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Abstract

As Deep Neural Networks (DNNs) are trained to perform tasks of increasing1

complexity, their size grows, presenting several challenges when it comes to2

deploying them on edge devices that have limited resources. To cope with this,3

a recently proposed approach hinges on substituting the classical Multiply-and-4

Accumulate (MAC) neurons in the hidden layers of a DNN with other neurons5

called Multiply-And-Max/min (MAM) whose selective behaviour helps identifying6

important interconnections and allows extremely aggressive pruning. Hybrid7

structures with MAC and MAM neurons promise a reduction in the number of8

interconnections that outperforms what can be achieved with MAC-only structures9

by more than an order of magnitude. However, by now, the lack of any theoretical10

demonstration of their ability to work as universal approximators limits their11

diffusion. Here, we take a first step in the theoretical characterization of the12

capabilities of MAM&MAC networks. In details, we prove two theorems that13

confirm that they are universal approximators providing that two hidden MAM14

layers are followed either by a MAC neuron without nonlinearity or by a normalized15

variant of the same. Approximation quality is measured either in terms of the first-16

order Lp Sobolev norm or by the L∞ norm.17

1 Introduction18

Deep Neural Networks (DNNs) solve complex tasks leveraging a massive number of trainable19

parameters. Yet, thanks to the recent increasing interest in mobile Artificial Intelligence, there20

has been a growing emphasis on designing lightweight structures able to run on devices with21

constrained resources. This can be obtained by removing parameters that do not appreciably influence22

performance by means of one of the many pruning techniques that have been proposed. Some23

approaches entail removing, in a single shot, individual interconnections or entire neurons once the24

DNN has been trained, while others methods are applied iteratively, and require multiple rounds of25

training. These techniques eliminate interconnections but do not alter the underlying Multiply-and-26

ACcumulate (MAC) paradigm that governs the neuron’s inner functioning.27

In [1, 2], the authors address the challenge of designing neural networks that can have a smaller28

memory footprint presenting a novel neuron model based on the Multiply-And-Max/min (MAM)29

paradigm that can be substituted to classical MAC neurons in the hidden layers of a DNN to30

allow a more aggressive pruning of interconnections, while substantially preserving the network31

performance. In a standard MAC-based neuron, inputs are modulated independently of each other32

through multiplication with their respective weights, and the resulting products are then summed into33

a single quantity. As MAC neurons, MAM neurons multiply each input by a weight but then only the34

maximum and the minimum quantity of the products are summed together.35
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In formulas, if v1, v2, . . . are the inputs after being multiplied by their respective weights, the output36

u of a MAM neuron is37

u = [max
j

vj +min
j

vj + b]
+

(1)

where b is the bias and [⋅]+ =max{0, ⋅} represents the nowadays common ReLU nonlinearity.38

It is shown empirically that, starting from an architecture originally designed using MAC neurons, one39

may substitute them with MAM neurons in several hidden layers and use a proper training strategy to40

achieve the same performances as the corresponding MAC-only network. Yet, in the resulting hybrid41

network, one may leverage the extremely selective behaviour of min and max operations to reduce42

very aggressively the number of weights. MAM neurons can be pruned with almost every technique43

proposed in the literature with little to no modifications. As a motivating example, Table 1 reports44

some of the results described in [1] showing cases in which, once the quality level is set (in this case45

to 3% less accuracy than the original non-pruned network), MAM neuron substitution, retraining46

and pruning reduce the number of weights 1 to 2 orders of magnitude more than what is obtained47

by pruning the original MAC-only network. Moreover, these neurons can also be pruned iteratively48

requiring less training iterations to guarantee a given accuracy compared to standard MAC neurons.49

Table 1: Approximate remaining interconnections in the hidden fully-connected layers with one-shot
global magnitude pruning built either with MAC or MAM neurons.

AlexNet + Cifar-10 AlexNet + Cifar-100 VGG-16 + ImageNet

Top-1 accuracy (3% lower
than non-pruned network) 87.69% 63.89% 61.03%

Surviving interconnections
(MAC) 1.01% 25.01% 10.82%

Surviving interconnections
(MAM) 0.06% 0.26% 0.04%

Though the equivalence between MAC-only and MAM&MAC networks has been demonstrated in50

practice, a change in the model of some neurons opens the problem of the abstract capability of such51

hybrid architectures. This contribution is a step forward in clarifying that, despite the locally different52

input-output relationships, also hybrid MAM&MAC networks enjoy some universal approximation53

capabilities analogous to those of the MAC-only networks.54

1.1 Brief background on universal approximation properties55

The development of models with universal approximation properties has been a significant break-56

through in many fields of science and engineering. In 1989 [3] proved that a network with a single57

hidden layer could approximate any continuous function, given enough hidden neurons. Some years58

later, [4] and [5] showed that also fuzzy systems could approximate any continuous function to59

arbitrary accuracy. These works were later extended to multiple inputs and outputs, demonstrating60

the universal approximation properties of fuzzy systems more broadly ([6, 7]). In the following61

years, a large number of researchers have studied the universal approximation properties of neural62

networks with MAC neurons in the case of bounded depth and arbitrary width ([8, 9]), bounded width63

and arbitrary depth ([10, 11, 12]) and bounded width and depth ([13, 14]). In the recent work [15],64

authors obtained the optimal minimum width bound of a neural network with arbitrary depth to retain65

universal approximation capabilities.66

The research in this field is still very active and aims at proving the universal approximation capa-67

bilities of networks with different architectural or computational paradigm choices, such as deep68

convolutional neural networks [16], dropout neural networks [17], networks representing probability69

distributions [18] and spiking neural networks [19].70
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2 Mathematical model71

We indicate with L (⋅) a fully connected layer in which all neurons are based on the MAM paradigm72

(1). We consider networks with N inputs collected in the vector x = (x1, . . . , xN), two MAM hidden73

layers producing a vector z(x) = (z1(x), z2(x), . . . ) = L′′ (L′ (x)) and a single output Z (x) ∈ R74

produced by a final layer that computes either the normalized linear combination75

Z (x) =
∑k ckzk(x)

∑k zk(x)
(2)

or the linear combination76

Z (x) =∑
k

ckzk(x) (3)

We normalize the input domain by assuming xi ∈ X = [0,1] for i = 1, . . . ,N and indicate with Z∗77

the family of functions in (2) while with Z the analogous family of functions in (3). Smoothness78

conditions on our target functions f ∶ XN ↦ R is formalized by assuming that they belong to79

Cd (XN), i.e., that their d-th order derivatives are continuous. Distances between functions are80

measured by means of the norms defined as81

∥ϕ∥k,p =
⎡
⎢
⎢
⎢
⎣
∫
XN
∣ϕ(x)∣

p
dx + k

N

∑
j=1
∫
XN
∣
∂ϕ

xj
(x)∣

p

dx
⎤
⎥
⎥
⎥
⎦

1/p

with k = {0,1} and p ≥ 1.82

3 Main results83

Within the above framework, we prove two theorems that describe the universal approximation84

properties of DNNs using MAM neurons in the hidden layers.85

Theorem 1. For any function f ∈ C0 (XN) and any prescribed level of tolerance ϵ > 0, there is a86

Z ∈ Z∗ such that ∥f −Z∥0,∞ ≤ ϵ.87

Theorem 2. For any function f ∈ C2 (XN), any prescribed level of tolerance ϵ > 0 and finite p ≥ 1,88

there is a Z ∈ Z such that ∥f −Z∥1,p ≤ ϵ.89

The proofs of both theorems are reported in Section 6 and are constructive. In particular, subnetworks90

in the cascade z(x) = L′′ (L′ (x)) are identified and programmed to make each zk(x) a weakly91

unimodal piecewise-linear function of the inputs, whose maximum is 1 and is reached in a hyper-92

rectangular subset of the domain, while the function vanishes for points far from the center of93

that hyper-rectangle. The shapes and positions of these functions can then be designed along with94

the values of the weights ck so that their combination by means of either (2) or (3) is capable of95

approximating the target function arbitrarily well as measured either by ∥⋅∥1,p or ∥⋅∥0,∞.96

4 Examples97

Figure 1 proposes a visual representation of the constructions behind Theorem 1 and Theorem 2 for98

N = 2. From left to right, we report the target function f ∶ X2 → R99

f(x1, x2) =
(4x1 − 2) (4x2 − 2) (4x1 +

1
2
)

1 + (4x1 − 2)
2
+ (4x2 − 2)

2
+ 3 (4)

and its approximation Z ∈ Z∗ implied by the proof of Theorem 1 and its approximation X ∈ Z100

implied by the proof of Theorem 2. In both cases the parameter n used in Section 6 is set to n = 7.101
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f(x1, x2) Z(x1, x2) X(x1, x2)

x1

x2 x2x2

1
Figure 1: Three dimensional plot of a target function f(x1, x2) and of its two approximations
Z(x1, x2) ∈ Z

∗ implied by Theorem 1 and X(x1, x2) ∈ Z by Theorem 2.

5 Limitations102

Theorem 1 and Theorem 2 rely on networks in which constraints are put neither on the layer width103

nor on the total number of neurons. Hence, despite proving universal approximation capabilities, they104

do not imply efficient approximation. Yet, such theoretical limitation is never strongly experienced105

in practice, since MAM networks are able to guarantee acceptable performance in real use cases.106

Nevertheless, a deeper look at universal approximation aimed at meeting efficiency will be the focus107

of future analysis.108

6 Network construction and proofs of Theorems109

6.1 Network construction110

The aim of this subsection is to show that our network can be programmed to make the outputs of the111

second hidden layer specific weakly unimodal piecewise-linear functions zk (x) of the inputs.112

Lemma 1. Let z be any of the outputs of the second hidden layer. For N > 1 and any choice of113

the quantities ω1, . . . , ωN ∈ [0,1], l1, . . . , lN ≥ 0, δL
1, . . . , δ

L
N ≥ 0, and δR

1, . . . , δ
R
N ≥ 0, the two MAM114

hidden layers can be programmed to yield115

z (x) = [1 −∆ (x)]
+ (5)

where116

∆ (x) = max
i∈{1,..,N}

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0,
∣xi − ωi∣ − li

{
δL
i if xi < ωi

δR
i if xi ≥ ωi

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(6)

Proof of Lemma 1. We assume that neurons in the first hidden layer come in pairs117

(yL
1, y

R
1, y

L
2, y

R
2, . . . ) = L

′
(x) and the output of a pair depends on only one of the inputs.118

Without any loss of generality, we assume that yL
i and yR

i depend only on xi for i = 1, . . . ,N while all119

the other N − 1 input weights are set to 0. The other outputs of the first hidden layer are involved in120

the computation of the outputs of the second hidden layer further to the z we are considering.121

For yL
i the non-null input weight is equal to −1/δL

i and the bias is (ωi−li)/δL
i , while for yR

i the non-null122

input weight is equal to 1/δR
i and bias is (−ωi−li)/δR

i . By recalling (1) one gets123

yL
i = [

−xi + ωi − li
δL
i

]

+
and yR

i = [
xi − ωi − li

δR
i

]

+
(7)

In the second hidden layer, the neuron computing the z we consider has all input weights equal to 0124

but those connecting to yL
1, y

R
1, . . . , y

L
N , yR

N . Non-null input weights are equal to −1 and the bias is 1125

so that126
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δR1

δL2

x1

zω(x1, x2)

x2

2ℓ2

δR2

2ℓ1δL1

(ω1, ω2)

Figure 2: Three dimensional plot of a generic zω (x) for N = 2 and its contour plot showing the role
of the various parameters.

z = [ max
i∈{1,..,N}

{0,−yL
i ,−y

R
i} + min

i∈{1,..,N}
{0,−yL

i ,−y
R
i} + 1]

+
= [1 − max

i∈{1,..,N}
{yL

i , y
R
i}]

+
(8)

Considering the last expression, note that, if xi ≥ ωi then yR
i ≥ 0 and yL

i = 0 while, if xi < ωi then127

yR
i = 0 and yL

i ≥ 0. Hence, without loss of generality, we may assume that xi ≥ ωi for i = 1, . . . ,N ,128

being all other cases a variation of this one by suitable symmetry and scaling. With this, yL
i = 0 for129

i = 1, . . . ,N and (8) becomes130

z = [1 − max
i=1,...,N

[
xi − ωi − li

δR
i

]

+
]

+
= [1 − max

i=1,...,N
{0,

xi − ωi − li
δR
i

}]

+
(9)

that is equivalent to the thesis.131

To interpret Lemma 1 note that ∆(x) is a scaled measure of how far the input vector x is from the132

hyper-rectangle centered at ω = (ω1, . . . , ωN) with sides 2l1, . . . ,2lN . Hence, z (x) is maximum133

and equal to 1 if x belongs to such a hyper-rectangle and has a piecewise-linear decreasing profile134

when x gets further from ω. Figure 2 reports an example of a z (x) when N = 2.135

In the following, we will assume that each neuron in the second hidden layer matches a whole136

subnetwork as implied by Lemma 1. With this, we may re-index the outputs of the second hidden137

layer as zω (x) associating each of them with the center of the hyper-rectangle in which zω (x) = 1.138

The same is done with the corresponding weights cω in the output layers.139

6.2 Universal approximation properties with normalized linear output neuron140

Given a positive integer n, define Ω = {0, 1
n
, 2
n
, . . . ,1}

N
and include in the two hidden layers all the141

subnetworks implied by Lemma 1 to implement the function zω (x) for each ω ∈ Ω.142

In each of these subnetworks set δL
i = δ

R
i = δ = 1/n for i = 1, . . . ,N and li = 0 for i = 1, . . . ,N .143

With this, zω (x) is and (N + 1)-dimensional pyramid whose base is an N -dimensional hypercube144

with sides of length 2δ and center in ω.145

Proof of Theorem 1. Note first that for any given x ∈ XN , only a limited number of functions zω (x)146

are not null. In particular, if ki = ⌊nxi⌋ for i = 1, . . . ,N is the largest integer not exceeding nxi, then147

zω (x) > 0 only if ω belongs to the set Ωx = {k1δ, (k1 + 1)δ}× ⋅ ⋅ ⋅ × {kNδ, (kN + 1)δ} that contains148

the 2N corners of the N -dimensional hypercube Cx = [k1δ, (k1 + 1)δ] × ⋅ ⋅ ⋅ × [kNδ, (kN + 1)δ].149

Hence, we may evaluate Z(x) focusing on functions zω (x) with ω ∈ Ωx.150

Define the functions151
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ζω (x) =
zω (x)

∑ω′∈Ω zω′ (x)
(10)

that are such that ∑ω∈Ω ζω (x) = ∑ω∈Ωx
ζω (x) = 1 for any x ∈ XN , and set cω = f (ω) for each152

ω ∈ Ω.153

The error ∥f (x) −Z (x)∥0,∞ in Theorem 1 can be written as154

XXXXXXXXXXX

f (x) − ∑
ω∈Ωx

f (ω) ζω (x)
XXXXXXXXXXX0,∞
=

XXXXXXXXXXX

∑
ω∈Ωx

[f (x) − f (ω)] ζω (x)
XXXXXXXXXXX0,∞
≤ max

x∈XN
max
ξ∈Cx

ω∈Ωx

∣f (ξ) − f (ω)∣

Since f ∶ XN ↦ R is continuous on the compact domain XN , it is also uniformly continuous and,155

for any given level of tolerance ϵ > 0, there is a ∆x such that for any x′,x′′ ∈ XN with distance156

∥x′ −x′′∥2 ≤∆x we have ∣f(x′) − f(x′′)∣ ≤ ϵ. For a given x, the distance between any ξ ∈ Cx and157

any ω ∈ Ωx is ∥ξ −ω∥2 ≤ δ
√
N . Since δ = 1/n we can select n so that158

∥f (x) −Z (x)∥0,∞ ≤ max
x∈XN

max
ξ∈Cx

ω∈Ωx

∣f (ξ) − f (ω)∣ ≤ ϵ

159

6.3 Universal approximation properties with linear output neuron160

In this case, the approximation capabilities of our network over the whole domain depend on the161

local behaviour of subnetworks converging not in a single second-hidden-layer neuron but in 2N162

second-hidden-layer neurons.163

Formally, given a center ω ∈ XN we include in a subnetwork neurons of the second hidden layer with164

outputs labelled zω1− , zω1+ ,. . . ,zωN− , zωN+ as well as all the previous neurons needed to compute165

such outputs.166

The expression of each zωj± is given by Lemma 1 and thus is defined by the center point ωj± =167

(ωj±
1 , . . . , ωj±

N ), by the slopes δL,j±
1 , . . . , δL,j±

N and δR,j±
1 , . . . , δR,j±

N , as well as by the side lengths168

lj±1 , . . . , lj±N .169

In a subnetwork, everything depends on two quantities δ, ℓ ≥ 0 that are used to set170

ωj±
i = {

ωi if i ≠ j
ωi ± ℓ if i = j

lj±i = {
ℓ if i ≠ j
0 if i = j

δR,j−
i = δ

δL,j−
i = {

δ if i ≠ j
2ℓ if i = j

δR,j+
i = {

δ if i ≠ j
2ℓ if i = j

δL,j+
i = δ

for i, j = 1, . . . ,N .171

To give some intuitive grounding to the above definitions, Figure 3 reports example profiles for 4172

output functions zω1− , zω1+ , zω2− , zω2+ with N = 2.173

Given a center ω, the same quantities δ and ℓ allow to define the two domain subsets174

X∎

ω = {x ∈ X
N
∣ max
i=1,...,N

{∣xi − ωi∣} ≤ ℓ} X◻

ω = {x ∈ X
N
∣ ℓ < max

i=1,...,N
{∣xi − ω̄i∣} ≤ ℓ + δ}

as well as Xω =X
∎

ω ∪X
◻

ω .175

6



x1

x1 x1

ω1−

ω2−

ω2+

ω

ωω

ω1+

x1

zω1−(x1, x2) zω1+(x1, x2)

zω2−(x1, x2) zω2+(x1, x2)

x2 x2

x2
x2

ω1−ω
ω1+

ω2+
ω2−

1
Figure 3: Three dimensional plots of the functions zω1− , zω1+ , zω2− , zω2+ with N = 2.

The approximation capabilities depend on the behaviour of the output of the subnetworks in the three176

disjoint domains X∎

ω , X◻

ω , and XN ∖Xω .177

It is easy to see that if x ∈ XN ∖Xω then zωj± = 0 for j = 1, . . . ,N .178

For x ∈X∎

ω the following Lemma holds.179

Lemma 2. Given any choice of N + 1 coefficients a and bj for j = 1, . . . ,N , one may choose 2N180

weights cj± with j = 1, . . . ,N such that181

Zω (x) ≡
N

∑
j=1

cj±zωj± (x) = a +
N

∑
j=1

bjxj (11)

for any x ∈X∎

ω , where Zω (x) remains implicitly defined.182

Proof of Lemma 2. Due to the definition of ωj± we have183

X∎

ω = [ω1 − ℓ, ω1 + ℓ] ×⋯ × [ωN − ℓ, ωN + ℓ] = [ω
1−
1 , ω1+

1 ] ×⋯ × [ω
N−
N , ωN+

N ]

Hence, if x ∈X∎

ω we know that ωj−
j ≤ xj ≤ ω

j+
j for j = 1, . . . ,N .184

Moreover, since by definition for any i, j = 1, . . . ,N and i ≠ j we have ωj+
i −ω

j−
i = 2ℓ and ωj−

i +ω
j+
i =185

2ωi , then ∣xi − ω
j±
i ∣ ≤ ℓ when i ≠ j. Therefore, one can apply Lemma 1 and compute ∆(x), for186

which all the terms in (6) but ∣xj − ω
j±
j ∣ are non-positive, thus yielding zωj± (x) = 1 − ∣xj−ωj±

j ∣/(2ℓ).187

Without any loss of generality, translate Xω so that ω = (ℓ, . . . , ℓ). This implies ωj−
j = 0 and ωj+

j = 2ℓ188

for j = 1, . . . ,N , thus yielding zωj− (x) = 1 −
xj

2ℓ
and zωj+ (x) =

xj

2ℓ
. With this,189

N

∑
j=1

cj±zωj± (x) =
N

∑
j=1
[cj− (1 −

xj

2ℓ
) + cj+

xj

2ℓ
] =

N

∑
j=1

cj− +
N

∑
j=1
(cj+ − cj−)

xj

2ℓ

that can yield any affine function f(x) = a +∑
N
j=1 bjxj by setting, for j = 1, . . . ,N ,190

cj− =
a

N
and cj+ = cj− + 2ℓbj (12)

191

Finally, what happens for x ∈X◻

ω is described by the following Lemma.192

Lemma 3. If the 2N weights cj± with j = 1, . . . ,N are set according to Lemma 2 so that Zω (x) =193

a+∑
N
j=1 bjxj for any x ∈X∎

ω , for coefficients satisfying ∣a∣, ∣bj ∣ ≤M for some M > 0 and j = 1, . . . ,N ,194

then ∣Zω (x)∣ ≤ 3MN for any x ∈Xω and thus for any x ∈X◻

ω .195
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Proof of Lemma 3. From ∣a∣, ∣bj ∣ ≤M and from (12) we get ∣cj−∣ ≤ M/N and ∣cj+∣ ≤ M/N + 2ℓM .196

Overall, since ℓ ≤ 1 and N ≥ 1 we have ∣cj±∣ ≤ 3M . Since 0 ≤ zωj± ≤ 1 and Zω (x) =197

∑
N
j=1 c

j±zωj± (x) we finally get the thesis.198

The above characterization of the output of Z-subnetworks allows to prove their local approximation199

capabilities.200

Lemma 4. Given any function f ∈ C2 (XN), there are two constants P,Q > 0 such that201

Eω ≡ ∫
Xω

∣f (x) −Zω (x)∣
p
dx +

N

∑
j=1
∫
Xω

∣
∂f

∂xj
(x) −

∂Zω

∂xj
(x)∣

p

dx

≤ (2ℓ + 2δ)N{Pℓp [1 − o (δ/ℓ)] +Qo (δ/ℓ) }

with o(⋅) = 1 − 1/(1+⋅)N202

Proof of Lemma 4. Since f ∈ C2 (XN) and XN is compact, M0,M1,M2 ≥ 0 exists such that203

∣f (x)∣ ≤M0, ∣
∂f

∂xi
(x)∣ ≤M1, ∣

∂2f

∂xixj
(x)∣ ≤M2 (13)

for any x ∈ XM and i, j = 1, . . . ,N .204

Assuming x ∈ X∎

ω, and thus ∣xi − ωi∣ ≤ ℓ, the above bounds can be used jointly with the Taylor205

expansions of f and its derivatives around ω206

f (x) = f (ω) +
N

∑
i=1

∂f

∂xi
(ω) (xi − ωi) +

N

∑
i=1

N

∑
j=1

Ri,j (x) (xi − ωi) (xj − ωj) (14)

∂f

∂xi
(x) =

∂f

∂xi
(ω) +

N

∑
j=1

Si,j (x) (xj − ωj) i = 1, . . . ,N (15)

to ensure that their error terms satisfy207

RRRRRRRRRRR

N

∑
i=1

N

∑
j=1

Ri,j (x) (xi − ωi) (xj − ωj)

RRRRRRRRRRR

≤ N2ℓ2
1

2
max

k,l=1,...,N
max
ξ∈XN

∣
∂2f

∂xkxl
(ξ)∣ ≤

1

2
M2N

2ℓ2 (16)

and208

RRRRRRRRRRR

N

∑
j=1

Si,j (x) (xj − ωj)

RRRRRRRRRRR

≤ N2ℓ2
1

2
max

j=1,...,N
max
ξ∈XN

∣
∂2f

∂xixj
(ξ)∣ ≤

1

2
M2Nℓ i = 1, . . . ,N (17)

Again focusing on x ∈X∎

ω , exploit Lemma 2 to set the weights cj± yielding209

Zω (x) = f (ω) +
N

∑
i=1

∂f

∂xi
(ω) (xi − ωi) = [f (ω) −

N

∑
i=1

∂f

∂xi
(ω)ωi] +

N

∑
i=1

∂f

∂xi
(ω)xi (18)

which is also such that ∂Zω

∂xi
(x) = ∂f

∂xu
(ω).210

Hence, we may program Zω to reproduce the beaviour of f and its derivatives in X∎

ω, and the211

approximation errors can be derived exploiting (14) with (16) and (15) with (17) to obtain212

∣Zω (x) − f (x)∣ ≤
1

2
M2N

2ℓ2, ∣
∂Zω

∂xi
(x) −

∂f

∂xi
(x)∣ ≤

1

2
M2Nℓ (19)
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To address the case x ∈ X◻

ω, we may apply Lemma 3. By matching (18) with (13) we get that213

∣a∣ ≤ M0 + M1N and ∣bi∣ ≤ M1 ≤ M0 + M1N for i = 1, . . . ,N . Hence, if x ∈ X◻

ω̄, then if214

M3 =M0(1 + 3N) + 3M1N
2 we have215

∣Zω (x) − f (x)∣ ≤M3, ∣
∂Zω

∂xi
(x) −

∂f

∂xi
(x)∣ = ∣

∂f

∂xi
(ω) −

∂f

∂xi
(x)∣ ≤ 2M1 (20)

Since we have different error bounds in X∎

ω and X◻

ω̄ , we bound the overall error Eω by splitting216

Eω = ∫
X∎ω
∣f (x) −Zω (x)∣

p
dx +

N

∑
j=1
∫
X∎ω
∣
∂f

∂xj
(x) −

∂Zω

∂xj
(x)∣

p

dx +

∫
X◻ω
∣f (x) −Zω (x)∣

p
dx +

N

∑
j=1
∫
X◻ω
∣
∂f

∂xj
(x) −

∂Zω

∂xj
(x)∣

p

dx+

and apply (19) and (20) to bound each integrand. Adding the fact that the measure of X∎

ω is (2ℓ)N ,217

while the measure of X◻

ω is (2ℓ + 2δ)N − (2ℓ)N we obtain218

Eω ≤ [(
1

2
M2N

2ℓ2)
p

+ (
1

2
M2Nℓ)

p

] (2ℓ)N + [Mp
3 + (2M1)

p
] [(2ℓ + 2δ)N − (2ℓ)N ]

from which we may set P = ( 1
2
M2N

2)
p
+ ( 1

2
M2N)

p
and Q =Mp

3 + (2M1)
p to get the thesis.219

We are now in the position of proving our second result.220

Proof of Theorem 2. For n > 0 integer define δ and ℓ such that δ = ℓ2 and 2ℓ + 2δ = 1/n. Let also221

Ω = { 1
2n

, 3
2n

, . . . , 2n−1
2n
}
N

so that XN is partitioned in nN hyper-cubes Xω with centers ω ∈ Ω and222

side 2ℓ + 2δ. The output of the whole network is Z (x) = ∑ω∈ΩZω (x).223

Since Zω (x) is null for x /∈Xω , the error measure over XN can be decomposed into224

∥f −Z∥
p
1,p = ∑

ω∈Ω

⎧⎪⎪
⎨
⎪⎪⎩
∫
Xω

∣f (x) −Zω (x)∣
p
dx +

N

∑
j=1
∫
Xω

∣
∂f

∂xj
(x) −

∂Zω

∂xj
(x)∣

p

dx

⎫⎪⎪
⎬
⎪⎪⎭

Each of the terms in the last sum can be bounded using Lemma 4 in which we may also substitute225

2ℓ + 2δ = 1/n and δ = ℓ2 to yield226

∥f −Z∥
p
1,p ≤ ∑

ω∈Ω

1

nN
{Pℓp [1 − o(ℓ)] +Qo(ℓ)} = Pℓp [1 − o(ℓ)] +Qo(ℓ)

Since when n→∞ we have ℓ→ 0 and thus o(ℓ)→ 0 the thesis is proven.227

7 Conclusions228

We established that neural networks in which hidden MAC neurons are substituted with MAM229

neurons to obtain more aggressively prunable architectures are still universal approximators.230
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