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Abstract

Body shape is a crucial factor in outfit recommenda-
tion. Previous studies that directly used body measurement
data to investigate the relationship between body shape and
outfit have achieved limited performance due to oversim-
plified body shape representations. This paper proposes a
Visual Body-shape-Aware Network (ViBA-Net) to improve
the fashion compatibility model’s awareness of human body
shape through visual-level information. Specifically, ViBA-
Net consists of three modules: a body-shape embedding
module, which extracts visual and anthropometric features
of body shape from a newly introduced large-scale body
shape dataset; an outfit embedding module, which learns
the outfit representation based on visual features extracted
from a try-on image and textual features extracted from
fashion attributes; and a joint embedding module, which
jointly models the relationship between the representations
of body shape and outfit. ViBA-Net is designed to generate
attribute-level explanations for the evaluation results based
on the computed attention weights. The effectiveness of
ViBA-Net is evaluated on two mainstream datasets through
qualitative and quantitative analysis. Data and code are
released1.

1. Introduction
Fashion Recommendation Systems (FRSs) [2, 15] is not

a new topic, but they still have great potential for economic
benefits. Previous works have mainly focused on fashion
compatibility learning (FCL) [6,16,17], which only consid-
ers the compatibility among fashion items. However, be-
sides the outfit itself, consumers will be more concerned
about how it looks when worn. Figure 1 demonstrates how
fashion compatibility can vary depending on different body
shapes. For instance, individuals with an inverted trian-
gle body shape may find the outfit in Figure 1 (a) suitable,
while those with a triangle body shape may not. Previous
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Figure 1. An example of the body-shape-aware fashion compati-
bility task. The outfit is compatible with the inverted triangle and
top hourglass body shapes, but does not fit other body shapes.

studies [12–14, 26] represent the body shape merely rely-
ing on body measurement data while overlooking the valu-
able visual features of body shape, which limits their ability
to provide precise recommendations. To effectively incor-
porate accurate body shape information into FRSs, lever-
aging valuable information from body images is essential.
Moreover, accurately representing outfits is also critical, as
the scaling and spatial relationships between clothing items
can impact how they fit and flatter different body shapes.
Therefore, conventional outfit representation methods used
in FCL, such as item-wise correlations [4, 31, 32] or graph
neural networks [5, 28], are insufficient for modeling the
relationships between body shape and an outfit. Lastly, pro-
viding a reasonable explanation for the evaluation is es-
sential for personalized FRSs. However, previous stud-
ies [12, 21, 22] have not achieved this.

To this end, this paper proposes a Visual Body-shape-
Aware Network (ViBA-Net) to model the relationships be-
tween body shape and outfit. The ViBA-Net consists of
three modules: Body-shape Embedding Module (BEM),
Outfit Embedding Module (OEM), and Joint Embedding
Module (JEM). The BEM combines visual and anthropo-
metric features to obtain a general representation of the
body shape. However, obtaining accurate visual features
from body images requires a diverse dataset with explicit
body shape annotations, which is currently unavailable.



Thus, we create a new dataset covering seven common body
shapes; each contains 4,000 3D body models with vary-
ing but similar shapes. Every model within the dataset
is accompanied by corresponding anthropometric data and
frontal view images, which offer the visual features of the
respective body shape. The OEM learns the outfit embed-
ding by incorporating visual and textual features of the out-
fit. We propose to represent an outfit leveraging its try-
on appearance instead of separate item images because the
try-on image contains the scaling and spatial relationships
among individual items. For the textual aspect, we ex-
ploit the fashion attributes information to enhance the out-
fit representation, where the attribute values are encoded
into word embeddings. Finally, the JEM integrates rep-
resentations of the body shape and outfit to compute the
body-shape-aware embedding, which is then transformed
by a linear function to obtain the final compatibility score.
The core of the OEM and JEM is a cross-modal atten-
tion layer, allowing them to merge features from different
modalities. The hierarchical design of ViBA-Net facilitates
the propagation of cross-modal interactions between fash-
ion attributes and body shapes through the computed atten-
tion maps, as visualized in Figure 6. We leverage these at-
tention maps to generate the attribute-level explanations for
the prediction results. All experiments are conducted on
two mainstream fashion compatibility datasets, i.e., Outfit
for Your (O4U) [22] and Body-Diverse (BD) Dataset [14],
that all include body shape annotations. Both qualitative
and quantitative results show the advancement of the ViBA-
Net. We summarize main contributions as follows:

• We propose ViBA-Net to obtain better body-shape-
aware embeddings for fashion compatibility. We en-
hance the body-shape embedding by introducing vi-
sual features extracted from body images and repre-
senting the outfit using its try-on appearance.

• We introduce a new dataset with 28,000 body samples
covering seven common body shapes, each with a 3D
body model, anthropometric data, and a frontal view
image. This dataset can also be useful for tasks such
as virtual try-on and clothed human generation.

• We conduct experiments on the O4U and BD datasets,
demonstrating the superiority of ViBA-Net over other
state-of-the-art approaches.

2. Related Work
Body-shape-Aware Fashion Compatibility. With the de-
velopment of FCL, researchers are increasingly aware of
the importance of body shape to practical applications [12–
14, 22, 26]. Hidayati et al. [13] represented body shapes of
female celebrities using their body measurements. Sun et
al. [29] proposed to use 3D features to represent female up-
per body shapes. Hsiao et al. [14] extracted body shape fea-
tures using body measurements and SMPL [18] parameters

through multiple MLPs. These approaches all neglect the
visual features of human bodies. In this work, we propose
to encode the body into a more comprehensive embedding
incorporating anthropometric and visual features, which are
extracted from body images.
Body Shape Classification. Most body-aware methods
proposed to classify body shapes using clustering ap-
proaches, such as using the k-means in [14] and the affin-
ity propagation in [12, 13]. In [26], authors separate body
shapes into two groups according to users’ sizes. How-
ever, research on classifying body shapes has been exten-
sively investigated over the past two decades. Notably,
Simmons [27] developed a well-known body shape clas-
sification system, the Female Figure Identification Tech-
nique (FFIT), which uses anthropometric data from 3D
body scans for body shape classification. Subsequent re-
search [7, 23, 33] improved the FFIT, which has become a
widely accepted standard for body shape classification. So,
in this work, we introduce a body shape dataset that clas-
sifies body shapes into seven well-known types using FFIT
instead of clustering methods.
Fashion Outfit Representation. How to represent the out-
fit plays a crucial role in fashion recommendation. Early
works addressing fashion compatibility Learning (FCL)
problem [4,31,32] represented an outfit as pairwise relation-
ships between fashion items and mapped fashion item em-
beddings into a unified space using category information.
Beyond pairwise distance, some studies attempted to model
high-order interactions among items [19, 22, 28]. These ap-
proaches have two limitations: 1. They omit the scaling
and spatial relationships between individual clothing items
when encoding the outfit; 2. Using only item category infor-
mation is inadequate because adopting more specific fash-
ion attribute information is useful. To this end, we propose
to use try-on appearance images to represent outfits and ex-
ploit fashion attributes to enhance the model performance.

3. Body Shape Dataset
Previous studies [13, 23] have introduced a few body

shape datasets. However, their number of body models is
insufficient to represent body shapes. For example, Parker
et al. [23] analyzed 1,679 3D body scans, but only 10 and 62
human bodies are categorized as triangle and top hourglass
body shapes, respectively. Although Hidayati et al. [13]
introduced a dataset consisting of 3,150 individual celebri-
ties with their body measurement, no body shape labels
are annotated. In light of this, we present a new dataset
for the body shape representation. It features a diverse ar-
ray of 28,000 individual models, spanning seven prevalent
body shapes: bottom hourglass, inverted triangle, spoon,
top hourglass, triangle, hourglass, and rectangle. The con-
struction process involves five steps: 1. Randomly generat-
ing 200,000 3D body models using the SMPL method [18];



2. Measuring anthropometric data, including bust, waist,
high hip, and hip circumferences from these models; 3. Re-
moving unrealistic models and generating 100,000 more re-
alistic bodies based on refined shape parameters; 4. classi-
fying body shapes using the FFIT algorithm [33]; and 5.
Capturing frontal view images for each model using an or-
thographic camera. The details of constructing this dataset
are presented in Section 1 of the Supplementary Material.

4. Methodology
In this section, we elaborate on the details of the pro-

posed ViBA-Net: 1. Clarify the task formulation; 2. Present
the representations of body type, try-on image, and fashion
attributes; 3. Describe the architecture of ViBA-Net.

4.1. Task Formulation

Following [22], we formulate this task as a multi-label
classification task. Given a training set T = {Oj , Y j}Nj=1

containing N outfits, we denote Oj = {Xj ,Gj} as the j-th
outfit containing serveral individual clothing images Xj and
structured fashion attributes Gj . Y j = {yjk|k = 1, · · · ,K}
refers to a set of ground truth labels for j-th outfit condi-
tioned on K body shapes, where yjk = 1 indicates that out-
fit Oj is incompatible with k-th body shape. Our goal is
to devise a learning function F to predict the compatibility
score ŷjk between a query outfit Oj and k-th body shape:

ŷjk = F({Xj ,Gj ,ωk, Ik}|Θ) (1)

where ωk and Ik are the anthropometric data and front view
image of k-th body shape. Θ is the training parameters.

4.2. Body-shape Representation

We devise a Body-shape Embedding Module (BEM) to
compute the embedding for the body shape by exploiting
both visual and anthropometric features extracted from a
representative body model, as illustrated in the top-left cor-
ner of Figure 2. To obtain the representative model for the
k-th body shape, we first average the shape parameters of
all body models belonging to the set Uk, and then use the
SMPL model [18] to generate the representative model ac-
cording to the averaged parameters:

T̄k = FSMPL(β̄
k) = FSMPL(

1

|Uk|
∑

Ti∈Uk

βi) (2)

where T̄k is the representative 3D model of k-th body
shape, and β̄k ∈ R1×10 is the averaged shape parameter
vector. |Uk| means the size of set Uk. Then, we use an
orthographic camera to capture the corresponding frontal
view image, denoted as Īk = Fortho(T̄

k). We extract vi-
sual features of k-th body shape from Īk by employing a

ResNet-18 [11] model, which is trained on the body im-
ages of the proposed body shape dataset with a split ratio
of 80%, 10%, and 10% for training, validation, and test.
v̄k ∈ R1×512 is the visual features, and Fbody refers to the
forward function of ResNet with the last linear layer dis-
carded. The visual feature extraction process can be written
as v̄k = Fbody(Ī

k).
We measure the representative model to acquire the an-

thropometric data, denoted as ω̄k = Fmeasure(T̄
k) ∈

R1×20, where Fmeasure refers to the measuring process.
Since body shape parameters contain information for char-
acterize the body shape, we concatenate β̄k and ω̄k, and
send it to a linear layer consisting of a linear transforma-
tion and a Rectified Linear Unit (ReLU) activation function.
The resulting output is concatenated with v̄k to produce the
body-shape embedding, denoted as Ūk ∈ R1×1024. For-
mally, Ūk is calculated using the following equation:

Ūk = Concat(ReLU(Concat(β̄k, ω̄k)WB + bB), v̄
k)
(3)

where WB ∈ R30×512 and bB ∈ R1×512 are fully con-
nected layer’s weight matrix and bias vector, respectively.
The resulting body shape features will be sent to the joint
embedding module.

4.3. Try-on Image Representation

We leverage try-on images instead of individual cloth-
ing images to represent outfits. However, try-on images
are not typically included in mainstream datasets for the
FCL task, such as Polyvore [10], Style4BodyShape [13], and
O4U [22] to name a few. To address this, a Multi-layer
Virtual Try-On Network (M-VTON) system is utilized to
synthesize separate item images while preserving clothing
details as much as possible. Details can be found in Section
2 of the Supplementary Material. After obtaining the try-on
image, we utilize a pre-trained ResNet model with its last
pooling layer and linear layer discarded to extract its visual
features. The motivation behind encoding it into multiple
region-level features is that they can provide more accurate
representations than a single global feature. Formally, the
feature extraction process can be expressed as:

S = Foutfit(X̃) = {x1, · · · ,xn}; (4)

where S is the representation of try-on image containing
128 spatial features xi ∈ R512, and Foutfit refers to the
forward function of the modified ResNet.

4.4. Fashion Attributes Representation

The clothing items are associated with a set of fashion at-
tributes manually recognized from various attribute dimen-
sions. For the sake of explanation, we show three fashion
attributes in the bottom-left part of Figure 2. We utilize
the union of all attributes associated with each item in an
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Figure 2. The proposed ViBA-Net consists of three modules. Body-shape Embedding Module represents the body shape using both
body image features and anthropometric features. Outfit Embedding Module extracted outfit visual features from the try-on image using
M-VTON. Finally, both body shape features and outfit features are sent to the Joint Embedding Module to learn body-shape-aware embed-
dings. The cross-modal attention mechanism employed in ViBA-Net computes attention weights to generate attribute-level explanations.

outfit to represent the fashion attributes of the entire outfit.
For fashion attribute value, we use a pre-trained GloVe [24]
model to encode its text into a word embedding, denoted
as e ∈ Rdtext , where dtext = 300 is the dimensionality of
the word embedding. For fashion attribute dimension, we
encode it into a one-hot vector, denoted as c ∈ RNA , where
NA = 15 is the number of all fashion attributes used in
this work. We then concatenate c and e to represent one
fashion attribute and then apply a linear transformation to
the concatenated vector. Suppose the j-th outfit possesses
Lj fashion attributes, this outfit’s attribute representation
Aj ∈ RLj×512 is computed by:

Aj = {ReLU(Concat(cl, el)WA + bA)}L
j

l=1 (5)

where WA ∈ R315×512 and bB ∈ R512 is the weight ma-
trix and bias vector of the linear transformation.

4.5. Body-type-Aware Network Architecture

We employ the cross-modal attention block [20] in both
the Outfit Embedding Module (OEM)and Joint Embed-
ding Module (JEM) of ViBA-Net to merge data represen-
tations from different modalities. This mechanism im-
proves conventional attention mechanisms by introducing
a learnable weight matrix in the score function, where two
modalities are connected by calculating their compatibility
scores. Specifically, it takes two inputs denoted as a query
Q ∈ RNq×dq and a value V ∈ RNv×dv , and the attention
weights α ∈ RNq×Nv is calculated as:

α = softmax(QWVT ) (6)

where W ∈ Rdq×dv is the learnable weight matrix, and the
softmax operation is applied on the second dimension. Ac-
cording to the obtained attention distribution and value V,
the output of this block is computed by V̂ = αV, where
V̂ ∈ RNq×dv is the fused feature vectors. The OEM aims to
acquire the outfit representation, denoted as Hj ∈ RLj×512,
through integrating features of try-on image and fashion at-
tributes using the cross-modal attention block:

Hj = αo · Sj = softmax(AjWoS
jT ) · Sj (7)

where Wo ∈ R512×512 is the learnable weight matrix and
αo ∈ RLj×128 is the attention maps calculated in OEM.
Then JEM learns the relationship between the k-th body
shape features Ūk and the j-th outfit representation and out-
puts the compatibility vector between these two:

Ĥj
k = αb ·Hj = softmax(ŪkWbH

jT ) ·Hj (8)

where Ĥj
k ∈ R1×512 is the body-shape-aware embedding,

and Wb ∈ R1024×512 is the learnable weight matrix in the
JEM. αb ∈ R1×Lj

is the attention maps computed in JEM.
We can observe that the second dimension of αb is the same
as the number of the fashion attributes associated with the j-
th outfit. Based on this characteristic of the ViBA-Net, we
can obtain corresponding explanations based on the influ-
ence distribution of fashion attributes reflected in the atten-
tion maps computed in JEM. We visualize αb in Figure 6
to demonstrate the explainability possessed by ViBA-Net.
Lastly, we compute the compatibility score by applying a
linear transformation on Ĥj

k:

ŷjk = Ĥj
k ·Ws + bs (9)



where Ws ∈ R512×1 and bs ∈ R are the linear transfor-
mation’s weights and bias, respectively. Since the task is
formulated as a multi-label classification task, we use the
binary cross entropy loss to measure the difference between
predicted scores ŷjk and target scores yjk.

5. Experiments
We conduct experiments on two fashion compatibility

datasets to showcase the benefits of the proposed ViBA-Net
model by addressing following research questions:

• RQ1: Is the ViBA-Net superior to the current state-of-
the-art methods?

• RQ2: To what extent do the individual components of
ViBA-Net influence the model’s performance?

• RQ3: What can ViBA-Net generate for explainations?

• RQ4: How does ViBA-Net perform in the perceptual
study?

5.1. Experimental Settings

Datasets We evaluate the proposed network on two pub-
lic datasets: Outfit for You (O4U) [22] and Body-Diverse
(BD) [14] datasets. O4U contains 15,748 compatible out-
fits and 82,017 clothing items. Each item is associated with
a product image and several fashion attributes. On aver-
age, the top item contains 6.64 fashion attributes, while the
bottom item contains 3.77 attributes. We use the public
training, validation, and testing data split provided by O4U
to ensure a fair comparison. The BD dataset comprises
889 dresses and 971 tops, spanning 57 individual fashion
models. We classify these body models into three types
(Bottom hourglass, Hourglass, and Rectangle) by aligning
their body measurements with the models in our body shape
dataset. We consider two scenarios for the dataset division:
1). The ”easier” case involves seeing models from the test
split during the training process denoted as the Joint ver-
sion; 2). In the more ”difficult” case, models from the test
split are not included in the training process, as termed the
Disjoint version. Please refer to Section 3 of the supple-
mentary material for statistics details of the BD dataset.
Evaluation Metrics. For experiments on the O4U dataset,
we employ a set of seven evaluation metrics to compare
the performance of different models. This practice aligns
with prior works such as [9], [22], and [21], which tackle
multi-label classification problems. The metrics encompass
Mean Average Precision (mAP), Average Per-Class Preci-
sion (CP), Recall (CR), F1 score (CF1), as well as Average
Overall Precision (OP), Recall (OR), and F1 score (OF1).
Notably, mAP, CF1, and OF1 hold greater significance due
to their ability to provide a holistic evaluation of model per-
formance. For experiments on the BD dataset, we evaluate
performances using the Area Under Curve (AUC) metric.

Implementation Details. We adopt the SGD optimizer [25]
with momentum factor equalling 0.9 and weight decay 5e-4.
We gradually decrease the learning rate according to:

lr = base lr× (1− step num/max step)0.9 (10)

where the base learning rate is 0.1. The maximum steps
and training batch size are set to 1,260 and 10, respectively.
During training, we save the checkpoint model correspond-
ing to the highest mAP performance achieved on the vali-
dation set and evaluate the saved model on the test set. We
report the average evaluation results of five repeated exper-
iments for all experiments.

5.2. Comparative Results (RQ1)

Baselines. We compare the ViBA-Net with seven baseline
methods: (1) StyleMe [12], which extends AuxStyles [13]
by using bidirectional symmetrical deep neural networks to
learn a joint representation of outfits and body shapes. (2)
TDRG [34], an effective multi-object recognition model
that explores the structural and semantic aspect relations
through Graph Convolutional Network. We use it to learn
the joint relation of the try-on image. (3) M3TR [35],
a multi-modal multi-label recognition model that incor-
porates global visual context and linguistic information
through ternary relationship learning. We embed the body
shape labels into the word embedding as the linguistic in-
formation and use try-on appearances as input images. (4)
CSRA [36], which captures spatial regions of objects from
different categories by effectively combining a simple spa-
tial attention score with class-specific and class-agnostic
features. We train CSRA using try-on images as input. (5)
FCN [22], which employs a convolutional layer to embed
the outfit based on fashion attribute features and utilize a
GCN to learn multi-label classifiers based on word embed-
dings of body shapes. The compatibility scores are obtained
by applying the learned classifiers to the outfit embedding.
(6) Mo et al. [21], which learns the correlation between
fashion images, fashion attributes, and physical attributes
with two transformer encoders. (7) ViBE [14], which ap-
plies several MLPs to learn fashion clothing’s affinity with
body measurements. (8) Body-aware CF [1], which is
a collaborative filtering-based method utilizing the fashion
item and body measurement features.
Quantitative Results on O4U. We present the quantitative
results on O4U dataset in Table 1. All baseline methods
are trained on the training set of O4U. The random method
means all predictions are given randomly. We observe
that the proposed ViBA-Net achieves the best performances
across all metrics. Specifically, it surpasses StyleMe by a
clear margin (+14.06 on mAP). This may be because the
bidirectional symmetrical deep neural networks utilized in
StyleMe are limited in their ability to learn cross-modal re-
lationships. Compared with the TDRG, M3TR, and CSRA



Table 1. Evaluation results on O4U dataset.

Methods mAP CP CR CF1 OP OR OF1
Random 45.01 44.27 23.04 30.31 44.91 21.93 29.47
StyleMe [12] 49.08 37.50 56.05 44.94 62.81 77.70 69.47
TDRG [34] 54.66 50.80 63.60 56.48 65.42 78.85 71.51
M3TR [35] 61.37 55.92 61.19 58.44 69.37 79.65 74.15
CSRA [36] 61.38 56.63 61.18 58.82 71.82 76.79 74.22
FCN [22] 62.34 56.96 62.41 59.55 71.42 78.14 74.62
Mo et al. [21] 62.38 55.24 62.10 58.47 67.17 79.34 72.75
ViBE [14] 62.18 55.63 64.43 59.71 70.79 79.25 74.78
ViBA-Net (Ours) 63.14 57.30 64.85 60.84 72.02 80.73 76.13
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Figure 3. Evaluation results on Body-Diverse dataset. In the joint
scenario, test models are seen during the training process In the
disjoint version, training and test sets of models are completely
separate. Our method notably outperforms other approaches
across all scenarios and fashion categories, securing the highest
AUC performance by a substantial margin.

methods, the ViBA-Net brings consistent +1.78∼8.5 mAP
gains, +2.02∼4.36 CF1 gains, and +1.9∼4.6 OF1 gains
over them. The reason may be that the ViBA-Net takes
advantage of multi-modal features. ViBA-Net also outper-
forms the FCN, Mo et al. [21], and ViBE methods on all
metrics. This may be attributed to the fact that these meth-
ods fail to learn body shape embeddings using visual fea-
tures.
Quantitative Results on Body-Diverse Dataset. We re-
port results on the Body-Diverse dataset in Figure 3. We
compare ViBA-Net to the Body-aware CF and ViBE meth-
ods. The latter two methods rely solely on SMPL param-
eters and body measurements for representing body shape.
Remarkably, our method consistently outperforms the oth-
ers across all scenarios and fashion categories. Specifically,
Figure 3 (a) shows the results on the ”easier” test, and our
method brings +2.6 and +1.8 AUC gains over CF and ViBE
methods on the dress set, respectively. A substantial AUC
improvement of +5.1 over ViBE is also observed on the top
set. Figure 3 (b) shows the results on the disjoint test set.
AUC performances of ViBA-Net are +0.9 and +1.2 higher
than the ViBE method on the dress and top test sets, respec-
tively. These consistent enhancements can be attributed to
the incorporation of visual body features.

Notably, it can be observed in Figure 3 that all methods
perform better on the joint dataset compared to the disjoint
dataset, aligning with our expectations. Another observa-
tion is the evaluation results achieved in the top category
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Figure 4. Qualitative comparison among different methods. The
tick symbol indicates a match between the outfit and the body
shape, while the cross symbol indicates a mismatch.

are superior to those in the dress category. This discrepancy
may be because tops are predominantly associated with up-
per body parameters such as bust and waist rather than hip
size. This specificity impacts model performance. In con-
trast, as full-body garments, dresses leverage data from all
body dimensions, contributing to improved performance.

Qualitative Results. The quantitative results are presented
in Figure 4. It is evident that among all baselines, the ViBA-
Net consistently performs well with various outfit composi-
tions. In Figure 4 (a), for example, the outfit consists of
corset straps with hot pants, which might not be compati-
ble with people having lower body segment obesity due to
tight pants. However, the length of hot pants is short, expos-
ing the legs, which can alleviate the feeling of envelopment,
and thus, the outfit can still be compatible with body shapes
such as bottom hourglass, spoon, and triangle. On the other
hand, corset straps are heavy for people with inverted tri-
angle or top hourglass body shapes, which also have larger
breasts. Thus, matching hot pants with the same large expo-
sure of skin is unsuitable. In contrast, as shown in Figure 4
(b), when the clothing is changed to a tank top and A-line
long skirt, it can solve both problems. Similarly, in Fig-
ure 4 (c), the off-shoulder blouse is unsuitable for people
with broad shoulders, and the tight jeans are not compatible
with those with lower body segment obesity. Furthermore,
for outfits with special silhouettes, such as the peplum top
with an H-line short skirt in Figure 4 (d), the ViBA-Net can
still accurately assess the compatibility between body shape
and the outfit composition.



Table 2. Ablation results on representation learning. backbone:
utilizing backbone (ResNet-18) as multi-label classifier. w/o-body:
encoding the body shape into one-hot vector. w/o-try-on: encoding
outfit using visual features from separate items. w/o-attr: remov-
ing fashion attribute data.

Methods mAP CP CR CF1 OP OR OF1
backbone 57.71 54.47 57.54 55.96 67.53 76.39 71.68
w/o-body 60.57 55.68 60.71 57.97 67.46 73.84 70.46
w/o-anth. 62.73 56.85 64.25 60.32 71.75 79.91 75.61
w/o-visual 62.61 56.92 64.85 60.63 71.83 80.33 75.84
w/o-try-on 61.72 56.29 62.77 59.35 71.43 78.99 75.02
w/o-attr 61.45 55.83 63.32 59.34 70.61 79.50 74.79
Full model 63.14 57.30 64.85 60.84 72.02 80.73 76.13

5.3. Ablation Study (RQ2)

We examine the effectiveness of components in the
ViBA-Net by conducting several ablation studies.
Ablation Study on Representation Learning. We first
demonstrate the effectiveness of the body shape and out-
fit representation applied in ViBA-Net, as shown in Table 2.
Firstly, we investigate the overall contribution of ViBA-Net
to the multi-label classification performance by comparing
it with ViBA-Net’s backbone model (ResNet-18). Our full
network brings +5.43 mAP, +4.88 CF1, and +4.45 OF1 per-
formance improvements. Furthermore, we proceed to eval-
uate the efficacy of our body-shape embedding approach
by conducting experiments involving the removal of spe-
cific components: anthropometric features (w/o-anth.), vi-
sual features (w/o-visual), and a combination of both (w/o-
body). Notably, consistent performance deterioration is ob-
served across all three cases. This substantiates that anthro-
pometric and visual features are pivotal in accurately repre-
senting body shapes. We also compare our try-on embed-
ding method with a separate item embedding method (w/o-
try-on). The result shows that ViBA-Net using the try-on
embedding achieves higher scores (+1.42 mAP, +1.49 CF1,
and +1.11 OF1) than the model using separate items, sug-
gesting that our try-on embedding method captures more
information from the try-on image compared with discrete
items. Lastly, we investigate the impact of utilizing fashion
attributes in our model. Results of w/o-Attributes demon-
strate that using fashion attribute data can improve the
model’s overall performance, with the full model achiev-
ing increases of +1.69 mAP, +1.50 CF1, and +1.34 OF1,
which suggest fashion attributes can provide valuable cues
for personalized fashion recommendations.

More ablation studies on network structure and outfit en-
coding are discussed in the supplementary file Section 4.
Comparing Visual and Anthropometric Features.

Table 3 compares the performance of body shape classi-
fication methods. These results show that our visual-based
classification approach (Ours) clearly outperforms other
baselines. This could be because other baselines merely use

Table 3. Body shape classification accuracy comparing with avail-
able classifiers.

Available body shape classifiers OursLee et al. [33] Francis [8] Collings [3] Hidayati et al. [12]
28.63% 31.84% 37.87% 76.83% 97.60%

Visual features Anthropometric features

Figure 5. Visualization of different body features using t-SNE.

anthropometric data to classify body shapes.
To further illustrate the difference between the visual

and anthropometric features of the body shape, we visualize
them in Figure 5 using t-SNE [30]. The visual features are
extracted from the frontal view images, and the anthropo-
metric features are measured from 3D models belonging to
the testing set of the body shape dataset. We can observe
that the five body shapes are separated more clearly from
each other in the left part of Figure 5 compared with anthro-
pometric features in right part. This suggests that the visual
features contain more valuable information for characteriz-
ing the body shape. We also observe that the Euclidean dis-
tance between similar body shapes is closer. For instance,
the distance between inverted triangle (orange star symbol)
and top hourglass (red diamond symbol) is shorter than the
distance between inverted triangle and triangle (purple tri-
angle symbol). The main reason is that both inverted trian-
gle and top hourglass body shapes have a wider upper body
and a narrower lower body. In contrast, triangle body shape
typically has larger hips. These results support the proposal
that incorporating visual body features into the process of
learning body-shape-aware embeddings is effective.

5.4. Explainability Analysis (RQ3)

We visualize the attention maps for three query outfits in
Figure 6 to provide a visualization of the fashion attributes
that the ViBA-Net focuses on when predicting compatibil-
ity. Each row entry of the attention map represents attention
weights αb generated in the JEM, which indicates the sig-
nificance of fashion attributes with respect to correspond-
ing body shapes. In the first two examples (Figures 6 (a)
and (b)), we present two outfits where the first query does
not match the bottom hourglass, spoon, and triangle body
shapes, while the second query is compatible with them.
The attention maps indicate that ViBA-Net attends mostly
to the bottom silhouette attribute dimension (last row), i.e.,



(c)  (b)  (a)  

Figure 6. Visualization of attention maps computed in JEM. The
vertical axis represents all the fashion attributes possessed by the
query outfit. The horizontal axis represents five body shapes,
namely, from left to right, bottom hourglass, inverted triangle,
spoon, and top hourglass.

Slim and A-line, respectively. This may due to the fact that
these three body shapes all possess a larger hip measure-
ment, which is congruent with an A-line dress but not with a
slim one. Additionally, Figures 6 (c) shows an outfit which
is incompatible with inverted triangle body shape. ViBA-
Net suggests that the main reason for this mismatch is the
top item contains a cold shoulder design. From a fashion
perspective, this inference is reasonable because tops with
cold shoulder designs often fail to provide adequate support
for the chest and upper body, which can be a concern for in-
dividuals with a larger bust resulting in an unflattering and
uncomfortable fit.

Interestingly, the ViBA-Net has varied focuses on fash-
ion attributes belonging to the bottom and top items of dif-
ferent body shapes. The network concentrates mainly on the
bottom attributes for body shapes such as bottom hourglass,
spoon, and triangle. Conversely, it pays more attention to
the top attributes for the inverted triangle and top hourglass.
This could be because the bottom attributes play a more crit-
ical role in determining compatibility for body shapes that
tend to have a larger hip and thigh area. On the other hand,
for body shapes that have broader shoulders and a smaller
waist, the network focuses more on the top attributes to en-
sure a balanced overall look that accentuates the waistline.

5.5. Perceptual Study (RQ4)

Finally, we conduct a perceptual study to show the po-
tentiality of the ViBA-Net in practical applications. Specif-
ically, we invite ten experts working in the fashion industry
to assess the results of all the compatibility models from the
following two aspects, (1) Body-shape-Aware Compatibil-
ity score (OCs): whether the outfits are compatible with the
body shape or not; (2) Explanation Confidence score (ECs):
whether the explanation reasonable or not. The score range
is [0, 1], 0.1 per level, and the final score is the weighted
average of all the scores given by those experts. The per-
ceptual results are summarized in Table 4. It can be seen

Table 4. Perceptual results of the compatibility models.
Methods StyleMe [12] TDRG [34] M3TR [35] CSRA [36] FCN [22] ViBA-Net (Ours)
OCs 49% 52% 51% 53% 59% 61%
ECs - - - - - 67%

(a) (b) (c) (d) (e) (f) (g)

Figure 7. The pipeline of a prototype for applying ViBA-Net in
a real application. Step (a): inputting the personal information;
step (b): generating a 3D SMPL model according to the input
measurements data; step (c): adjusting and confirming the body
shape; step (d): browsing the fashion items; step (e): selecting one
favour clothing item with corresponding outfit recommendations
that consider the body shape; step (f): visualizing the outfit com-
position on the size of body shape; step (g): translating the SMPL
model into a human image via generative model e.g., Midjourney.

that the ViBA-Net enjoys the highest performance on Body-
shape-Aware fashion compatibility while taking a unique
advantage in explainability.

In addition to the perceptual study, we also build the pro-
totype for applying ViBA-Net in a real application to show
the practicality of the proposed method. As shown in Fig-
ure 7, we present the main steps of the prototype for apply-
ing ViBA-Net in real applications. It can be seen that, with
the awareness of body shape, customers can more easily and
directly accept the recommended outfits. And connecting
with the current cutting-edge techniques can generate more
user-friendly and interesting results with huge economic po-
tential, e.g., translating the SMPL model into a human im-
age via generative models such as Midjourney or executing
a call API of Large Language models such as ChatGPT to
make the explanation more like a natural conversation.

6. Conclusion
Body shape is an essential consideration when recom-

mending outfits to consumers in real-life applications. To
this end, we propose ViBA-Net to learn better body-shape-
aware embeddings for fashion compatibility and a new
dataset containing varied information about body shape.
Meanwhile, we also propose representing the outfit using
its try-on appearance, which captures the scaling and spa-
tial relationships between fashion items on the body. We
conduct experiments on both the O4U and BD dataset to
demonstrate the superiority of ViBA-Net compared to other
state-of-the-art approaches.
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