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ABSTRACT

Large Language Models (LLMs) have achieved remarkable performance across
a wide range of tasks, but their growing size poses significant challenges for
deployment and efficiency. Among existing model compression methods,
structured pruning has emerged as a popular approach for reducing model size.
However, these methods remove structural components such as layers, heads,
or channels, which can disrupt pre-trained weights and lead to fragile recovery
fine-tuning process. In this work, we propose Plug-and-Fold (PnF), a weight-
preserving yet structurally effective compression method. Rather than directly
modifying or factorizing the pretrained weights, PnF introduces lightweight,
learnable adapter modules into the projection layers of attention and feed-forward
networks. These adapters are trained while keeping the original weights frozen,
and are later folded into the base weights via simple matrix multiplications.
This process yields a compressed model that preserves the original architecture
and can be deployed with a standard Transformer inference stack, without cus-
tom kernels or additional runtime components.

We evaluate PnF across a variety of benchmarks and model scales, demonstrating
consistent improvements over recent state-of-the-art structured compression
baselines. Our results highlight that preserving the integrity of pretrained weights
not only simplifies the compression pipeline, but also improves generalization
and performance recovery in compressed LLMs.

1 INTRODUCTION

Large language models (LLMs) based on the Transformer (Vaswani et al., 2017) have achieved
remarkable progress across various domains, including natural language processing (Zhao et al.,
2023; Jiang et al., 2024a; Radford et al., 2018), code generation (Jiang et al., 2024b), computer
vision (Liu et al., 2023a; Hamadi, 2023), and scientific applications (Zhang et al., 2025; Lin et al.,
2023). This progress is attributable to two factors: (1) scaling model size to billions to trillions of
parameters (Team et al., 2024; Islam & Moushi, 2025; Team et al., 2025; Zhang & Sennrich, 2019)
and (2) pre-training on massive, diverse corpora (Langlais et al., 2025; Liu et al., 2024). Together,
these endow LLMs with deep language understanding and ability to generate high-quality code, text,
and multi-modal contents.

Despite these successes, their massive parameter sizes pose critical challenges: they require large
storage, memory footprints, increase inference latency, and substantial computation for training and
deployment, especially in resource-constrained settings. To address these practical limitations, a
substantial body of research has focused on model compression techniques that shrink the footprint
while preserving performance. These methods can be grouped into three principal categories: (1)
knowledge distillation, which transfers capabilities from a large teacher to a smaller student (Hinton,
2014; Ojha et al., 2023; Agarwal et al., 2023; Bing et al., 2025; Cui et al., 2025); (2) quantization,
which lowers numerical precision to save memory and accelerate inference (Liu et al., 2023b; Li
et al., 2024b; Shang et al., 2023; Hu et al., 2025; An et al., 2025); and (3) pruning, a structured
approach that removes redundant channels, heads, or layers (Voita et al., 2019; Gao et al., 2024b;
Ma et al., 2023; Ashkboos et al., 2024; Men et al., 2024; Mugnaini et al., 2025; Yang et al., 2024).
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Pruning gained a lot of attention since it leverages the pre-trained weights of the original model
and typically does not require to training a new network from the ground up. Moreover, once
the unnecessary components have been eliminated, the resulting model can be further compressed
through quantization, yielding additional reductions in memory consumption and inference latency.

{In the context of LLMs, structured compression has primarily focused on pruning-based meth-
ods, such as deleting channels from the projection weights in attention and feed-forward networks
(Ashkboos et al., 2024; Gao et al., 2024b; Ma et al., 2023), removing heads in the multi-head atten-
tion (Voita et al., 2019; Mugnaini et al., 2025), and pruning whole Transformer layers (Yang et al.,
2024; Men et al., 2024). The selection of components to prune is guided by metrics that estimate the
impact of removal, such as the magnitude of weights and activations (Sun et al.), cosine similarity
(Men et al., 2024), or the L2-norm (Ashkboos et al., 2024). Other approaches adopt learning-based
structural compaction schemes, where auxiliary matrices (e.g., compactor or mask matrices) are
inserted around backbone weights and jointly optimized with the original weights; after training,
rows, columns, or channels of these learned structures are pruned and folded back into compressed
weights (Wu et al., 2024; Hu et al., 2024). Although these approaches leave the overall Transformer
architecture intact, their joint optimization scheme still perturb parameters that were carefully tuned
during large-scale pretraining, often leading to non-trivial performance loss.

Consequently, many approaches incorporate a recovery fine-tuning (RFT) stage to restore accuracy,
often employing the lightweight adapter such as LoRA (Voita et al., 2019; Gao et al., 2024b; Ma
et al., 2023; Ashkboos et al., 2024; Men et al., 2024; Mugnaini et al., 2025; Yang et al., 2024).
However, the recovery process can be fragile: even extensive RFT often fails to fully restore the
performance of precisely optimized foundation models.

To overcome these limitations, we propose a weight-preserving structured compression that retain
the integrity of pretrained weight while still achieving substantial efficiency gains. Our method,
Plug-and-Fold (PnF), inserts lightweight, learnable adapter modules into the original projection ma-
trices of the attention and feed-forward sub-layers rather than removing heads, channels, or layers.

In contrast to prior pruning and low-rank approaches that directly modify original pretrained
weights, PnF freezes all pretrained weights throughout compression and trains only lightweight
adapter modules attached to the original model, thereby formulating model compression as a PEFT-
style training problem that preserves the expressivity and knowledge encoded in the original model.

After training, the learned adapters are folded into a single dense matrix via simple matrix multipli-
cations; PnF therefore uses PEFT-style adapters as a tool for structured compression and deploys
a compressed model that is structurally identical to the original, rather than directly editing or
factorizing the backbone.

Because no architectural modification is introduced and no extra operations are required during
inference, PnF can be integrated seamlessly into existing serving frameworks and hardware acceler-
ators.

We evaluate PnF with extensive experiments covering a broad spectrum of model sizes and com-
pression rates. To validate its effectiveness, PnF is benchmarked against the latest state-of-the-art
structured-compression baselines on a diverse set of tasks that demand varied domain knowledge
and comprehensive capabilities. Across all settings, PnF consistently surpasses existing methods,
delivering notable gains in downstream performance. These results show that preserving the in-
tegrity of pretrained weights not only yields a simpler and more scalable compression pipeline, but
also enhances the recovery of accuracy and the generalization ability of the compressed models.

The main contributions of our paper are summarized as follows:

• We propose Plug-and-Fold (PnF), a novel weight preserving structured compression
method that inserts lightweight, learnable adapter modules into the original projection lay-
ers without modifying the model architecture.

• After training, the adapters are folded into the base weights via simple matrix multiplica-
tions, resulting in a compressed model that is structurally identical to the original model
and reduces runtime effectively.
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• Extensive experiments demonstrate that PnF outperforms recent state-of-the-art
structured-compression baselines across a wide range of model scales and benchmark tasks,
confirming its effectiveness and scalability.

2 BACKGROUND

2.1 DECODER-BASED TRANSFORMER ARCHITECTURE

Large Language Models (LLMs) primarily leverage a decoder-based Transformer architecture com-
posed of stacked decoder blocks. These blocks consist of two core components: the Multi-Head
Self-Attention (MHSA) mechanism and the Feed Forward Network (FFN). These components form
the core layers of decoder blocks, enabling sequential data processing and contextual understanding.

2.1.1 MULTI-HEAD SELF-ATTENTION (MHSA)

The MHSA mechanism enables the model to dynamically weight and aggregate contextual informa-
tion from different positions in the input sequence by utilizing attention heads. Formally, let the l-th
decoder block takes input hidden state X(l−1) ∈ Rn×dembed , where n and dembed is the length and
the dimension of the input, respectively. For the i-th attention head, i ∈ {1, · · · , nh}, the MHSA
mechanism computes the query vectors Q

(l)
i ∈ Rn×dhead , key vectors K

(l)
i ∈ Rn×dhead , and value

vectors V (l)
i ∈ Rn×dhead as follows:

Q
(l)
i = X(l−1)W

Q
(l)
i
, K

(l)
i = X(l−1)W

K
(l)
i
, V

(l)
i = X(l−1)W

V
(l)
i

, (1)

where W
Q

(l)
i
, W

K
(l)
i
, W

V
(l)
i
∈ Rdembed×dhead are the learned weight parameters for query, key, and

value projections, and dhead is the dimension of the head (often dhead = dembed
nh

). Then, the self-

attention operation is applied to each triple (Q
(l)
i ,K

(l)
i , V

(l)
i ) and computes the attention output of

the i-th head Z
(l)
i as follows:

Z
(l)
i = Attention(Q(l)

i ,K
(l)
i , V

(l)
i ) = Softmax

(Q(l)
i

(
K

(l)
i

)⊤
√
dk

)
V

(l)
i , (2)

where
√
dk is a scaling factor applied to ensure numerical stability. To represent comprehensive

contextual information, these outputs from individual heads are concatenated and transformed as
follows:

Z(l) = Concat(Z(l)
1 , · · · , Z(l)

h )WO(l) ∈ Rn×dembed , (3)

where Concat(·) is the concatenation operation and WO(l) ∈ R(hdhead)×dembed is learned weight pa-
rameters for output.

2.1.2 FEED-FORWARD NETWORK (FFN)

Following the MHSA mechanism, the output is passed through a Feed Forward Network (FFN) to
enhance the model’s capacity to process through non-linear transformations and increased number
of parameters. The FFN is often applies linear transformations separated by a nonlinear activation
function σ(·) (e.g., SiLU(Elfwing et al., 2018)). For example, SwiGLU (Shazeer, 2020) module is
defined as follows:

SwiGLU(Z(l)) =
(
σ(Z(l)Wgate(l))⊙ Z(l)Wup(l)

)
Wdown(l) (4)

where σ is the Swish activation function (Ramachandran et al., 2018) , and Wgate(l) ,Wup(l) ∈
Rdembed×dinter , and Wup(l) ∈ Rdinter×dembed are learnable parameters with the intermediate dimension
dinter.

3 METHOD

In this section, we present Plug-and-Fold (PnF) compression, a straightforward yet effective com-
pression method for large language models, whose complete workflow is illustrated in Figure 11.

1Snowflake and Fire icons created by Freepik – Flaticon

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Visualization of Plug-and-Fold framework. The top half illustrates the training
phase: lightweight PnF adapters are plugged into the pretrained linear layers and project to a
reduced-dimensional space; the backbone weights remain frozen (shown as snowflakes), while
the adapters are the only trainable components (shown as fire), enabling them to fully leverage
the already-optimized structure. The bottom half shows the evaluation phase: after training, each
adapter is folded back into its corresponding weight matrix via a simple matrix multiplication, yield-
ing a compressed model that preserves the original architecture, interface, and performance.

The main objective of this method is to preserve the original projection weight during training while
reducing their dimensionality, yeidling a compact model that maintains the original signal.

Section 3.1 introduce the PnF adapter, a foldable compression module plugged into the original
projection weights and trained to induce low-dimensional projection while preserving the original
signal. Section 3.2 presents training schemes used to train these adapters effectively. Finally, Section
3.3 describes how the trained PnF adapters are folded into low-dimensional projection weights,
producing a compact model that is computationally efficient while preserving performance suitable
for deployment.

3.1 PLUG-AND-FOLD (PNF) COMPRESSION

3.1.1 PLUG-AND-FOLD (PNF) ADAPTER

In order to preserve the original signal while training, Plug-and-Fold adapters are plugged into the
pre-trained model. Given a pre-trained linear weight W ∈ Rm×n, we define the PnF adapter as a
linear projection:

P ∈ Rn×r, (5)
where r < n. The adapter is applied to W and subsequently trained to recover the performance of
the original model. Formally, our aim is to find an adapter P that satisfies:

P(W ) ≈ P(WP ), (6)

where P(·) denotes the performance measures on various tasks induced by the corresponding
weight. Consequently, projecting the weights through the trained adapter P that satisfies Eq. (6)
yields output representations in the reduced-dimensional space (r-dimension), while preserving a
quality comparable to that of the full-size model. i.e., this projection yields compact representations
that preserve the fidelity of the original weight matrix, allowing highly efficient deployment across
a broad range of downstream tasks.

3.1.2 PNF ADAPTER FOR MHSA

We now explain how PnF adapter is integrated into the MHSA layer of an LLM. Let the projection
weights for queries, keys, values and the output at layer l be W

Q
(l)
i
,W

K
(l)
i
,W

V
(l)
i
∈ Rdembed×dhead ,
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and WO(l) ∈ R(nhdhead)×dembed , where nh is the number of attention heads. For each of these matrices,
we plug in a corresponding PnF adapter with dimension rhead < dhead:

P
Q

(l)
i
, P

K
(l)
i
, P

V
(l)
i
∈ Rdhead×r

(l)
head , and PO(l) ∈ R(nhr

(l)
head)×(nhdhead) (7)

These adapters, multiplied with the original weights, produce lower-dimensional projections:

W
Q

(l)
i
P
Q

(l)
i
∈ Rdembed×r

(l)
head

W
K

(l)
i
P
K

(l)
i
∈ Rdembed×r

(l)
head

W
V

(l)
i

P
V

(l)
i
∈ Rdembed×r

(l)
head

PO(l)WO(l) ∈ R(nhr
(l)
head)×dembed

(8)

Thus, each attention projection incorporates a learnable low-rank adapter. After training, folding the
adapter into the original weight via matrix multiplication gives substantial reduction in both memory
usage and computational overhead, while maintaining output quality of the uncompressed model.

3.1.3 PNF ADAPTER FOR FEED FORWARD NETWORK

Next, we present the applicaiton of PnF adapters to the FFN. Let the gate, up-projection, and down-
projection at layer l be Wgate(l) , Wup(l) ∈ Rdembed×dinter , and Wdown(l) ∈ Rdinter×dembed , respectively. For
these matrices, we introduce the corresponding PnF adapters:

Pgate(l) , Pup(l) ∈ Rdinter×r
(l)
inter , and Pdown(l) ∈ Rr

(l)
inter×dinter (9)

where r
(l)
inter < d

(l)
inter. Multiplying these adapter with the original weights yields the compressed

projections:

Wgate(l)Pgate(l) ∈ Rdembed×r
(l)
inter

Wup(l)Pup(l) ∈ Rdembed×r
(l)
inter

Pdown(l)Wdown(l) ∈ Rr
(l)
inter×dembed

(10)

Therefore, similar to that of the attention mechanism with PnF adapters above, each FFN layer is
equipped with a learnable low-rank adapter. Because the feed-forward network (FFN) comprises
the majority of a transformer’s parameters, folding the adapters into the original weights provides
substantial savings in both memory and computation.

3.2 TRAINING PIPELINE FOR PNF ADAPTER

To obtain PnF adapters with high fidelity, we propose a three-stage training pipeline: (i) Compres-
sion Planning that determines the per-layer degree of dimensionality reduction, (ii) Group-wise
Sequential Training that stabilizes optimization by sequentially training a small, isolated set of
adapters, and (iii) KL-divergence Distillation Loss that aligns the compressed model’s output dis-
tribution with the original model’s distribution.

Stage 1: Compression Planning Based on desired compression ratio (e.g., 20%), we first de-
termine the degree of reduction of dimensionality (i.e., r(l)head and r

(l)
inter) for each layer l. While the

allocation of reductions can be flexible, we recommend a pyramidal schedule where deeper layers
(closer to the language modeling head) are compressed more aggressively, and earlier layers receive
milder reductions. Prior work on layer pruning Men et al. (2024); Gromov et al. (2024) shows that
later (upper) layers can often be removed with little impact on downstream performance, indicat-
ing that they contribute less to the model’s expressivity. Based on this finding, we allocate a larger
portion of the compression budget to the top of the model.

Because the reduction ratio can be explicitly set, the approach is highly flexible and can be tailored
to meet a user’s requirements. Our empirical studies reveal that applying a higher compression rate
to the FFN yields considerably better results than compressing the MHSA modules, and a concrete
example of this planning is provided in the Appendix B.
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Stage 2: Group-wise Sequential Training Plugging all adapters at once might perturb the orig-
inal model’s signal at the beginning of training, inducing covariate shift and misleading gradients.
Alternatively, training a single adapter at a time preserves this signal but is prohibitively slow. To
address this issue, we introduce Group-wise Sequential Training. This training scheme trains small
groups of adapters in turn, retaining most of the signal preservation benefits while substantially
reducing training time and stabilizing convergence, which is further discussed in Section 4.3.1. For-
mally, we first partition the L transformer layers into disjoint groups of size N , starting from the
top of the model (output side) and moving downward. The k-th group is defined as:

Gk = {L− kN + 1, · · · , L− (k − 1)N}, k = 1, 2, · · · , ng, (11)

where ng = ⌊L/N⌋ is the number of groups. Given the compression plan that specifies per-layer
reductions (i.e., r(l)head and r

(l)
inter), we first identify which group contain layers slated for compression.

Then training proceeds sequentially from G1 towards Gng
.

At step k, if Gk includes layers selected by the compression plan, we insert adapters only into those
layers and train them, while keeping the adapters trained in previous groups (G1, . . . ,Gk−1) frozen.
During this phase, only the parameters of current group are updated; all previous groups remain
frozen with their trained adapters, while remaining groups (Gk+1, · · · ,Gng

) remain frozen without
adapters (i.e., in their original state).

Figure 2: Visualization of group-wise se-
quential training. Training proceeds group
by group, beginning with the output side. At
any step, only the current group Gi is updated
while all other groups stay frozen, which pre-
serves the backbone signal and enhances op-
timization stability.

An instance of group-wise sequential training is illus-
trated in Figure 2, given L = 36 and N = 4, the
compression plan targeting layers 13 - 36 covers six
groups (G1, · · · ,G6). We train these six groups se-
quentially from the output side toward the input (i.e.,
G1 → · · · → G6) while the lower 12 layers remain un-
compressed. By activating one small group per step and
keeping the remaining group fixed, this approach pre-
serves the backbone signal and improves optimization
stability.

Stage 3: KL-divergence Distillation Loss During
the group-wise sequential training for the adapters, we
adopt a Kullback-Leibler (KL) divergence loss. Specif-
ically, the logits of the PnF-plugged model are aligned
with those of the frozen backbone model by minimiz-
ing:

LKL = KL(pW ||pWP ) (12)

where pW and pWP denote the predictive distribution of the backbone and the PnF-plugged models,
respectively.

We adopt a KL-divergence distillation loss for two reasons. First, the goal of compression is to pro-
duce a smaller model that reproduces the original model’s behavior. The KL-divergence can achieve
this by aligning the predictive distribution of student (PnF-plugged model) with the teacher (original
model). Second, recent studies (Bercovich et al., 2024; Muralidharan et al., 2024; Li et al., 2024a)
report that KL-based distillation often outperforms cross-entropy, yielding better downstream per-
formance.

3.3 DEPLOYMENT FOR INFERENCE

After the adapters are fully trained leveraging unhindered pre-trained weights, they can be seam-
lessly integrated into the backbone model. In MHSA, for example, each adapter is folded into its
corresponding pre-trained weight matrix via matrix multiplication:

W
Q

(l)
i
P
Q

(l)
i
→WComp

Q
(l)
i

W
K

(l)
i
P
K

(l)
i
→WComp

K
(l)
i

W
V

(l)
i

P
V

(l)
i
→WComp

V
(l)
i

PO(l)WO(l) →WComp
O(l)

(13)
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A similar folding procedure applies to FFN, where each adapter is integrated into its corresponding
weight matrix:

Wgate(l)Pgate(l) →WComp
gate(l)

Wup(l)Pup(l) →WComp
up(l)

Pdown(l)Wdown(l) →WComp
down(l)

(14)

The resulting weights directly replace the original model, reducing parameter counts and
computational costs while preserving the model’s architectural structure and inference
pipeline. This fold-in operation has two key benefits. First, deployment is simple: the
trained PnF adapters are folded into the original weights via plain matrix multiplications–
no auxiliary metrics, graph edits, or specialized operators. Second, it ensures that the
deployed model remains identical structure and interface to the original model, which
facilitates compatibility with existing serving frameworks and hardware accelerators.
In practice, layer-wise non-uniform width patterns used in PnF have been empirically shown to be
deployment-friendly. Both elastic Transformer designs, such as MatFormer-style models deployed
in Gemma 3n Devvrit et al. (2024); Google DeepMind (2025), as well as adaptive pruning and
compression methods that allocate capacity under a global budget Ban et al. (2025); Yang et al. ef-
fectively support irregular per-layer widths on standard dense general matrix to matrix multiplication
(GEMM) inference pipelines and existing serving frameworks.

We concisely summarize the PnF compression pipeline: compression planning, group-wise adapter
training, and the final folding step in Appendix A

4 EXPERIMENTS

In this section, we first evaluate the PnF Compression method against several widely-used com-
pression methods across different compression rates and original model sizes, demonstrating its
effectiveness (Section 4.2). We then examine the impact of our weight-preserving mechanism and
training strategies through an ablation study (Section 4.3).

4.1 EXPERIMENTAL SETUP

All experiments were conducted to systematically compare the effectiveness of various large
language model (LLM) compression techniques across a suite of widely-used benchmark
tasks. We evaluated each method Slice-GPT (Ashkboos et al., 2024), LaCo (Yang et al.,
2024), ShortGPT (Men et al., 2024), LLM-Streamline (Chen et al., 2025), and our pro-
posed method in three target compression rates (approximately 20%, 30%, and 40%) relative
to the original model size. The baselines consist of the uncompressed models: Qwen3-
4B-Base, Qwen3-8B-Base, OPT 2.7B, OPT 6.7B, LLaMA-3.2-3B, and LLaMA-3.1-8B.
We additionally report comparisons on LLaMA-2-7B at a 20% compression ratio against latest
structured compression and quantization/distillation baselines—SVD-LLM Wang et al. (2024), Bit-
Distiller Du et al. (2024), LLM-Pruner Ma et al. (2023), and DISP-LLM Gao et al. (2024b) in Ap-
pendices F and G. Moreover, we report task performance and average per-token inference latency
for the original backbone, SliceGPT, and PnF across various compression ratios in Appendix H to
assess the impact of compression on generation speed.

The evaluation benchmarks include: PIQA (physical commonsense reasoning), HellaSwag (com-
monsense inference), WinoGrande (pronoun resolution), CSQA (commonsense QA), ARC-e/ARC-
c (science questions), OpenBookQA, BoolQ (boolean QA), Social IQA (multiple-choice), MMLU
(multi-task language understanding), and Lambda OpenAI (factual QA). Each model’s performance
is measured using task-specific accuracy, or accuracy norm if available, reported per dataset. For
each compression approach and setting, we tabulate the compression rate (CR) and all benchmark
scores, along with the average performance (AVG) across tasks and relative performance rate (RP).

For a fair comparison, all compressed models underwent a performance recovery phase follow-
ing the respective compression procedure. Specifically, our approach utilizes adapter training for
post-compression recovery; the Streamline baseline employs light layer training; and other methods
adopt LoRA (Hu et al., 2022) training as their recovery protocol. All recovery procedures leveraged
the SlimPajama dataset (Soboleva et al., 2023), sampling 600,000 training instances, each with a

7
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Table 1: Performance of the various compression methods on Qwen-3-8B-Base. The pretrained
backbone model and its compressed variants are evaluated across multiple benchmarks at several
compression rates. The best and second-best results at each compression rate are highlighted with
boldface and underline, respectively.

Method CR PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (8.19B) 0.793 0.786 0.724 0.860 0.801 0.573 0.410 0.830 0.547 0.747 0.709 0.707 1.000
20% (6.52B) 0.716 0.617 0.665 0.195 0.644 0.401 0.376 0.749 0.418 0.247 0.571 0.509 0.720
30% (5.71B) 0.667 0.544 0.624 0.199 0.511 0.317 0.362 0.601 0.404 0.231 0.505 0.451 0.638Slice GPT
40% (4.91B) 0.618 0.447 0.586 0.194 0.405 0.263 0.332 0.523 0.392 0.230 0.422 0.401 0.567

LaCo
20% (6.65B) 0.733 0.645 0.658 0.627 0.665 0.422 0.382 0.673 0.453 0.560 0.587 0.582 0.824
30% (5.88B) 0.687 0.524 0.589 0.405 0.561 0.337 0.320 0.722 0.425 0.362 0.522 0.496 0.701
40% (5.10B) 0.614 0.398 0.554 0.205 0.423 0.277 0.292 0.501 0.387 0.242 0.305 0.382 0.540
20% (6.65B) 0.757 0.612 0.559 0.211 0.647 0.375 0.400 0.618 0.441 0.255 0.508 0.489 0.692
30% (5.88B) 0.717 0.501 0.534 0.192 0.524 0.303 0.348 0.617 0.393 0.229 0.358 0.429 0.606LLM-Streamline
40% (5.10B) 0.589 0.362 0.571 0.196 0.356 0.264 0.286 0.430 0.376 0.230 0.017 0.334 0.473

Short GPT
20% (6.65B) 0.632 0.362 0.513 0.195 0.439 0.261 0.300 0.553 0.368 0.247 0.070 0.358 0.506
30% (5.88B) 0.608 0.326 0.507 0.187 0.416 0.238 0.286 0.462 0.356 0.231 0.059 0.334 0.473
40% (5.10B) 0.572 0.287 0.526 0.185 0.367 0.214 0.262 0.440 0.347 0.229 0.021 0.314 0.444
20% (6.55B) 0.774 0.714 0.709 0.757 0.773 0.479 0.410 0.818 0.521 0.645 0.677 0.661 0.935
30% (5.74B) 0.749 0.651 0.658 0.553 0.687 0.412 0.372 0.776 0.483 0.501 0.629 0.588 0.832Ours
40% (4.91B) 0.719 0.587 0.626 0.476 0.655 0.378 0.358 0.749 0.427 0.398 0.538 0.545 0.771

Table 2: Performance of the different compression methods on Qwen3-4B-Base. The pretrained
backbone and its compressed variants are evaluated on the same set of benchmarks and compres-
sion rates as in Table 1. For each compression rate, the best result is shown in boldface and the
second-best in underlined text.

Method CR PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (4.02B) 0.779 0.736 0.703 0.827 0.760 0.516 0.412 0.830 0.502 0.713 0.690 0.679 1.000
20% (3.53B) 0.688 0.554 0.628 0.197 0.546 0.346 0.338 0.723 0.411 0.236 0.528 0.472 0.696
30% (3.06B) 0.633 0.462 0.599 0.193 0.431 0.260 0.308 0.680 0.386 0.231 0.441 0.420 0.619Slice GPT
40% (2.65B) 0.584 0.384 0.553 0.197 0.348 0.251 0.276 0.602 0.371 0.230 0.359 0.378 0.556

LaCo
20% (3.22B) 0.715 0.578 0.631 0.586 0.634 0.387 0.358 0.738 0.434 0.584 0.502 0.559 0.823
30% (2.81B) 0.644 0.470 0.589 0.306 0.517 0.317 0.282 0.651 0.404 0.335 0.359 0.443 0.653
40% (2.41B) 0.630 0.416 0.562 0.195 0.453 0.273 0.284 0.606 0.388 0.234 0.341 0.398 0.587
20% (3.22B) 0.739 0.559 0.556 0.196 0.619 0.369 0.378 0.558 0.417 0.235 0.448 0.461 0.679
30% (2.81B) 0.678 0.443 0.530 0.195 0.498 0.272 0.336 0.586 0.395 0.229 0.330 0.408 0.601LLM-Streamline
40% (2.41B) 0.581 0.351 0.556 0.196 0.352 0.274 0.290 0.426 0.378 0.230 0.006 0.331 0.488

Short GPT
20% (3.22B) 0.694 0.557 0.589 0.561 0.645 0.411 0.344 0.684 0.417 0.487 0.529 0.538 0.792
30% (2.81B) 0.654 0.386 0.551 0.185 0.492 0.308 0.312 0.588 0.372 0.245 0.253 0.395 0.582
40% (2.41B) 0.548 0.274 0.519 0.222 0.319 0.226 0.238 0.538 0.350 0.244 0.029 0.319 0.469
20% (3.22B) 0.736 0.662 0.669 0.779 0.704 0.436 0.382 0.784 0.501 0.657 0.651 0.633 0.932
30% (2.82B) 0.712 0.588 0.618 0.628 0.665 0.380 0.362 0.749 0.464 0.524 0.595 0.571 0.842Ours
40% (2.41B) 0.702 0.513 0.587 0.420 0.552 0.310 0.342 0.685 0.421 0.395 0.542 0.497 0.732

sequence length of 1,024 tokens, to ensure consistency and robustness in recovered performance
across all benchmarks. Comprehensive implementation and experimental details are provided in
Appendix B.

4.2 RESULTS

We evaluate the proposed compression method on two base LLMs, Qwen3-4B-Base and Qwen3-
8B-Base, under compression rates of approximately 20%, 30%, and 40% relative to their original
parameter counts. All models were assessed in a zero-shot setting using the LLM evaluation library
(Gao et al., 2024a). Additional experiments, including evaluations on other LLM variants and in
five-shot settings, are reported in Appendix C.

Tables 2 and 1 summarize the results on compressing Qwen3-4B-Base and Qwen3-8B-Base, respec-
tively. Across all compression rates, our method consistently outperforms competing approaches on
most benchmarks, while preserving performance close to that of the uncompressed models. The ad-
vantage is most evident on knowledge-intensive tasks such as CSQA, MMLU, and ARC, which rely
heavily on retrieving and applying pretrained knowledge. On benchmarks emphasizing common-
sense reasoning and general language understanding (e.g., HellaSwag, WinoGrande), the perfor-
mance gap between methods is smaller, yet our approach still achieves the best overall balance
across tasks.

When comparing Qwen3-4B-Base and Qwen3-8B-Base, we observe that the larger base model re-
tains higher absolute accuracy across all compression methods and rates, reflecting its greater capac-
ity. However, the relative performance preservation (RP) of our method remains consistently strong
for both model scales, demonstrating its robustness. Notably, the 8B model shows slightly smaller
performance degradation under compression, suggesting that larger models may provide more re-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

dundancy that can be better exploited during parameter reduction. This trend highlights that while
scaling up improves baseline performance, an effective compression strategy is crucial. Overall,
our method achieves stable gains across both model sizes, indicating strong generalizability of the
approach.

Discussion. These findings suggest that updating adapter weights while preserving core model
parameters is critical for effective LLM compression. Retaining the pretrained weight structure
allows the compressed models to maintain essential knowledge and reasoning capabilities needed
for complex tasks. In contrast, methods that aggressively modify core parameters tend to incur larger
performance degradation, particularly on knowledge-demanding benchmarks.

4.3 ABLATIONS

4.3.1 TRAINING STRATEGY

To understand how the size of the adapter groups influences effectiveness and efficiency, we per-
formed an ablation study in which the group size N was varied while keeping all other hyper pa-
rameters, compression plan, learning rate schedule, and total training epochs identical to the default
configuration described in Appendix B. The experiments, summarized in Table 3, were conducted
on Qwen-3-4B-Base compressed to a 20% reduction rate.

Table 3: Ablation of the
group size N used in
the group wise sequen-
tial training scheme. The
table reports the average
downstream score.

Group size Avg
N=36 (all) 0.6182

N=1 0.6346
N=4 (ours) 0.6329

When N = 36 every adapter is inserted and trained at once, which min-
imizes the number of training phases but perturbs the entire backbone
simultaneously. This large covariate shift leads to unstable gradients
and a noticeable drop in downstream performance, as reflected by an
average score of 0.6182. At the opposite extreme, N = 1 updates one
adapter at a time, moving sequentially through the 36 layers. Because
only a single component is altered during each step, the original sig-
nal is largely preserved, resulting in the highest average performance.
However, the training iteration grows roughly linearly with the number
of groups, making this setting impractical for larger models.

Our default configuration adopts N = 4, grouping four consecutive
layers together. This approach retains most of the stability advantages
of the single-adapter regime while dramatically reducing the total number of training phases. The
resulting average score (0.6329) is only marginally below the optimal N = 1 setting, yet the com-
putational cost is comparable to the “all-at-once” baseline. Consequently, we select N = 4 as the
standard group size for all subsequent experiments.

4.3.2 IMPACT OF RECOVERY-TRAINING SET SIZE

Table 4: Effect of recovery-training set size on the performance of our 20% compressed Qwen-3-
4B-Base. Results are reported for four different sample budgets (300k, 600k, 1M, and 2M) on a
range of downstream benchmarks.
Method CR Samples PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP
Baseline - - 0.7786 0.7364 0.7032 0.8272 0.7597 0.5162 0.4120 0.8299 0.5015 0.7131 0.6898 0.6789 1.0000

Ours 20%

300K 0.7163 0.6433 0.6630 0.7802 0.7046 0.4181 0.3720 0.7976 0.4928 0.6476 0.6418 0.6252 0.9209
600K 0.7363 0.6622 0.6690 0.7790 0.7044 0.4358 0.3820 0.7837 0.5013 0.6573 0.6514 0.6329 0.9322
1M 0.7350 0.6757 0.6788 0.8354 0.7022 0.4488 0.3720 0.7985 0.4923 0.7084 0.6693 0.6469 0.9528
2M 0.7679 0.7230 0.6890 0.8215 0.7513 0.5060 0.4020 0.8315 0.4908 0.7076 0.6804 0.6701 0.9870

In this section, we evaluate how the size of the recovery-training set influences the effective-
ness of our compression pipeline. Table 4 reports results for four different sample budgets
(300K, 600K, 1M, and 2M) under a fixed compression rate of 20%. As the number of training
instances grows, downstream performance improves consistently across virtually all bench-
marks: the average score rises from 0.6252 (300K samples) to 0.6701 (2M samples), and the
relative performance (RP) climbs from 0.9209 to 0.9870, narrowing the gap with the uncom-
pressed baseline (Avg=0.6789). For most tasks the improvement is gradual, but a few—namely
HS, BoolQ, OBQA, and ARC—show a different pattern. With only 300K–1M samples their
scores increase only marginally, reflecting the limited signal provided by a small recovery
set. Once the sample count reaches over 1M, the gains accelerate sharply; at 2M samples
these tasks almost match the baseline performance (e.g., HS jumps from 0.6757 to 0.7230,
BoolQ from 0.7985 to 0.8315, OBQA from 0.3720 to 0.4020, ARC-e from 0.7022 to 0.7513).
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Moreover, even the 300K-sample configuration of PnF matches or surpasses strong structured com-
pression baselines such as LaCo, ShortGPT, SliceGPT, and LLM-Streamline that are trained with
600K recovery samples, demonstrating strong data efficiency of PnF.

Overall, the results show that even a modest recovery set captures more than 90% of the attainable
relative performance (RP). When the recovery data are scaled to a few million examples, the com-
pressed model nearly matches the uncompressed baseline, incurring less than a 2% performance
drop while preserving the 20% compression ratio.

5 LIMITATION AND FUTURE WORKS

A possible limitation of our approach is that the first stage of the pipeline is deliberately empirical:
the compression plan and grouping schedule currently rely on manually specified per-layer reduction
rates and layer groups. While this design grants practitioners flexibility to tailor compression plans
to specific deployment constraints, it also places a burden on users to possess a priori knowledge
about the relative importance of different layers, which may hinder reproducibility and scalability. In
practice, an uninformed choice of layer-wise rates or groups can lead to sub-optimal performance or
unnecessary training overhead. On the other hand, this flexibility makes the stage a useful diagnostic
tool: by systematically varying the layers or groups that are compressed, users can probe which parts
of an LLM are most critical for specific linguistic or reasoning abilities.

Future work will focus on automated, data-driven planning schemes, such as sensitivity-based
or reinforcement-learning-based strategies inspired by recent structured pruning and compression
methods Wei et al. (2024); Gao et al. (2024b) that learn layer-wise ranks and grouping patterns in-
stead of fixing them heuristically, aiming to reduce manual tuning while preserving the analytical
benefits of the current empirical design.

6 CONCLUSION

In this work, we introduce a novel framework Plug-and-Fold (PnF), a compression framework that
preserves both weights and structure of the pretrained LLM. In our workflow, lightweight PnF
adapters are first plugged into a pretrained LLM’s weight matrices. After going through adaption
phase, adapters are folded back into the base model via simple matrix multiplication. The resulting
model is structurally identical to the original backbone yet enjoys substantial reductions in parame-
ters with unimpaired performance. Extensive experiments on four backbones and three compression
rates show PnF consistently outperforms strong baselines, highlighting the benefit of retaining pre-
trained weights. Ablation studies on training strategies confirm the effectiveness of our workflow,
while experiments on recovery-training set size demonstrate that with sufficient data PnF can nearly
match the original model’s performance. In summary, Plug-and-Fold provides an efficient, scalable,
architecture-preserving compression pipeline that maintains the expressive power of large pretrained
LLMs, enabling deployment on resource-constrained hardware without performance loss.
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A PNF COMPRESSION PIPELINE (PSEUDO-CODE)

Algorithm 1 provides a concise pseudo-code summary of the plug-and-fold (PnF) pipeline, including
(i) compression planning of per-layer rank allocation and selection of layers to compress, (ii) group-
wise adapter training on a frozen backbone, and (iii) the folding step that replaces each compressed
layer’s weight with folded weight WComp

l = WlPl.

Algorithm 1 Plug-and-Fold (PnF) Compression Pipeline

Require: Pretrained decoder-only LLM weights {Wl}Ll=1, global compression rate ρ, teacher
model fteacher, distillation dataset D

Ensure: Compressed weights {WComp
l }Ll=1

1: [Compression Planning]
2: Compute per-layer target ranks/widths {rl}Ll=1 to match the global compression rate ρ.
3: Define the set of layers to compress C ← {l ∈ {1, . . . , L} : rl < full dim(Wl)}.
4: Partition C into groups G1, . . . , GK (single-stage PnF uses K=1 and G1=C).
5: [Group-Wise Sequential Training for adapter]
6: Initialize PnF adapters {Pl}l∈C (e.g., near-identity).
7: for k = 1 to K do
8: for each layer l ∈ Gk do
9: Attach adapter Pl to Wl (replace xWl by xWlPl with rank rl).

10: Freeze Wl and mark only Pl as trainable.
11: end for
12: for training step t = 1 to Tk do
13: Sample a minibatch x ∼ D.
14: Compute teacher outputs pteacher(· | x) = fteacher(x).
15: Compute student outputs pstudent(· | x; {Wl, Pl}).
16: Update {Pl}l∈Gk

by minimizing a distillation loss (e.g., KL(pteacher ∥ pstudent)).
17: end for
18: [Folding Step for adapter (for saving memory in training process)]
19: for each layer l ∈ Gk do
20: WComp

l ←WlPl.
21: Remove Pl and keep WComp

l for inference.
22: end for
23: end for

B EXPERIMENT SETTINGS

B.1 HYPER-PARAMETER CONFIGURATION

In all experiments we follow the two-stage pipeline described in Section 3.2. Below we detail the
hyperparameter settings that were used to instantiate the compression plan, to construct the training
groups, and to train the adapters. The values are the same for every model and compression rate
unless explicitly noted. Also, the PnF are initialized as identity matrix, where only the diagonal
elements are set to 1 otherwise 0.

B.2 COMPRESSION PLAN (PER-LAYER REDUCTION RATES)

For each target compression rate c ∈ {20%, 30%, 40%}, we empirically driven target
hidden-dimension targets for the multi-head self-attention (MHSA) and feed-forward network (FFN)
sub-layers. The resulting dimensionalities are listed in Table 5. The notation indicates the target hid-
den size for each group in the order in which the groups are visited (from the output side toward the
input side).

Interpretation of Table 5 Taking OPT 2.7B as an example, for a 20% reduction the first two
groups (closest to the output) compress both the MHSA projection matrices to rhead = 72 and the
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Table 5: Target hidden dimensions for MHSA and FFN at each compression rate. Each entry corre-
sponds to a successive group of layers (see Figure 2).

Backbone CR MHSA FFN

20% (72, 72,−,−) (3584, 3584, 4096, 4864)

30% (64, 72, 72,−,−,−,−) (3328, 3328, 3840, 4608, 5632, 6144, 8192)OPT 2.7B
40% (64, 64, 72, 72,−,−,−,−) (2560, 2560, 2816, 2816, 2816, 3840, 5888, 8096)

20% (−,−,−,−) (5120, 5632, 7168, 7168)

30% (64, 80, 96, 112,−,−) (4608, 5376, 6144, 8192, 10240, 13312)OPT 6.7B
40% (64, 64, 64, 64, 96,−) (5632, 5376, 5120, 5120, 7168, 7168)

20% (−,−,−,−,−) (2560, 2816, 3328, 4608, 9216)

30% (−,−,−,−,−,−) (2560, 2560, 2560, 3072, 3584, 4864)Qwen3 4B
40% (−,−,−,−,−,−,−,−) (2560, 2560, 2560, 2816, 2816, 3072, 3328, 5632)

20% (−,−,−,−,−) (4096, 4352, 4864, 6144, 8704)

30% (−,−,−,−,−,−,−) (4096, 4352, 4608, 4864, 4864, 5632, 7680)Qwen3 8B
40% (−,−,−,−,−,−,−,−,−) (4096, 4352, 4608, 4608, 4352, 4608, 4608, 4608, 7936)

FFN intermediate dimensions to rinter = 3584. Subsequent groups use the next values in the list,
while “ − ” denotes it retains the original dimension. At 30% and 40% the plan contains more
groups, thereby spreading the reduction more gradually across the stack.

B.3 TRAINING SCHEDULE

The overall workflow of training is as follows. For each selected group Gk we:

1. Insert PnF adapters corresponding to index belonging to Gk

2. Train for E epochs while keeping all previously trained groups frozen
3. Proceed to Gk+1 until Gng

Through out the entire experiments, the number of epochs is fixed to E := 1, giving a total of ng

iteration.

B.4 FOLDING STEP

After the final group has been trained, each adapter pair is merged into its corresponding projection
matrix W by the closed-form multiplication. No additional fine-tuning is performed after folding,
which guarantees that the resulting model has exactly the same architecture and runtime character-
istics as the original uncompressed model.

B.5 BASELINE RECOVERY FINE-TUNING SETTINGS

For the recovery-fine-tuning (RFT) stage we adopt LoRA, since LoRA fine-tuning is widely used
in recent work. To ensure a fair comparison, we fix the low-rank dimension to r = 16 for every
LoRA experiment. Unless a particular method explicitly restricts its scope, LoRA is applied to all
transformer layers—both the multi-head self-attention (MHSA) and feed-forward network (FFN)
sub-layers.

C ADDITIONAL RESULTS

C.1 COMPARISON WITH BASELINE METHODS

In this section we compare our proposed approach with several baselines across a broader set of
conditions. We evaluate four backbone models—Qwen-3-4B-Base, Qwen-3-8B-Base, OPT-2.7B,
and OPT-6.7B, LLaMA-3.2-3B, LLaMA-3.1-8B-and we assess performance in both zero-shot and
five-shot settings. Across all experiments, our method consistently yields the highest average score
(Avg), closely matching the performance of the uncompressed baseline for each backbone.
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The same trend observed in the zero-shot experiments holds in the five-shot setting. Our com-
pression method consistently outperforms the baselines across all compression rates, and the per-
formance gap widens on knowledge-intensive benchmarks. Thus, the superior performance of our
approach is preserved when a few exemplars are provided.

Table 6: Performance of the different compression methods on LLaMA-3.2-3B on zero-shots set-
ting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (3.21B) - 0.7748 0.7370 0.6906 0.6404 0.7168 0.4582 0.4320 0.7278 0.4708 0.5396 0.7000 0.6262 –

Slice GPT
20% (2.90B)

600k
0.5664 0.3318 0.5217 0.1998 0.3396 0.2543 0.3020 0.5966 0.3552 0.2420 0.0714 0.3437 –

30% (2.56B) 0.5484 0.3178 0.4996 0.1966 0.3211 0.2415 0.2580 0.5841 0.3449 0.2562 0.0732 0.3310 –
40% (2.22B) 0.5424 0.2923 0.4980 0.1957 0.3026 0.2278 0.2540 0.4798 0.3444 0.2617 0.0472 0.3133 –

LaCo
20% (2.61B)

600k
0.7002 0.6330 0.6890 0.6183 0.6044 0.3771 0.3520 0.6697 0.4427 0.5177 0.6330 0.5670 –

30% (2.21B) 0.6736 0.5134 0.5864 0.3227 0.5248 0.3131 0.3200 0.6242 0.4033 0.3148 0.4801 0.4615 –
40% (1.90B) 0.6028 0.4156 0.5667 0.2228 0.3952 0.2491 0.2840 0.6217 0.3915 0.2652 0.3972 0.4011 –

LLM-Streamline
20% (2.61B)

600k
0.7138 0.6171 0.6661 0.6372 0.6103 0.3840 0.3740 0.7150 0.4401 0.5450 0.5131 0.5651 –

30% (2.21B) 0.6763 0.5317 0.6504 0.4390 0.5459 0.3345 0.3160 0.6450 0.4150 0.4172 0.4147 0.4896 –
40% (1.90B) 0.6556 0.3884 0.5162 0.1949 0.4743 0.2517 0.3000 0.6076 0.3608 0.2295 0.1906 0.3791 –

Short GPT
20% (2.61B)

600k
0.6948 0.6095 0.6827 0.6126 0.5947 0.3840 0.3520 0.6419 0.4473 0.5207 0.6043 0.5586 –

30% (2.21B) 0.6425 0.4954 0.6369 0.5315 0.4769 0.3123 0.3080 0.6355 0.4115 0.4806 0.3831 0.4831 –
40% (1.90B) 0.6110 0.3929 0.5809 0.1949 0.3948 0.2713 0.2860 0.6226 0.3675 0.2299 0.2243 0.3797 –

Ours
20% (2.55B)

600k
0.7548 0.6541 0.6877 0.6073 0.6824 0.4029 0.3820 0.6868 0.4430 0.5087 0.6493 0.5872 –

30% (2.22B) 0.7331 0.5916 0.6256 0.4998 0.6283 0.3625 0.3500 0.6798 0.4235 0.4386 0.5981 0.5392 –
40% (1.92B) 0.6977 0.5169 0.5830 0.3500 0.5436 0.3041 0.3480 0.6391 0.4087 0.3571 0.5294 0.4798 –

Table 7: Performance of the different compression methods on LLaMA-3.2-3B on five-shots setting.

Method PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu lambada openai

Baseline 0% (3.21B) 0.8025 0.7546 0.7238 0.6658 0.7816 0.4838 0.4489 0.7336 0.5066 0.5616 0.6652
Slice GPT 20% (2.90B) 0.5805 0.3358 0.5359 0.1892 0.3573 0.2415 0.2640 0.6031 0.3634 0.2539 0.0505
Slice GPT 30% (2.56B) 0.5528 0.3216 0.5257 0.1925 0.3430 0.2389 0.2760 0.5355 0.3414 0.2516 0.0611
Slice GPT 40% (2.22B) 0.5365 0.2921 0.5154 0.1867 0.3148 0.2355 0.2620 0.4321 0.3347 0.2519 0.0380
LaCo 20% (2.61B) 0.7095 0.6463 0.6890 0.6486 0.6616 0.4019 0.3500 0.6951 0.4846 0.5219 0.5913
LaCo 30% (2.21B) 0.6823 0.5281 0.5991 0.2678 0.5694 0.3311 0.3240 0.6217 0.4417 0.3109 0.3798
LaCo 40% (1.90B) 0.6104 0.4173 0.5841 0.2154 0.4205 0.2551 0.2840 0.6135 0.3869 0.2559 0.3767
LLM-Streamline 20% (2.61B) 0.7236 0.6373 0.6827 0.6536 0.6561 0.3891 0.3600 0.7428 0.4826 0.5548 0.4564
LLM-Streamline 30% (2.21B) 0.6828 0.5475 0.6709 0.4120 0.5829 0.3473 0.3220 0.6755 0.4478 0.4190 0.3546
LLM-Streamline 40% (1.90B) 0.6545 0.3870 0.5178 0.2097 0.4718 0.2423 0.2800 0.5410 0.3639 0.2465 0.1679
Short GPT 20% (2.61B) 0.6964 0.6372 0.6875 0.6396 0.6414 0.3831 0.3560 0.6673 0.4821 0.5394 0.5845
Short GPT 30% (2.21B) 0.6507 0.5114 0.6433 0.5536 0.5130 0.3097 0.3140 0.6315 0.4386 0.4657 0.3910
Short GPT 40% (1.90B) 0.6094 0.3970 0.5714 0.1957 0.4196 0.2696 0.2760 0.6064 0.3838 0.2553 0.2199
Ours 20% (2.55B) 0.7742 0.6719 0.6896 0.6274 0.7238 0.4281 0.3920 0.7338 0.4975 0.5231 0.6056
Ours 30% (2.22B) 0.7409 0.6297 0.6461 0.5144 0.6486 0.3889 0.3700 0.6906 0.4806 0.4686 0.5553
Ours 40% (1.92B) 0.7175 0.5390 0.6083 0.3727 0.5623 0.3223 0.3600 0.6599 0.4606 0.3785 0.4904

Table 8: Performance of the different compression methods on LLaMA-3.1-8B on zero-shots set-
ting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (8.03B) - 0.8123 0.7884 0.7356 0.7150 0.8123 0.5367 0.4460 0.8196 0.4713 0.6345 0.7533 0.6841 1.0000

Slice GPT
20% (6.41B)

600k
0.5582 0.3818 0.5414 0.2015 0.3068 0.2449 0.2840 0.5535 0.3511 0.2466 0.0726 0.3402 0.4973

30% (5.61B) 0.5854 0.3592 0.5335 0.1966 0.3603 0.2568 0.2760 0.4590 0.3403 0.2376 0.0819 0.3351 0.4898
40% (4.83B) 0.5609 0.3299 0.5067 0.1957 0.3439 0.2321 0.2560 0.4367 0.3454 0.2461 0.0770 0.3210 0.4692

LaCo
20% (6.50B)

600k
0.7693 0.7056 0.6875 0.5209 0.7155 0.4317 0.3800 0.7691 0.4565 0.4671 0.6534 0.5961 0.8714

30% (5.63B) 0.7280 0.6209 0.6630 0.3604 0.6233 0.3558 0.3500 0.6667 0.4350 0.3478 0.5694 0.5200 0.7601
40% (4.76B) 0.6670 0.5141 0.6243 0.4210 0.5139 0.3055 0.2900 0.6312 0.4181 0.4141 0.4809 0.4800 0.7017

LLM-Streamline
20% (6.50B)

600k
0.7514 0.7007 0.7238 0.6912 0.7214 0.4633 0.3940 0.7609 0.4585 0.6164 0.3872 0.6062 0.8861

30% (5.63B) 0.6986 0.6035 0.6906 0.7035 0.6170 0.3763 0.3620 0.7593 0.4360 0.6271 0.3949 0.5699 0.8331
40% (4.76B) 0.6785 0.4778 0.5872 0.1941 0.5059 0.2833 0.3260 0.6190 0.4007 0.2301 0.2750 0.4161 0.6082

Short GPT
20% (6.50B)

600k
0.7465 0.6924 0.7159 0.6986 0.7024 0.4437 0.3740 0.7214 0.4611 0.5919 0.7075 0.6232 0.9110

30% (5.63B) 0.6855 0.5914 0.6993 0.5872 0.5875 0.3626 0.3060 0.7113 0.4222 0.4208 0.5410 0.5377 0.7860
40% (4.76B) 0.6213 0.4531 0.5983 0.1974 0.4310 0.2807 0.2780 0.6226 0.3889 0.2302 0.3427 0.4040 0.5906

Ours
20% (6.42B)

600k
0.7750 0.7369 0.7130 0.6326 0.7494 0.4654 0.4040 0.7942 0.4606 0.6170 0.7226 0.6428 0.9396

30% (5.62B) 0.7584 0.7048 0.6932 0.5892 0.7149 0.4389 0.3920 0.7525 0.4503 0.5713 0.6942 0.6145 0.8983
40% (4.48B) 0.7439 0.6240 0.6438 0.4562 0.6135 0.3494 0.3620 0.7094 0.4368 0.4528 0.6219 0.5467 0.7992
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Table 9: Performance of the different compression methods on LLaMA-3.1-8B on five-shots setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (8.03B) - 0.8243 0.8092 0.7719 0.7412 0.8502 0.5768 0.4640 0.8275 0.5251 0.6503 0.6848 0.7023 –

Slice GPT
20% (6.41B)

600k
0.5756 0.4066 0.5541 0.1916 0.3359 0.2491 0.3020 0.6355 0.3675 0.2339 0.0660 0.3562 –

30% (5.61B) 0.6023 0.3787 0.5320 0.1990 0.4398 0.2773 0.2520 0.5410 0.3593 0.2385 0.0681 0.3535 –
40% (4.83B) 0.5740 0.3350 0.5217 0.2113 0.3826 0.2432 0.2620 0.4330 0.3582 0.2465 0.0530 0.3291 –

LaCo
20% (6.50B)

600k
0.7688 0.7243 0.6953 0.5356 0.7437 0.4539 0.3860 0.7639 0.4985 0.4490 0.6140 0.6030 –

30% (5.63B) 0.7274 0.6413 0.6630 0.4357 0.6810 0.3891 0.3560 0.7131 0.4724 0.4323 0.4830 0.5449 –
40% (4.76B) 0.6654 0.5273 0.6243 0.4595 0.5581 0.3038 0.3120 0.6636 0.4437 0.4385 0.4407 0.4943 –

LLM-Streamline
20% (6.50B)

600k
0.7563 0.7269 0.7648 0.7314 0.7626 0.4804 0.4080 0.8080 0.5164 0.6339 0.3553 0.6313 –

30% (5.63B) 0.6828 0.5475 0.6709 0.4120 0.5829 0.3473 0.3220 0.6755 0.4478 0.4190 0.3546 0.4966 –
40% (4.76B) 0.6545 0.3870 0.5178 0.2097 0.4718 0.2423 0.2800 0.5410 0.3639 0.2465 0.1679 0.3711 –

Short GPT
20% (6.50B)

600k
0.7508 0.7202 0.7388 0.7281 0.7462 0.4676 0.3720 0.6596 0.5118 0.6318 0.6231 0.6318 –

30% (5.63B) 0.6942 0.6085 0.7230 0.6298 0.6237 0.3737 0.3240 0.7095 0.4821 0.4828 0.5300 0.5619 –
40% (4.76B) 0.6328 0.4622 0.6212 0.2031 0.4735 0.2935 0.2860 0.6214 0.4222 0.2793 0.3113 0.4188 –

Ours
20% (6.42B)

600k
0.8094 0.7548 0.7482 0.6714 0.7990 0.5132 0.4300 0.8046 0.5131 0.6262 0.6641 0.6667 –

30% (5.62B) 0.7844 0.7224 0.7082 0.6063 0.7662 0.4680 0.4140 0.7656 0.4969 0.5842 0.6462 0.6329 –
40% (4.48B) 0.7527 0.6369 0.6546 0.4776 0.6818 0.3754 0.3760 0.7332 0.4772 0.4761 0.5814 0.5657 –

Table 10: Performance of the different compression methods on Qwen3-4B-Base on five-shots set-
ting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (4.02B) - 0.7889 0.7532 0.7206 0.8198 0.8674 0.6425 0.4500 0.8654 0.5502 0.7319 0.6501 0.7127 1.0000

Slice GPT
20% (3.53B)

600k
0.6980 0.5612 0.6425 0.3030 0.6902 0.4130 0.3480 0.7746 0.4641 0.3250 0.4487 0.5153 0.7230

30% (3.06B) 0.6409 0.4661 0.6085 0.2293 0.5370 0.2952 0.3120 0.6911 0.4181 0.2651 0.3656 0.4390 0.6160
40% (2.65B) 0.5832 0.3857 0.5596 0.1925 0.4158 0.2440 0.2780 0.511 0.3909 0.2672 0.2928 0.3746 0.5256

LaCo
20% (3.22B)

600k
0.7236 0.5840 0.6425 0.7273 0.7016 0.4249 0.3680 0.7679 0.4698 0.6192 0.4496 0.5889 0.8264

30% (2.81B) 0.6398 0.475 0.5841 0.3194 0.5556 0.3362 0.2820 0.7028 0.4252 0.2863 0.3043 0.4464 0.6264
40% (2.41B) 0.6300 0.4136 0.5509 0.2080 0.4996 0.2944 0.2880 0.6242 0.4083 0.2810 0.2550 0.4048 0.5680

LLM-Streamline
20% (3.22B)

600k
0.7448 0.5572 0.5241 0.2015 0.7428 0.4292 0.3880 0.5474 0.4544 0.2895 0.3974 0.4797 0.6730

30% (2.81B) 0.6724 0.4333 0.5059 0.1891 0.5883 0.3054 0.3180 0.6012 0.4027 0.2538 0.3049 0.4159 0.5836
40% (2.41B) 0.5865 0.3468 0.5643 0.1957 0.3742 0.2611 0.2800 0.3841 0.3602 0.2295 0.0060 0.3262 0.4577

Short GPT
20% (3.22B)

600k
0.7008 0.5520 0.6014 0.5766 0.7189 0.4573 0.3280 0.6914 0.4631 0.5167 0.4644 0.5519 0.7743

30% (2.81B) 0.6088 0.3142 0.5138 0.1974 0.4196 0.2747 0.2480 0.3847 0.3561 0.2446 0.0134 0.3250 0.4561
40% (2.41B) 0.5294 0.2564 0.4972 0.2080 0.2950 0.2568 0.2460 0.3869 0.3439 0.2370 0.0000 0.2961 0.4154

Ours
20% (3.22B)

600k
0.7559 0.6714 0.6772 0.8003 0.7739 0.4955 0.4100 0.8355 0.5417 0.6771 0.6055 0.6585 0.9240

30% (2.82B) 0.7233 0.5847 0.6343 0.6798 0.7070 0.4008 0.4000 0.7602 0.4955 0.5412 0.5411 0.5880 0.8250
40% (2.41B) 0.6912 0.5134 0.5783 0.5030 0.6186 0.3487 0.3540 0.7283 0.4517 0.3956 0.4757 0.5144 0.7218

Table 11: Performance of the different compression methods on Opt 6.7B in zero-shot setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (6.66B) - 0.7644 0.6719 0.6543 0.2031 0.6002 0.3473 0.3760 0.6612 0.4278 0.2505 0.6769 0.5121 1.0000

Slice GPT
20% (5.49B)

600k
0.7165 0.5657 0.6204 0.1916 0.5055 0.2961 0.3560 0.6235 0.4206 0.2500 0.5632 0.4645 0.9070

30% (4.77B) 0.7013 0.5220 0.6093 0.1957 0.4735 0.2875 0.3320 0.6064 0.3976 0.2421 0.4890 0.4415 0.8621
40% (4.07B) 0.6589 0.4709 0.5604 0.1982 0.4495 0.2671 0.3280 0.5835 0.3899 0.2290 0.4017 0.4125 0.8054

LaCo
20% (5.25B)

600k
0.6866 0.5310 0.6014 0.2064 0.4899 0.2995 0.3280 0.6214 0.4165 0.2503 0.5088 0.4491 0.8769

30% (4.64B) 0.6213 0.3890 0.5446 0.1974 0.3965 0.2560 0.2980 0.6214 0.3735 0.2463 0.1764 0.3746 0.7315
40% (4.04B) 0.5930 0.3391 0.5170 0.1957 0.3481 0.2363 0.2740 0.6211 0.3613 0.2371 0.0638 0.3442 0.6722

LLM-Streamline
20% (5.25B)

600k
0.7361 0.6037 0.6172 0.1761 0.5745 0.3191 0.3320 0.6324 0.4165 0.2470 0.5492 0.4731 0.9238

30% (4.64B) 0.6953 0.4204 0.5588 0.1974 0.5198 0.2850 0.3260 0.6330 0.3904 0.2381 0.2791 0.4130 0.8065
40% (4.04B) 0.6284 0.3430 0.5288 0.1966 0.4491 0.2304 0.2960 0.6217 0.3464 0.2311 0.1186 0.3627 0.7083

Short GPT
20% (5.25B)

600k
0.5044 0.2597 0.5051 0.1957 0.2668 0.2594 0.2720 0.3783 0.3515 0.2295 0.0000 0.2929 0.5720

30% (4.64B) 0.5065 0.2578 0.4917 0.1957 0.2597 0.2568 0.2860 0.3783 0.3418 0.2295 0.0000 0.2913 0.5687
40% (4.04B) 0.5065 0.2579 0.4878 0.1957 0.2601 0.2491 0.2980 0.3783 0.3454 0.2295 0.0000 0.2917 0.5695

Ours
20% (5.32B)

600k
0.7403 0.6126 0.6461 0.2146 0.5886 0.3278 0.3600 0.6666 0.4207 0.2567 0.6135 0.4952 0.9671

30% (4.66B) 0.7126 0.5321 0.6127 0.1998 0.5495 0.3069 0.3340 0.6496 0.4140 0.2512 0.5269 0.4627 0.9035
40% (3.99B) 0.6417 0.4926 0.5920 0.1966 0.4877 0.2874 0.3260 0.6382 0.3949 0.2464 0.4728 0.4342 0.8479
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Table 12: Performance of the different compression methods on Opt 2.7B in zero-shot setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (2.65B) - 0.7481 0.6063 0.6101 0.1990 0.5438 0.3131 0.3520 0.6027 0.4212 0.2567 0.6361 0.4808 1.0000

Slice GPT
20% (2.23B)

600k
0.6654 0.4682 0.5904 0.2031 0.4322 0.2637 0.3300 0.5257 0.3838 0.2415 0.4108 0.4104 0.8537

30% (1.94B) 0.6300 0.4228 0.5635 0.1966 0.4175 0.2585 0.3060 0.5168 0.3705 0.2316 0.3551 0.3881 0.8072
40% (1.66B) 0.5865 0.3674 0.5343 0.1957 0.3742 0.2509 0.2820 0.3982 0.3602 0.2301 0.2880 0.3516 0.7313

LaCo
20% (2.10B)

600k
0.6697 0.4629 0.5612 0.1957 0.4356 0.2782 0.3080 0.6223 0.3899 0.2436 0.4768 0.4222 0.8781

30% (1.86B) 0.6197 0.3677 0.5627 0.2113 0.3699 0.2415 0.2880 0.5832 0.3853 0.2330 0.1469 0.3645 0.7581
40% (1.63B) 0.5762 0.3006 0.5193 0.1957 0.3308 0.2261 0.2920 0.5920 0.3561 0.2312 0.0279 0.3316 0.6897

LLM-Streamline
20% (2.10B)

600k
0.7100 0.5471 0.6038 0.1974 0.5097 0.2867 0.3240 0.6058 0.4053 0.2537 0.5692 0.4557 0.9478

30% (1.86B) 0.6763 0.4016 0.5438 0.1966 0.4609 0.2585 0.3160 0.6012 0.3756 0.2344 0.2876 0.3957 0.8230
40% (1.63B) 0.6023 0.3122 0.5114 0.1949 0.3788 0.2150 0.2760 0.6119 0.3454 0.2298 0.0778 0.3414 0.7101

Short GPT
20% (2.10B)

600k
0.6692 0.4476 0.5745 0.1941 0.4457 0.2696 0.3080 0.5929 0.3904 0.2315 0.3155 0.4035 0.8393

30% (1.86B) 0.5354 0.2715 0.5083 0.1982 0.3081 0.2381 0.2600 0.3789 0.3459 0.2301 0.0029 0.2979 0.6197
40% (1.63B) 0.5152 0.2677 0.5067 0.1974 0.2908 0.2500 0.2600 0.3810 0.3423 0.2315 0.0035 0.2951 0.6138

Ours
20% (2.11B)

600k
0.7235 0.5012 0.6088 0.2023 0.5139 0.2922 0.3460 0.6287 0.4243 0.2500 0.5666 0.4598 0.9563

30% (1.85B) 0.6908 0,4615 0.5741 0.1981 0.4724 0.2782 0.3180 0.6157 0.4132 0.2462 0.5407 0.4347 0.9042
40% (1.58B) 0.6642 0.4205 0.5449 0.1957 0.4486 0.2759 0.2940 0.5861 0.4020 0.2388 0.4584 0.4117 0.8564

Table 13: Performance of the different compression methods on Opt 6.7B in five-shot setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (6.66B) 0.7704 0.6797 0.6598 0.1867 0.6982 0.3703 0.3920 0.7012 0.4785 0.2634 0.6451 0.5314 1.0000

Slice GPT
20% (5.49B)

600k
0.7187 0.5652 0.6211 0.1981 0.5984 0.3293 0.3600 0.5492 0.4206 0.2622 0.4189 0.4583 0.8625

30% (4.77B) 0.6921 0.5221 0.6314 0.1826 0.5699 0.3063 0.3280 0.5318 0.4124 0.2553 0.3623 0.4358 0.8202
40% (4.07B) 0.6561 0.4669 0.5912 0.1859 0.5173 0.2790 0.3220 0.5028 0.3935 0.2666 0.2925 0.4067 0.7654

LaCo
20% (5.25B)

600k
0.6915 0.5318 0.6069 0.2146 0.5244 0.3038 0.3280 0.6217 0.4355 0.2595 0.4935 0.4556 0.8573

30% (4.64B) 0.6170 0.3914 0.5375 0.1998 0.4411 0.2730 0.2840 0.6220 0.3817 0.2549 0.1300 0.3757 0.7069
40% (4.04B) 0.5919 0.3399 0.5312 0.1949 0.3733 0.2406 0.2660 0.6211 0.3541 0.2542 0.0324 0.3454 0.6500

LLM-Streamline
20% (5.25B)

600k
0.7426 0.6207 0.5943 0.2006 0.6485 0.3455 0.3700 0.6519 0.4600 0.2522 0.5356 0.4929 0.9275

30% (4.64B) 0.6219 0.3529 0.5099 0.1810 0.4428 0.2338 0.2640 0.5927 0.3572 0.2496 0.0714 0.3525 0.6633
40% (4.04B) 0.5811 0.2982 0.4964 0.1998 0.3577 0.2167 0.2560 0.5838 0.3326 0.2433 0.0213 0.3261 0.6136

Short GPT
20% (5.25B)

600k
0.5060 0.2606 0.5233 0.1957 0.2622 0.2594 0.2680 0.3783 0.3490 0.2295 0.0000 0.2938 0.5529

30% (4.64B) 0.4984 0.2562 0.4957 0.1957 0.2563 0.2474 0.2800 0.3783 0.3423 0.2295 0.0000 0.2891 0.5440
40% (4.04B) 0.5054 0.2552 0.4972 0.1957 0.2546 0.2534 0.2820 0.3783 0.3464 0.2295 0.0000 0.2907 0.5470

Ours
20% (5.32B)

600k
0.7647 0.6255 0.6319 0.2080 0.6477 0.3423 0.3720 0.6729 0.4683 0.2610 0.6032 0.5089 0.9576

30% (4.66B) 0.7323 0.5273 0.6221 0.1909 0.5905 0.3167 0.3520 0.6461 0.4468 0.2547 0.5081 0.4716 0.8874
40% (3.99B) 0.6896 0.4673 0.6038 0.1959 0.5343 0.2819 0.3320 0.6086 0.4292 0.2501 0.3951 0.4353 0.8191

Table 14: Performance of the different compression methods on Opt 2.7B in five-shot setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (2.65B) - 0.7481 0.6068 0.6204 0.1884 0.6469 0.3311 0.3580 0.6272 0.4550 0.2579 0.6010 0.4946 1.0000

Slice GPT
20% (2.23B)

600k
0.6757 0.4632 0.5770 0.1933 0.5080 0.2918 0.3100 0.4205 0.4099 0.2457 0.3037 0.3999 0.8085

30% (1.94B) 0.6322 0.4179 0.5746 0.2015 0.4609 0.2551 0.3000 0.4477 0.3991 0.2538 0.2663 0.3826 0.7736
40% (1.66B) 0.5936 0.3612 0.5383 0.2080 0.3880 0.2449 0.2800 0.4349 0.3756 0.2480 0.1974 0.3518 0.7113

LaCo
20% (2.10B)

600k
0.6746 0.4600 0.5825 0.1925 0.4886 0.2824 0.2900 0.6217 0.4252 0.2628 0.4221 0.4275 0.8643

30% (1.86B) 0.6186 0.3690 0.5588 0.1900 0.3986 0.2491 0.2600 0.6211 0.3705 0.2465 0.1025 0.3622 0.7324
40% (1.63B) 0.5745 0.2973 0.5130 0.2023 0.3350 0.2287 0.2600 0.6208 0.3561 0.2366 0.0155 0.3309 0.6690

LLM-Streamline
20% (2.10B)

600k
0.7198 0.5554 0.6006 0.1990 0.5871 0.3012 0.3260 0.6000 0.4385 0.2512 0.4925 0.4610 0.9321

30% (1.86B) 0.6436 0.4228 0.5138 0.1818 0.4524 0.2627 0.2720 0.5422 0.3689 0.2570 0.2327 0.3773 0.7628
40% (1.63B) 0.5539 0.2823 0.5075 0.1990 0.3338 0.2099 0.2500 0.5673 0.3336 0.2505 0.0165 0.3186 0.6441

Short GPT
20% (2.10B)

600k
0.6442 0.4013 0.5604 0.1916 0.4566 0.2637 0.2980 0.5621 0.3935 0.2505 0.1970 0.3835 0.7754

30% (1.86B) 0.5152 0.2553 0.5257 0.1966 0.2727 0.2457 0.2800 0.3783 0.3413 0.2295 0.0000 0.2946 0.5956
40% (1.63B) 0.5011 0.2572 0.5193 0.2007 0.2685 0.2654 0.2820 0.3783 0.3413 0.2342 0.0000 0.2953 0.5970

Ours
20% (2.11B)

600k
0.7107 0.5642 0.6099 0.1901 0.5835 0.3101 0.3320 0.6300 0.4302 0.2534 0.5110 0.4659 0.9420

30% (1.85B) 0.6794 0.4540 0.5741 0.2015 0.5243 0.2894 0.3300 0.5701 0.4291 0.2588 0.4518 0.4330 0.8754
40% (1.58B) 0.6518 0.4096 0.5551 0.1966 0.4827 0.2777 0.3080 0.5498 0.4230 0.2503 0.3678 0.4066 0.8220
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Table 15: Performance of the different compression methods on Qwen3-8B-Base with five shots
setting. The pretrained backbone and its compressed variants are evaluated on the same set of
benchmarks and compression rates as in Table 1.

Method CR PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (8.19B) 0.815 0.795 0.770 0.856 0.880 0.681 0.490 0.882 0.572 0.770 0.671 0.744 1.000
20% (6.52B) 0.714 0.632 0.686 0.329 0.747 0.462 0.396 0.781 0.496 0.356 0.527 0.557 0.749
30% (5.71B) 0.676 0.553 0.642 0.275 0.621 0.361 0.370 0.696 0.443 0.275 0.456 0.488 0.656Slice GPT
40% (4.91B) 0.627 0.451 0.594 0.201 0.494 0.279 0.318 0.614 0.415 0.255 0.363 0.419 0.564
20% (6.65B) 0.736 0.651 0.671 0.709 0.748 0.493 0.406 0.534 0.503 0.604 0.546 0.600 0.807
30% (5.88B) 0.694 0.535 0.600 0.506 0.629 0.358 0.318 0.673 0.456 0.408 0.471 0.514 0.690LaCo
40% (5.10B) 0.617 0.403 0.572 0.215 0.487 0.297 0.276 0.623 0.402 0.251 0.256 0.400 0.538
20% (6.65B) 0.774 0.613 0.561 0.238 0.769 0.446 0.402 0.548 0.477 0.268 0.462 0.505 0.680
30% (5.88B) 0.724 0.500 0.553 0.194 0.673 0.338 0.346 0.450 0.418 0.243 0.310 0.432 0.580LLM-Streamline
40% (5.10B) 0.608 0.364 0.568 0.196 0.392 0.266 0.310 0.451 0.382 0.230 0.010 0.343 0.462
20% (6.65B) 0.574 0.301 0.494 0.197 0.353 0.260 0.252 0.592 0.346 0.247 0.003 0.329 0.443
30% (5.88B) 0.561 0.278 0.494 0.195 0.327 0.227 0.252 0.493 0.347 0.256 0.002 0.312 0.420Short GPT
40% (5.10B) 0.540 0.258 0.512 0.198 0.307 0.230 0.256 0.417 0.348 0.229 0.000 0.300 0.403
20% (6.55B) 0.788 0.718 0.730 0.796 0.819 0.540 0.442 0.853 0.546 0.660 0.653 0.686 0.922
30% (5.74B) 0.753 0.654 0.679 0.658 0.737 0.442 0.392 0.786 0.511 0.501 0.574 0.608 0.817Ours
40% (4.91B) 0.724 0.587 0.637 0.526 0.680 0.402 0.352 0.775 0.463 0.404 0.487 0.549 0.738
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D ON KNOWLEDGE PRESERVATION VIA ADAPTER FOLDING

This section provides additional evidence for the claim that adapter folding better preserves pre-
trained knowledge than conventional low-rank compression. We present (i) an empirical compari-
son between adapt-before-folding and train-after-folding pipelines under matched rank and training
budget, and (ii) an intuitive small-scale example that clarifies why learned adapters can retain more
of the original transformation than truncation-first strategies.

D.1 EMPIRICAL COMPARISON OF RECONSTRUCTION FIDELITY

We compare our default PnF pipeline (adapt-before-folding) with the baseline (train-after-folding)
under the same compression ratio (20%) and the same training budget (600K samples). In the
baseline, the model is first reduced to the target rank r (i.e., rhead, rinter) using a low-rank projector,
and the resulting compressed weights are directly fine-tuned without any adapters. In PnF, the
pretrained backbone is frozen, only lightweight adapters are trained with KL-distillation, and the
adapters are folded into a dense matrix after training. Table 16 reports zero-shot performance for
Qwen-3-4B-Base compressed to 20% across a diverse set of benchmarks. At a fixed rank and
training budget, PnF consistently outperforms the train-after-folding baseline on most tasks as well
as on the averaged metric, indicating that adapter-based parameterization preserves the pretrained
model’s behavior more effectively than directly training on truncated weights.

Table 16: Comparison between baseline (train-after-folding) and PnF (adapt-before-folding) at 20%
compression on Qwen-3-4B-Base. All models are trained for 600K samples.

Method Comp.(%)PIQA HS WG CSQAARC-eARC-cOBQABoolQSIQAMMLU LD Avg

Baseline 20% 0.704 0.6360.642 0.740 0.675 0.416 0.334 0.772 0.473 0.607 0.6210.602
PnF 20% 0.736 0.6620.669 0.779 0.704 0.435 0.382 0.783 0.501 0.657 0.6510.632

D.2 TOY EXAMPLE: TRUNCATION-FIRST VS. ADAPT-BEFORE-FOLDING

To build intuition, we contrast the backbone transformation, a truncation-first strategy, and our adapt-
before-folding scheme on a simple 2× 3 example.

Let

x =

[
a
b

]
, W =

[
c d e
f g h

]
∈ R2×3.

Backbone. The original pretrained transformation is

fW (x) = x⊤W = [a b]

[
c d e
f g h

]
= [ac+ bf ad+ bg ae+ bh] .

Truncation-first. A truncation-first strategy applies a fixed selector S ∈ R3×2 that drops the third
column, e.g.

S =

[
1 0
0 1
0 0

]
, W Trunc = WS =

[
c d
f g

]
.

The compressed transformation becomes

fW Trunc(x) = x⊤W Trunc = [a b]

[
c d
f g

]
= [ac+ bf ad+ bg] .
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Here the contribution of the third column (e, h) is discarded by construction; the compressed model
can only exploit the first two columns of W .

Adapt-before-folding (PnF). In PnF, we instead introduce a learnable adapter P ∈ R3×2 and
keep W frozen. For illustration, write

P =

[
i j
k l
m n

]
, WComp = WP.

Then

fW Comp(x) = x⊤WComp = x⊤WP = [a b]

[
c d e
f g h

][ i j
k l
m n

]

= [(ac+ bf)i+ (ad+ bg)k + (ae+ bh)m (ac+ bf)j + (ad+ bg)l + (ae+ bh)n] .

Although WComp also has only two output dimensions, every entry of the original W (including e
and h) participates in the product WP and can still influence fW Comp(x) through the learned coeffi-
cients (i, j, k, l,m, n). The adapter P is optimized so that fW Comp(x) ≈ fW (x) on the training dis-
tribution, effectively redistributing the contribution of all columns of W into the lower-dimensional
representation. This toy example highlights the qualitative difference between truncation-first and
adapt-before-folding: truncation irrevocably removes part of the pretrained weights, whereas PnF
retains the full pretrained matrix and learns how to compress it via a data-driven adapter.

E TRAINING COST AND PRACTICAL EFFICIENCY OF PNF

In this section, we provide the experimental results with a cost-performance analysis of PnF. Ta-
ble 17 reports training latency and average downstream zero-shot performance for Qwen-3-4B-
Base compressed to 20% on an 8×H100 configuration under two training regimes: a single-
stage non-sequential variant, where all adapters are trained at once, and the group-wise sequential
schedule used in our main experiments. At a compression ratio (20%) and training budget
(600K samples), non-sequential (all-at-once) PnF uses a single-stage training loop similar in struc-
ture to standard fine-tuning, yet it already recovers strong performance surpasses the baselines
(LaCo: 0.559 vs. PnF: 0.602). By contrast, group-wise sequential training increases recovery
phase by roughly a factor of three, but yields a clear additional gain in average performance
(0.602→ 0.633). Importantly, the proposed group-wise sequential training schedule is optional for
our method to work rather than a requirement of PnF: the non-sequential “all-at-once” PnF training
already provides a competitive cost–performance trade-off, and practitioners can choose the config-
uration that best fits their resources, using the single-stage variant when wall-clock time is limited
and the multi-stage variant when the highest possible performance is desired.

Table 17: Training latency and average performance for the two PnF training regimes on Qwen-3-
4B-Base (20% compression, 600K samples, 8×H100).

Regime # Groups Training latency (h) GPU hours Avg. performance

Non-sequential training 1 8.21 65.7 0.602
Sequential training 4 23.32 186.6 0.633

F ADDITIONAL COMPARISONS WITH SVD-LLM AND BITDISTILLER

We provide additional baseline comparisons to SVD-LLM(Wang et al., 2024) and BitDistiller (Du
et al., 2024) at a common 20% compression ratio on LLaMA-2-7B, in order to offer a more com-
prehensive and fair evaluation against structured low-rank and quantization/distillation baselines.
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F.1 COMPARISON WITH SVD-LLM

Following the experimental setup of the original SVD-LLM paper, we use LLaMA-2-7B and eval-
uate PnF at a 20% compression ratio on the shared tasks: PIQA, HellaSwag, WinoGrande, ARC-e,
OpenBookQA, GSM8K, MathQA, and TruthfulQA. The results for PnF are obtained under our
standard PnF training pipeline, and the numbers for SVD-LLM are taken from (Wang et al., 2024)
under the same compression ratio and backbone. At this 20% setting, PnF attains a higher average
performance than SVD-LLM.

Table 18: Performance comparison between PnF and SVD-LLM on LLaMA-2-7B at 20% compres-
sion.

Method PIQA HellaSwag WinoGrande ARC-e OpenBookQA GSM8K MathQA TruthfulQA Avg.

SVD-LLM 0.69 0.52 0.68 0.59 0.33 0.08 0.26 0.28 0.43
PnF 0.76 0.56 0.69 0.73 0.33 0.09 0.26 0.38 0.48

F.2 COMPARISON WITH BITDISTILLER

BitDistiller (Du et al., 2024) is a low-bit quantization framework that integrates quantization-aware
training with self-distillation, whereas PnF focuses on structured compression. Because BitDis-
tiller applies only quantization, exact model-size matching with our method, which uses structured
compression, is difficult. Nonetheless, we adopt the same backbone (LLaMA-2-7B) and compare
the performance of BitDistiller with 3-bit quantization to PnF with 20% compression rate with ad-
ditional 4 bit quantization. Even under this conservative setting (quantization-only vs. structured
compression + quantization), PnF+quant. achieves higher or comparable downstream performance
than the 3-bit BitDistiller model.

Table 19: Benchmark comparison between BitDistiller and PnF with 4-bit quantization on LLaMA-
2-7B.

Method PIQA HellaSwag WinoGrande ARC-c MMLU Avg.

BitDistiller 0.7699 0.5538 0.6835 0.4121 0.4465 0.5732
PnF + quant. 0.7673 0.5645 0.6941 0.4184 0.4285 0.5746

G ADDITIONAL COMPARISONS WITH LLM-PRUNER AND DISP-LLM

We provide additional baseline comparisons with LLM-Pruner (Ma et al., 2023) and DISP-
LLM (Gao et al., 2024b) at a 20% compression ratio on LLaMA-2-7B, to offer a more compre-
hensive evaluation against latest structured compression methods.

G.1 COMPARISON WITH LLM-PRUNER

For a fair comparison, we align with the experimental setting of LLM-Pruner by adopting LLaMA-2-
7B and comparing results at a 20% compression ratio on the shared benchmarks (PIQA, HellaSwag,
WinoGrande, ARC-e, ARC-c, OpenBookQA, and BoolQ). The results for LLM-Pruner are sourced
from (Ma et al., 2023), and our PnF results are obtained under the same backbone and compression
ratio. Under this setting, as summarized in Table 20, PnF attains a higher average performance than
LLM-Pruner.

G.2 COMPARISON WITH DISP-LLM

We additionally compare PnF with DISP-LLM (Gao et al., 2024b), another latest structured com-
pression approach. Using LLaMA-2-7B and the same 20% compression setting, we place our PnF
results alongside the DISP-LLM performance reported in (Gao et al., 2024b) on the overlapping
benchmarks. PnF again achieves higher average performance.
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Table 20: Benchmark comparison between LLM-Pruner and PnF on LLaMA-2-7B at 20% com-
pression.

Method PIQA HellaSwag WinoGrande ARC-e ARC-c OpenBookQA BoolQ Avg.

LLM-Pruner 0.76 0.68 0.65 0.63 0.38 0.40 0.70 0.60
PnF (LLM-Pruner) 0.78 0.70 0.69 0.73 0.41 0.42 0.75 0.62

Table 21: Benchmark comparison between DISP-LLM and PnF on LLaMA-2-7B at 20% compres-
sion. “–” denotes a missing value.

Method PIQA HellaSwag WinoGrande ARC-e ARC-c Avg.

DISP-LLM 0.77 0.68 0.65 0.65 0.37 0.62
PnF (DISP-LLM) 0.78 0.70 0.69 0.73 0.41 0.66

H INFERENCE LATENCY ANALYSIS

We present supplemental results analyzing the practical impact of compression on generation speed.
We measure the average per-token generation latency (in milliseconds) for the original backbone,
SliceGPT (Ashkboos et al., 2024), and PnF on Qwen3-4B-Base using a single H100 GPU under
different compression ratios (0%, 20%, 30%, and 40%). As shown in Table 22, the average per-
token latency decreases as the compression ratio increases for both PnF and SliceGPT.

Table 22: Average per-token generation latency (ms) of SliceGPT and PnF at different compression
ratios on Qwen3-4B-Base with 1×H100. Here, 0% means that the model is not compressed.

Method 0% 20% 30% 40%

SliceGPT 29.126 ms 22.299 ms 22.120 ms 22.099 ms
PnF 29.126 ms 22.081 ms 21.719 ms 21.559 ms

I COMPATIBILITY WITH LOW-BIT QUANTIZATION

To evaluate the deployment efficacy of PnF, we additionally examine whether the folded matrices,
WComp = WP , produced by PnF introduce distributional shifts that complicate low-bit quantization
compared to the original weight. To this end, we apply the same 4-bit post-training quantization
pipeline to both the uncompressed Qwen3-4B-Base model and its PnF-compressed variants at 20%,
30%, and 40% compression ratios. The results are summarized in Table 23. For the uncompressed
baseline, 4-bit quantization reduces the average score from 0.6789 to 0.6441, a 5.13% relative drop.
For PnF, the corresponding drops are 0.6329 → 0.6244 (1.13%), 0.5713 → 0.5454 (4.53%), and
0.4971 → 0.4720 (5.05%), for 20%, 30%, and 40% compression, respectively. In other words,
the quantization-induced degradation for PnF model does not exceed that of full-size backbone.
These results provide empirical evidence that the folded weights, WComp, do not introduce harmful
outliers that would harm the quantization pipeline, and, therefore, fully compatible with standard
4-bit post-training quantization pipelines.
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Table 23: 4-bit post-training quantization results on Qwen3-4B-Base and its PnF-compressed vari-
ants. “Drop rate” denotes the relative performance drop compared to the corresponding FP16 model.

Method Comp. Ratio PIQA HS WG CSQA ARC-e ARC-c OBQA BoolQ SIQA MMLU LAMBADA Avg Drop rate

Baseline 0% (4.02B) 0.7786 0.7364 0.7032 0.8272 0.7597 0.5162 0.4120 0.8299 0.5015 0.7131 0.6898 0.6789 0
Baseline (4bit) 0% (4.02B) 0.7758 0.7200 0.6811 0.7721 0.7214 0.4906 0.3940 0.8086 0.4918 0.6774 0.5525 0.6441 5.13% (↓)
Ours 20% (3.22B) 0.7363 0.6622 0.6690 0.7790 0.7044 0.4358 0.3820 0.7837 0.5013 0.6573 0.6514 0.6329 0
Ours 30% (2.82B) 0.7118 0.5878 0.6177 0.6275 0.6649 0.3803 0.3620 0.7485 0.4639 0.5243 0.5951 0.5713 0
Ours 40% (2.41B) 0.7015 0.5134 0.5874 0.4195 0.5517 0.3095 0.3420 0.6846 0.4210 0.3949 0.5423 0.4971 0

Ours (4bit) 20% (3.22B) 0.7341 0.6436 0.6611 0.7424 0.6704 0.4221 0.3660 0.7632 0.4839 0.6209 0.5549 0.6244 1.13% (↓)
Ours (4bit) 30% (2.82B) 0.7142 0.5698 0.6091 0.5759 0.6489 0.3760 0.3520 0.7054 0.4481 0.5002 0.5000 0.5454 4.53% (↓)
Ours (4bit) 40% (2.41B) 0.6874 0.4985 0.5743 0.4021 0.5349 0.2969 0.3160 0.6547 0.4063 0.3765 0.4439 0.4720 5.05% (↓)

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

J STATEMENT OF LARGE-LANGUAGE-MODEL (LLM) USAGE

The authors acknowledge that a large-language-model (LLM) was employed as a general-purpose
assistance tool during the preparation of this manuscript. Specifically, the following tasks were
supported by the LLM under the direct supervision of the authors:

• Formatting and LaTeX assistance – The LLM supplied LaTeX snippets for tables, equa-
tions, and figure captions (e.g., Table 5 and the hyper-parameter description). The authors
integrated these snippets into the manuscript and performed all final compilation and for-
matting checks.

• Language polishing – The LLM was used to improve readability, correct grammar, and
adjust stylistic tone across the entire manuscript. The final wording reflects the authors’
own decisions after thorough review.

All content generated by the LLM was fully supervised, fact-checked, and substantially revised by
the human authors before inclusion in the final version. No portion of the manuscript was submitted
to the LLM for autonomous generation without subsequent author verification.

The authors affirm that the intellectual contributions, experimental design, data analysis, and conclu-
sions are entirely their own work, and that the LLM served only as an auxiliary writing and editing
aid.
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