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Abstract

Duality in convex analysis devotes a prominent role to a�ne functions, as proper
convex lower semicontinuous functions are supremum of such functions. This property
is used in the Kelley algorithm, to minimize a proper convex lower semicontinuous
function by sequentially approximating it from below by maxima of a�ne functions
(cuts). A�ne functions are deduced from a bilinear pairing. In generalized convex-
ity, the usual bilinear form is replaced by some bivariate function c, called coupling.
The Moreau-Rockafellar subdi�erential of a function is replaced by the c-subdi�erential.
The Kelley algorithm then becomes the generalized c-cutting plane method to minimize
a c-subdi�erentiable objective function. In this paper, we prove a convergence result
whose scope makes it possible to tackle sparse optimization problems. For this purpose,
we introduce a selection of c-subgradients involved in a pointwise locally equicontin-
uous property, together with the coupling c and the objective function. Under the
assumptions of the convergence result, we discuss a necessary condition on the continu-
ity points of the function to be minimized. Finally, we give an example of converging
Capra-cutting plane method for the minimization of the pseudonorm ℓ0 on a compact
set.

Keywords cutting plane method; generalized convexity; c-subdi�erential; pseudonorm ℓ0; subgra-
dient selector

1 Introduction

Duality in convex analysis devotes a prominent role to a�ne functions, as proper convex
lower semicontinuous functions are supremum of a�ne functions. This property is used
in the Kelley algorithm, to minimize a proper convex lower semicontinuous function by
sequentially approximating it from below by maxima of a�ne functions (cuts). This is the
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spirit of so-called cutting plane methods, which sequentially minimize and update maxima
of base functions (generalized cuts).

Elementary base functions are the building block of so-called abstract convexity where
the equivalent of closed convex functions are the suprema of such functions. By contrast,
in generalized convexity, the focus is put on replacing the usual bilinear form (of duality
in convex analysis) by some bivariate function c, that is called coupling, and the Moreau-
Rockafellar subdi�erential of a function by the c-subdi�erential. Abstract and generalized
convexity are two (related) ways to extend duality beyond convex analysis. As such, they
provide the mathematical framework to extend cutting plane methods beyond the convex
case.

The cutting plane method is a staple optimization scheme in integer linear program-
ming [14, 5]. In 1958, Gomory [6] introduced one of the �rst cutting plane methods to
solve integer linear programs. In 1960, Kelley [7] proposed a cutting plane method to min-
imize convex functions (not necessarily di�erentiable) over a compact set. Pallaschke and
Rolewicz [11, Theorem 9.1.1] generalized Kelley's result to the minimization of so-called Φ-
convex functions, where elementary base functions are continuous functions. Rubinov gave
two convergence results [13, Propositions 9.2, 9.3] in the abstract convex setting. Each of
these convergence results relies on properties which relate elementary base functions (general-
ized cuts), the objective function and all generalized subgradients. In the usual convex �nite
dimensional setting � and also for so-called one-sided-linear couplings, as introduced in [2,
� 2.2] � all of these assumptions boil down to boundedness of the generalized subdi�erential
of the objective function.

Now, it has been established in [2] that the ℓ0 pseudonorm � which counts the number
of nonzero entries of a vector � has nonempty generalized subdi�erential, for a suitable
choice of elementary base functions, induced by a so-called Euclidean Capra-coupling. Un-
fortunately, the assumptions of results [11, 13] are not straightforwardly satis�ed by the
Capra coupling and the ℓ0 pseudonorm, as the Capra-subdi�erentials of ℓ0 have the property
of being unbounded. This observation has motivated us to extend the scope of the results
in [11, 13]. In particular, we emphasize the choice of suitable subsets of subgradients in the
statement of a generalized cutting plane method. With this, it is possible to tackle sparse
optimization problems, consisting in minimizing ℓ0 over a compact set. More precisely, as
easy-to-compute formulas for the Capra-subdi�erential of ℓ0 are given in [8], we can design
a converging Capra-cutting plane method with the corresponding Capra-cuts.

Contributions. We introduce the notion of dual selector and, in Theorem 2, we propose a
convergence result of the generalized cutting plane method for c-subdi�erentiable functions
that satisfy a pointwise locally equicontinuous property. We discuss the link between this
property and the continuity points of the objective function in Proposition 3. Finally, we
present a converging Capra-cutting plane method for the minimization of ℓ0 over a compact
subset of the unit sphere in Proposition 8.
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Notations and basic de�nitions. For any couple of integers (i, j) ∈ N2 such that i ≤ j,
we denote Ji, jK = {i, i+ 1, . . . , j − 1, j}. The extended real line is R = R∪{+∞,−∞}, and
we set R++ =]0,+∞[x.

Let
(
X , d

)
be a metric space. We denote by B(x, η) =

{
x′ ∈ X

∣∣ d(x, x′) ≤ η
}
the ball

centered at x of radius η. We say that a function h : X → R is lower semicontinuous (lsc)
at x ∈ X if, for all {xi}i≥0 ⊂ X , we have that

lim
i→+∞

xi = x =⇒ lim inf
i→+∞

h(xi) ≥ h(x) . (1)

We say that the function h is lsc if it is lsc at x, for all x ∈ X .

Notions in generalized convexity [11, 15, 13, 9]. We remind notions of generalized
convexity with couplings. Let us consider two nonempty sets X (primal), Y (dual) and a
�nite coupling c : X ×Y → R. Let h : X → R be a (primal) function. The c-Fenchel-Moreau
conjugate of h is the function hc : Y → R de�ned by

hc(y) = sup
x∈X

(
c(x, y)− h(x)

)
, ∀y ∈ Y . (2a)

We also recall the c-subdi�erential of h, which is the set-valued mapping ∂ch : X ⇒ Y
de�ned, for any x ∈ X , by

y ∈ ∂ch(x) ⇐⇒ c(x′, y)− h(x′) ≤ c(x, y)− h(x) , ∀x′ ∈ X , (2b)

or, equivalently, by
hc(y) = c(x, y)− h(x) . (2c)

We have the property:

−∞ < h(x) < +∞ and ∂ch(x) ̸= ∅ =⇒ h(x) = sup
y∈Y

(
c(x, y)− hc(y)

)
. (2d)

For any subsetX ⊂ X , we say that h is c-subdi�erentiable onX if its c-subdi�erential ∂ch : X ⇒
Y satis�es

∂ch(x) ̸= ∅ , ∀x ∈ X . (2e)

Outline. The paper is organized as follows. In Sect. 2, we give a convergence result for the
generalized cutting plane method and we provide a necessary condition on the discontinuity
points of the objective function. In Sect. 3, we provide an example of converging Capra-
cutting plane method for sparse minimization problems. In Appendix A, we relegate a
technical result and a comparison table of our main result with those in [11, 13].
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2 Generalized cutting plane method with dual selector

In �2.1, we emphasize the notion of dual selector and then present a new convergence re-
sult to solve minX h, where X is a compact constraint set and h is a function which is
c-subdi�erentiable on X. In �2.2, we provide a necessary condition on the (sequential) con-
tinuity of the function h on the constraint set X, under a pointwise locally equicontinuous
property.

2.1 Convergence theorem for c-subdi�erentiable functions with c-
dual selectors

As discussed in the introduction, we present another generalization of Kelley's convergence
result that can be applied to the minimization of �nite c-subdi�erentiable functions over
compact sets. Compared to previous convergence results [11, 13], we explicitly link the
forthcoming pointwise locally equicontinuous property (5) with what we call a c-dual selector.
This addition will prove relevant to obtain a convergence result for the Capra-cutting plane
method to minimize ℓ0 over a compact set (Sect. 3).

De�nition 1 We consider a nonempty primal set X , a nonempty dual set Y, a �nite cou-
pling c : X × Y → R and a �nite function h : X → R. Let X ⊂ X be a nonempty subset.

Suppose that the function h : X → R is c-subdi�erentiable on X, as de�ned in (2e). We
say that a set-valued mapping Y : X ⇒ Y is a c-dual selector of ∂ch on X if

∅ ⊊ Y (x) ⊂ ∂ch(x) , ∀x ∈ X . (3a)

We say that a mapping D : X → Y is a c-subgradient selector of ∂ch on X if

D(x) ∈ ∂ch(x) , ∀x ∈ X . (3b)

Having de�ned notions of selectors, we now state a new convergence result for the gen-
eralized cutting plane method.

Theorem 2 Let (X , d) be a nonempty metric space, Y be a nonempty set and c : X ×Y → R
be a �nite coupling such that the function c(·, y) : X → R is lsc, for any y ∈ Y. Let X ⊂ X
be a nonempty compact subset. Let h : X → R be a c-subdi�erentiable function on X, as
de�ned in (2e).

We consider the minimization problem

min
x∈X

h(x) . (4)

Let Y : X ⇒ Y be a c-dual selector of ∂ch on X, as in De�nition 1. Let us assume that the
couple

(
c, Y

)
satis�es the following pointwise locally equicontinuous property on X:

∀ε > 0 , ∀x ∈ X , ∃η > 0 , ∀x′ ∈ B(x, η) ∩X , sup
y∈Y (B(x,η)∩X)

|c(x′, y)− c(x, y)| ≤ ε , (5)
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where Y
(
B(x, η) ∩X

)
=

⋃
x′′∈B(x,η)∩X Y (x′′).

Then, for all x0 ∈ X, there exist a sequence {xi}i≥0 ⊂ X and a sequence {zi}i≥1 ⊂ R
such that, for all i ≥ 1,

(xi, zi) ∈ argmin
(x,z)∈X×R

{
z ∈ R : z ≥ c

(
x, yj

)
− c

(
xj, yj

)
+ h(xj) , ∀j ≤ i− 1

}
, (6)

where yi ∈ Y (xi) (arbitrarily chosen) for all i ≥ 0, and these sequences satisfy

� {zi}i≥1 increases to h∗ = infX h;

� {xi}i≥0 has a subsequence {xν(i)}i≥0 converging to an optimal solution of (4), that is,
to some x∗ ∈ argminX h.

We denote by CP(h,X, c;Y, x0) the set of sequences
(
{xi}i≥0, {zi}i≥1

)
satisfying (6),

for all i ≥ 1 (these sequences are not unique as the argmin (6) is not necessarily a sin-
gleton, and as yi can be arbitrarily chosen in Y (xi), for all i ≥ 0). We say that such
sequences

(
{xi}i≥0, {zi}i≥1

)
are generated by the cutting plane method CP(h,X, c;Y, x0). It

is worth noticing that Theorem 2 gives a convergence result independently of the starting
point x0 ∈ X and of the selection of xi in the argmin (6) (and of the selection of yi in Y (xi)).

We now give the proof of Theorem 2.
Proof. First, we prove that the function h + ιX is lsc, and the existence of an optimal x̄ ∈

argminX h.
As the function h : X → R is c-subdi�erentiable on X, and according to (2d), we have that

h(x) = supy∈Y
(
c(x, y)− hc(y)

)
, for all x ∈ X. Thus1, we can write

h+ ιX = h ·+ ιX = sup
y∈Y

(
c(·, y) ·+

(
−hc(y)

)
·+ ιX(·)

)
.

Under the supremum, the functions c(·, y) are lsc by assumption, the function ιX(·) is lsc because
X is a closed set, and constant functions −hc(y) are lsc (even for the values ±∞). Their lower
addition is lsc by [10, p. 22]. Thus, the function h+ ιX is lsc, as a supremum of lsc functions by [1,
Lemma 1.26].

Then, we prove the existence of an optimal x̄ ∈ argminX h. As the set X is nonempty compact
and as the function h+ ιX is lsc, we get that h∗ = infX h = infX(h+ ιX) is attained at some x̄ ∈ X,
according to [1, Theorem 1.29] as metric spaces are Hausdor� spaces.

Second, let x0 ∈ X. We show the existence of sequences {xi}i≥0 and {zi}i≥1 de�ned by (6). At
each step i ≥ 1, we de�ne a (�c-polyhedral�) function gi : X → R by

gi(x) = max
j∈J0,i−1K

{
c(x, yj)− c(xj , yj) + h(xj)

}
, ∀x ∈ X , (7a)

1We use Moreau's lower addition extending the usual addition by the formulas +∞ ·+ −∞ = −∞ ·+
+∞ = −∞, and ιX denotes the indicator function that takes the value 0 on X and +∞ outside.
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where yj ∈ Y (xj) (arbitrarily chosen) for j ∈ J0, i − 1K. It is easy to see that the problem (6) is
equivalent to the minimization problem minx∈X gi(x), with the correspondence given by (7b) below.

We are going to show that the argmin in (6) is never empty. For this purpose, we show that
the function gi is lsc. Under the maximum in (7a), the functions c(·, y) are lsc by assumption and
constant functions −c(xj , yj) + h(xj) are lsc (here constant �nite values). Their addition is lsc by
[10, p. 22]. Thus, following [1, Lemma 1.26], we conclude that the function gi is lsc. Then, as the
subset X is compact, we apply again [1, Theorem 1.29], so that the sequences {xi}i≥0 and {zi}i≥1

exist and satisfy
zi = gi(xi) = min

x∈X
gi(x) ∈ R , ∀i ≥ 1 . (7b)

Third, let the sequence {αi}i≥0 ⊂ R be de�ned by αi = minj∈J0,iK h(x
j), for all i ≥ 0. We are

going to show that {zi}i≥1 is nondecreasing with limit value z ∈ R, that {αi}i≥0 is nonincreasing
with limit value α ∈ R, and that

zi ≤ z ≤ h∗ ≤ α ≤ αi , ∀i ≥ 1 . (7c)

On the one hand, we have that gi ≤ gi+1,∀i ≥ 1 by de�nition (7a). Thus, according to the equalities
in (7b), the sequence {zi}i≥1 is nondecreasing. In addition, we have that

(7b)︷ ︸︸ ︷
zi = ︸ ︷︷ ︸

as xi is min. of gi

gi(xi) ≤

(7a)︷ ︸︸ ︷
gi(x̄) = max

j∈J0,i−1K

{
c(x̄, yj)− c(xj , yj) + h(xj)

}
,

where c(x̄, yj)− h(x̄) ≤ c(xj , yj)− h(xj) , ∀j ∈ J0, i− 1K

by de�nition of the c-subdi�erential (2b) as yj ∈ Y (xj) ⊂ ∂ch(x
j) by (3a),

⇐⇒ c(x̄, yj)− c(xj , yj) + h(xj) ≤ h(x̄) , ∀j ∈ J0, i− 1K ,
(as all four quantities are �nite)

⇐⇒ gi(x̄) ≤ h(x̄) = h∗ (by de�nition (7a) of gi, and by h∗ = infX h = h(x̄))

Thus, we have gotten that zi ≤ h∗, for all i ≥ 1. On the other hand, αi = minj∈J0,iK h(x
j) ≥

minj∈J0,i+1K h(x
j) = αi+1, for all i ≥ 0, hence the sequence {αi}i≥0 is nonincreasing. Furthermore,

as xj ∈ X, for all j ≥ 0, we get that h∗ = minX h ≤ minj∈J0,iK h(x
j) = αi, for any i ≥ 1. Thus, we

have obtained that zi ≤ h∗ ≤ αi, where the sequence {zi}i≥1 ⊂ R is nondecreasing and the sequence
{αi}i≥0 ⊂ R is nonincreasing, and both are made of �nite real numbers. As a consequence, there
exist z ∈ R∪{+∞} and α ∈ R∪{−∞} such that zi ↑ z and αi ↓ α. Then, we get that z ≤ h∗ ≤ α,
as well as z ∈ R and α ∈ R. We have thus proved (7c).

Fourth, we show that z = α = h∗. As a �rst step, we prove that

j < i =⇒ c(xj , yj)− c(xi, yj) ≥ α− z . (7d)
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Indeed, for (i, j) ∈ N2 such that j < i, we have that

zi ≥ c(xi, yj)− c(xj , yj) + h(xj) ,
(according to de�nition (6) of the sequences {xi}i≥0 and {zi}i≥1)

=⇒ z ≥ c(xi, yj)− c(xj , yj) + α ,
(as z ≥ zi, for all i ≥ 1 and h(xj) ≥ minj∈J0,iK h(x

j) = αj ≥ α)

=⇒ c(xj , yj)− c(xi, yj) ≥ α− z . (as the coupling c is �nite as well as α and z)

From (7c), we get that α− z ≥ 0. We are going to prove that α− z = 0 by contradiction. For this
purpose, let us assume that α− z > 0. Let {xν(i)}i≥0 ⊂ X be a subsequence of {xi}i≥0 converging
to some x ∈ X, where ν : N → N is increasing (such converging subsequence exists since the set X
is compact in the metric space X ). According to the pointwise locally equicontinuous property (5)
of the couple

(
c, Y

)
� written at the above x ∈ X and for ε = α−z

4 > 0 � we have that

∃η > 0, ∀x′ ∈ B(x, η) ∩X , ∀y ∈ Y
(
B(x, η) ∩X

)
, |c(x′, y)− c(x, y)| ≤ α− z

4
. (7e)

As limk→∞ xν(k) = x, we select a pair j < i such that xν(j) ∈ B(x, η) and xν(i) ∈ B(x, η). Then, we
get that

0 < α− z ≤ c(xν(j), yν(j))− c(xν(i), yν(j))

by (7d), as ν(j) < ν(i) follows from j < i since ν : N → N is increasing,

≤ |c(xν(j), yν(j))− c(x, yν(j))|+ |c(xν(i), yν(j))− c(x, yν(j))|
(by the triangular inequality)

≤



α−z
4 using (7e) with x′ = xν(j) ∈ B(x, η) ∩X and

y = yν(j) ∈ Y (xν(j)) ⊂ Y
(
B(x, η) ∩X

)
+

α−z
4 using (7e) with x′ = xν(i) ∈ B(x, η) ∩X and

y = yν(j) ∈ Y (xν(j)) ⊂ Y
(
B(x, η) ∩X

)
≤ α− z

2
.

We obtain that 0 < α− z ≤ α−z
2 , which is impossible. Thus, we have shown by contradiction that

α− z = 0. From (7c), we conclude that z = α = h∗.

Lastly, let σ : N → N be a mapping such that h(xσ(i)) = minj∈J0,iK h(x
j) = αi, for any i ≥ 0.

As αi ↓ α, we get that limi→∞ h(xσ(i)) = α = h∗. We can assume that the sequence {xσ(i)}i≥0

converges to some x∗ ∈ X (otherwise we consider a converging subsequence as X is compact). By

lower semicontinuity of h, we have that h(x∗) ≤ limi→∞ h(xσ(i)) = h∗. As h∗ = infX h, we get that

h(x∗) = h∗, hence that x∗ ∈ argminX h. 2
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2.2 Necessary continuity of the objective function on the set of

constraints

To apply Theorem 2 to solve minimization problems of the form minX h, we are going to
show that the constraint setX cannot be chosen independently of the (possible) discontinuity
points of the function h. We discuss this point in Proposition 3. More precisely, we identify a
necessary condition on the (sequential) continuity of the function h on the constraint set X,
under the pointwise locally equicontinuous property (5).

We remind the notion of (sequential) continuity for �nite functions. Let (X , d) be a
metric space. Let h : X → R be a function and X ⊂ X be a nonempty subset. We say that
the function h is (sequentially) continuous on X at x ∈ X if, for all sequences {xi}i≥0 ⊂ X,
we have that

lim
i→+∞

xi = x =⇒ lim
i→+∞

h(xi) = h(x) . (8)

We say that the function h is (sequentially) continuous on X if it is (sequentially) continuous
at any x ∈ X.

Proposition 3 Let (X , d) be a nonempty metric space, Y be a nonempty set and c : X×Y →
R be a �nite coupling such that the function c(·, y) : X → R is lsc, for any y ∈ Y. Let
X ⊂ X be a nonempty subset. Let h : X → R be a c-subdi�erentiable function on X, as
de�ned in (2e). Let Y : X ⇒ Y be a c-dual selector of ∂ch on X, as in De�nition 1.

If the couple
(
c, Y

)
satis�es the pointwise locally equicontinuous property (5) on X, then

we have that
the function h is (sequentially) continuous on X . (9)

Proof.

Let us proceed by contradiction. Similarly to [1, �1.10], we de�ne the domain of (sequential)

continuity cont h of the function h by

cont h = {x ∈ X : h is (sequentially) continuous on X at x} . (10)

Let x ∈ X \ cont h be a discontinuity point. By de�nition (10) of the domain of continuity, there
exists a sequence {xi}i≥0 ⊂ X converging to x such that

lim inf
i→+∞

h(xi) < h(x) or h(x) < lim sup
i→+∞

h(xi) ,

according to [12, Exercise 1.12]. As shown in the proof of Theorem (2), the function h+ ιX is lsc.
Thus, we know that h(x) ≤ lim infi→+∞ h(xi); as a consequence, we get that

h(x) < lim sup
i→+∞

h(xi) .

Thus, there exists ε > 0 such that ε+ h(x) ≤ h(xi), for i large enough. For each i ≥ 0, we consider
some yi ∈ Y (xi) ⊂ ∂ch(x

j) by (3a). It follows that

0 < ε ≤ h(xi)− h(x) , (for i large enough, by de�nition of ε > 0)

≤ c(xi, yi)− c(x, yi) , (by (2b) as yi ∈ ∂ch(x
i), and the function h and c are �nite)

≤ ε

2
, for i large enough,

8



using that limi→+∞ xi = x and that, by (5), ∃η > 0 , d(xi, x) ≤ η =⇒ |c(xi, yi)− c(x, yi)| ≤ ε/2,

where x′ = xi and y = yi. Thus, we obtain a contradiction. We deduce that X \ cont h = ∅. Thus,
the function h is (sequentially) continuous on X, and this ends the proof. 2

Thus, to apply Theorem 2 to minX h, we have to ensure the following necessary condition
between the objective function h and the constraint set X: for any discontinuity point x ∈ X
of h, there is no sequence {xi}i≥0 ⊂ X converging towards x such that lim supi→+∞ h(xi) >
h(x∗).

2.3 Convergence theorem with Lipschitz-like property and c-subgradient
selector

With the intent of applying, in Sect. 3, a convergence result for a Capra-cutting plane method
to minimize ℓ0, we propose a corollary of Theorem 2. In Corollary 4, instead of a c-dual
selector, we use a c-subgradient selector as in De�nition 1. Furthermore, the pointwise locally
equicontinuous property (5) is replaced by the stronger (but more practical) Lipschitz-like
assumption (11).

Corollary 4 Let (X , d) be a nonempty metric space, Y be a nonempty set and c : X×Y → R
be a �nite coupling such that the function c(·, y) : X → R is lsc, for any y ∈ Y. Let X ⊂ X
be a nonempty compact subset. Let h : X → R be a c-subdi�erentiable function on X, as
de�ned in (2e).

Let D : X → Y be a c-subgradient selector of ∂ch on X, as in De�nition 1. Let us
assume that the couple

(
c, Y

)
satis�es the following Lipschitz-like property on X, for some

positive scalar M > 0,

|c(x′, D(x′))− c(x,D(x′))| ≤ Md(x, x′) , ∀x, x′ ∈ X . (11)

Then, for all x0 ∈ X there exist a sequence {xi}i≥0 ⊂ X and a sequence {zi}i≥1 ⊂ R
such that, for all i ≥ 1,

(xi, zi) ∈ argmin
(x,z)∈X×R

{
z ∈ R : z ≥ c

(
x,D(xj)

)
− c

(
xj, D(xj)

)
+ h(xj) , ∀j ≤ i− 1

}
, (12)

and these sequences satisfy

� {zi}i≥1 increases to h∗ = infX h;

� {xi}i≥0 has a subsequence {xν(i)}i≥0 converging to an optimal solution of (4), that is,
to some x∗ ∈ argminX h.

Remark 5 The Lipschitz-like property (11) of the couple
(
c,D

)
implies the pointwise locally

equicontinuous property (5) of the couple
(
c, Y

)
, where Y (x) =

{
D(x)

}
,∀x ∈ X.

9



Indeed, let ε > 0 and x ∈ X. For given η > 0 and x′ ∈ B(x, η), we have that

sup
y∈Y (B(x,η)∩X)

|¢(x′, y)− ¢(x, y)|

= sup
x′′∈B(x,η)∩X

|¢(x′, D(x′′))− ¢(x,D(x′′))| (as Y (B(x, η) ∩X) =
⋃

x′′∈B(x,η)∩X{D(x′′)})

≤ sup
x′′∈B(x,η)

|¢(x′, D(x′′))− ¢(x′′, D(x′′))|︸ ︷︷ ︸
≤Md(x′,x′′)

+ |¢(x′′, D(x′′))− ¢(x,D(x′′))|︸ ︷︷ ︸
≤Md(x,x′′)

,

(according to the Lipschitz-like property (11))

≤M sup
x′′∈B(x,η)

d(x′, x) + d(x, x′′) + d(x, x′′) (by the triangular inequality)

≤M3η . (as x′′ ∈ B(x, η) and x′ ∈ B(x, η))

Thus (5) is satis�ed for η = ε
3M

.

3 Capra-cutting plane method for sparse minimization

problems

In this section, we consider the Euclidean space Rn, equipped with the scalar product ⟨ | ⟩,
and the Euclidean norm ∥·∥. We denote by S =

{
x ∈ Rn

∣∣ ∥x∥ = 1
}
the Euclidean unit

sphere. We de�ne the support of a vector x ∈ Rn by supp(x) =
{
k ∈ J1, nK

∣∣xk ̸= 0
}
. The

ℓ0 pseudonorm is the function ℓ0 : Rn → J1, nK de�ned by

ℓ0(x) =
∣∣supp(x)∣∣ , ∀x ∈ Rn , (13)

where |J | denotes the cardinality of a subset J ⊆ J1, nK. Then, we consider the problem of
minimizing the pseudonorm ℓ0 over a compact set X ⊂ S included in the Euclidean unit
sphere2:

min
x∈X

ℓ0(x) . (14)

In �3.1, we give basic de�nitions and results in Capra-convexity for the pseudonorm ℓ0, and
then we discuss the applicability of previous convergence results (motivating why we need
a suitable dual selector for the Capra-cutting plane method). In �3.2, we propose a Capra-
cutting plane method for minimizing ℓ0 over a compact set included in the Euclidean unit
sphere.

3.1 Justi�cation of a suitable subgradient selector for Capra-cutting

plane method

We remind the following result for the ¢-subdi�erential of ℓ0, which makes ℓ0 a good candidate
to apply Theorem 2.

2It is because the pseudonorm ℓ0 is 0-homogeneous that we restrict the constraints to a subset of the
Euclidean unit sphere, thus ignoring the trivial minimum at the origin.
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Theorem 6 ([4, Proposition 2]) We de�ne, as in [4], the Capra coupling ¢ : Rn×Rn → R
by

∀y ∈ Rn , ¢(x, y) =

{
⟨x| y⟩
||x|| , if x ̸= 0 ,

0 , if x = 0 .
(15)

Then, the pseudonorm ℓ0 is ¢-subdi�erentiable on Rn, that is,

∂¢ℓ0(x) ̸= ∅ , ∀x ∈ Rn . (16)

Here we discuss how Pallaschke-Rolewicz's convergence result [11, Theorem 9.1.1] cannot
be applied without caution to the Capra-cutting plane method for ℓ0 minimization. We
postpone the more technical disscusion on Rubinov's result to the Appendix A.1.

We place ourselves in the case of the Capra-coupling ¢ : Rn × Rn → R and the mini-
mization of the pseudonorm ℓ0 over a compact set X ⊂ S ⊂ Rn \ {0}. Then, the pointwise
locally equicontinuous property (5) in Theorem 2 writes as

∀ε > 0 , ∀x ∈ X , ∃η > 0 , ∀x′ ∈ B(x, η)∩X , sup
y∈Y (B(x,η)∩X)

|¢(x′, y)−¢(x, y)| ≤ ε , (17a)

for any ¢-dual selector Y : X ⇒ Rn of ∂¢ℓ0, whereas the corresponding assumption �
called �locally uniform continuity� in [11, Theorem 9.1.1] � can be stated, using the Capra-
coupling ¢, as

∀ε > 0 , ∀x ∈ X , ∃η > 0 , ∀x′ ∈ B(x, η) ∩X , sup
y∈Rn

|¢(x′, y)− ¢(x, y)| ≤ ε . (17b)

We observe that Equation (17b) implies Equation (17a) as Y (x′′) ⊂ Rn for all x′′ ∈ X. In
the next Proposition 7, we are showing that Equation (17b) is rarely satis�ed, depending on
the constraint set X ⊂ Rn.

Proposition 7 For any x ∈ Rn \ {0}, we have that

sup
y∈Rn

|¢(x′, y)− ¢(x, y)| = +∞ , ∀x′ /∈ R++x . (18)

Proof. Let x′ ∈ Rn \ R++x. We have that

sup
y∈Rn

|¢(x′, y)− ¢(x, y)| ≥ |¢(x′, λx′)− ¢(x, λx′)| , ∀λ > 0 ,

= λ|
∥∥x′∥∥−

〈
x

∥x∥
| x′

〉
| , ∀λ > 0 , (by (15) and as x ̸= 0)

=
λ

∥x∥
(
∥x∥

∥∥x′∥∥−
〈
x | x′

〉)︸ ︷︷ ︸
>0

, ∀λ > 0 .

(by Cauchy-Schwarz inequality and as x′ /∈ R++x)

It follows that supy∈Rn |¢(x′, y)− ¢(x, y)| = +∞. 2
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So, it makes it impossible to apply Equation (17b) (and thus [11, Theorem 9.1.1]) for
the Capra-cutting plane method for minimizing ℓ0 over a compact set X, except in the very
special case where B(x, η) ∩X ⊂ R++x for any x ∈ X and η > 0 small enough.

The above analysis justi�es the choice of a suitable ¢-subgradient selector and of a suitable
constraint set in the next �3.2.

3.2 Converging Capra-cutting plane algorithm for ℓ0 minimization

Here, we propose a convergent Capra-cutting plane algorithm, parameterized by a positive
scalar η > 0.

Proposition 8 Let S be the unit Euclidean sphere and X ⊂ S be a compact set. Let η > 0
and the set Rη ⊂ Rn be de�ned by

Rη =
{
x ∈ Rn

∣∣ min
1≤j≤n
xj ̸=0

|xj| ≥ η
}
. (19)

We consider the sparse minimization problem

min
x∈X∩Rη

ℓ0(x) . (20)

We introduce the following (well-de�ned) minimal subgradient norm ¢-subgradient selec-
tor D : X ∩Rη → Rn de�ned by{

D(x)
}
= argmin

y∈∂¢ℓ0(x)
∥y∥ , ∀x ∈ X ∩Rη . (21)

Then, for any x0 ∈ X ∩ Rη and any sequences {xi}i≥0 and {zi}i≥1 generated by the cutting
plane method CP(ℓ0, X ∩Rη, ¢;D, x0) in (6), we have that

� {zi}i≥1 increases to minx∈X∩Rη ℓ0(x);

� {xi}i≥0 has a subsequence {xν(i)}i≥0 converging to an optimal solution of (20), that is,
to some x∗ ∈ argminx∈X∩Rη

ℓ0(x).

Furthermore, the couple (¢, D) satis�es the Lipschitz-like property (11) for M =

√
1−η2+1

η2
.

Before giving the proof, let us comment on the design of the set Rη in (19). We say that
sparse points are those x ∈ Rn such that ℓ0(x) < n. Thus, the set Rη ⊂ Rn in (19) is designed
in such a way that points near the sparse points (those on the two axis in the case n = 2)
are removed, but not the sparse points themselves. This is illustrated in Figure 1 in the case
n = 2: points near the two axis (the two axis are the sparse points here) are removed, but
not all the sparse points are removed. As we are dealing with the ℓ0 pseudonorm, it appears
that ℓ0 takes a constant value on each of the connected subsets of Rη.
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η

Figure 1: Representation in red of the set Rη in (19) from Proposition 8

We now give the proof of Proposition 8.
Proof. First, let us prove that the ¢-subgradient selector D is well-de�ned by (21), that is, the

argmin is a singleton. Let x ∈ Rn \ {0}, and consider the minimization problem

min
y∈∂¢ℓ0(x)

∥y∥2 . (22)

As the Capra-subdi�erential ∂¢ℓ0(x) is a closed convex set [3, Proposition 1], and as the function ∥·∥2
is strongly convex, there is a unique optimal solution y∗ ∈ Rn to the problem (22).

Second, we provide a formula for the ¢-subgradient selector D de�ned in (21). We will need
the following notations. Let y ∈ Rn. For any L ⊂ J1, nK, we denote by yL ∈ Rn the vector which
coincides with y ∈ Rn, except for the components outside of L that vanish. We denote by ν a

permutation of J1, nK such that |yν(1)| ≥ · · · ≥ |yν(n)|, and then ∥y∥⊤(k) =
(∑i

i=1|yν(i)|2
)1/2

is the
so-called top-(2,k) norm (following the notations in [3, �2.2.2]).

Now, we remind the formulas of the Capra-subdi�erential of ℓ0 for the Euclidean source norm.
Let x ∈ Rn\{0} and y ∈ ∂¢ℓ0(x). Then, denoting ℓ = ℓ0(x), we have that, by [8, Theorem 3.1,Equa-
tion (27b)],

ysupp(x) = λx , for a certain λ ≥ 0 , (23a)

|yj | ≤ min
i∈supp(x)

|yi| , ∀j /∈ supp(x) , (23b)

|yν(k+1)|2 ≥
(
∥y∥⊤(k) + 1

)2 − (
∥y∥⊤(k)

)2
, ∀k ∈ J0, ℓ− 1K , (23c)

|yν(ℓ+1)|2 ≤
(
∥y∥⊤(ℓ) + 1

)2 − (
∥y∥⊤(ℓ)

)2
(when ℓ ̸= n) . (23d)

Notice that ysupp(x) satis�es Equations (23). Indeed, as y satis�es (23a), so does ysupp(x). As y
satis�es (23b), we get that 0 = |(ysupp(x))j | ≤ |yj | ≤ mini∈supp(x)|yi| = mini∈supp(x)|(ysupp(x))i|, for
any j /∈ supp(x). As y satis�es (23c), so does ysupp(x), because the inequalities only involve the
entries yν(k) for k ∈ J0, ℓK, hence only involve the (nonzero) entries of ysupp(x). As y satis�es (23d),

we get that 0 = |(ysupp(x))ν(ℓ+1)| ≤ |yν(ℓ+1)|2 ≤
(
∥y∥⊤(ℓ) + 1

)2 − (
∥y∥⊤(ℓ)

)2
=

(∥∥ysupp(x)∥∥⊤(ℓ) + 1
)2 −

13



(∥∥ysupp(x)∥∥⊤(ℓ))2, because the inequalities only involve the entries yν(k) for k ∈ J0, ℓK, hence only

involve the (nonzero) entries of ysupp(x). Thus, we get that ysupp(x) ∈ ∂¢ℓ0(x).

As3 ∥y∗∥2 = ∥y∗supp(x)∥
2 + ∥y∗−supp(x)∥

2, we deduce that the minimum y∗ of (22) satis�es y∗ =

y∗supp(x). Thus, according to (23a), we have obtained that

y∗ = λx , for some scalar λ ≥ 0 . (24)

Now, we focus on �nding the scalar λ ≥ 0 in (24). We combine (24) and (23c), and we get

λ2|xν(k+1)|2 ≥
(
λ∥x∥⊤(k) + 1

)2 − λ2
(
∥x∥⊤(k)

)2
, ∀k ∈ J0, ℓ− 1K ,

⇐⇒ λ2|xν(k+1)|2 − 2λ∥x∥⊤(k) − 1 ≥ 0 , ∀k ∈ J0, ℓ− 1K ,

⇐⇒ λ ≥
∥x∥⊤(k) +

√
(∥x∥⊤(k))2 + |xν(k+1)|2

|xν(k+1)|2
, ∀k ∈ J0, ℓ− 1K ,

(considering the second order polynom in λ and keeping the nonnegative solution)

⇐⇒ λ ≥
∥x∥⊤(k) + ∥x∥⊤(k+1)

|xν(k+1)|2
, ∀k ∈ J0, ℓ− 1K , (as (∥x∥⊤(k))2 + |xν(k+1)|2 = (∥x∥⊤(k+1))

2)

⇐⇒ λ ≥
∥x∥⊤(ℓ−1) + ∥x∥⊤(ℓ)

|xν(ℓ)|2
,

(as ∥x∥⊤(k) and ∥x∥⊤(k+1) are nondecreasing in k, and |xν(k+1)| is nonincreasing in k)

⇐⇒ λ ≥

√
∥x∥2 − x2− + ∥x∥

x2−
where we have set x− = |xν(ℓ)| ,

as |xν(1)| ≥ · · · ≥ |xν(ℓ)| = x− ≥ |xν(ℓ+1)| = 0 = · · · = |xν(n)|, and (∥x∥⊤(k))2 =
∑k

i=1|xν(i)|2, we have
(∥x∥⊤(ℓ))2 = ∥x∥2 and (∥x∥⊤(ℓ−1))

2 = ∥x∥2 − x2−.

As a consequence, we obtain λ∗(x) =

√
∥x∥2−x2

−+∥x∥
x2
−

for the optimal solution y∗ = λ∗(x)x of the

minimization problem (22). Thus, the ¢-subgradient selector D, de�ned in (21), is given by

D(x) = λ∗(x)x =

√
∥x∥2 − x2− + ∥x∥

x2−
x where x− = min

k∈supp(x)
|xk| . (25)

Third, we prove that the Lipschitz-like property (11) is satis�ed between the coupling ¢ and the
¢-subgradient selector D : X ∩Rη → Rn de�ned in (21). Let η > 0 and let the set Rη be de�ned as
in (19). For x, x′ ∈ X ∩Rη, we have that

3Here, following notation from Game Theory, we have denoted by −L the complementary subset of L in
{1, . . . , n}: L ∪ −L = {1, . . . , n} and L ∩ (−L) = ∅.
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|¢
(
x,D(x)

)
− ¢

(
x′, D(x)

)
| =

〈 x

∥x∥
− x′

∥x′∥
| D(x)

〉
, (by de�nition (15) of the Capra-coupling)

=
〈
x− x′ | D(x)

〉
(as X ⊂ S, hence ∥x∥ = ∥x′∥ = 1)

≤ ∥D(x)∥
∥∥x− x′

∥∥ (by Cauchy-Schwarz inequality)

=

√
∥x∥2 − x2− + ∥x∥

x2−
∥x∥

∥∥x− x′
∥∥ , (by (25))

≤
√

1− η2 + 1

η2
∥∥x− x′

∥∥
as X ⊂ S, hence ∥x∥ = 1, and as x ∈ Rη ⇐⇒ x− ≥ η by de�nition (19) of the set Rη. So, the

Lipschitz-like property (11) is satis�ed with M =

√
1−η2+1

η2
. We conclude using Corollary 4. 2

Remark 9 We have to be cautious when we apply Theorem 2 directly to minx∈X ℓ0(x), with-
out possible additional joint assumptions on ℓ0 and X. Indeed, a necessary condition to
apply Theorem 2 comes from Proposition 3 and reads as follows: any sequence {xi}i≥0 ⊂ X
converging to a discontinuity point x ∈ X of the lsc function ℓ0 � that is, to a sparse point
in X � has to satisfy limi→+∞ ℓ0(x

i) = ℓ0(x). Thus, by intersecting X with Rη, we can
remove the �faulty� sequences from X and we can apply to minx∈X∩Rη ℓ0(x) the convergence
result in Theorem 2. Using this restriction framework, the problem of solving minx∈X ℓ0(x)
reduces to the problem of �nding η > 0 small enough such that(

argmin
X

ℓ0
)
∩Rη ̸= ∅ . (26)

4 Conclusion

In this paper, we have proposed a convergence result (Theorem 2) for the generalized cutting
plane method, suitable to the minimization of a c-subdi�erentiable function over a compact
subset of a metric space. The convergence relies on the notion of c-dual selector and a joint
pointwise locally equicontinuous property (5) between the coupling, the objective function
and the c-dual selector. In Proposition 3, we have also provided a necessary condition � on
the (sequential) continuity of the objective function h on the constraint set X � to satisfy
the pointwise locally equicontinuous property. Finally, we have proposed a Capra-cutting
plane method that satis�es the convergence assumptions for the problem of minimizing the
pseudonorm ℓ0 over a compact set included in the unit Euclidean sphere. In future works,
we intend to develop numerical methods based on the Capra-cutting plane method to solve
sparse minimization problems.
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A Appendix

A.1 Comparison with Rubinov's result

Here, we discuss the di�culty of applying previous convergence results in [13] to a Capra-
cutting plane method for a minimization problem of the form minX ℓ0.

The sequentially uniformly compact property found in [13, Proposition 9.3] can be stated
as follows in the generalized convexity framework (that is, with couplings). Let Y ⊂ Y and
c : X × Y → R be a �nite coupling. We say that the couple

(
c, Y

)
satis�es the sequentially

uniformly compact property if, for any sequence {yk}k∈N ⊂ Y , there exists a converging
subsequence {yν(k)}k∈N to y ∈ Y such that

sup
x′∈X

|c(x′, yν(k))− c(x′, y)| −−−−→
k→+∞

0 . (27)

Let X ⊂ Rn be a nonempty set of constraints. We are going to show that the above
condition (27) does not hold true for the couple

(
¢,
⋃

x∈X ∂¢ℓ0(x)
)
. Let x ∈ X\{0}. We know

by (25) that the sequence
{
(1 + k)λ∗(x)x

}
k≥0

⊂ Rn is included in ∂¢ℓ0(x). The sequence of

functions
{
¢(·, (1 + k)λ∗(x)x)

}
k≥0

has no uniformly converging subsequence because

¢(x, (1 + k)λ∗(x)x) = (1 + k)λ∗(x)¢(x, x) = (1 + k)λ∗(x) ∥x∥ −−−→
k→∞

+∞ .

A.2 Summary table of di�erent assumptions in the literature

base functions equicontinuous-like
regularity properties

[7] a�ne bounded slopes
[13, Proposition 9.2] concave bounded

continuous directional derivatives
[13, Proposition 9.3] continuous sequentially uniformly

compact property (27)
[11, Theorem 9.1.1] continuous pointwise equicontinuous

property (17b)
Theorem 2 lower pointwise locally

semicontinuous equicontinuous
property (5)

Table 1: Comparison of the assumptions for convergence results of a cutting plane method
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