
REVBIFPN-S3 4× 10−5 0.3 3 0.10 1.0 0.05
REVBIFPN-S4 2× 10−5 0.4 4 0.10 1.0 0.10
REVBIFPN-S5 2× 10−5 0.4 4 0.20 1.0 0.10
REVBIFPN-S6 2× 10−5 0.6 5 0.20 1.0 0.30

When the validation accuracy of the EMA model began
to plateau, the regularization of the models was increased.
The final regularization used for each network is shown in
Table 11.

F IMAGENET MODEL COMPARISONS

Table 12 extends Table 3. This enable comparisons of RevB-
iFPN variants with other state of the art networks trained on
ImageNet-1K.

G MS COCO EXTENDED RESULTS

Tables 13 and 14 provide the numerical details of Figures 9
to 14 extending the results of Section 5.2.
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Table 12. Models trained using only ImageNet-1K. While most networks are trained using 300 to 400 epochs, HRNet and RegNetY use a
100 epoch training schedule.

MODEL PARAMS TRAIN RES RES MACS TOP1

REVBIFPN-S0 3.42M 224 224 0.31B 72.8%
REVBIFPN-S1 5.11M 256 256 0.62B 75.9%
REVBIFPN-S2 10.6M 256 256 1.37B 79.0%
REVBIFPN-S3 19.6M 288 288 3.33B 81.1%
REVBIFPN-S4 48.7M 320 320 10.6B 83.0%
REVBIFPN-S5 82.0M 352 352 21.8B 83.7%
REVBIFPN-S6 142.3M 352 352 38.1B 84.2%

EFFICIENTNET-B0 (TAN & LE, 2019) 5.3M 224 224 0.39B 77.1%
EFFICIENTNET-B1 (TAN & LE, 2019) 7.8M 240 240 0.70B 79.1%
EFFICIENTNET-B2 (TAN & LE, 2019) 9.2M 260 260 1.0B 80.1%
EFFICIENTNET-B3 (TAN & LE, 2019) 12M 300 300 1.8B 81.6%
EFFICIENTNET-B4 (TAN & LE, 2019) 19M 380 380 4.2B 82.9%
EFFICIENTNET-B5 (TAN & LE, 2019) 30M 456 456 9.9B 83.6%
EFFICIENTNET-B6 (TAN & LE, 2019) 43M 528 528 19B 84.0%
EFFICIENTNET-B7 (TAN & LE, 2019) 66M 600 600 37B 84.3%

EFFICIENTNET-B5 (CUBUK ET AL., 2020) 30M 456 456 9.9B 83.9%
EFFICIENTNET-B7 (CUBUK ET AL., 2020) 66M 600 600 37B 85.0%

EFFICIENTNETV2-S (TAN & LE, 2021) 24M 128 - 300 300 8.8B 83.9%
EFFICIENTNETV2-M (TAN & LE, 2021) 55M 128 - 380 380 24B 85.1%
EFFICIENTNETV2-L (TAN & LE, 2021) 121M 128 - 380 380 53B 85.7%

NFNET-F0 (BROCK ET AL., 2021) 72.0M 192 256 12B 83.6%
NFNET-F1 (BROCK ET AL., 2021) 133M 224 320 36B 84.7%
NFNET-F2 (BROCK ET AL., 2021) 194M 256 352 63B 85.1%
NFNET-F3 (BROCK ET AL., 2021) 255M 320 416 115B 85.7%
NFNET-F4 (BROCK ET AL., 2021) 316M 384 512 215B 85.9%
NFNET-F5 (BROCK ET AL., 2021) 377M 416 544 290B 86.0%

VOLO-D1 (YUAN ET AL., 2021) 27M 224 384 22.8B 85.2%
VOLO-D2 (YUAN ET AL., 2021) 59M 224 384 46.1B 86.0%
VOLO-D3 (YUAN ET AL., 2021) 86M 224 448 67.9B 86.3%
VOLO-D4 (YUAN ET AL., 2021) 193M 224 448 197B 86.8%
VOLO-D5 (YUAN ET AL., 2021) 269M 224 448 304B 87.0%
VOLO-D5 (YUAN ET AL., 2021) 269M 224 512 412B 87.1%

VIT-B/16 (DOSOVITSKIY ET AL., 2021) 86.0M 384 384 55.4B 77.91%
VIT-L/16 (DOSOVITSKIY ET AL., 2021) 307M 384 384 191B 76.53%

SWIN-T (LIU ET AL., 2021) 29M 224 224 4.5B 81.3%
SWIN-S (LIU ET AL., 2021) 50M 224 224 8.7B 83.0%
SWIN-B (LIU ET AL., 2021) 88M 224 384 47.0B 84.5%

COATNET-0 (DAI ET AL., 2021) 25M 224 384 13.4B 83.9%
COATNET-1 (DAI ET AL., 2021) 42M 224 384 27.4B 85.1%
COATNET-2 (DAI ET AL., 2021) 75M 224 384 49.8B 85.7%
COATNET-2 (DAI ET AL., 2021) 75M 224 512 96.7B 85.9%
COATNET-3 (DAI ET AL., 2021) 168M 224 384 107B 85.8%
COATNET-3 (DAI ET AL., 2021) 168M 224 512 203B 86.0%

CAIT-XXS-24 (TOUVRON ET AL., 2021) 12.0M 224 384 9.5B 80.4%
CAIT-XXS-36 (TOUVRON ET AL., 2021) 17.3M 224 384 14.2B 81.8%
CAIT-XS-24 (TOUVRON ET AL., 2021) 26.6M 224 384 19.3B 83.8%
CAIT-XS-36 (TOUVRON ET AL., 2021) 38.6M 224 384 28.8B 84.3%
CAIT-S-24 (TOUVRON ET AL., 2021) 46.9M 224 384 32.2B 84.3%
CAIT-S-36 (TOUVRON ET AL., 2021) 68.2M 224 384 48.0B 85.0%
CAIT-S-48 (TOUVRON ET AL., 2021) 89.5M 224 384 63.8B 85.1%
CAIT-M-24 (TOUVRON ET AL., 2021) 185.9M 224 384 116.1B 84.5%
CAIT-M-36 (TOUVRON ET AL., 2021) 270.9M 224 384 173.3B 84.9%

HRNET-W18-C (SUN ET AL., 2019A) 21.3M 224 224 3.99B 76.8%
HRNET-W30-C (SUN ET AL., 2019A) 37.7M 224 224 7.55B 78.2%
HRNET-W32-C (SUN ET AL., 2019A) 41.2M 224 224 8.31B 78.5%
HRNET-W40-C (SUN ET AL., 2019A) 57.6M 224 224 11.8B 78.9%
HRNET-W44-C (SUN ET AL., 2019A) 67.1M 224 224 13.9B 78.9%
HRNET-W48-C (SUN ET AL., 2019A) 77.5M 224 224 16.1B 79.3%
HRNET-W64-C (SUN ET AL., 2019A) 128M 224 224 26.9B 79.5%

REGNETY-200MF (RADOSAVOVIC ET AL., 2020) 3.2M 224 224 0.2B 70.4%
REGNETY-400MF (RADOSAVOVIC ET AL., 2020) 4.3M 224 224 0.4B 74.1%
REGNETY-600MF (RADOSAVOVIC ET AL., 2020) 6.1M 224 224 0.6B 75.5%
REGNETY-800MF (RADOSAVOVIC ET AL., 2020) 6.3M 224 224 0.8B 76.3%
REGNETY-1.6GF (RADOSAVOVIC ET AL., 2020) 11.2M 224 224 1.6B 78.0%
REGNETY-3.2GF (RADOSAVOVIC ET AL., 2020) 19.4M 224 224 3.2B 79.0%
REGNETY-4.0GF (RADOSAVOVIC ET AL., 2020) 20.6M 224 224 4.0B 79.4%
REGNETY-6.4GF (RADOSAVOVIC ET AL., 2020) 30.6M 224 224 6.4B 79.9%
REGNETY-8.0GF (RADOSAVOVIC ET AL., 2020) 39.2M 224 224 8.0B 79.9%
REGNETY-12GF (RADOSAVOVIC ET AL., 2020) 51.8M 224 224 12.1B 80.3%
REGNETY-16GF (RADOSAVOVIC ET AL., 2020) 83.6M 224 224 15.9B 80.4%
REGNETY-32GF (RADOSAVOVIC ET AL., 2020) 145.0M 224 224 32.3B 81.0%
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Table 13. Object detection results on COCO minival in the Faster R-CNN framework. LS = learning schedule. 1x = 12 epochs, 2x =
24 epochs. Mem = GPU memory used during training. RevBiFPN performs better than HRNet and ResNet on small (APS), medium
(APM), and large (APL) objects while using fewer MACs and less training-time memory. Evaluation MACs per sample are reported using
the training image resolution (800×1333).

BACKBONE PARAMS MACS MEM LS AP AP50 AP75 APS APM APL

REVBIFPN-S0 19.55M 135.12B 1.67 GB 1X 31.4 51.5 33.3 17.8 34.3 40.9
REVBIFPN-S1 20.48M 140.66B 1.78 GB 1X 32.0 52.0 34.1 18.3 35.7 43.0
REVBIFPN-S2 23.86M 157.42B 2.13 GB 1X 36.3 57.4 39.3 20.8 39.6 46.6
REVBIFPN-S3 30.40M 180.99B 2.61 GB 1X 38.7 60.0 41.4 23.1 42.0 50.4
REVBIFPN-S4 52.88M 251.02B 4.05 GB 1X 40.3 60.5 44.0 23.7 44.3 52.4
REVBIFPN-S5 77.83M 328.91B 5.50 GB 1X 41.3 62.7 44.8 24.8 45.6 52.5
REVBIFPN-S6 127.51M 465.43B 7.37 GB 1X 42.2 63.5 45.8 25.7 46.5 54.0

HRNETV2P-W18 (WANG ET AL., 2020) 27.48M 196.18B 6.25 GB 1X 36.2 57.3 39.3 20.7 39.0 46.8
HRNETV2P-W18 (WANG ET AL., 2020) 27.48M 196.18B 6.25 GB 2X 38.0 58.9 41.5 22.6 40.8 49.6
HRNETV2P-W32 (WANG ET AL., 2020) 47.28M 298.96B 8.62 GB 1X 39.6 61.0 43.3 23.7 42.5 50.5
HRNETV2P-W32 (WANG ET AL., 2020) 47.28M 298.96B 8.62 GB 2X 40.9 61.8 44.8 24.4 43.7 53.3
HRNETV2P-W48 (WANG ET AL., 2020) 83.36M 481.92B 11.64 GB 1X 41.3 62.8 45.1 25.1 44.5 52.9
HRNETV2P-W48 (WANG ET AL., 2020) 83.36M 481.92B 11.64 GB 2X 41.8 62.8 45.9 25.0 44.7 54.6

RESNET-50-FPN (WANG ET AL., 2020) 41.53M 216.70B 3.61 GB 1X 36.7 58.3 39.9 20.9 39.8 47.9
RESNET-50-FPN (WANG ET AL., 2020) 41.53M 216.70B 3.61 GB 2X 37.6 58.7 41.3 21.4 40.8 49.7
RESNET-101-FPN (WANG ET AL., 2020) 60.52M 296.58B 5.43 GB 1X 39.2 61.1 43.0 22.3 42.9 50.9
RESNET-101-FPN (WANG ET AL., 2020) 60.52M 296.58B 5.43 GB 2X 39.8 61.4 43.4 22.9 43.6 52.4

Table 14. Instance segmentation and detection results on COCO minival in the Mask R-CNN framework. LS = learning schedule. 1x
= 12 epochs, 2x = 24 epochs. Mem = GPU memory used during training. RevBiFPN outperforms HRNet for detection and segmentation
small (APS) and medium (APM) objects, as well as bounding box AP for medium (APM) and large (APL) objects, while using fewer
MACs and less training-time memory. Evaluation MACs per sample are reported using the training image resolution (800×1333).

BACKBONE PARAMS MACS MEM LS MASK BBOX
AP APS APM APL AP APS APM APL

REVBIFPN-S0 22.2M 188.2B 2.0GB 1X 29.7 13.5 32.3 44.2 31.4 17.8 34.3 40.9
REVBIFPN-S1 23.1M 193.7B 2.4GB 1X 31.0 14.1 33.3 45.3 34.0 19.0 37.0 44.6
REVBIFPN-S2 26.5M 210.5B 2.6GB 1X 33.7 16.0 35.9 49.2 37.1 21.7 40.2 48.5
REVBIFPN-S3 33.0M 232.9B 2.6GB 1X 35.5 17.4 38.4 50.9 39.4 23.6 43.1 50.9
REVBIFPN-S4 55.5M 304.1B 4.1GB 1X 37.1 17.8 40.1 53.4 41.5 24.2 45.4 53.9
REVBIFPN-S5 80.5M 382.0B 5.5GB 1X 37.8 18.5 40.7 54.3 42.2 25.5 46.3 54.3
REVBIFPN-S6 130.2M 518.5B 7.4GB 1X 38.7 19.8 41.7 55.2 43.3 26.9 47.4 55.6

HRNETV2P-W18 (WANG ET AL., 2020) 30.1M 249.3B 6.7GB 1X 33.8 15.6 35.6 49.8 37.1 21.9 39.5 47.9
HRNETV2P-W18 (WANG ET AL., 2020) 30.1M 249.3B 6.7GB 2X 35.3 16.9 37.5 51.8 39.2 23.7 41.7 51.0
HRNETV2P-W32 (WANG ET AL., 2020) 49.9M 352.0B 9.0GB 1X 36.7 17.3 39.0 53.0 40.9 24.5 43.9 52.2
HRNETV2P-W32 (WANG ET AL., 2020) 49.9M 352.0B 9.0GB 2X 37.6 17.8 40.0 55.0 42.3 25.0 45.4 54.9

RESNET-50-FPN (WANG ET AL., 2020) 44.2M 269.8B 4.2GB 1X 34.2 15.7 36.8 50.2 37.8 22.1 40.9 49.3
RESNET-50-FPN (WANG ET AL., 2020) 44.2M 269.8B 4.2GB 2X 35.0 16.0 37.5 52.0 38.6 21.7 41.6 50.9
RESNET-101-FPN (WANG ET AL., 2020) 63.2M 349.7B 5.8GB 1X 36.1 16.2 39.0 53.0 40.0 22.6 43.4 52.3
RESNET-101-FPN (WANG ET AL., 2020) 63.2M 349.7B 5.8GB 2X 36.7 17.0 39.5 54.8 41.0 23.4 44.4 53.9


