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ABSTRACT

Large Language Models (LLMs) have achieved remarkable performance across
a wide range of tasks, but their growing size poses significant challenges for de-
ployment and efficiency. Among existing model compression methods, structured
pruning has emerged as a popular approach for reducing model size. However,
pruning removes structural components such as layers, heads, or channels, which
can disrupt pre-trained weights and lead to fragile recovery fine-tuning process. In
this work, we propose Plug-and-Fold (PnF), a weight-preserving yet structurally
effective compression method. Rather than removing weights or modifying the
model architecture, PnF introduces lightweight, learnable adapter modules into
the projection layers of attention and feed-forward networks. These adapters
are trained while keeping the original weights frozen, and are later folded into
the base weights via simple matrix multiplications. This process yields a com-
pressed model that is structurally identical to the original and incurs no additional
runtime overhead. We evaluate PnF across a variety of benchmarks and model
scales, demonstrating consistent improvements over recent state-of-the-art struc-
tured compression baselines. Our results highlight that preserving the integrity of
pretrained weights not only simplifies the compression pipeline, but also improves
generalization and performance recovery in compressed LLMs.

1 INTRODUCTION

Large language models (LLMs) based on the Transformer (Vaswani et al., |2017) have achieved
remarkable progress across various domains, including natural language processing (Zhao et al.,
2023} Jiang et al.| |2024a; [Radford et al., [2018), code generation (Jiang et al. |2024b), computer
vision (Liu et al.| [2023aj [Hamadi, [2023)), and scientific applications (Zhang et al., [2025} |Lin et al.,
2023). This progress is attributable to two factors: (1) scaling model size to billions to trillions of
parameters (Team et al., 2024} Islam & Moushil 2025} [Team et al.| |[2025; Zhang & Sennrich, 2019)
and (2) pre-training on massive, diverse corpora (Langlais et al., {2025} [Liu et al., [2024)). Together,
these endow LLMs with deep language understanding and ability to generate high-quality code, text,
and multi-modal contents.

Despite these successes, their massive arameter sizes pose critical challenges: they require large
storage, memory footprints, increase inference latency, and substantial computation for training and
deployment, especially in resource-constrained settings. To address these practical limitations, a
substantial body of research has focused on model compression techniques that shrink the footprint
while preserving performance. These methods can be grouped into three principal categories: (1)
knowledge distillation, which transfers capabilities from a large teacher to a smaller student (Hinton,
2014} |Ojha et al.| 2023; |Agarwal et al.l 2023} Bing et al., 20255 |Cui et al., [2025); (2) quantization,
which lowers numerical precision to save memory and accelerate inference (Liu et al., [2023b; |L1
et al.l 2024b; [Shang et al., 2023} [Hu et al 2025} |An et al., 2025); and (3) pruning, a structured
approach that removes redundant channels, heads, or layers (Voita et al., |2019; |Gao et al., [2024b;
Ma et al.} 2023 |Ashkboos et al., 2024; Men et al., 2024; Mugnaini et al.| 2025} |Yang et al., [2024)).

Pruning gained a lot of attention since it leverages the pre-trained weights of the original model
and typically does not require to training a new network from the ground up. Moreover, once
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the unnecessary components have been eliminated, the resulting model can be further compressed
through quantization, yielding additional reductions in memory consumption and inference latency.
In the context of LLMs, most prior works on pruning focuses on three kinds of structural reductions:
(i) deleting channels from the projection weights in attention and feed-forward network (Ashkboos
et al.||2024;|Gao et al.,2024b;|Ma et al.,|2023)), (ii) removing heads in the multi-head attention (Voita
et al., |2019; Mugnaini et al., 2025), and (iii) pruning whole transformer layers (Yang et al., 2024;
Men et al.,|2024). The selection of components to prune is guided by metrics that estimate the impact
of removal, such as the magnitude of weight and activation (Sun et al.), cosine similarity (Men et al.,
2024)), or the L2-norm (Ashkboos et al., 2024). Although pruning leaves the overall transformer
architecture intact, it disrupts parameters that were carefully tuned during large-scale pretraining,
leading to inevitable performance loss. Consequently, many approaches incorporate a recovery fine-
tuning (RFT) stage to restore accuracy, often employing the lightweight adapter like LoRA (Voita
et al., [2019; |Gao et al., | 2024b; Ma et al., [2023; |Ashkboos et al.| 2024} |Men et al.| 2024} [Mugnaini
et al., 2025; |Yang et al.l [2024). However, the recovery process can be fragile: even extensive RFT
often fails to fully restore the performance of precisely optimized foundation models.

To overcome these limitations, we propose a weight-preserving structured compression that retain
the integrity of pretrained weight while still achieving substantial efficiency gains. Our method,
Plug-and-Fold (PnF), inserts lightweight, learnable adapter modules into the original projection ma-
trices of the attention and feed-forward sub-layers rather than removing heads, channels, or layers.
During training, only the adapters are updated while the pretrained weights remains completely
frozen, preserving the expressivity and knowledge encoded in the original model. Once training
is complete, the adapters are folded back into the base weights by simple matrix multiplications,
resulting in a compressed model that is structurally identical to the original. Because no architec-
tural modification is introduced and no extra operations are required during inference, PnF can be
integrated seamlessly into existing serving frameworks and hardware accelerators.

We evaluate PnF with extensive experiments covering a broad spectrum of model sizes and com-
pression rates. To validate its effectiveness, PnF is benchmarked against the latest state-of-the-art
structured-compression baselines on a diverse set of tasks that demand varied domain knowledge
and comprehensive capabilities. Across all settings, PnF consistently surpasses existing methods,
delivering notable gains in downstream performance. These results show that preserving the in-
tegrity of pretrained weights not only yields a simpler and more scalable compression pipeline, but
also enhances the recovery of accuracy and the generalization ability of the compressed models.

The main contributions of our paper are summarized as follows:

* We propose Plug-and-Fold (PnF), a novel weight preserving structured compression
method that inserts lightweight, learnable adapter modules into the original projection lay-
ers without modifying the model architecture.

 After training, the adapters are folded into the base weights via simple matrix multiplica-
tions, resulting in a compressed model that is structurally identical to the original model
and reduces runtime effectively.

» Extensive experiments demonstrate that PnF outperforms recent state-of-the-art
structured-compression baselines across a wide range of model scales and benchmark tasks,
confirming its effectiveness and scalability.

2 BACKGROUND

2.1 DECODER-BASED TRANSFORMER ARCHITECTURE

Large Language Models (LLMs) primarily leverage a decoder-based Transformer architecture com-
posed of stacked decoder blocks. These blocks consist of two core components: the Multi-Head

Self-Attention (MHSA) mechanism and the Feed Forward Network (FFN). These components form
the core layers of decoder blocks, enabling sequential data processing and contextual understanding.

2.1.1 MULTI-HEAD SELF-ATTENTION (MHSA)

The MHSA mechanism enables the model to dynamically weight and aggregate contextual informa-
tion from different positions in the input sequence by utilizing attention heads. Formally, let the [-th
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decoder block takes input hidden state X (=1) ¢ R*demtes  wwhere n and dempeq 1S the length and
the dimension of the input, respectively. For the i-th attention head, 7 € {1,--- ,n;}, the MHSA

mechanism computes the query vectors Qz(-l) € R™¥dea | key vectors K. i(l) € R™*deaand value
vectors Vl-(l) € R™*die gg follows:

QY = XU, KO = X0, O = XD, g

i

where WQm, Wew, Wyo € Rembea Xdheat gre the learned weight parameters for query, key, and

value projections, and dpeyq is the dimension of the head (often dpeyq = djl"—‘:ed). Then, the self-
) :

attention operation is applied to each triple (Q,", K, i(l), Vi(l)) and computes the attention output of

the ¢-th head ZZ.(l) as follows:

le)(Ki(l))T)V(l) o
Vi v

where /dj is a scaling factor applied to ensure numerical stability. To represent comprehensive
contextual information, these outputs from individual heads are concatenated and transformed as
follows:

Zl(l) = Attention(le)a Ki(l)7 ‘/z(l)) = SOftIIlﬁX(

Z(l) = COHC&t(Z{l), - aZ;(Ll))Wo(l) c Rnxdembed7 (3)

where Concat(-) is the concatenation operation and Wy € R(hdna)xdenies s learned weight pa-
rameters for output.

2.1.2 FEED-FORWARD NETWORK (FFN)

Following the MHSA mechanism, the output is passed through a Feed Forward Network (FFN) to
enhance the model’s capacity to process through non-linear transformations and increased number
of parameters. The FFN is often applies linear transformations separated by a nonlinear activation
function o(+) (e.g., SILU(Elfwing et al., 2018)). For example, SwiGLU (Shazeer, |2020) module is
defined as follows:

SWiGLU(Z(l)) = (O(Z(Z)Wgatem) © Z(Z)Wupm)wdown(l) 4)

where o is the Swish activation function (Ramachandran et al., [2018) , and Wga[eu), Wupu) S
Rbembea X diner and W) € Rimer*dentesgre learnable parameters with the intermediate dimension

dinter .

3 METHOD

In this section, we present Plug-and-Fold (PnF) compression, a straightforward yet effective com-
pression method for large language models, whose complete workflow is illustrated in Figure
The main objective of this method is to preserve the original projection weight during training while
reducing their dimensionality, yeidling a compact model that maintains the original signal.

Section introduce the PnF adapter, a foldable compression module plugged into the original
projection weights and trained to induce low-dimensional projection while preserving the original
signal. Section[3.2]presents training schemes used to train these adapters effectively. Finally, Section
describes how the trained PnF adapters are folded into low-dimensional projection weights,
producing a compact model that is computationally efficient while preserving performance suitable
for deployment.

3.1 PLUG-AND-FOLD (PNF) COMPRESSION
3.1.1 PLUG-AND-FOLD (PNF) ADAPTER

In order to preserve the original signal while training, Plug-and-Fold adapters are plugged into the
pre-trained model. Given a pre-trained linear weight W € R™*", we define the PnF adapter as a
linear projection:

P eR™", 5)

!'Snowflake and Fire icons created by Freepik — Flaticon
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Figure 1: Visualization of Plug-and-Fold framework. The top half illustrates the training
phase: lightweight PnF adapters are plugged into the pretrained linear layers and project to a
reduced-dimensional space; the backbone weights remain frozen (shown as snowflakes), while
the adapters are the only trainable components (shown as fire), enabling them to fully leverage
the already-optimized structure. The bottom half shows the evaluation phase: after training, each
adapter is folded back into its corresponding weight matrix via a simple matrix multiplication, yield-
ing a compressed model that preserves the original architecture, interface, and performance.

where r < n. The adapter is applied to W and subsequently trained to recover the performance of
the original model. Formally, our aim is to find an adapter P that satisfies:

P(W)~P(WP), (6)

where P(-) denotes the performance measures on various tasks induced by the corresponding
weight. Consequently, projecting the weights through the trained adapter P that satisfies Eq. (6)
yields output representations in the reduced-dimensional space (r-dimension), while preserving a
quality comparable to that of the full-size model. i.e., this projection yields compact representations
that preserve the fidelity of the original weight matrix, allowing highly efficient deployment across
a broad range of downstream tasks.

3.1.2 PNF ADAPTER FOR MHSA

We now explain how PnF adapter is integrated into the MHSA layer of an LLM. Let the projection

weights for queries, keys, values and the output at layer [ be WQU) , WK“) ,W. v € Rembea X dhead

and Wy € R(7ndheaa) X demiea \where ny, is the number of attention heads. For each of these matrices,
we plug in a corresponding PnF adapter with dimension rpeaq < dpead:

(1) (1)
PQEZ)’ PK’.(Z), PV_(Z) S Rdhe“dxrhead, and Py € R (P Theaa) X (M dnead) (7)

These adapters, multiplied with the original weights, produce lower-dimensional projections:

(O]
W. oP,u € TR dembed X Tieag

(1)
WK(z)PK(z) € R%embed X Theag
o ®)
)
W. (z)PV(z) € RdembedXT*‘eﬂd
f

v,
(n T(l))xd. .
PoayWoay € RV heat)  Gembed

Thus, each attention projection incorporates a learnable low-rank adapter. After training, folding the
adapter into the original weight via matrix multiplication gives substantial reduction in both memory
usage and computational overhead, while maintaining output quality of the uncompressed model.
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3.1.3 PNF ADAPTER FOR FEED FORWARD NETWORK

Next, we present the applicaiton of PnF adapters to the FFN. Let the gate, up-projection, and down-
projection at layer [ be Wgateu), Wup<z> € Rembea X diner g Wiown® € TR inter X dembed | respectively. For
these matrices, we introduce the corresponding PnF adapters:

dinter (D ) diner

Pga[e(l)7Pup(l) € R Tiner - and Piown® € R inter X Pint )

where ri(rfger < di(él)er. Multiplying these adapter with the original weights yields the compressed
projections: "
dembea X L)
Wgate(l)Pga[e(L) € TR Gembed X Tiper

)
Wup(l)Pup(l) € TR embed X Ty (10)

(O]
Pdown(l) Wdown(l) € Rrimer X dembed

Therefore, similar to that of the attention mechanism with PnF adapters above, each FFN layer is
equipped with a learnable low-rank adapter. Because the feed-forward network (FFN) comprises
the majority of a transformer’s parameters, folding the adapters into the original weights provides
substantial savings in both memory and computation.

3.2 TRAINING PIPELINE FOR PNF ADAPTER

To obtain PnF adapters with high fidelity, we propose a three-stage training pipeline: (i) Compres-
sion Planning that determines the per-layer degree of dimensionality reduction, (ii) Group-wise
Sequential Training that stabilizes optimization by sequentially training a small, isolated set of
adapters, and (iii) KL-divergence Distillation Loss that aligns the compressed model’s output dis-
tribution with the original model’s distribution.

Stage 1: Compression Planning Based on desired compression ratio (e.g., 20%), we first de-
termine the degree of reduction of dimensionality (i.e., r}(lgdd and ri(rfl)er) for each layer [. While the
allocation of reductions can be flexible, we recommend a pyramidal schedule where deeper layers
(closer to the language modeling head) are compressed more aggressively, and earlier layers receive
milder reductions. Prior work on layer pruning Men et al.| (2024); |(Gromov et al. (2024) shows that
later (upper) layers can often be removed with little impact on downstream performance, indicat-
ing that they contribute less to the model’s expressivity. Based on this finding, we allocate a larger

portion of the compression budget to the top of the model.

Because the reduction ratio can be explicitly set, the approach is highly flexible and can be tailored
to meet a user’s requirements. Our empirical studies reveal that applying a higher compression rate
to the FFN yields considerably better results than compressing the MHSA modules, and a concrete
example of this planning is provided in the Appendix

Stage 2: Group-wise Sequential Training Plugging all adapters at once might perturb the orig-
inal model’s signal at the beginning of training, inducing covariate shift and misleading gradients.
Alternatively, training a single adapter at a time preserves this signal but is prohibitively slow. To
address this issue, we introduce Group-wise Sequential Training. This training scheme trains small
groups of adapters in turn, retaining most of the signal preservation benefits while substantially
reducing training time and stabilizing convergence, which is further discussed in Section[4.3.1] For-
mally, we first partition the L transformer layers into disjoint groups of size N , starting from the
top of the model (output side) and moving downward. The k-th group is defined as:

Gy ={L—kN+1,--- ,L—(k—1)N}, k=1,2,---,ng, an)

where n, = | L/N| is the number of groups. Given the compression plan that specifies per-layer

reductions (i.e., réild and ri(rfl)er), we first identify which group contain layers slated for compression.

Then training proceeds sequentially from G, towards G,,,, .

At step k, if Gy, includes layers selected by the compression plan, we insert adapters only into those
layers and train them, while keeping the adapters trained in previous groups (G1, ..., Gr_1) frozen.
During this phase, only the parameters of current group are updated; all previous groups remain
frozen with their trained adapters, while remaining groups (Gi+1, "+ , Gn,) remain frozen without
adapters (i.e., in their original state).
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An instance of group-wise sequential training is illus-
trated in Figure [2] given L = 36 and N = 4, the
compression plan targeting layers 13 - 36 covers six
groups (Gi1,---,Gg). We train these six groups se-
quentially from the output side toward the input (i.e.,
G1 — -+ — Gg) while the lower 12 layers remain un-
compressed. By activating one small group per step and
keeping the remaining group fixed, this approach pre-
serves the backbone signal and improves optimization
stability.

Stage 3: KL-divergence Distillation Loss During
the group-wise sequential training for the adapters, we
adopt a Kullback-Leibler (KL) divergence loss. Specif-
ically, the logits of the PnF-plugged model are aligned
with those of the frozen backbone model by minimiz-
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Figure 2: Visualization of group-wise se-
quential training. Training proceeds group
by group, beginning with the output side. At
any step, only the current group G; is updated
while all other groups stay frozen, which pre-
serves the backbone signal and enhances op-
timization stability.

ing:

Ly = KL(pw|lpw p) 2)
where pyy and py p denote the predictive distribution of the backbone and the PnF-plugged models,
respectively.

We adopt a KL-divergence distillation loss for two reasons. First, the goal of compression is to pro-
duce a smaller model that reproduces the original model’s behavior. The KL-divergence can achieve
this by aligning the predictive distribution of student (PnF-plugged model) with the teacher (original
model). Second, recent studies (Bercovich et al.| [2024; Muralidharan et al., 2024} L1 et al., [2024a)
report that KL-based distillation often outperforms cross-entropy, yielding better downstream per-
formance.

3.3 DEPLOYMENT FOR INFERENCE

After the adapters are fully trained leveraging unhindered pre-trained weights, they can be seam-
lessly integrated into the backbone model. In MHSA, for example, each adapter is folded into its
corresponding pre-trained weight matrix via matrix multiplication:

Comp
w EI)PQEZ) — WQEZ)

Q
Comp
Wng)PKL(z) — WK.(” 13)
W, Py — WO
\AOER VO] v
i i f
Comp
Po(L) WO(z) — Wo(l)

A similar folding procedure applies to FFN, where each adapter is integrated into its corresponding
weight matrix:

Comp
anle(” Pgate(l) - W

g gate(D
Comp
Wup(z)Pup(z) — Wup(l) (14)
Comp
Pdown(l)Wdown(l) — Wdown(l>

The resulting weights directly replace the original model, reducing parameter counts and computa-
tional costs while preserving the model’s architectural structure and inference pipeline. This fold-in
operation has two key benefits. First, deployment is simple: the trained PnF adapters are folded into
the original weights via plain matrix multiplications—no auxiliary metrics, graph edits, or specialized
operators. Second, it ensures that the deployed model remains identical structure and interface to
the original model, which facilitates compatibility with existing serving frameworks and hardware
accelerators.

4 EXPERIMENTS

In this section, we first evaluate the PnF Compression method against several widely-used com-
pression methods across different compression rates and original model sizes, demonstrating its
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Table 1: Performance of the various compression methods on Qwen-3-8B-Base. The pretrained
backbone model and its compressed variants are evaluated across multiple benchmarks at several
compression rates. The best and second-best results at each compression rate are highlighted with
boldface and underline, respectively.

Method | CR | PIQA HS WG CSQA ARC-e ARC-c OBQA boolg SIQA mmlu Id | Avg | RP
Baseline 0% (8.19B)| 0793 0786 0724  0.860  0.801 0573 0410 0830 0547 0747 0709 | 0707 | 1.000

20% (6.52B)] 0.716  0.617  0.665 0.195 0.644 0401 0376 0.749 0418 0247 0571 | 0509 | 0.720
Slice GPT 30% (5.71B)| 0.667  0.544  0.624  0.199 0511 0317 0362 0.601 0404 0231 0505 | 0451 | 0.638

40% (4.91B)| 0.618 0.447 0.586 0.194 0.405 0.263 0.332 0.523 0.392 0.230 0.422 0.401 0.567
20% (6.65B)| 0.733 0.645 0.658 0.627 0.665 0.422 0.382 0.673 0.453 0.560 0.587 0.582 0.824

LaCo 30% (5.88B)| 0.687 0.524 0589  0.405 0.561 0.337 0320 0722 0425 0.362 0.522 0.496 0.701
40% (5.10B)| 0.614  0.398  0.554  0.205 0.423 0.277 0292 0.501 0.387 0.242 0.305 0.382 0.540
20% (6.65B)| 0.757 0.612 0559  0.211 0.647 0375 0.400  0.618 0.441 0.255 0.508 0.489 0.692

LLM-Streamline| 30% (5.88B), 0.717  0.501 0534 0.192 0524 0303 0.348 0.617 0.393 0.229 0.358 0.429 0.606
40% (5.10B)| 0.589 0362  0.571 0.196 0356 0264 0286 0430 0376 0230 0.017 0.334 0.473
20% (6.65B)| 0.632 0362  0.513 0.195 0439  0.261 0300  0.553 0.368 0.247 0.070 | 0.358 0.506
Short GPT 30% (5.88B)| 0.608 0326 0507  0.187 0416  0.238 0286 0462 0356  0.231 0.059 0.334 0.473
40% (5.10B)| 0.572 0287  0.526  0.185 0.367 0214 0262 0440  0.347 0.229 0.021 0.314 0.444
20% (6.55B), 0.774  0.714  0.709  0.757 0.773 0479 0410 0.818  0.521 0.645 0.677 0.661 0.935
Ours 30% (5.74B), 0.749  0.651  0.658  0.553  0.687 0412 0372 0.776  0.483  0.501 0.629 | 0.588 0.832
40% (491B) 0.719  0.587 0.626 0476  0.655 0378 0.358  0.749  0.427 0.398  0.538 0.545 0.771

effectiveness (Section [4.2). We then examine the impact of our weight-preserving mechanism and
training strategies through an ablation study (Section .3)).

4.1 EXPERIMENTAL SETUP

All experiments were conducted to systematically compare the effectiveness of various large lan-
guage model (LLM) compression techniques across a suite of widely-used benchmark tasks. We
evaluated each method Slice-GPT (Ashkboos et all 2024), LaCo (Yang et al., [2024), ShortGPT
(Men et al., 2024), LLM-Streamline (Chen et al., |2025)), and our proposed method in three target
compression rates (approximately 20%, 30%, and 40%) relative to the original model size. The
baselines consist of the uncompressed models: Qwen3-4B-Base, Qwen3-8B-Base, OPT 2.7B, and
OPT 6.7B.

The evaluation benchmarks include: PIQA (physical commonsense reasoning), HellaSwag (com-
monsense inference), WinoGrande (pronoun resolution), CSQA (commonsense QA), ARC-e/ARC-
¢ (science questions), OpenBookQA, BoolQ (boolean QA), Social IQA (multiple-choice), MMLU
(multi-task language understanding), and Lambda OpenAlI (factual QA). Each model’s performance
is measured using task-specific accuracy, or accuracy norm if available, reported per dataset. For
each compression approach and setting, we tabulate the compression rate (CR) and all benchmark
scores, along with the average performance (AVG) across tasks and relative performance rate (RP).

For a fair comparison, all compressed models underwent a performance recovery phase follow-
ing the respective compression procedure. Specifically, our approach utilizes adapter training for
post-compression recovery; the Streamline baseline employs light layer training; and other methods
adopt LoRA (Hu et al., 2022)) training as their recovery protocol. All recovery procedures leveraged
the SlimPajama dataset (Soboleva et al., 2023), sampling 600,000 training instances, each with a
sequence length of 1,024 tokens, to ensure consistency and robustness in recovered performance
across all benchmarks. Comprehensive implementation and experimental details are provided in

Appendix [A]
4.2 RESULTS

We evaluate the proposed compression method on two base LLMs, Qwen3-4B-Base and Qwen3-
8B-Base, under compression rates of approximately 20%, 30%, and 40% relative to their original
parameter counts. All models were assessed in a zero-shot setting using the LLM evaluation library
(Gao et al., |2024a). Additional experiments, including evaluations on other LLM variants and in
five-shot settings, are reported in Appendix

Tables 2]and[T|summarize the results on compressing Qwen3-4B-Base and Qwen3-8B-Base, respec-
tively. Across all compression rates, our method consistently outperforms competing approaches on
most benchmarks, while preserving performance close to that of the uncompressed models. The ad-
vantage is most evident on knowledge-intensive tasks such as CSQA, MMLU, and ARC, which rely
heavily on retrieving and applying pretrained knowledge. On benchmarks emphasizing common-
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Table 2: Performance of the different compression methods on Qwen3-4B-Base. The pretrained
backbone and its compressed variants are evaluated on the same set of benchmarks and compres-
sion rates as in Table For each compression rate, the best result is shown in boldface and the
second-best in underlined text.

Method | CR | PIQA HS WG CSQA ARC-e ARC-c OBQA boolg SIQA mmlu Id | Avg | RP
Baseline 0% (4.02B)| 0779 0736 0703  0.827 0760 0516 0412 0830 0502 0713 069 | 0.679 | 1.000

20% (3.53B)| 0.688  0.554  0.628 0.197 0546 0346 0338 0723 0411 0236 0528 | 0472 | 0.696
Slice GPT 30% (3.06B)| 0.633 0462 0599  0.193 0431 0260 0308 0.680 0386 0231 0441 | 0420 | 0.619

40% (2.65B)] 0.584 0384 0553 0197 0348 0251 0276 0602 0371 0230 0359 | 0378 | 0556
20% (3.22B)| 0715 0578 0631 0586 0634 0387 0358 0738 0434 0584 0502 | 0559 | 0.823
LaCo 30% (2.81B) 0.644 0470 0589 0306 0517 0317 0282 0651 0404 0335 0359 | 0443 | 0.653
40% (2.41B)| 0.630 0416 0562 0195 0453 0273 0284 0.606 038 0234 0341 | 0398 | 0.587
20% (3.22B) 0739 0559 0556 0.196 0619 0369 0378 0558 0417 0235 0448 | 0461 | 0.679
LLM-Streamline| 30% (2.81B)| 0.678 0443 0530 0195 0498 0272 0336 058 0395 0229 0330 | 0408 | 0.601
40% (2.41B)] 0581 0351 0556 0196 0352 0274 0290 0426 0378 0230 0006 | 0331 | 0488
20% (3.22B)| 0.694 0557 0589 0561 0.645 0411 0344 0684 0417 0487 0529 | 0538 | 0.792
Short GPT 30% (2.81B) 0.654 038 0551  0.185 0492 0308 0312 0588 0372 0245 0253 | 0395 | 0582
40% (2.41B)| 0548 0274 0519 0222 0319 0226 0238 0538 0350 0244 00290 | 0319 | 0.469
20% (3.22B) 0736  0.662 0.669 0779 0704 0436 0382 0784 0501 0.657 0.651 | 0.633 | 0.932
Ours 30% (2.82B) 0712 0588 0.618 0.628 0.665 0380 0362 0749 0464 0524 0595 | 0571 | 0.842
40% (241B)| 0702 0513 0587 0420 0552 0310 0342  0.685 0421 0395 0542 | 0497 | 0.732

sense reasoning and general language understanding (e.g., HellaSwag, WinoGrande), the perfor-
mance gap between methods is smaller, yet our approach still achieves the best overall balance
across tasks.

When comparing Qwen3-4B-Base and Qwen3-8B-Base, we observe that the larger base model re-
tains higher absolute accuracy across all compression methods and rates, reflecting its greater capac-
ity. However, the relative performance preservation (RP) of our method remains consistently strong
for both model scales, demonstrating its robustness. Notably, the 8B model shows slightly smaller
performance degradation under compression, suggesting that larger models may provide more re-
dundancy that can be better exploited during parameter reduction. This trend highlights that while
scaling up improves baseline performance, an effective compression strategy is crucial. Overall,
our method achieves stable gains across both model sizes, indicating strong generalizability of the
approach.

Discussion. These findings suggest that updating adapter weights while preserving core model
parameters is critical for effective LLM compression. Retaining the pretrained weight structure
allows the compressed models to maintain essential knowledge and reasoning capabilities needed
for complex tasks. In contrast, methods that aggressively modify core parameters tend to incur larger
performance degradation, particularly on knowledge-demanding benchmarks.

4.3 ABLATIONS

4.3.1 TRAINING STRATEGY

To understand how the size of the adapter groups influences effectiveness and efficiency, we per-
formed an ablation study in which the group size N was varied while keeping all other hyper pa-
rameters, compression plan, learning rate schedule, and total training epochs identical to the default
configuration described in Appendix [A] The experiments, summarized in Table 3] were conducted
on Qwen-3-4B-Base compressed to a 20% reduction rate.

When N = 36 every adapter is inserted and trained at once, which min- Table 3: Ablation of the
imizes the number of training phases but perturbs the entire backbone group size N used in
simultaneously. This large covariate shift leads to unstable gradients the group wise sequen-
and a noticeable drop in downstream performance, as reflected by an tjal training scheme. The
average score of 0.6182. At the opposite extreme, N = 1 updates one table reports the average
adapter at a time, moving sequentially through the 36 layers. Because downstream score.

only a single component is altered during each step, the original sig-
nal is largely preserved, resulting in the highest average performance.  Group size] Avg
However, the training iteration grows roughly linearly with the number N=36 (all)| 0.6182
of groups, making this setting impractical for larger models. _N—l 0' 6346

Our default configuration adopts N = 4, grouping four consecutive ~ N=4 (ours)| 0.6329
layers together. This approach retains most of the stability advantages
of the single-adapter regime while dramatically reducing the total number of training phases. The




Under review as a conference paper at ICLR 2026

resulting average score (0.6329) is only marginally below the optimal N = 1 setting, yet the com-
putational cost is comparable to the “all-at-once” baseline. Consequently, we select N = 4 as the
standard group size for all subsequent experiments.

4.3.2 IMPACT OF RECOVERY-TRAINING SET SIZE

Table 4: Effect of recovery-training set size on the performance of our 20% compressed Qwen-3-
4B-Base. Results are reported for four different sample budgets (300k, 600k, 1M, and 2M) on a
range of downstream benchmarks.

Method | CR | Samples | PIQA HS WG CSQA ARC-e ARC-c OBQA boolg SIQA mmlu Id | Avg | RP
Baseline| - - 0.7786  0.7364 0.7032  0.8272 0.7597 0.5162 0.4120 0.8299 0.5015 0.7131 0.6898 | 0.6789 | 1.0000
300K 0.7163  0.6433 0.6630 0.7802 0.7046 0.4181 03720 0.7976 0.4928 0.6476 0.6418 | 0.6252 | 0.9209
Ours 20% 600K 0.7363  0.6622 0.6690 0.7790 0.7044 0.4358 0.3820 0.7837 0.5013 0.6573 0.6514 | 0.6329 | 0.9322
i IM 0.7350  0.6757 0.6788 0.8354 0.7022 0.4483 0.3720 0.7985 0.4923 0.7084 0.6693 | 0.6469 | 0.9528
2M 0.7679 0.7230  0.6890 0.8215 0.7513 0.5060 0.4020 0.8315 0.4908 0.7076 0.6804 | 0.6701 | 0.9870

In this section we evaluate how the size of the recovery-training set influences the effectiveness of
our compression pipeline. Table [ reports results for four different sample budgets (300K, 600K,
1M, and 2M) under a fixed compression rate of 20%. As the number of training instances grows,
downstream performance improves consistently across virtually all benchmarks: the average score
rises from 0.6252 (300K samples) to 0.6701 (2M samples), and the relative performance (RP) climbs
from 0.9209 to 0.9870, narrowing the gap with the uncompressed baseline (Avg=0.6789). For most
tasks the improvement is gradual, but a few—namely HS, BoolQ, OBQA, and ARC—show a differ-
ent pattern. With only 300K—1M samples their scores increase only marginally, reflecting the limited
signal provided by a small recovery set. Once the sample count reaches over 1M, the gains acceler-
ate sharply; at 2M samples these tasks almost match the baseline performance (e.g., HS jumps from
0.6757 to 0.7230, BoolQ from 0.7985 to 0.8315, OBQA from 0.3720 to 0.4020, ARC-e from 0.7022
to 0.7513). This behavior suggests that certain evaluation sets require a richer recovery signal before
the compressed model can fully exploit the knowledge retained in the frozen backbone.

Overall, the results show that even a modest recovery set captures more than 90% of the attainable
relative performance (RP). When the recovery data are scaled to a few million examples, the com-
pressed model nearly matches the uncompressed baseline, incurring less than a 2% performance
drop while preserving the 20% compression ratio.

5 LIMITATION

A possible limitation of our approach is that the first stage of the pipeline is deliberately empiri-
cal. Although this stage grants users freedom to design compression plans, it also places a burden
on the practitioner to possess a priori knowledge about the model’s relative importance of its com-
ponents for the tasks of interest. In practice, an uninformed choice of reduction rates can lead to
sub-optimal performance or unnecessary training overhead. On the other hand, this very flexibility
makes the stage a useful diagnostic tool: by systematically varying the groups that are compressed,
users can probe which parts of an LLM are most critical for specific linguistic or reasoning abilities.
Future work could therefore focus on automated or data-driven heuristics (e.g., sensitivity analy-
ses, reinforcement-learning controllers) that suggest compression configurations with minimal user
intervention, while still preserving the analytical benefits of the current empirical design.

6 CONCLUSION

In this work, we introduce a novel framework Plug-and-Fold (PnF), a compression framework that
preserves both weights and structure of the pretrained LLM. In our workflow, lightweight PnF
adapters are first plugged into a pretrained LLM’s weight matrices. After going through adaption
phase, adapters are folded back into the base model via simple matrix multiplication. The resulting
model is structurally identical to the original backbone yet enjoys substantial reductions in parame-
ters with unimpaired performance. Extensive experiments on four backbones and three compression
rates show PnF consistently outperforms strong baselines, highlighting the benefit of retaining pre-
trained weights. Ablation studies on training strategies confirm the effectiveness of our workflow,
while experiments on recovery-training set size demonstrate that with sufficient data PnF can nearly
match the original model’s performance. In summary, Plug-and-Fold provides an efficient, scalable,
architecture-preserving compression pipeline that maintains the expressive power of large pretrained
LLMs, enabling deployment on resource-constrained hardware without performance loss.
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A EXPERIMENT SETTINGS

A.1 HYPER-PARAMETER CONFIGURATION

In all experiments we follow the two-stage pipeline described in Section Below we detail the
hyperparameter settings that were used to instantiate the compression plan, to construct the training
groups, and to train the adapters. The values are the same for every model and compression rate
unless explicitly noted. Also, the PnF are initialized as identity matrix, where only the diagonal
elements are set to 1 otherwise 0.

A.2 COMPRESSION PLAN (PER-LAYER REDUCTION RATES)

For each target compression rate ¢ € {20%,30%,40%}, we empirically driven target
hidden-dimension targets for the multi-head self-attention (MHSA) and feed-forward network (FFN)
sub-layers. The resulting dimensionalities are listed in Table[5] The notation indicates the target hid-
den size for each group in the order in which the groups are visited (from the output side toward the
input side).

Table 5: Target hidden dimensions for MHSA and FFN at each compression rate. Each entry corre-
sponds to a successive group of layers (see Figure E[)

Backbone | CR | MHSA \ FFN
20% (72,72, —,-) (3584, 3584, 4096, 4864)

OPT2.7B | 30% (64,72,72, —, —, —, —) (3328, 3328, 3840, 4608, 5632, 6144, 8192)
40% | (64,64,72,72,—, —, —, —) (2560, 2560, 2816, 2816, 2816, 3340, 5888, 8096)
20% (——,—,-) (5120,5632, 7168, 7168)

OPT6.7B | 30% (64,80,96,112, —, —) (4608, 5376, 6144, 8192, 10240, 13312)
40% (647 64,64, 64,96, —) (56327 5376,5120,5120, 7168, 7168)
20% [ —— (2560, 2816, 3328, 4608, 9216)

Qwen3 4B | 30% (=m0 o) (2560, 2560, 2560, 3072, 3584, 4864)
40% (== === == =) (2560, 2560, 2560, 2816, 2816, 3072, 3328, 5632)
20% (=,———-) (4096, 4352, 4864, 6144, 8704)

Qwen3 8B | 30% (e e =) (4096, 4352, 4608, 4864, 4864, 5632, 7630)
40% | (=, — — — = — — ——) | (4096,4352,4608,4608, 4352, 4608, 4608, 4608, 7936)

Interpretation of Table Taking OPT 2.7B as an example, for a 20% reduction the first two
groups (closest to the output) compress both the MHSA projection matrices to 7head = 72 and the
FFN intermediate dimensions to 7y, = 3584. Subsequent groups use the next values in the list,
while “ — 7 denotes it retains the original dimension. At 30% and 40% the plan contains more
groups, thereby spreading the reduction more gradually across the stack.

A.3 TRAINING SCHEDULE
The overall workflow of training is as follows. For each selected group Gy, we:

1. Insert PnF adapters corresponding to index belonging to G,
2. Train for E epochs while keeping all previously trained groups frozen

3. Proceed to Gy 41 until G,

Through out the entire experiments, the number of epochs is fixed to E' := 1, giving a total of n,
iteration.

A.4 FOLDING STEP

After the final group has been trained, each adapter pair is merged into its corresponding projection
matrix W by the closed-form multiplication. No additional fine-tuning is performed after folding,
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which guarantees that the resulting model has exactly the same architecture and runtime character-
istics as the original uncompressed model.

A.5 BASELINE RECOVERY FINE-TUNING SETTINGS

For the recovery-fine-tuning (RFT) stage we adopt LoRA, since LoRA fine-tuning is widely used
in recent work. To ensure a fair comparison, we fix the low-rank dimension to » = 16 for every
LoRA experiment. Unless a particular method explicitly restricts its scope, LoRA is applied to all
transformer layers—both the multi-head self-attention (MHSA) and feed-forward network (FFN)
sub-layers.

B ADDITIONAL RESULTS

B.1 COMPARISON WITH BASELINE METHODS

In this section we compare our proposed approach with several baselines across a broader set of
conditions. We evaluate four backbone models—Qwen-3-4B-Base, Qwen-3-8B-Base, OPT-2.7B,
and OPT-6.7B—and we assess performance in both zero-shot and five-shot settings. Across all
experiments, our method consistently yields the highest average score (Avg), closely matching the
performance of the uncompressed baseline for each backbone.

The same trend observed in the zero-shot experiments holds in the five-shot setting. Our com-
pression method consistently outperforms the baselines across all compression rates, and the per-
formance gap widens on knowledge-intensive benchmarks. Thus, the superior performance of our
approach is preserved when a few exemplars are provided.

Table 6: Performance of the different compression methods on Qwen3-4B-Base on five-shots set-
ting.

Method | cr Sample| PIQA HS WG  CSQA ARC-e ARC-c OBQA boolq SIQA  mmlu d | Avg | RP
Baseline 0% (402B)| - ] 07889 0.7532 07206 0.8198 0.8674 0.6425 04500 0.8654 05502 0.7319 0.6501 | 0.7127 | 1.0000
20% (3.53B) 0.6980 05612 0.6425 03030 06902 04130 03480 0.7746 04641 03250 04487 | 0.5153 | 0.7230
Slice GPT 30% (3.06B)| 600k | 0.6409 04661 0.6085 02293 05370 02952 03120 06911 04181 02651 0.3656 | 0.4390 | 0.6160
40% (2.65B) 05832 03857 05596 0.1925 04158 02440 02780 0511 03909 02672 0.2928 | 0.3746 | 0.5256
20% (3.22B) 07236 05840 0.6425 07273 07016 04249 03680 0.7679 04698 0.6192 0.4496 | 0.5889 | 0.8264
LaCo 30% (2.81B)| 600k | 0.6398 0475 05841 03194 05556 03362 02820 07028 04252 02863 0.3043 | 0.4464 | 0.6264
40% (2.41B) 0.6300 04136 05509 02080 04996 02944 02880 0.6242 04083 02810 0.2550 | 0.4048 | 0.5680
20% (3.22B) 07448 05572 05241 02015 07428 04292 03880 05474 04544 02895 03974 | 0.4797 | 0.6730
LLM-Streamling|30% (2.81B)| 600k | 0.6724 0.4333 05059 0.1891 0.5883 03054 03180 0.6012 04027 02538 0.3049 | 0.4159 | 0.5836
40% (2.41B) 05865 03468 0.5643 0.1957 03742 02611 02800 03841 03602 02295 0.0060 | 0.3262 | 0.4577
20% (3.22B) 07008 05520 0.6014 05766 07189 04573 03280 0.6914 04631 05167 04644 | 0.5519 | 0.7743
Short GPT 30% (2.81B)| 600k | 0.6088 0.3142 05138 0.1974 04196 02747 02480 03847 03561 0.2446 0.0134 | 0.3250 | 0.4561
40% (2.41B) 05294 02564 04972 02080 02950 02568 02460 03869 0.3439 02370 0.0000 | 0.2961 | 0.4154
20% (3.22B) 07559 06714 06772 08003 07739 04955 04100 08355 05417 0.6771 0.6055 | 0.6585 | 0.9240
Ours 30% (2.82B)| 600k | 0.7233 0.5847 0.6343 0.6798 07070 04008 04000 07602 04955 05412 0.5411 | 0.5880 | 0.8250
40% (2.41B) 0.6912 05134 05783 05030 0.6186 03487 03540 0.7283 04517 03956 04757 | 0.5144 | 0.7218

Table 7: Performance of the different compression methods on Opt 6.7B in zero-shot setting.

Method | CR  |Sample| PIQA HS WG  CSQA ARC-e ARC-c OBQA boolq SIQA  mmlu d | Avg | RP
Baseline 0% (6.66B) | - ] 07644 06719 06543 02031 06002 03473 03760 06612 04278 02505 0.6769 | 0.5121 | 1.0000
20% (5.49B) 07165 05657 06204 0.1916 05055 02961 03560 0.6235 04206 02500 0.5632 | 0.4645 | 0.9070
Slice GPT 30% (4.77B)| 600k | 0.7013 0.5220 0.6093 0.1957 04735 02875 03320 0.6064 03976 02421 0.4890 | 0.4415 | 0.8621
40% (4.07B) 0.6589 04709 05604 0.1982 04495 02671 03280 05835 03899 02290 04017 | 0.4125 | 0.8054
20% (5.25B) 0.6866 05310 06014 02064 04899 02995 03280 0.6214 04165 02503 0.5088 | 0.4491 | 0.8769
LaCo 30% (4.64B)| 600k | 0.6213 0.3890 05446 0.1974 03965 02560 02980 0.6214 03735 02463 0.1764 | 03746 | 0.7315
40% (4.04B) 0.5930 03391 05170 0.1957 03481 02363 02740 0.6211 03613 02371 0.0638 | 0.3442 | 0.6722
20% (5.25B) 07361 0.6037 06172 0.1761 05745 03191 03320 0.6324 04165 02470 0.5492 | 0.4731 | 0.9238
LLM-Streamline|30% (4.64B)| 600k | 0.6953 0.4204 0.5588 0.1974 05198 02850 03260 0.6330 03904 02381 02791 | 0.4130 | 0.8065
40% (4.04B) 0.6284 03430 05288 0.1966 04491 02304 02960 0.6217 03464 02311 0.1186 | 0.3627 | 0.7083
20% (5.25B) 0.5044 02597 05051 0.1957 02668 02594 02720 03783 03515 02295 0.0000 | 0.2929 | 0.5720
Short GPT 30% (4.64B)| 600k | 05065 0.2578 04917 0.1957 02597 02568 02860 03783 03418 02295 0.0000 | 0.2913 | 0.5687
40% (4.04B) 05065 0.2579 04878 0.1957 02601 02491 02980 03783 0.3454 02295 0.0000 | 0.2917 | 0.5695
20% (5.32B) 07403  0.6126 0.6461 02146 0.5886 03278 03600 0.6666 04207 02567 0.6135 | 0.4952 | 0.9671
Ours 30% (4.66B)| 600k | 0.7126 0.5321 0.6127 0.1998 0.5495 03069 0.3340 0.6496 0.4140 02512 05269 | 0.4627 | 0.9035
40% (3.99B) 0.6417 04926 05920 0.1966 04877 02874 03260 0.6382 03949 02464 04728 | 0.4342 | 0.8479
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Table 8: Performance of the different compression methods on Opt 2.7B in zero-shot setting.

Method | CR  |Sample] PIQA HS ~ WG CSQA ARC-e ARC-c OBQA boolq SIQA mmiu 1d | Avg | RP
Baseline 0% (265B)| - [ 07481 0.6063 06101 0.1990 05438 03131 03520 06027 04212 02567 0.6361 | 04808 | 1.0000
20% (2.23B) 06654 04682 05904 02031 04322 02637 03300 05257 03838 02415 04108 | 04104 | 0.8537
Slice GPT 30% (1.94B)| 600k | 0.6300 04228 05635 0.1966 04175 02585 03060 05168 03705 02316 0.3551 | 0.3881 | 0.8072
40% (1.66B) 05865 03674 05343 0.1957 03742 02509 02820 0.3982 03602 0.2301 02880 | 0.3516 | 0.7313
20% (2.10B) 06697 04629 05612 0.1957 04356 02782 03080 0.6223 03899 02436 04768 | 04222 | 0.8781
LaCo 30% (1.86B)| 600k | 0.6197 03677 05627 02113 03699 02415 02880 0.5832 03853 02330 0.1469 | 0.3645 | 0.7581
40% (1.63B) 05762 03006 05193 0.1957 03308 02261 02920 0.5920 03561 02312 0.0279 | 0.3316 | 0.6897
20% (2.10B) 07100 05471 06038 0.1974 05097 02867 03240 0.6058 04053 02537 05692 | 04557 | 0.9478
LLM-Streamline |30% (1.86B)| 600k | 0.6763 04016 0.5438 0.1966 04609 02585 03160 06012 03756 02344 02876 | 0.3957 | 0.8230
40% (1.63B) 06023 03122 05114 0.1949 03788 02150 02760 0.6119 03454 02298 0.0778 | 03414 | 0.7101
20% (2.10B) 06692 04476 05745 0.1941 04457 02696 03080 05929 03904 02315 03155 | 04035 | 0.8393
Short GPT 30% (1.86B)| 600k | 0.5354 02715 05083 0.1982 03081 02381 02600 03789 03459 02301 0.0029 | 0.2979 | 0.6197
40% (1.63B) 05152 02677 05067 0.1974 02908 0.2500 02600 03810 03423 02315 00035 | 0.2951 | 0.6138
20% (2.11B) 07235 05012 06088 02023 05139 02922 03460 0.6287 04243 02500 0.5666 | 0.4598 | 0.9563
Ours 30% (1.85B)| 600k | 0.6908 04615 05741 01981 04724 02782 03180 0.6157 04132 02462 05407 | 0.4347 | 0.9042
40% (1.53B) 0.6642 04205 05449 0.1957 04486 02759 02940 0.5861 04020 02388 04584 | 04117 | 0.8564

Table 9: Performance of the different compression methods on Opt 6.7B

in five-shot setting.

Method | cr Sample| PIQA HS WG  CSQA ARC-e ARC-c OBQA boolq SIQA  mmlu d | Avg | RP
Baseline 0% (6.66B) 07704 0.6797 0.6598 0.1867 0.6982 03703 03920 07012 04785 0.2634 0.6451 | 0.5314 | 1.0000
20% (5.49B) 07187 05652 06211 0.1981 05984 03293 03600 05492 04206 02622 04189 | 0.4583 | 0.8625
Slice GPT 30% (4.77B)| 600k | 0.6921 0.5221 0.6314 0.1826 05699 03063 03280 0.5318 04124 02553 0.3623 | 04358 | 0.8202
40% (4.07B) 0.6561 0.4669 05912 0.1859 05173 02790 03220 05028 0.3935 02666 0.2925 | 0.4067 | 0.7654
20% (5.25B) 0.6915 05318 0.6069 02146 05244 03038 03280 06217 04355 02595 04935 | 0.4556 | 0.8573
LaCo 30% (4.64B)| 600k | 0.6170 0.3914 05375 0.1998 04411 02730 02840 0.6220 03817 02549 0.1300 | 03757 | 0.7069
40% (4.04B) 05919 03399 05312 0.1949 03733 02406 02660 0.6211 03541 02542 0.0324 | 0.3454 | 0.6500
20% (5.25B) 07426  0.6207 05943 02006 0.6485 03455 03700 0.6519 04600 02522 05356 | 0.4929 | 0.9275
LLM-Streamling|30% (4.64B)| 600k | 0.6219 03529 0.5099 0.1810 04428 02338 02640 05927 03572 02496 0.0714 | 0.3525 | 0.6633
40% (4.04B) 0.5811 02982 04964 0.1998 03577 02167 02560 05838 03326 02433 00213 | 0.3261 | 0.6136
20% (5.25B) 05060 02606 05233 0.1957 02622 02594 02680 03783 03490 02295 0.0000 | 0.2938 | 0.5529
Short GPT 30% (4.64B)| 600k | 0.4984 02562 04957 0.1957 02563 02474 02800 03783 03423 02295 0.0000 | 0.2891 | 0.5440
40% (4.04B) 0.5054 02552 04972 0.1957 02546 02534 02820 03783 03464 02295 0.0000 | 0.2907 | 0.5470
20% (5.32B) 07647 0.6255 0.6319 02080 06477 03423 03720 06729 04683 02610 0.6032 | 0.5089 | 0.9576
Ours 30% (4.66B)| 600k | 0.7323 0.5273 0.6221 0.1909 05905 03167 03520 0.6461 04468 02547 05081 | 0.4716 | 0.8874
40% (3.99B) 0.6896 04673 0.6038 0.1959 05343 02819 03320 0.6086 04292 02501 03951 | 0.4353 | 0.8191

Table 10: Performance of the different compression methods on Opt 2.7B in five-shot setting.

Method | CR  |Sample| PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA  mmlu d | Avg | RP
Baseline 0% (2.65B)| - [ 07481 0.6068 0.6204 0.1884 0.6469 03311 03580 0.6272 04550 02579 0.6010 | 0.4946 | 1.0000
20% (2.23B) 0.6757 04632 05770 0.1933  0.5080 0.2918 03100 04205 04099 02457 0.3037 | 0.3999 | 0.8085
Slice GPT 30% (1.94B)| 600k | 0.6322 04179 05746 02015 04609 02551 03000 04477 03991 0.2538 0.2663 | 0.3826 | 0.7736
40% (1.66B) 0.5936  0.3612 05383 0.2080 03880 02449 02800 04349 03756 02480 0.1974 | 03518 | 0.7113
20% (2.10B) 0.6746 04600 05825 0.1925 04886 02824 02900 0.6217 04252 02628 0.4221 | 0.4275 | 0.8643
LaCo 30% (1.86B)| 600k | 0.6186 0.3690 0.5588 0.1900 0.3986 0.2491 02600 0.6211 03705 02465 0.1025 | 0.3622 | 0.7324
40% (1.63B) 0.5745 02973 05130 02023 03350 02287 02600 0.6208 03561 02366 0.0155 | 0.3309 | 0.6690
20% (2.10B) 0.7198 0.5554 0.6006 0.1990 05871 03012 03260 0.6000 04385 02512 0.4925 | 0.4610 | 0.9321
LLM-Streamline|30% (1.86B)| 600k | 0.6436 04228 05138 0.1818 04524 02627 02720 05422 03689 02570 0.2327 | 0.3773 | 0.7628
40% (1.63B) 05539  0.2823 0.5075 0.1990 03338 0.2099 02500 0.5673 03336 0.2505 0.0165 | 0.3186 | 0.6441
20% (2.10B) 06442 04013 05604 0.1916 04566 02637 02980 0.5621 03935 02505 0.1970 | 0.3835 | 0.7754
Short GPT 30% (1.86B)| 600k | 0.5152 0.2553 05257 0.1966 0.2727 0.2457 02800 03783 03413 02295 0.0000 | 0.2946 | 0.5956
40% (1.63B) 0.5011 02572 05193 02007 02685 02654 02820 03783 03413 0.2342  0.0000 | 0.2953 | 0.5970
20% (2.11B) 07107 05642 0.6099 0.1901 0.5835 03101 03320 0.6300 04302 02534 0.5110 | 0.4659 | 0.9420
Ours 30% (1.85B)| 600k | 0.6794 04540 05741 02015 0.5243 02894 03300 05701 04291 02588 04518 | 0.4330 | 0.8754
40% (1.58B) 0.6518 04096 05551 0.1966 0.4827 02777 03080 05498 04230 02503 03678 | 0.4066 | 0.8220
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Table 11: Performance of the different compression methods on Qwen3-8B-Base with five shots
setting. The pretrained backbone and its compressed variants are evaluated on the same set of
benchmarks and compression rates as in Tablem For each compression rate, the best result is shown
in boldface and the second-best in underlined text.

Method | CR | PIQA HS WG CSQA ARC-e ARC-c OBQA boolg SIQA mmlu Id | Avg | RP
Baseline 0% (8.19B) | 0.815 0795 0.770 0.856 0.880 0.681 0490 0882 0572 0770 0.671 | 0744 | 1.000

20% (6.52B)| 0.714  0.632  0.686 0329 0.747 0462 0396 0.781 0496 0356  0.527 | 0.557 | 0.749
Slice GPT 30% (5.71B)| 0.676  0.553  0.642 0275 0.621 0361 0370 0.696 0443 0275 0456 | 0488 | 0.656

40% (491B)| 0.627 0451 0594 0201 0494 0279 0318 0614 0415 0255 0363 | 0419 | 0564
20% (6.65B)| 0.736  0.651  0.671 0709 0.748 0493 0406 0534 0503 0.604 0546 | 0.600 | 0.807
LaCo 30% (5.88B)| 0.694 0535 0600 0506 0629 0358 0318 0673 0456 0408 0471 | 0514 | 0.690
40% (5.10B)| 0.617 0403 0572 0215 0487 0297 0276 0.623 0402 0251 0256 | 0400 | 0538
20% (6.65B)| 0774 0613 0561 0238 0769 0446 0402 0548 0477 0268 0462 | 0505 | 0.680
LLM-Streamline[30% (5.88B)| 0724 0500 0553  0.194 0673 0338 0346 0450 0418 0243 0310 | 0432 | 0.580
40% (5.10B)| 0.608 0364 0568 0196 0392 0266 0310 0451 0382 0230 0010 | 0343 | 0462
20% (6.65B)| 0574 0301 0494 0.197 0353 0260 0252 0592 0346 0247 0003 | 0329 | 0443
Short GPT 30% (5.88B) 0.561 0278 0494  0.195 0327 0227 0252 0493 0347 0256 0002 | 0312 | 0420
40% (5.10B)| 0.540 0258 0512 0198 0307 0230 0256 0417 0348 0229 0000 | 0300 | 0.403
20% (6.55B)] 0.788  0.718 0730  0.796  0.819 0.540 0.442 0.853 0546  0.660  0.653 | 0.686 | 0.922
Ours 30% (5.74B)| 0753  0.654 0.679 0.658 0737 0442 0392 0786 0511 0501 0574 | 0.608 | 0.817
40% (4.91B)| 0724 0587  0.637 0526  0.680 0402 0352 0775 0463 0.404 0487 | 0549 | 0.738
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C STATEMENT OF LARGE-LANGUAGE-MODEL (LLM) USAGE

The authors acknowledge that a large-language-model (LLM) was employed as a general-purpose
assistance tool during the preparation of this manuscript. Specifically, the following tasks were
supported by the LLM under the direct supervision of the authors:

» Formatting and LaTeX assistance — The LLM supplied LaTeX snippets for tables, equa-
tions, and figure captions (e.g., Table[5]and the hyper-parameter description). The authors
integrated these snippets into the manuscript and performed all final compilation and for-
matting checks.

* Language polishing — The LLM was used to improve readability, correct grammar, and
adjust stylistic tone across the entire manuscript. The final wording reflects the authors’
own decisions after thorough review.

All content generated by the LLM was fully supervised, fact-checked, and substantially revised by
the human authors before inclusion in the final version. No portion of the manuscript was submitted
to the LLM for autonomous generation without subsequent author verification.

The authors affirm that the intellectual contributions, experimental design, data analysis, and conclu-
sions are entirely their own work, and that the LLLM served only as an auxiliary writing and editing
aid.
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