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ABSTRACT

Adapting pre-trained Large Language Models (LLMs) for multimodal tasks
presents a significant challenge, often hindered by the prohibitive computational
cost of full fine-tuning. In this work, we introduce Mixture-of-LoRA (MoL), a
novel and parameter-efficient fine-tuning framework that enables LLMs to seam-
lessly process and integrate multimodal inputs. MoL combines the efficiency of
Low-Rank Adaptation (LoRA) with the modality-specialized design of Mixture-
of-Transformers (MoT). Our approach injects small, trainable, modality-specific
LoRA adapters into the frozen layers of a pre-trained LLM. While each modality’s
tokens are processed by these dedicated adapters to learn specialized features,
the global self-attention mechanism remains intact, allowing for rich cross-modal
fusion within the original LLM architecture. This design efficiently adapts the
model to understand diverse data types—such as text, images, and speech—while
retaining and leveraging the vast knowledge of the foundational model. Through
extensive experiments, we demonstrate that MoL effectively enables pretrained
foundation models to understand and generate multimodal tokens. Our work
provides an effective and scalable solution for building multimodal systems from
existing unimodal foundation models.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; Abdin et al., 2024; Yang et al., 2024a; OpenAl
et al., 2024; Grattafiori et al., 2024; DeepSeek-Al et al., 2025) have received increasing attention from
both researchers and practitioners due to their capabilities that have expanded beyond text modality.
For instance, since the rise of decoder-only models originally proposed for natural language (Radford
et al., 2019), many models can now process diverse modalities, e.g, text, audio, image, or videos.

World models have now extended to take multimodal inputs such as image and text modalities,
(Aghajanyan et al., 2022a; Liu et al., 2023b; Team, 2024), speech and text (Fathullah et al., 2024; Yu
et al., 2024; Chu et al., 2024), or video and text (Jiang et al., 2025; Ye et al., 2025). Some approaches
have even extended the ability of models to take more than two modalities at a time. For instance,
Liang et al. (2025) train a model from scratch to take audio, image, and text as inputs. Similarly, Lyu
et al. (2023) put forward a model able to receive inputs in the form of audio, image, video, and text.

Two approaches to make LLMs multimodal have generally been considered. A first approach consists
of taking a pretrained text-only LLM as a base model and fine-tuning it to take multimodal inputs.
This usually involves including an adapter module that maps the other modalities’ tokens to the
representation space of the LLM. These approaches are particularly interesting because they leverage
the vast amount of learned information already present from their extensive text-based training.
Also, those approaches are cost-efficient as they avoid retraining a model from scratch, which has
been known to induce significant computational costs (Liang et al., 2025). However, this line of
approach usually requires carefully curating both the modalities’ feature extractors and mapping
modules. This often involves producing different mapping modules for each modality, thus making
hyperparameter optimization more complex. Some recent work (Laurencon et al., 2024) investigated
the impact on performance of model architectures, in particular connector modules, in the context of
Vision-Language Models. Similarly, Verdini et al. (2025) demonstrates that the ideal adapter and
feature extractor depend on the target task for speech-text models. Additionally, previous work (Das
et al., 2024; Thimonier et al., 2025) highlights the sensitivity of these approaches to the training
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curricula. These findings highlight the complexity of fusing new modalities into pretrained LLMs.
Finally, multimodal fine-tuning is usually restricted to enabling the base LLM to understand new
modalities and rarely involves teaching the model to generate other modalities than text.

The second type of approaches includes training foundational models from scratch to take multimodal
inputs. While these approaches perform best on a wide range of multimodal tasks, they require a
significant computational cost to train. For instance, models like Chameleon (Team, 2024) require
1.5 trillion text-image tokens, 2.9 trillion text-only tokens, and 400 billion interleaved tokens.

Recently, Liang et al. (2025) have proposed a novel architecture to train multimodal foundational
models: Mixture-of-Transformers (MoT). Their proposed approach is motivated by the finding
that multimodal foundational models display clustering by modality across layers. In short, their
approach disentangles the different modalities in the token sequence within each attention layer.
All modalities are processed independently to produce the query, key, value, and output matrices.
Notably, the obtained modality-specific representations are concatenated (in their original order), and
self-attention is applied to the concatenated representations. We extensively discuss this approach in
section 3.2. While significantly more efficient than existing methods, as the required flops for the
same performance decrease, this approach still requires retraining a model from scratch with trillions
of multimodal tokens.

We build on this approach and propose a novel multimodal fine-tuning approach of LLMs, Mixture-
of-LoRA (MoL), that leverages per-modality LoRA adapters (Hu et al., 2022). In our proposed
approach, we freeze the weights of a pretrained text-only LLM, in particular the weights of the query,
key, value, and output matrices, and add on top of them, per-modality LoRA adapters (see Fig. 1).
Instead of learning an entire weight matrix per modality at each attention head and multi-attention
layer, we rely on efficient fine-tuning by considering low-rank matrices that significantly reduce the
overall training cost.

We evaluate our fine-tuning approach focusing on relatively small LLMs (< 3B parameters) and
restricting our experiments to the pretraining stage of this multimodal setting. We experiment on two
settings:

1. Autoregressive objectives for text and images, coined Chameleon setting by Liang et al.
(2025). We observe that our approach efficiently enables the model to both understand and
generate image tokens. We compare to a baseline LoRA approach and demonstrate the
superiority of our approach to this vanilla case.

2. Three-modality setting (Text+Image+Audio). We demonstrate the capacity of our fine-
tuning method on a three-modality setup by adapting a text-only LLM to the same task but
involving text, image, and speech. Our experiments demonstrate that it can successfully
understand and generate all three modalities.

2 RELATED WORKS

Multimodal LLLMs While the first LLMs solely focused on natural languages, a large spectrum
of multimodal foundation models has been proposed in the literature. Multimodality in foundation
models first involved multimodal understanding and relied on modality-specific feature-extractor
and mapping modules. Traditionally, images are encoded in the LLMs’ representation space using
carefully curated mapping modules, using late-fusion techniques (Alayrac et al., 2022; Chen et al.,
2022; Liu et al., 2023b). Some recent work (Vallaeys et al., 2025) has investigated the optimal adapter
to map the audio/image feature representation to the LLM representation space. As discussed in
section 1, these approaches are often less costly to train than fully-trained multimodal models as they
rely on pre-trained LLM backbones and require fewer tokens to fine-tune.

The other line of approaches that require retraining from scratch a foundational model, e.g., MoT
Liang et al. (2025), Chameleon (Team, 2024), Unified-1O (Lu et al., 2022), CM3 (Aghajanyan et al.,
2022b), or CM3Leon (Yu et al., 2023), enable both visual understanding and generation. To that end,
modalities like images or audio need to be tokenized using a discrete dictionary using pre-trained
models that involve fixed codebooks (van den Oord et al., 2017; Razavi et al., 2019; Esser et al., 2020,
Liu et al., 2023a). These approaches thus allow auto-regressive generation of other modalities than
just text, as the LLM’s dictionary can be extended to include these new modality-specific tokens.
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Figure 1: Mixture of LoRA Layer. Mixture of LoRA (MoL) layer for the query generation of an
attention head at layer ¢. For simplicity, we omit the head indices. The weights of the pretrained
LLM for the corresponding layer, Wy, are frozen and produce the query matrix Q. The MoL
layer first disentangles the tokens corresponding to each modality m € M and processes them
independently using modality-specific LoORA adapters. The obtained query matrices, {Q™ },,c M,
are then concatenated in their original order to match the original query matrix Q dimension. As
in the standard LoRA setting (Hu et al., 2022), Q is scaled by % and added to Q to obtain the final
query representation of the token sequence QpoL -

LLM fine-tuning A prevalent method for adapting foundation models is fine-tuning. This process
specializes a general-purpose model by continuing its training on a comparatively small, task-specific
dataset, enabling its application to specific domains of interest (Devlin et al., 2019). Initial approaches
to parameter-efficient fine-tuning (PEFT) inserted learnable adapter modules between a model’s
frozen layers (Rebuffi et al., 2017; Houlsby et al., 2019; Lin et al., 2020). The influential LoRA
framework (Hu et al., 2022) advanced this by instead decomposing the weight update matrix of
a layer into two trainable low-rank matrices, which are learned in parallel to the frozen original
weights. While some work leverages LoRA adapters to fine-tune pretrained LLMs to understand new
modalities like audio (Das et al., 2024) or images Liu et al. (2023b), the present work is the first to
leverage LoRA by using per-modality adapters during training.

3 METHOD

In the present section, we briefly overview the vanilla attention (Vaswani et al., 2017) mechanism,
then we present the mechanisms underlying the MoT architecture (Liang et al., 2025), and then
discuss MoL in light of this.

3.1 VANILLA ATTENTION

Let X = (x1,...,X,) be the input token sequence, where x; belongs to a modality m; where
m; € M = {text, speech,image}. A typical transformer layer consists of the following,
a = Attn (X, Oyn)
h = X + LayerNorm,,,, (a) @)
output = h + LayerNormy, (FFN(h, 6,)) ,
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where Attn() refers to the usual self-attention mechanism. The tokens of each modality in X are
processed altogether at each attention layer.

3.2 MOT ATTENTION

Contrary to the vanilla attention setting, where each token in the sequence is processed using the
same weight matrix, in the MoT approach, as proposed in Liang et al. (2025), parameters are
decoupled across modalities. However, the self-attention operation is still performed on the whole
token sequence. Formally, for each m € M, the attention layer is equipped with dedicated projection
matrices, W¢', Wi, Wy, that are used to process each modality independently of the others to
obtain the query, keys, and value matrices. Let x be decomposed as follows,

X ={X1,. X, X415+ o Xiks Xiphp 1y - - > Xn )
—_——

text audio image

where each modality is located after the other. Note that the following also generalizes to inter-
leaved situations. Then x.; is processed using Wé‘m, Wit Wt X4 4 1.4+ 1s processed using

Wg“dio, Wgudio yyzaudio and x4\ 1., is processed using W9 W9 W™ 9¢. One then
obtains,

Q= COHCat([Qtext7 Qaudio7 Qimage})
K = Concat([Ktemt,Kaudio’ Kimage]) (3)
V= CODCat([V’tewt7 V*audio7 Vimage])

where the original sequence order is kept. Then, self-attention is performed on the whole sequence,

KT
A = softmax <Q ) V. 4)
Vdy
Let us denote, I,,, = {i : m; = m} and X,;, = {z; : ¢ € I,,,}, then one obtains the per-modality
output as
Om = AI'm Wén (5)

Following Liang et al. (2025) let us denote this entire processing as,

QK" .
GlobalAttn(x, {07, Y. = [ softmax V) Wit 6
( { attn} EM) < ( m o) ( )
Then, modality-specific LayerNorm and FFN are applied to each O,, as described in equation
equation 1. For a token ¢, this writes,

a = GlobalAttn (X, {00}, }mem)
h; = x; + LayerNorm_;i (a;) @)
output, = h; + LayerNormg* (FFN,,,, (h;, 0§))

3.3 MIXTURE-OF-LORA (MoL)

In Fig. 1 we display an overview of the mechanisms involved in a MoL layer. Let us denote the
weights of a pretrained LLM as 6. Our proposed method leverages the LLM’s pretrained weight
matrices to fine-tune them for multimodal inputs efficiently. Similarly to section 3.2, let x be
decomposed as shown in equation 2.

As in the standard setting, one will obtain the usual query, key, and value representations, @, K,V
using W, Wi, Wy € 6. We propose using modality specific LoRA adapters, {(Ag), BY) tmems
{(A%, B) }mem and {(AY, BYY) }mem while keeping the original layers frozen. Let r designate
the chosen rank of the LoRA adapters and d the hidden dimension of the model, then A}7* €
R7*4, BT e RE*" for I € {K,V,Q}. For each modality m € M, we compute,

Q™ =X.,BjAD,
K™ =X,,BRAR, 8)

VM =X, BIIAT.

4
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Algorithm 1 Mixture-of-LoRA (MoL) Layer

1: Letx = (x1,...,X,) be the input sequence, where x; € R? and m; € {text,image, speech}
is the modality of token x;.

2: Let M = {text, image, speech} be the set of modalities.

3: Let W, Wk, Wy € 0 denote the frozen layer of the fine-tuned LLM.

4: Let (Ang), (ARBR), (AU BY), (A3 BY) denote the LoRA adapters for modality m, r the
corresponding rank and o the scaling factor.

5: Let FFN,,, denote the FFN networks equipped with modality m MoL adapter.

6: for each modality m € M do

7: Iy, < {i:m; =m} > Indices of tokens for modality m
8: X {x;:iely,} > Group tokens by modality
9 Qm « Xm B AY > Modality-specific LoRA adapters

100 K, « X, BRAT

1.V, + X, BlAT

12: end for L L .

13: Q = Upmer @m> K = Upet Kms V = Upmem Ve > Aggregate LoRA representations
14: QMOL(—XWQ—F%Q, KM0L<—XWK+%K,VMOL(—XWV+%V

15: A < softmax (Q—\/Ifl:) \% > Global self-attention
k

16: O < AWp

17: for each modality m € M do

18: Om +— A 1., BOAY > Modality-specific LoRA projection

19: Op, < O + %Om > Modality-specific output projection

20: H,, < X, + LayerNorm; (O.,) > Residual connection and layer norm

21: F,, < FFN,,(H,,) > Feed-forward network equipped with MoL adapters

22: Y, < Hp, + LayerNormg; (Fyp,) > Residual connection and layer norm

23: end for

24: return {Y,, : m € M} > Return transformer layer outputs

Then, one concatenates the obtained representations,

Q _ Concat([c}tewt’ Qaudio7 Qimage])7
K _ Concat([f(tem, Kaud’w, f(image])’ (9)
V _ Concat([f/tewt7 Vaudio7 ‘N/image]).

Those representations are then added to the representations obtained from the frozen weights of the
LLM, to obtain QoL , KoL, VmoL- Note that a similar process is performed on the output matrix,
Wo. One can also include per-modality LayerNorm and LoRA adapters to the FEN networks. While
including per-modality LayerNorm does not induce any significant computational overhead, replacing
the pretrained FFN network with a per-modality module, as done in (Liang et al., 2025), would
require retraining a significant share of the parameters of the LLM. Thus, we consider MoL adapters
to the attention matrices Wq, Wy, Wy, Wo and the FFN network, and include modality-specific
LayerNorm modules for each attention layer. See algorithm 1 for a description of the overall process.

3.4 INPUT REPRESENTATION AND TOKENIZATION

We unify all modalities into a common sequence representation to enable the LLM to process visual
and audio information. We first encode images and audio into sequences of discrete tokens using
pretrained encoders. Specifically, each vector from the discrete codebook of the image and audio
encoders is treated as a new, special token that is added to the LLM’s tokenizer vocabulary. The
embeddings for these new modality-specific tokens are initialized from the corresponding vector
representations in their original modality’s codebook. A linear projection layer is used to map the
dimension of the codebook vectors to the hidden dimension of the LLM. Additionally, we include
tokens delimiting a modality’s tokens in the LLM’s vocabulary. The intent is to inform the model
when it needs to predict a specific modality, e.g. <img>, <\img> or <speech>, <\ speech>.
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For instance, let x be an image and f(-) be the image encoder that maps x to a sequence of indices
from its codebook Q. If the resulting sequence of indices is f(z) = {i1,42,...,ixn}, the final input
sequence fed to the LLM is constructed as

<image_token_t1><image_token_is>...<image_token_iy>.

Each <image_token_i;> corresponds to a unique vector in the LLM’s expanded embedding
matrix. This method allows the LLM to process the other modalities as if they were a sequence of
text while retaining the rich, pretrained representations from the original encoder. Moreover, this
approach not only allows the pretrained LLM to understand other modalities than text, but it also
enables the model to generate multimodal outputs.

4 EXPERIMENTS

In the present section, we discuss the experiment settings, including hyperparameter settings and
training dataset, and then we discuss the results.

4.1 EXPERIMENTAL SETTINGS

Datasets For the Chameleon setting, we rely on three datasets to train our model, MS-COCO
(Lin et al., 2015), Laion-400M (Schuhmann et al., 2021), and Flickr-30k (Young et al., 2014). We
evaluated our model’s performance using validation losses on held-out sets MS-COCO and Flickr30k.
In particular, following previous work (Liang et al., 2025), we use the Karpathy test split of MS-
COCO and Flickr30k as the validation sets. For the setting including all three modalities, we also
include the English split of the MultiLingual Librispeech dataset (Pratap et al., 2020) in training, and
rely on a held-out split for validation. Compared to model training a multimodal foundational model
from scratch, e.g., Chameleon (Team, 2024) or MoT (Liang et al., 2025), in our setup, the LLM does
not need to see many text tokens, as the pretrained LLM has already been trained on a significant
share of text tokens. Our fine-tuning dataset contains a mixture of text and image tokens, representing
respectively 5% and 95% of total tokens for the Chameleon setup. For the three-modality setting, we
sample across datasets so that image tokens represent 65% of total tokens, speech tokens 30%, and
text tokens 5%. We select more image tokens than speech tokens because the image encoder involves
a larger vocabulary than the speech extractor, as discussed in the following paragraph.

Model hyperparameters For the image and audio feature extractors, we respectively rely on the
VQ-VAE made available by Team (2024) and DinoSR (Liu et al., 2023a), also available online. The
former has a vocabulary size of 8192 image tokens, and the latter has 256 audio tokens that are added
to the LLM’s vocabulary (see section 3.4). Our experiments are conducted using Qwen 2-0.5B (Yang
et al., 2024b), Llama-3.2-1B, and Llama-3.2-3B (Grattafiori et al., 2024) as the base LLMs. We
fine-tune them by replacing their attention layers with our proposed MoL Layer. We also consider
per-modality LayerNorm, but omit MoL augmented FFNs and discuss their addition in section 5.2.
LoRA adapters’ rank and « are scaled with the size of the base model as described in section A.2.
We optimize the model’s weights using AdamW (Loshchilov & Hutter, 2019). In both Chameleon
and three-modality settings, we set different learning rates for each modality’s LoRA adapters as we
observed that it helped stabilize training and avoid gradient explosion. We provide extended detail
on the optimizer’s hyperparameters in section A.1 in the appendix. For the 1B setup, we rely on a
learning rate scheduler with 10, 000 warm-up steps progressively increasing to the target learning
rate, and a cosine decay for the remaining training steps. We fix the context size to 2048 for all three
setups, and ensure that samples are not truncated in the middle of an audio or image token sequence.
Token sequences are randomly ordered with respect to the modalities, i.e., for a sample containing an
image and a textual description of the image, we randomly select whether image or text tokens come
first in the sequence.

We clip gradients to 0.5 and use an effective batch size of 256 for the 1B and 3B settings, thus
providing the model with an average of 500k multimodal tokens per optimization step. We select
an effective batch size of 128 for Qwen-2 0.5B fine-tuning. We train Llama-3.2 1B and 3B using
32 H100 Nvidia GPUs and 8 H100 Nvidia GPUs for Qwen-2 0.5B. Our main experiment focused
on fine-tuning Llama-3.2 1B for 35,000 steps. The Llama-3.2 3B and Qwen-2 0.5B models were
trained with a comparatively smaller number of steps, serving as proof-of-concept demonstrations to
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Figure 2: Loss curves for the Chameleon setting (Llama-3.2 1B). We observe that the training
losses consistently decrease as training progresses. This demonstrates the ability of our MoL adapters
to learn to process multimodal tokens effectively. Similarly, validation losses follow a similar pattern
to the training loss. For frugality reasons, we are unable to train the model further, but these loss
curves indicate that the model is still underfit and could improve further.

validate our approach across different model sizes and architectures while prioritizing computational
efficiency. See appendix A for extensive details on all three setups.

4.2 RESULTS

To demonstrate the relevance of MoL as a multimodal fine-tuning method, we fine-tune several
models of different sizes, from 0.5B parameters to 3B, and compare their performance to a baseline
LoRA model where all modalities share a LoRA adapter. We trained the baseline LoRA models with
identical relevant hyperparameters to the MoL model. We provide in figure 6, 2 and 7 the loss curves
for Qwen-2 0.5B (Yang et al., 2024b), Llama-3.2 1B and Llama-3.2 3B (Grattafiori et al., 2024)
respectively.

We observe a consistent pattern across our setups: models fine-tuned with MoL adapters show a
steady decrease in loss. The loss curves for Llama-3.2 1B and 3B, augmented with MoL adapters,
exhibit a consistent downward trend, suggesting that a further decrease in loss would likely occur
with additional training steps. Conversely, the Qwen-2 0.5B model’s image loss rapidly saturates
after 3000 steps, even as its text loss improves. This phenomenon suggests that increasing the MoL
adapters’ rank, particularly those for the image modality, might further enable performance gains.
In comparison, the baseline approach of fine-tuning with a single LoRA adapter reveals a modality
conflict. Initially, the models appear to learn, as evidenced by a downward loss trend. However, this
progress plateaus, and modality losses start displaying different trends. The image token loss rapidly
hits a performance ceiling and stagnates across all setups. While the text loss does not saturate,
its optimization path is unstable and fails to decrease consistently. This behavior suggests that a
single, shared adapter is forced to learn competing and non-transferable representations for vision
and language, creating a representational bottleneck. The adapter’s updates are pulled in conflicting
directions, leading to saturation on one modality and erratic performance on the other.

5 DISCUSSION

To further investigate the relevance of our proposed approach, we investigate three additional settings.
First, we consider a three-modality setting where the pretrained LLM not only learns to receive image
and text but also speech modality tokens. Second, we compare the performance of a model with and
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Figure 3: Ablation for the Llama-3.2 1B Chameleon setup. (a): Training loss curves when
including MoL adapters on the FFN networks with various learning rate and optimizer parameters.
We observe that in all tested setups, the total loss (primarily driven by the image loss) diverges after a
few thousand steps. (b): Training loss curves comparing the full MoL setup (adapters for both image
and text tokens) versus the image-only MoL setup. The full MoL setup displays a smooth, downward
trend. At the same time, the image-only MoL model quickly saturates and exhibits an erratic trend,
suggesting that text token adaptation is critical for successful convergence.

without MoL adapters for the FFN networks. Finally, we investigate whether including a text MoL.
adapter is necessary for efficiently learn to include additional modalities into an existing model.

5.1 THREE MODALITY SETTING

To further evaluate the abilities of our approach to fuse new modalities into pretrained LLMs, we
fine-tune Llama-3.2 1B with three distinct modalities: text, speech, and images. As shown by the
converging loss curves in Fig. 4 (Appendix B.1), our model successfully learns to integrate both
additional modalities. Notably, due to the significant variance in audio sample length within the
training dataset, we employed curriculum learning for the speech modality, starting with shorter audio
inputs and progressively increasing their size.

The speech modality presents the most significant challenge for integration into the pretrained model.
Specifically, the audio-specific loss often exhibits volatile peaks during the initial training stages,
severely hindering stability. We hypothesize that this instability stems from the audio feature extractor
being less expressive than its image counterpart. This reduced expressiveness is evident in its
significantly smaller vocabulary (i.e., token set), likely leading to increased ambiguity or confusion
among audio tokens.

5.2 IMPACT OF THE MOL ADAPTERS ON THE FEED-FORWARD NETWORKS

While our baseline configuration applies MoL adapters solely to the attention mechanism’s query
(Wq), key (Wg), value (Wy/), and output (W) projections, we also evaluate an extended setup.
In this configuration, we integrate MoL into the feed-forward network (FFN) layers to investigate
the benefits of increasing the model’s learning capacity. Overall, we iterated over a high number of
hyperparameter settings and observed that in all settings, including FFN, allowed the loss curves
to rapidly decrease in the first steps compared to the attention-only MoL setting. However, it
caused significant loss divergence after some time, even with careful learning rate scheduling and
an optimizer’s hyperparameter tuning. We display in Fig. 3a the loss curves of different model
experiments we conducted using Llama-3.2 1B as the base model on the Chameleon setup. In
particular, this loss divergence mainly occurs on image tokens, while text tokens are preserved from
this loss explosion.
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5.3 MOL ADAPTER FOR NON-TEXT MODALITIES

Given the base model’s extensive text pre-training, we investigated the necessity of a dedicated
text MoL adapter during multimodal fine-tuning. Fig. 3b displays the loss curves for Llama-3.2
1B in the Chameleon setting, comparing a model equipped with only image MoL adapters (Image-
only MoL) against one using both text and image adapters (Full Mixture-of-LoRA) under identical
hyperparameters. While initial loss reduction is observed in both setups for the first ~2000 steps,
the full MoL configuration converges faster and more stably. In contrast, the image-only model’s
loss plateaus and becomes erratic after this point, indicating that text token adaptation is critical for
maintaining stable and effective multimodal training.

An analysis of per-modality loss (Fig. 5, Appendix B.2) reveals that the model struggles significantly
to predict text tokens when augmented solely with image MoL adapters. We hypothesize that this
performance gap stems from a representational asymmetry in the image-only configuration. In this
setup, image tokens are adaptively transformed by the MoL layers, while text tokens are processed
solely by the frozen, pre-trained weights of the LLM. This forces the image adapters to bear the
burden of cross-modal alignment, requiring them to map visual features into a fixed and potentially
suboptimal textual representation space. Including text adapters resolves this by introducing comple-
mentary transformation: the text adapters learn to condition the token representations for optimal
fusion, thereby allowing the image adapters to focus on their primary task of modality-specific feature
representation.

6 CONCLUSION

The present work proposes Mixture-of-LoRA (MoL), a novel, parameter-efficient method for equip-
ping pretrained large language models with multimodal capabilities. Our experiments in text-image
and text-image-audio settings demonstrate that MoL enables LLMs to understand and generate
multimodal data effectively. MoL significantly outperforms a standard LoRA baseline with negligible
computational overhead. By leveraging the extensive knowledge of the base LLLM, our approach
circumvents the need for training a multimodal model from scratch, thus presenting a computationally
efficient alternative to existing methods (Team, 2024; Liang et al., 2025).

Limitations and future work Our current framework requires modality-specific feature extractors
with a discrete latent space. A promising direction for future work is to investigate the applicability
of MoL to understanding-only tasks that use continuous representations from encoders like WavLM
(Chen et al., 2021) for audio or CLIP (Radford et al., 2021) for vision.

Furthermore, our evaluation focused on an agnostic next-token prediction objective. We leave the
assessment of MoL’s effectiveness on specific downstream multimodal tasks—such as Visual Question
Answering (VQA), Visual Reasoning, or Speech-to-Speech Translation—as an important avenue for
future research.

Reproducibility statement This research is partially reproducible. We have provided all the
necessary information, including hyperparameters, experimental settings, and datasets, in section
4 to allow an independent researcher to replicate our findings. Moreover, we provide in algorithm
1 all the necessary information to implement our approach and the base code in Python in the
supplementary material. The provided code works with most large language models loaded from the
transformers library and would only require minor adjustments to work on different architectures.
However, we have not released the training code to generate the results. This means that a researcher
would have to re-implement the training pipeline, which could introduce variations and make an exact
replication challenging. Therefore, while the core methodology can be followed, a direct, bit-for-bit
reproduction of the results is not possible without access to the original training code.
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A EXPERIMENTAL SETTINGS

A.1 OPTIMIZER

As described in section 4.1, we opt for AdamW (Loshchilov & Hutter, 2019) as the optimizer to
update the weights during training. We select different learning rates for each model size for each
modality parameter as we observe that it enables more stable loss convergence. We provide in table 1
details on each hyperparameter for the different training setups.

Table 1: Optimizer hyperparameters.

Base model  training setting baselr imglr textlr speech Ir (81, B2)
Qwen-2 0.5B Chameleon 6.e7° 5.e® bH.ed N/A (0.97,0.999)
Llama-3.2 1B Chameleon 4e”* 2% BHed N/A (0.97,0.999)
Llama-3.2 1B Three-modality 2.e7% 1l.e=* 9.e7°  6.e7° (0.975,0.999)
Llama-3.2 3B Chameleon le=® le % 5.e7° N/A (0.97,0.999)

A.2 MIXTURE OF LORA

Depending on the base model’s size and the training setting, we select different values for the LoRA
rank r and the scaling factor a. We display the chosen values in table 2 for each setup.

Table 2: LoRA hyperparameters.

Base model  training setting r @«
Qwen-2 0.5B Chameleon 16 16
Llama-3.2 1B Chameleon 64 64
Llama-3.2 1B Three-modality 64 64
Llama-3.2 3B Chameleon 64 64

A.3 TRAINABLE PARAMETERS

We provide details on trainable parameters share in table 3.

Table 3: Trainable parameters.

Base model  training setting trainable parameters parameter count trainable share
Qwen-2 0.5B Chameleon 17T™ 535M 33.1%
Llama-3.2 1B Chameleon 306M 1.27B 23.9%
Llama-3.2 1B Three-modality 321M 1.29B 24.8%
Llama-3.2 3B Chameleon 492M 3.3B 14.8%
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B EXPERIMENTS

B.1 THREE MODALITIES
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Figure 4: Loss curves for the Three-modality setting (Llama-3.2 1B). We observe that all three
modality-specific loss curves display a similar decreasing shape. The model augmented by the MoL
adapters can learn to fuse simultaneously three modalities as its total loss displays a downward curve.

For visibility, we do not include in the graphs in figure 4 the first training steps; nevertheless, we
observe that early training is more erratic when all three modalities are included. In particular, even
when controlling the gradient norm with gradient clipping to small values, e.g. 0.5, loss can explode
for both image and audio tokens. This behavior is only observed in the early stage of training and
progressively disappears after 3000 training steps.

B.2 ADDITIONAL DETAILS ON MOL ADAPTER FOR NON-TEXT MODALITIES
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Figure 5: Loss curves between Llama-3.2 1B with MoL adapters for image and text vs image
only. In contrast to the full MoL model, the image-only model’s loss quickly plateaus and becomes
erratic after ~2000 steps. Also, we observe that the image-only MoL model struggles to predict text
tokens.
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B.3 OTHER PARAMETER COUNT SETTINGS

Training Image Loss

18
Mixture of LORA
16 —— Baseline LoRA
14
°
E
]
>
] 12
S
S
10
8
6
1000 2000 3000 4000 5000
Training Step
Validation Image Loss
Mixture of LoORA
16 —— Baseline LoRA
o 14
El
2
212
S
10
8
1000 2000 3000 4000 5000

Training Step

Training Text Loss

25.0
Mixture of LoRA
225 —— Baseline LoRA
20.0
175
15.0
125
10.0
75
1000 2000 3000 4000 5000
Training Step
Validation Text Loss
22
Mixture of LORA
20 —— Baseline LoRA

1000 2000

3000
Training Step

4000 5000

Total Training Loss

Mixture of LoRA
— Baseline LoORA

1000 2000 3000 4000 5000
Training Step
Total Validation Loss
Mixture of LoRA

= Baseline LoORA

2000 3000

Training Step

4000

5000

Figure 6: Training losses for Qwen 2-0.5B. We observe a similar pattern as bigger models, where
all modality losses consistently decrease for both MoL and the baseline LoRA model. However, the
decrease requires more tokens to reach a satisfactory value. Contrary to the bigger models’ setting,
we use a similar learning rate for all modalities’ parameters, but rely on the same number of tokens
per optimization steps as for the 1B setup. Regarding the baseline LoRA, the loss curves are more

erratic, as shown in figure 2.
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Figure 7: Training losses for Llama-3.2 3B. We observe that the MoL model and the baseline LoORA
display decreasing learning curves during the first training steps. However, as training progresses
after step ~3000, the LoRA model appears to plateau and even shows an upward trend while the
MoL model continues to decrease. Notably, the loss for the LoRA model decreases faster during the
first steps, but its limited learning capacity in comparison to the MoL model prevents it from further

improving after step ~2000.

C LLMS USAGE

During the preparation of this manuscript, Large Language Models (LLMs) were consulted for
the limited purpose of refining language and style. All intellectual contributions, analyses, and
conclusions are entirely the work of the authors.
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