
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PLUG-AND-FOLD:
WEIGHT-PRESERVING STRUCTURED COMPRESSION
FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved remarkable performance across
a wide range of tasks, but their growing size poses significant challenges for
deployment and efficiency. Among existing model compression methods,
structured pruning has emerged as a popular approach for reducing model size.
However, these methods remove structural components such as layers, heads,
or channels, which can disrupt pre-trained weights and lead to fragile recovery
fine-tuning process. In this work, we propose Plug-and-Fold (PnF), a weight-
preserving yet structurally effective compression method. Rather than directly
modifying or factorizing the pretrained weights, PnF introduces lightweight,
learnable adapter modules into the projection layers of attention and feed-forward
networks. These adapters are trained while keeping the original weights frozen,
and are later folded into the base weights via simple matrix multiplications.
This process yields a compressed model that preserves the original architecture
and can be deployed with a standard Transformer inference stack, without cus-
tom kernels or additional runtime components.

We evaluate PnF across a variety of benchmarks and model scales, demonstrating
consistent improvements over recent state-of-the-art structured compression
baselines. Our results highlight that preserving the integrity of pretrained weights
not only simplifies the compression pipeline, but also improves generalization
and performance recovery in compressed LLMs.

1 INTRODUCTION

Large language models (LLMs) based on the Transformer (Vaswani et al., 2017) have achieved
remarkable progress across various domains, including natural language processing (Zhao et al.,
2023; Jiang et al., 2024a; Radford et al., 2018), code generation (Jiang et al., 2024b), computer
vision (Liu et al., 2023a; Hamadi, 2023), and scientific applications (Zhang et al., 2025; Lin et al.,
2023). This progress is attributable to two factors: (1) scaling model size to billions to trillions of
parameters (Team et al., 2024; Islam & Moushi, 2025; Team et al., 2025; Zhang & Sennrich, 2019)
and (2) pre-training on massive, diverse corpora (Langlais et al., 2025; Liu et al., 2024). Together,
these endow LLMs with deep language understanding and ability to generate high-quality code, text,
and multi-modal contents.

Despite these successes, their massive parameter sizes pose critical challenges: they require large
storage, memory footprints, increase inference latency, and substantial computation for training and
deployment, especially in resource-constrained settings. To address these practical limitations, a
substantial body of research has focused on model compression techniques that shrink the footprint
while preserving performance. These methods can be grouped into three principal categories: (1)
knowledge distillation, which transfers capabilities from a large teacher to a smaller student (Hinton,
2014; Ojha et al., 2023; Agarwal et al., 2023; Bing et al., 2025; Cui et al., 2025); (2) quantization,
which lowers numerical precision to save memory and accelerate inference (Liu et al., 2023b; Li
et al., 2024b; Shang et al., 2023; Hu et al., 2025; An et al., 2025); and (3) pruning, a structured
approach that removes redundant channels, heads, or layers (Voita et al., 2019; Gao et al., 2024b;
Ma et al., 2023; Ashkboos et al., 2024; Men et al., 2024; Mugnaini et al., 2025; Yang et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Pruning gained a lot of attention since it leverages the pre-trained weights of the original model
and typically does not require to training a new network from the ground up. Moreover, once
the unnecessary components have been eliminated, the resulting model can be further compressed
through quantization, yielding additional reductions in memory consumption and inference latency.

{In the context of LLMs, structured compression has primarily focused on pruning-based meth-
ods, such as deleting channels from the projection weights in attention and feed-forward networks
(Ashkboos et al., 2024; Gao et al., 2024b; Ma et al., 2023), removing heads in the multi-head atten-
tion (Voita et al., 2019; Mugnaini et al., 2025), and pruning whole Transformer layers (Yang et al.,
2024; Men et al., 2024). The selection of components to prune is guided by metrics that estimate the
impact of removal, such as the magnitude of weights and activations (Sun et al.), cosine similarity
(Men et al., 2024), or the L2-norm (Ashkboos et al., 2024). Other approaches adopt learning-based
structural compaction schemes, where auxiliary matrices (e.g., compactor or mask matrices) are
inserted around backbone weights and jointly optimized with the original weights; after training,
rows, columns, or channels of these learned structures are pruned and folded back into compressed
weights (Wu et al., 2024; Hu et al., 2024). Although these approaches leave the overall Transformer
architecture intact, their joint optimization scheme still perturb parameters that were carefully tuned
during large-scale pretraining, often leading to non-trivial performance loss.

Consequently, many approaches incorporate a recovery fine-tuning (RFT) stage to restore accuracy,
often employing the lightweight adapter such as LoRA (Voita et al., 2019; Gao et al., 2024b; Ma
et al., 2023; Ashkboos et al., 2024; Men et al., 2024; Mugnaini et al., 2025; Yang et al., 2024).
However, the recovery process can be fragile: even extensive RFT often fails to fully restore the
performance of precisely optimized foundation models.

To overcome these limitations, we propose a weight-preserving structured compression that retain
the integrity of pretrained weight while still achieving substantial efficiency gains. Our method,
Plug-and-Fold (PnF), inserts lightweight, learnable adapter modules into the original projection ma-
trices of the attention and feed-forward sub-layers rather than removing heads, channels, or layers.

In contrast to prior pruning and low-rank approaches that directly modify original pretrained
weights, PnF freezes all pretrained weights throughout compression and trains only lightweight
adapter modules attached to the original model, thereby formulating model compression as a PEFT-
style training problem that preserves the expressivity and knowledge encoded in the original model.

After training, the learned adapters are folded into a single dense matrix via simple matrix multipli-
cations; PnF therefore uses PEFT-style adapters as a tool for structured compression and deploys
a compressed model that is structurally identical to the original, rather than directly editing or
factorizing the backbone.

Because no architectural modification is introduced and no extra operations are required during
inference, PnF can be integrated seamlessly into existing serving frameworks and hardware acceler-
ators.

We evaluate PnF with extensive experiments covering a broad spectrum of model sizes and com-
pression rates. To validate its effectiveness, PnF is benchmarked against the latest state-of-the-art
structured-compression baselines on a diverse set of tasks that demand varied domain knowledge
and comprehensive capabilities. Across all settings, PnF consistently surpasses existing methods,
delivering notable gains in downstream performance. These results show that preserving the in-
tegrity of pretrained weights not only yields a simpler and more scalable compression pipeline, but
also enhances the recovery of accuracy and the generalization ability of the compressed models.

The main contributions of our paper are summarized as follows:

• We propose Plug-and-Fold (PnF), a novel weight preserving structured compression
method that inserts lightweight, learnable adapter modules into the original projection lay-
ers without modifying the model architecture.

• After training, the adapters are folded into the base weights via simple matrix multiplica-
tions, resulting in a compressed model that is structurally identical to the original model
and reduces runtime effectively.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• Extensive experiments demonstrate that PnF outperforms recent state-of-the-art
structured-compression baselines across a wide range of model scales and benchmark tasks,
confirming its effectiveness and scalability.

2 BACKGROUND

2.1 DECODER-BASED TRANSFORMER ARCHITECTURE

Large Language Models (LLMs) primarily leverage a decoder-based Transformer architecture com-
posed of stacked decoder blocks. These blocks consist of two core components: the Multi-Head
Self-Attention (MHSA) mechanism and the Feed Forward Network (FFN). These components form
the core layers of decoder blocks, enabling sequential data processing and contextual understanding.

2.1.1 MULTI-HEAD SELF-ATTENTION (MHSA)

The MHSA mechanism enables the model to dynamically weight and aggregate contextual informa-
tion from different positions in the input sequence by utilizing attention heads. Formally, let the l-th
decoder block takes input hidden state X(l−1) ∈ Rn×dembed , where n and dembed is the length and
the dimension of the input, respectively. For the i-th attention head, i ∈ {1, · · · , nh}, the MHSA
mechanism computes the query vectors Q

(l)
i ∈ Rn×dhead , key vectors K

(l)
i ∈ Rn×dhead , and value

vectors V (l)
i ∈ Rn×dhead as follows:

Q
(l)
i = X(l−1)W

Q
(l)
i
, K

(l)
i = X(l−1)W

K
(l)
i
, V

(l)
i = X(l−1)W

V
(l)
i

, (1)

where W
Q

(l)
i
, W

K
(l)
i
, W

V
(l)
i
∈ Rdembed×dhead are the learned weight parameters for query, key, and

value projections, and dhead is the dimension of the head (often dhead = dembed
nh

). Then, the self-

attention operation is applied to each triple (Q
(l)
i ,K

(l)
i , V

(l)
i) and computes the attention output of

the i-th head Z
(l)
i as follows:

Z
(l)
i = Attention(Q(l)

i ,K
(l)
i , V

(l)
i) = Softmax

(Q(l)
i

(
K

(l)
i

)⊤
√
dk

)
V

(l)
i , (2)

where
√
dk is a scaling factor applied to ensure numerical stability. To represent comprehensive

contextual information, these outputs from individual heads are concatenated and transformed as
follows:

Z(l) = Concat(Z(l)
1 , · · · , Z(l)

h)WO(l) ∈ Rn×dembed , (3)

where Concat(·) is the concatenation operation and WO(l) ∈ R(hdhead)×dembed is learned weight pa-
rameters for output.

2.1.2 FEED-FORWARD NETWORK (FFN)

Following the MHSA mechanism, the output is passed through a Feed Forward Network (FFN) to
enhance the model’s capacity to process through non-linear transformations and increased number
of parameters. The FFN is often applies linear transformations separated by a nonlinear activation
function σ(·) (e.g., SiLU(Elfwing et al., 2018)). For example, SwiGLU (Shazeer, 2020) module is
defined as follows:

SwiGLU(Z(l)) =
(
σ(Z(l)Wgate(l))⊙ Z(l)Wup(l)

)
Wdown(l) (4)

where σ is the Swish activation function (Ramachandran et al., 2018) , and Wgate(l) ,Wup(l) ∈
Rdembed×dinter , and Wup(l) ∈ Rdinter×dembed are learnable parameters with the intermediate dimension
dinter.

3 METHOD

In this section, we present Plug-and-Fold (PnF) compression, a straightforward yet effective com-
pression method for large language models, whose complete workflow is illustrated in Figure 11.

1Snowflake and Fire icons created by Freepik – Flaticon

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Visualization of Plug-and-Fold framework. The top half illustrates the training
phase: lightweight PnF adapters are plugged into the pretrained linear layers and project to a
reduced-dimensional space; the backbone weights remain frozen (shown as snowflakes), while
the adapters are the only trainable components (shown as fire), enabling them to fully leverage
the already-optimized structure. The bottom half shows the evaluation phase: after training, each
adapter is folded back into its corresponding weight matrix via a simple matrix multiplication, yield-
ing a compressed model that preserves the original architecture, interface, and performance.

The main objective of this method is to preserve the original projection weight during training while
reducing their dimensionality, yeidling a compact model that maintains the original signal.

Section 3.1 introduce the PnF adapter, a foldable compression module plugged into the original
projection weights and trained to induce low-dimensional projection while preserving the original
signal. Section 3.2 presents training schemes used to train these adapters effectively. Finally, Section
3.3 describes how the trained PnF adapters are folded into low-dimensional projection weights,
producing a compact model that is computationally efficient while preserving performance suitable
for deployment.

3.1 PLUG-AND-FOLD (PNF) COMPRESSION

3.1.1 PLUG-AND-FOLD (PNF) ADAPTER

In order to preserve the original signal while training, Plug-and-Fold adapters are plugged into the
pre-trained model. Given a pre-trained linear weight W ∈ Rm×n, we define the PnF adapter as a
linear projection:

P ∈ Rn×r, (5)
where r < n. The adapter is applied to W and subsequently trained to recover the performance of
the original model. Formally, our aim is to find an adapter P that satisfies:

P(W) ≈ P(WP), (6)

where P(·) denotes the performance measures on various tasks induced by the corresponding
weight. Consequently, projecting the weights through the trained adapter P that satisfies Eq. (6)
yields output representations in the reduced-dimensional space (r-dimension), while preserving a
quality comparable to that of the full-size model. i.e., this projection yields compact representations
that preserve the fidelity of the original weight matrix, allowing highly efficient deployment across
a broad range of downstream tasks.

3.1.2 PNF ADAPTER FOR MHSA

We now explain how PnF adapter is integrated into the MHSA layer of an LLM. Let the projection
weights for queries, keys, values and the output at layer l be W

Q
(l)
i
,W

K
(l)
i
,W

V
(l)
i
∈ Rdembed×dhead ,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

and WO(l) ∈ R(nhdhead)×dembed , where nh is the number of attention heads. For each of these matrices,
we plug in a corresponding PnF adapter with dimension rhead < dhead:

P
Q

(l)
i
, P

K
(l)
i
, P

V
(l)
i
∈ Rdhead×r

(l)
head , and PO(l) ∈ R(nhr

(l)
head)×(nhdhead) (7)

These adapters, multiplied with the original weights, produce lower-dimensional projections:

W
Q

(l)
i
P
Q

(l)
i
∈ Rdembed×r

(l)
head

W
K

(l)
i
P
K

(l)
i
∈ Rdembed×r

(l)
head

W
V

(l)
i

P
V

(l)
i
∈ Rdembed×r

(l)
head

PO(l)WO(l) ∈ R(nhr
(l)
head)×dembed

(8)

Thus, each attention projection incorporates a learnable low-rank adapter. After training, folding the
adapter into the original weight via matrix multiplication gives substantial reduction in both memory
usage and computational overhead, while maintaining output quality of the uncompressed model.

3.1.3 PNF ADAPTER FOR FEED FORWARD NETWORK

Next, we present the applicaiton of PnF adapters to the FFN. Let the gate, up-projection, and down-
projection at layer l be Wgate(l) , Wup(l) ∈ Rdembed×dinter , and Wdown(l) ∈ Rdinter×dembed , respectively. For
these matrices, we introduce the corresponding PnF adapters:

Pgate(l) , Pup(l) ∈ Rdinter×r
(l)
inter , and Pdown(l) ∈ Rr

(l)
inter×dinter (9)

where r
(l)
inter < d

(l)
inter. Multiplying these adapter with the original weights yields the compressed

projections:

Wgate(l)Pgate(l) ∈ Rdembed×r
(l)
inter

Wup(l)Pup(l) ∈ Rdembed×r
(l)
inter

Pdown(l)Wdown(l) ∈ Rr
(l)
inter×dembed

(10)

Therefore, similar to that of the attention mechanism with PnF adapters above, each FFN layer is
equipped with a learnable low-rank adapter. Because the feed-forward network (FFN) comprises
the majority of a transformer’s parameters, folding the adapters into the original weights provides
substantial savings in both memory and computation.

3.2 TRAINING PIPELINE FOR PNF ADAPTER

To obtain PnF adapters with high fidelity, we propose a three-stage training pipeline: (i) Compres-
sion Planning that determines the per-layer degree of dimensionality reduction, (ii) Group-wise
Sequential Training that stabilizes optimization by sequentially training a small, isolated set of
adapters, and (iii) KL-divergence Distillation Loss that aligns the compressed model’s output dis-
tribution with the original model’s distribution.

Stage 1: Compression Planning Based on desired compression ratio (e.g., 20%), we first de-
termine the degree of reduction of dimensionality (i.e., r(l)head and r

(l)
inter) for each layer l. While the

allocation of reductions can be flexible, we recommend a pyramidal schedule where deeper layers
(closer to the language modeling head) are compressed more aggressively, and earlier layers receive
milder reductions. Prior work on layer pruning Men et al. (2024); Gromov et al. (2024) shows that
later (upper) layers can often be removed with little impact on downstream performance, indicat-
ing that they contribute less to the model’s expressivity. Based on this finding, we allocate a larger
portion of the compression budget to the top of the model.

Because the reduction ratio can be explicitly set, the approach is highly flexible and can be tailored
to meet a user’s requirements. Our empirical studies reveal that applying a higher compression rate
to the FFN yields considerably better results than compressing the MHSA modules, and a concrete
example of this planning is provided in the Appendix B.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Stage 2: Group-wise Sequential Training Plugging all adapters at once might perturb the orig-
inal model’s signal at the beginning of training, inducing covariate shift and misleading gradients.
Alternatively, training a single adapter at a time preserves this signal but is prohibitively slow. To
address this issue, we introduce Group-wise Sequential Training. This training scheme trains small
groups of adapters in turn, retaining most of the signal preservation benefits while substantially
reducing training time and stabilizing convergence, which is further discussed in Section 4.3.1. For-
mally, we first partition the L transformer layers into disjoint groups of size N , starting from the
top of the model (output side) and moving downward. The k-th group is defined as:

Gk = {L− kN + 1, · · · , L− (k − 1)N}, k = 1, 2, · · · , ng, (11)

where ng = ⌊L/N⌋ is the number of groups. Given the compression plan that specifies per-layer
reductions (i.e., r(l)head and r

(l)
inter), we first identify which group contain layers slated for compression.

Then training proceeds sequentially from G1 towards Gng
.

At step k, if Gk includes layers selected by the compression plan, we insert adapters only into those
layers and train them, while keeping the adapters trained in previous groups (G1, . . . ,Gk−1) frozen.
During this phase, only the parameters of current group are updated; all previous groups remain
frozen with their trained adapters, while remaining groups (Gk+1, · · · ,Gng

) remain frozen without
adapters (i.e., in their original state).

Figure 2: Visualization of group-wise se-
quential training. Training proceeds group
by group, beginning with the output side. At
any step, only the current group Gi is updated
while all other groups stay frozen, which pre-
serves the backbone signal and enhances op-
timization stability.

An instance of group-wise sequential training is illus-
trated in Figure 2, given L = 36 and N = 4, the
compression plan targeting layers 13 - 36 covers six
groups (G1, · · · ,G6). We train these six groups se-
quentially from the output side toward the input (i.e.,
G1 → · · · → G6) while the lower 12 layers remain un-
compressed. By activating one small group per step and
keeping the remaining group fixed, this approach pre-
serves the backbone signal and improves optimization
stability.

Stage 3: KL-divergence Distillation Loss During
the group-wise sequential training for the adapters, we
adopt a Kullback-Leibler (KL) divergence loss. Specif-
ically, the logits of the PnF-plugged model are aligned
with those of the frozen backbone model by minimiz-
ing:

LKL = KL(pW ||pWP) (12)

where pW and pWP denote the predictive distribution of the backbone and the PnF-plugged models,
respectively.

We adopt a KL-divergence distillation loss for two reasons. First, the goal of compression is to pro-
duce a smaller model that reproduces the original model’s behavior. The KL-divergence can achieve
this by aligning the predictive distribution of student (PnF-plugged model) with the teacher (original
model). Second, recent studies (Bercovich et al., 2024; Muralidharan et al., 2024; Li et al., 2024a)
report that KL-based distillation often outperforms cross-entropy, yielding better downstream per-
formance.

3.3 DEPLOYMENT FOR INFERENCE

After the adapters are fully trained leveraging unhindered pre-trained weights, they can be seam-
lessly integrated into the backbone model. In MHSA, for example, each adapter is folded into its
corresponding pre-trained weight matrix via matrix multiplication:

W
Q

(l)
i
P
Q

(l)
i
→WComp

Q
(l)
i

W
K

(l)
i
P
K

(l)
i
→WComp

K
(l)
i

W
V

(l)
i

P
V

(l)
i
→WComp

V
(l)
i

PO(l)WO(l) →WComp
O(l)

(13)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

A similar folding procedure applies to FFN, where each adapter is integrated into its corresponding
weight matrix:

Wgate(l)Pgate(l) →WComp
gate(l)

Wup(l)Pup(l) →WComp
up(l)

Pdown(l)Wdown(l) →WComp
down(l)

(14)

The resulting weights directly replace the original model, reducing parameter counts and
computational costs while preserving the model’s architectural structure and inference
pipeline. This fold-in operation has two key benefits. First, deployment is simple: the
trained PnF adapters are folded into the original weights via plain matrix multiplications–
no auxiliary metrics, graph edits, or specialized operators. Second, it ensures that the
deployed model remains identical structure and interface to the original model, which
facilitates compatibility with existing serving frameworks and hardware accelerators.
In practice, layer-wise non-uniform width patterns used in PnF have been empirically shown to be
deployment-friendly. Both elastic Transformer designs, such as MatFormer-style models deployed
in Gemma 3n Devvrit et al. (2024); Google DeepMind (2025), as well as adaptive pruning and
compression methods that allocate capacity under a global budget Ban et al. (2025); Yang et al. ef-
fectively support irregular per-layer widths on standard dense general matrix to matrix multiplication
(GEMM) inference pipelines and existing serving frameworks.

We concisely summarize the PnF compression pipeline: compression planning, group-wise adapter
training, and the final folding step in Appendix A

4 EXPERIMENTS

In this section, we first evaluate the PnF Compression method against several widely-used com-
pression methods across different compression rates and original model sizes, demonstrating its
effectiveness (Section 4.2). We then examine the impact of our weight-preserving mechanism and
training strategies through an ablation study (Section 4.3).

4.1 EXPERIMENTAL SETUP

All experiments were conducted to systematically compare the effectiveness of various large
language model (LLM) compression techniques across a suite of widely-used benchmark
tasks. We evaluated each method Slice-GPT (Ashkboos et al., 2024), LaCo (Yang et al.,
2024), ShortGPT (Men et al., 2024), LLM-Streamline (Chen et al., 2025), and our pro-
posed method in three target compression rates (approximately 20%, 30%, and 40%) relative
to the original model size. The baselines consist of the uncompressed models: Qwen3-
4B-Base, Qwen3-8B-Base, OPT 2.7B, OPT 6.7B, LLaMA-3.2-3B, and LLaMA-3.1-8B.
We additionally report comparisons on LLaMA-2-7B at a 20% compression ratio against latest
structured compression and quantization/distillation baselines—SVD-LLM Wang et al. (2024), Bit-
Distiller Du et al. (2024), LLM-Pruner Ma et al. (2023), and DISP-LLM Gao et al. (2024b) in Ap-
pendices F and G. Moreover, we report task performance and average per-token inference latency
for the original backbone, SliceGPT, and PnF across various compression ratios in Appendix H to
assess the impact of compression on generation speed.

The evaluation benchmarks include: PIQA (physical commonsense reasoning), HellaSwag (com-
monsense inference), WinoGrande (pronoun resolution), CSQA (commonsense QA), ARC-e/ARC-
c (science questions), OpenBookQA, BoolQ (boolean QA), Social IQA (multiple-choice), MMLU
(multi-task language understanding), and Lambda OpenAI (factual QA). Each model’s performance
is measured using task-specific accuracy, or accuracy norm if available, reported per dataset. For
each compression approach and setting, we tabulate the compression rate (CR) and all benchmark
scores, along with the average performance (AVG) across tasks and relative performance rate (RP).

For a fair comparison, all compressed models underwent a performance recovery phase follow-
ing the respective compression procedure. Specifically, our approach utilizes adapter training for
post-compression recovery; the Streamline baseline employs light layer training; and other methods
adopt LoRA (Hu et al., 2022) training as their recovery protocol. All recovery procedures leveraged
the SlimPajama dataset (Soboleva et al., 2023), sampling 600,000 training instances, each with a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance of the various compression methods on Qwen-3-8B-Base. The pretrained
backbone model and its compressed variants are evaluated across multiple benchmarks at several
compression rates. The best and second-best results at each compression rate are highlighted with
boldface and underline, respectively.

Method CR PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (8.19B) 0.793 0.786 0.724 0.860 0.801 0.573 0.410 0.830 0.547 0.747 0.709 0.707 1.000
20% (6.52B) 0.716 0.617 0.665 0.195 0.644 0.401 0.376 0.749 0.418 0.247 0.571 0.509 0.720
30% (5.71B) 0.667 0.544 0.624 0.199 0.511 0.317 0.362 0.601 0.404 0.231 0.505 0.451 0.638Slice GPT
40% (4.91B) 0.618 0.447 0.586 0.194 0.405 0.263 0.332 0.523 0.392 0.230 0.422 0.401 0.567

LaCo
20% (6.65B) 0.733 0.645 0.658 0.627 0.665 0.422 0.382 0.673 0.453 0.560 0.587 0.582 0.824
30% (5.88B) 0.687 0.524 0.589 0.405 0.561 0.337 0.320 0.722 0.425 0.362 0.522 0.496 0.701
40% (5.10B) 0.614 0.398 0.554 0.205 0.423 0.277 0.292 0.501 0.387 0.242 0.305 0.382 0.540
20% (6.65B) 0.757 0.612 0.559 0.211 0.647 0.375 0.400 0.618 0.441 0.255 0.508 0.489 0.692
30% (5.88B) 0.717 0.501 0.534 0.192 0.524 0.303 0.348 0.617 0.393 0.229 0.358 0.429 0.606LLM-Streamline
40% (5.10B) 0.589 0.362 0.571 0.196 0.356 0.264 0.286 0.430 0.376 0.230 0.017 0.334 0.473

Short GPT
20% (6.65B) 0.632 0.362 0.513 0.195 0.439 0.261 0.300 0.553 0.368 0.247 0.070 0.358 0.506
30% (5.88B) 0.608 0.326 0.507 0.187 0.416 0.238 0.286 0.462 0.356 0.231 0.059 0.334 0.473
40% (5.10B) 0.572 0.287 0.526 0.185 0.367 0.214 0.262 0.440 0.347 0.229 0.021 0.314 0.444
20% (6.55B) 0.774 0.714 0.709 0.757 0.773 0.479 0.410 0.818 0.521 0.645 0.677 0.661 0.935
30% (5.74B) 0.749 0.651 0.658 0.553 0.687 0.412 0.372 0.776 0.483 0.501 0.629 0.588 0.832Ours
40% (4.91B) 0.719 0.587 0.626 0.476 0.655 0.378 0.358 0.749 0.427 0.398 0.538 0.545 0.771

Table 2: Performance of the different compression methods on Qwen3-4B-Base. The pretrained
backbone and its compressed variants are evaluated on the same set of benchmarks and compres-
sion rates as in Table 1. For each compression rate, the best result is shown in boldface and the
second-best in underlined text.

Method CR PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (4.02B) 0.779 0.736 0.703 0.827 0.760 0.516 0.412 0.830 0.502 0.713 0.690 0.679 1.000
20% (3.53B) 0.688 0.554 0.628 0.197 0.546 0.346 0.338 0.723 0.411 0.236 0.528 0.472 0.696
30% (3.06B) 0.633 0.462 0.599 0.193 0.431 0.260 0.308 0.680 0.386 0.231 0.441 0.420 0.619Slice GPT
40% (2.65B) 0.584 0.384 0.553 0.197 0.348 0.251 0.276 0.602 0.371 0.230 0.359 0.378 0.556

LaCo
20% (3.22B) 0.715 0.578 0.631 0.586 0.634 0.387 0.358 0.738 0.434 0.584 0.502 0.559 0.823
30% (2.81B) 0.644 0.470 0.589 0.306 0.517 0.317 0.282 0.651 0.404 0.335 0.359 0.443 0.653
40% (2.41B) 0.630 0.416 0.562 0.195 0.453 0.273 0.284 0.606 0.388 0.234 0.341 0.398 0.587
20% (3.22B) 0.739 0.559 0.556 0.196 0.619 0.369 0.378 0.558 0.417 0.235 0.448 0.461 0.679
30% (2.81B) 0.678 0.443 0.530 0.195 0.498 0.272 0.336 0.586 0.395 0.229 0.330 0.408 0.601LLM-Streamline
40% (2.41B) 0.581 0.351 0.556 0.196 0.352 0.274 0.290 0.426 0.378 0.230 0.006 0.331 0.488

Short GPT
20% (3.22B) 0.694 0.557 0.589 0.561 0.645 0.411 0.344 0.684 0.417 0.487 0.529 0.538 0.792
30% (2.81B) 0.654 0.386 0.551 0.185 0.492 0.308 0.312 0.588 0.372 0.245 0.253 0.395 0.582
40% (2.41B) 0.548 0.274 0.519 0.222 0.319 0.226 0.238 0.538 0.350 0.244 0.029 0.319 0.469
20% (3.22B) 0.736 0.662 0.669 0.779 0.704 0.436 0.382 0.784 0.501 0.657 0.651 0.633 0.932
30% (2.82B) 0.712 0.588 0.618 0.628 0.665 0.380 0.362 0.749 0.464 0.524 0.595 0.571 0.842Ours
40% (2.41B) 0.702 0.513 0.587 0.420 0.552 0.310 0.342 0.685 0.421 0.395 0.542 0.497 0.732

sequence length of 1,024 tokens, to ensure consistency and robustness in recovered performance
across all benchmarks. Comprehensive implementation and experimental details are provided in
Appendix B.

4.2 RESULTS

We evaluate the proposed compression method on two base LLMs, Qwen3-4B-Base and Qwen3-
8B-Base, under compression rates of approximately 20%, 30%, and 40% relative to their original
parameter counts. All models were assessed in a zero-shot setting using the LLM evaluation library
(Gao et al., 2024a). Additional experiments, including evaluations on other LLM variants and in
five-shot settings, are reported in Appendix C.

Tables 2 and 1 summarize the results on compressing Qwen3-4B-Base and Qwen3-8B-Base, respec-
tively. Across all compression rates, our method consistently outperforms competing approaches on
most benchmarks, while preserving performance close to that of the uncompressed models. The ad-
vantage is most evident on knowledge-intensive tasks such as CSQA, MMLU, and ARC, which rely
heavily on retrieving and applying pretrained knowledge. On benchmarks emphasizing common-
sense reasoning and general language understanding (e.g., HellaSwag, WinoGrande), the perfor-
mance gap between methods is smaller, yet our approach still achieves the best overall balance
across tasks.

When comparing Qwen3-4B-Base and Qwen3-8B-Base, we observe that the larger base model re-
tains higher absolute accuracy across all compression methods and rates, reflecting its greater capac-
ity. However, the relative performance preservation (RP) of our method remains consistently strong
for both model scales, demonstrating its robustness. Notably, the 8B model shows slightly smaller
performance degradation under compression, suggesting that larger models may provide more re-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

dundancy that can be better exploited during parameter reduction. This trend highlights that while
scaling up improves baseline performance, an effective compression strategy is crucial. Overall,
our method achieves stable gains across both model sizes, indicating strong generalizability of the
approach.

Discussion. These findings suggest that updating adapter weights while preserving core model
parameters is critical for effective LLM compression. Retaining the pretrained weight structure
allows the compressed models to maintain essential knowledge and reasoning capabilities needed
for complex tasks. In contrast, methods that aggressively modify core parameters tend to incur larger
performance degradation, particularly on knowledge-demanding benchmarks.

4.3 ABLATIONS

4.3.1 TRAINING STRATEGY

To understand how the size of the adapter groups influences effectiveness and efficiency, we per-
formed an ablation study in which the group size N was varied while keeping all other hyper pa-
rameters, compression plan, learning rate schedule, and total training epochs identical to the default
configuration described in Appendix B. The experiments, summarized in Table 3, were conducted
on Qwen-3-4B-Base compressed to a 20% reduction rate.

Table 3: Ablation of the
group size N used in
the group wise sequen-
tial training scheme. The
table reports the average
downstream score.

Group size Avg
N=36 (all) 0.6182

N=1 0.6346
N=4 (ours) 0.6329

When N = 36 every adapter is inserted and trained at once, which min-
imizes the number of training phases but perturbs the entire backbone
simultaneously. This large covariate shift leads to unstable gradients
and a noticeable drop in downstream performance, as reflected by an
average score of 0.6182. At the opposite extreme, N = 1 updates one
adapter at a time, moving sequentially through the 36 layers. Because
only a single component is altered during each step, the original sig-
nal is largely preserved, resulting in the highest average performance.
However, the training iteration grows roughly linearly with the number
of groups, making this setting impractical for larger models.

Our default configuration adopts N = 4, grouping four consecutive
layers together. This approach retains most of the stability advantages
of the single-adapter regime while dramatically reducing the total number of training phases. The
resulting average score (0.6329) is only marginally below the optimal N = 1 setting, yet the com-
putational cost is comparable to the “all-at-once” baseline. Consequently, we select N = 4 as the
standard group size for all subsequent experiments.

4.3.2 IMPACT OF RECOVERY-TRAINING SET SIZE

Table 4: Effect of recovery-training set size on the performance of our 20% compressed Qwen-3-
4B-Base. Results are reported for four different sample budgets (300k, 600k, 1M, and 2M) on a
range of downstream benchmarks.
Method CR Samples PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP
Baseline - - 0.7786 0.7364 0.7032 0.8272 0.7597 0.5162 0.4120 0.8299 0.5015 0.7131 0.6898 0.6789 1.0000

Ours 20%

300K 0.7163 0.6433 0.6630 0.7802 0.7046 0.4181 0.3720 0.7976 0.4928 0.6476 0.6418 0.6252 0.9209
600K 0.7363 0.6622 0.6690 0.7790 0.7044 0.4358 0.3820 0.7837 0.5013 0.6573 0.6514 0.6329 0.9322
1M 0.7350 0.6757 0.6788 0.8354 0.7022 0.4488 0.3720 0.7985 0.4923 0.7084 0.6693 0.6469 0.9528
2M 0.7679 0.7230 0.6890 0.8215 0.7513 0.5060 0.4020 0.8315 0.4908 0.7076 0.6804 0.6701 0.9870

In this section, we evaluate how the size of the recovery-training set influences the effective-
ness of our compression pipeline. Table 4 reports results for four different sample budgets
(300K, 600K, 1M, and 2M) under a fixed compression rate of 20%. As the number of training
instances grows, downstream performance improves consistently across virtually all bench-
marks: the average score rises from 0.6252 (300K samples) to 0.6701 (2M samples), and the
relative performance (RP) climbs from 0.9209 to 0.9870, narrowing the gap with the uncom-
pressed baseline (Avg=0.6789). For most tasks the improvement is gradual, but a few—namely
HS, BoolQ, OBQA, and ARC—show a different pattern. With only 300K–1M samples their
scores increase only marginally, reflecting the limited signal provided by a small recovery
set. Once the sample count reaches over 1M, the gains accelerate sharply; at 2M samples
these tasks almost match the baseline performance (e.g., HS jumps from 0.6757 to 0.7230,
BoolQ from 0.7985 to 0.8315, OBQA from 0.3720 to 0.4020, ARC-e from 0.7022 to 0.7513).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Moreover, even the 300K-sample configuration of PnF matches or surpasses strong structured com-
pression baselines such as LaCo, ShortGPT, SliceGPT, and LLM-Streamline that are trained with
600K recovery samples, demonstrating strong data efficiency of PnF.

Overall, the results show that even a modest recovery set captures more than 90% of the attainable
relative performance (RP). When the recovery data are scaled to a few million examples, the com-
pressed model nearly matches the uncompressed baseline, incurring less than a 2% performance
drop while preserving the 20% compression ratio.

5 LIMITATION AND FUTURE WORKS

A possible limitation of our approach is that the first stage of the pipeline is deliberately empirical:
the compression plan and grouping schedule currently rely on manually specified per-layer reduction
rates and layer groups. While this design grants practitioners flexibility to tailor compression plans
to specific deployment constraints, it also places a burden on users to possess a priori knowledge
about the relative importance of different layers, which may hinder reproducibility and scalability. In
practice, an uninformed choice of layer-wise rates or groups can lead to sub-optimal performance or
unnecessary training overhead. On the other hand, this flexibility makes the stage a useful diagnostic
tool: by systematically varying the layers or groups that are compressed, users can probe which parts
of an LLM are most critical for specific linguistic or reasoning abilities.

Future work will focus on automated, data-driven planning schemes, such as sensitivity-based
or reinforcement-learning-based strategies inspired by recent structured pruning and compression
methods Wei et al. (2024); Gao et al. (2024b) that learn layer-wise ranks and grouping patterns in-
stead of fixing them heuristically, aiming to reduce manual tuning while preserving the analytical
benefits of the current empirical design.

6 CONCLUSION

In this work, we introduce a novel framework Plug-and-Fold (PnF), a compression framework that
preserves both weights and structure of the pretrained LLM. In our workflow, lightweight PnF
adapters are first plugged into a pretrained LLM’s weight matrices. After going through adaption
phase, adapters are folded back into the base model via simple matrix multiplication. The resulting
model is structurally identical to the original backbone yet enjoys substantial reductions in parame-
ters with unimpaired performance. Extensive experiments on four backbones and three compression
rates show PnF consistently outperforms strong baselines, highlighting the benefit of retaining pre-
trained weights. Ablation studies on training strategies confirm the effectiveness of our workflow,
while experiments on recovery-training set size demonstrate that with sufficient data PnF can nearly
match the original model’s performance. In summary, Plug-and-Fold provides an efficient, scalable,
architecture-preserving compression pipeline that maintains the expressive power of large pretrained
LLMs, enabling deployment on resource-constrained hardware without performance loss.

REFERENCES

Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier
Bachem. Gkd: Generalized knowledge distillation for auto-regressive sequence models. CoRR,
2023.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Systematic outliers in large language
models. arXiv preprint arXiv:2502.06415, 2025.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Zhihua Ban, Haotian Ma, Siheng Zhang, Shengyu Liu, Xichen Chen, and Ming Yang. Gap: a global
adaptive pruning method for large language models. In Proceedings of the 2025 Conference on
Empirical Methods in Natural Language Processing, pp. 20909–20914, 2025.

Akhiad Bercovich, Tomer Ronen, Talor Abramovich, Nir Ailon, Nave Assaf, Mohammad Dabbah,
Ido Galil, Amnon Geifman, Yonatan Geifman, Izhak Golan, et al. Puzzle: Distillation-based nas
for inference-optimized llms. arXiv preprint arXiv:2411.19146, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhaodong Bing, Linze Li, and Jiajun Liang. Optimizing knowledge distillation in transformers: En-
abling multi-head attention without alignment barriers. arXiv preprint arXiv:2502.07436, 2025.

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Stream-
lining redundant layers to compress large language models. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=IC5RJvRoMp.

Xiao Cui, Mo Zhu, Yulei Qin, Liang Xie, Wengang Zhou, and Houqiang Li. Multi-level optimal
transport for universal cross-tokenizer knowledge distillation on language models. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 39, pp. 23724–23732, 2025.

Fnu Devvrit, Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit Dhillon, Yu-
lia Tsvetkov, Hanna Hajishirzi, Sham Kakade, Ali Farhadi, et al. Matformer: Nested transformer
for elastic inference. Advances in Neural Information Processing Systems, 37:140535–140564,
2024.

Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller:
Unleashing the potential of sub-4-bit llms via self-distillation. arXiv preprint arXiv:2402.10631,
2024.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024a. URL https://zenodo.org/records/12608602.

Shangqian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, Yilin Shen, Hongxia Jin, and Yen-Chang
Hsu. Disp-llm: Dimension-independent structural pruning for large language models. Advances
in Neural Information Processing Systems, 37:72219–72244, 2024b.

Google DeepMind. Gemma 3n model overview. https://ai.google.dev/gemma/docs/
gemma-3n, 2025. Accessed: 2025-12-01.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Raby Hamadi. Large language models meet computer vision: A brief survey. arXiv preprint
arXiv:2311.16673, 2023.

G Hinton. Distilling the knowledge in a neural network. In Deep Learning and Representation
Learning Workshop in Conjunction with NIPS, 2014.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Xing Hu, Yuan Cheng, Dawei Yang, Zukang Xu, Zhihang Yuan, Jiangyong Yu, Chen Xu, Zhe
Jiang, and Sifan Zhou. Ostquant: Refining large language model quantization with orthogonal
and scaling transformations for better distribution fitting. arXiv preprint arXiv:2501.13987, 2025.

Yuxuan Hu, Jing Zhang, Zhe Zhao, Chen Zhao, Xiaodong Chen, Cuiping Li, and Hong Chen.
Sp3: Enhancing structured pruning via pca projection. In Findings of the Association for
Computational Linguistics: ACL 2024, pp. 3150–3170, 2024.

Raisa Islam and Owana Marzia Moushi. Gpt-4o: The cutting-edge advancement in multimodal llm.
In Intelligent Computing-Proceedings of the Computing Conference, pp. 47–60. Springer, 2025.

11

https://openreview.net/forum?id=IC5RJvRoMp
https://openreview.net/forum?id=IC5RJvRoMp
https://zenodo.org/records/12608602
https://ai.google.dev/gemma/docs/gemma-3n
https://ai.google.dev/gemma/docs/gemma-3n

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024a. URL https://arxiv.org/abs/2401.04088.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024b.

Pierre-Carl Langlais, Carlos Rosas Hinostroza, Mattia Nee, Catherine Arnett, Pavel Chizhov,
Eliot Krzystof Jones, Irène Girard, David Mach, Anastasia Stasenko, and Ivan P Yamshchikov.
Common corpus: The largest collection of ethical data for llm pre-training. arXiv preprint
arXiv:2506.01732, 2025.

Shengrui Li, Junzhe Chen, Xueting Han, and Jing Bai. Nuteprune: Efficient progressive pruning
with numerous teachers for large language models. arXiv preprint arXiv:2402.09773, 2024a.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Evaluating quantized large language models. In Proceedings of
the 41st International Conference on Machine Learning, pp. 28480–28524, 2024b.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023a.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. Qllm:
Accurate and efficient low-bitwidth quantization for large language models. arXiv preprint
arXiv:2310.08041, 2023b.

Yang Liu, Jiahuan Cao, Chongyu Liu, Kai Ding, and Lianwen Jin. Datasets for large language
models: A comprehensive survey. arXiv preprint arXiv:2402.18041, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Leandro Giusti Mugnaini, Bruno Lopes Yamamoto, Lucas Lauton de Alcantara, Victor Zacarias,
Edson Bollis, Lucas Pellicer, Anna Helena Reali Costa, and Artur Jordao. Efficient llms with
amp: Attention heads and mlp pruning. arXiv preprint arXiv:2504.21174, 2025.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact lan-
guage models via pruning and knowledge distillation. Advances in Neural Information Processing
Systems, 37:41076–41102, 2024.

Utkarsh Ojha, Yuheng Li, Anirudh Sundara Rajan, Yingyu Liang, and Yong Jae Lee. What
knowledge gets distilled in knowledge distillation? Advances in Neural Information Processing
Systems, 36:11037–11048, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. In
International Conference on Learning Representations, 2018.

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen Dong. Pb-llm: Partially binarized large lan-
guage models. arXiv preprint arXiv:2310.00034, 2023.

12

https://arxiv.org/abs/2401.04088

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
plicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv e-prints, pp.
arXiv–2507, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

Jiateng Wei, Quan Lu, Ning Jiang, Siqi Li, Jingyang Xiang, Jun Chen, and Yong Liu. Structured
optimal brain pruning for large language models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 13991–14007, 2024.

Taiqiang Wu, Cheng Hou, Shanshan Lao, Jiayi Li, Ngai Wong, Zhe Zhao, and Yujiu Yang. Weight-
inherited distillation for task-agnostic bert compression. In Findings of the Association for
Computational Linguistics: NAACL 2024, pp. 13–28, 2024.

Mingzhe Yang, Sihao Lin, Changlin Li, and Xiaojun Chang. Let llm tell what to prune and how
much to prune. In Forty-second International Conference on Machine Learning.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in neural
information processing systems, 32, 2019.

Qiang Zhang, Keyan Ding, Tianwen Lv, Xinda Wang, Qingyu Yin, Yiwen Zhang, Jing Yu, Yuhao
Wang, Xiaotong Li, Zhuoyi Xiang, et al. Scientific large language models: A survey on biological
& chemical domains. ACM Computing Surveys, 57(6):1–38, 2025.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

13

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PNF COMPRESSION PIPELINE (PSEUDO-CODE)

Algorithm 1 provides a concise pseudo-code summary of the plug-and-fold (PnF) pipeline, including
(i) compression planning of per-layer rank allocation and selection of layers to compress, (ii) group-
wise adapter training on a frozen backbone, and (iii) the folding step that replaces each compressed
layer’s weight with folded weight WComp

l = WlPl.

Algorithm 1 Plug-and-Fold (PnF) Compression Pipeline

Require: Pretrained decoder-only LLM weights {Wl}Ll=1, global compression rate ρ, teacher
model fteacher, distillation dataset D

Ensure: Compressed weights {WComp
l }Ll=1

1: [Compression Planning]
2: Compute per-layer target ranks/widths {rl}Ll=1 to match the global compression rate ρ.
3: Define the set of layers to compress C ← {l ∈ {1, . . . , L} : rl < full dim(Wl)}.
4: Partition C into groups G1, . . . , GK (single-stage PnF uses K=1 and G1=C).
5: [Group-Wise Sequential Training for adapter]
6: Initialize PnF adapters {Pl}l∈C (e.g., near-identity).
7: for k = 1 to K do
8: for each layer l ∈ Gk do
9: Attach adapter Pl to Wl (replace xWl by xWlPl with rank rl).

10: Freeze Wl and mark only Pl as trainable.
11: end for
12: for training step t = 1 to Tk do
13: Sample a minibatch x ∼ D.
14: Compute teacher outputs pteacher(· | x) = fteacher(x).
15: Compute student outputs pstudent(· | x; {Wl, Pl}).
16: Update {Pl}l∈Gk

by minimizing a distillation loss (e.g., KL(pteacher ∥ pstudent)).
17: end for
18: [Folding Step for adapter (for saving memory in training process)]
19: for each layer l ∈ Gk do
20: WComp

l ←WlPl.
21: Remove Pl and keep WComp

l for inference.
22: end for
23: end for

B EXPERIMENT SETTINGS

B.1 HYPER-PARAMETER CONFIGURATION

In all experiments we follow the two-stage pipeline described in Section 3.2. Below we detail the
hyperparameter settings that were used to instantiate the compression plan, to construct the training
groups, and to train the adapters. The values are the same for every model and compression rate
unless explicitly noted. Also, the PnF are initialized as identity matrix, where only the diagonal
elements are set to 1 otherwise 0.

B.2 COMPRESSION PLAN (PER-LAYER REDUCTION RATES)

For each target compression rate c ∈ {20%, 30%, 40%}, we empirically driven target
hidden-dimension targets for the multi-head self-attention (MHSA) and feed-forward network (FFN)
sub-layers. The resulting dimensionalities are listed in Table 5. The notation indicates the target hid-
den size for each group in the order in which the groups are visited (from the output side toward the
input side).

Interpretation of Table 5 Taking OPT 2.7B as an example, for a 20% reduction the first two
groups (closest to the output) compress both the MHSA projection matrices to rhead = 72 and the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Target hidden dimensions for MHSA and FFN at each compression rate. Each entry corre-
sponds to a successive group of layers (see Figure 2).

Backbone CR MHSA FFN

20% (72, 72,−,−) (3584, 3584, 4096, 4864)

30% (64, 72, 72,−,−,−,−) (3328, 3328, 3840, 4608, 5632, 6144, 8192)OPT 2.7B
40% (64, 64, 72, 72,−,−,−,−) (2560, 2560, 2816, 2816, 2816, 3840, 5888, 8096)

20% (−,−,−,−) (5120, 5632, 7168, 7168)

30% (64, 80, 96, 112,−,−) (4608, 5376, 6144, 8192, 10240, 13312)OPT 6.7B
40% (64, 64, 64, 64, 96,−) (5632, 5376, 5120, 5120, 7168, 7168)

20% (−,−,−,−,−) (2560, 2816, 3328, 4608, 9216)

30% (−,−,−,−,−,−) (2560, 2560, 2560, 3072, 3584, 4864)Qwen3 4B
40% (−,−,−,−,−,−,−,−) (2560, 2560, 2560, 2816, 2816, 3072, 3328, 5632)

20% (−,−,−,−,−) (4096, 4352, 4864, 6144, 8704)

30% (−,−,−,−,−,−,−) (4096, 4352, 4608, 4864, 4864, 5632, 7680)Qwen3 8B
40% (−,−,−,−,−,−,−,−,−) (4096, 4352, 4608, 4608, 4352, 4608, 4608, 4608, 7936)

FFN intermediate dimensions to rinter = 3584. Subsequent groups use the next values in the list,
while “ − ” denotes it retains the original dimension. At 30% and 40% the plan contains more
groups, thereby spreading the reduction more gradually across the stack.

B.3 TRAINING SCHEDULE

The overall workflow of training is as follows. For each selected group Gk we:

1. Insert PnF adapters corresponding to index belonging to Gk

2. Train for E epochs while keeping all previously trained groups frozen
3. Proceed to Gk+1 until Gng

Through out the entire experiments, the number of epochs is fixed to E := 1, giving a total of ng

iteration.

B.4 FOLDING STEP

After the final group has been trained, each adapter pair is merged into its corresponding projection
matrix W by the closed-form multiplication. No additional fine-tuning is performed after folding,
which guarantees that the resulting model has exactly the same architecture and runtime character-
istics as the original uncompressed model.

B.5 BASELINE RECOVERY FINE-TUNING SETTINGS

For the recovery-fine-tuning (RFT) stage we adopt LoRA, since LoRA fine-tuning is widely used
in recent work. To ensure a fair comparison, we fix the low-rank dimension to r = 16 for every
LoRA experiment. Unless a particular method explicitly restricts its scope, LoRA is applied to all
transformer layers—both the multi-head self-attention (MHSA) and feed-forward network (FFN)
sub-layers.

C ADDITIONAL RESULTS

C.1 COMPARISON WITH BASELINE METHODS

In this section we compare our proposed approach with several baselines across a broader set of
conditions. We evaluate four backbone models—Qwen-3-4B-Base, Qwen-3-8B-Base, OPT-2.7B,
and OPT-6.7B, LLaMA-3.2-3B, LLaMA-3.1-8B-and we assess performance in both zero-shot and
five-shot settings. Across all experiments, our method consistently yields the highest average score
(Avg), closely matching the performance of the uncompressed baseline for each backbone.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The same trend observed in the zero-shot experiments holds in the five-shot setting. Our com-
pression method consistently outperforms the baselines across all compression rates, and the per-
formance gap widens on knowledge-intensive benchmarks. Thus, the superior performance of our
approach is preserved when a few exemplars are provided.

Table 6: Performance of the different compression methods on LLaMA-3.2-3B on zero-shots set-
ting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (3.21B) - 0.7748 0.7370 0.6906 0.6404 0.7168 0.4582 0.4320 0.7278 0.4708 0.5396 0.7000 0.6262 –

Slice GPT
20% (2.90B)

600k
0.5664 0.3318 0.5217 0.1998 0.3396 0.2543 0.3020 0.5966 0.3552 0.2420 0.0714 0.3437 –

30% (2.56B) 0.5484 0.3178 0.4996 0.1966 0.3211 0.2415 0.2580 0.5841 0.3449 0.2562 0.0732 0.3310 –
40% (2.22B) 0.5424 0.2923 0.4980 0.1957 0.3026 0.2278 0.2540 0.4798 0.3444 0.2617 0.0472 0.3133 –

LaCo
20% (2.61B)

600k
0.7002 0.6330 0.6890 0.6183 0.6044 0.3771 0.3520 0.6697 0.4427 0.5177 0.6330 0.5670 –

30% (2.21B) 0.6736 0.5134 0.5864 0.3227 0.5248 0.3131 0.3200 0.6242 0.4033 0.3148 0.4801 0.4615 –
40% (1.90B) 0.6028 0.4156 0.5667 0.2228 0.3952 0.2491 0.2840 0.6217 0.3915 0.2652 0.3972 0.4011 –

LLM-Streamline
20% (2.61B)

600k
0.7138 0.6171 0.6661 0.6372 0.6103 0.3840 0.3740 0.7150 0.4401 0.5450 0.5131 0.5651 –

30% (2.21B) 0.6763 0.5317 0.6504 0.4390 0.5459 0.3345 0.3160 0.6450 0.4150 0.4172 0.4147 0.4896 –
40% (1.90B) 0.6556 0.3884 0.5162 0.1949 0.4743 0.2517 0.3000 0.6076 0.3608 0.2295 0.1906 0.3791 –

Short GPT
20% (2.61B)

600k
0.6948 0.6095 0.6827 0.6126 0.5947 0.3840 0.3520 0.6419 0.4473 0.5207 0.6043 0.5586 –

30% (2.21B) 0.6425 0.4954 0.6369 0.5315 0.4769 0.3123 0.3080 0.6355 0.4115 0.4806 0.3831 0.4831 –
40% (1.90B) 0.6110 0.3929 0.5809 0.1949 0.3948 0.2713 0.2860 0.6226 0.3675 0.2299 0.2243 0.3797 –

Ours
20% (2.55B)

600k
0.7548 0.6541 0.6877 0.6073 0.6824 0.4029 0.3820 0.6868 0.4430 0.5087 0.6493 0.5872 –

30% (2.22B) 0.7331 0.5916 0.6256 0.4998 0.6283 0.3625 0.3500 0.6798 0.4235 0.4386 0.5981 0.5392 –
40% (1.92B) 0.6977 0.5169 0.5830 0.3500 0.5436 0.3041 0.3480 0.6391 0.4087 0.3571 0.5294 0.4798 –

Table 7: Performance of the different compression methods on LLaMA-3.2-3B on five-shots setting.

Method PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu lambada openai

Baseline 0% (3.21B) 0.8025 0.7546 0.7238 0.6658 0.7816 0.4838 0.4489 0.7336 0.5066 0.5616 0.6652
Slice GPT 20% (2.90B) 0.5805 0.3358 0.5359 0.1892 0.3573 0.2415 0.2640 0.6031 0.3634 0.2539 0.0505
Slice GPT 30% (2.56B) 0.5528 0.3216 0.5257 0.1925 0.3430 0.2389 0.2760 0.5355 0.3414 0.2516 0.0611
Slice GPT 40% (2.22B) 0.5365 0.2921 0.5154 0.1867 0.3148 0.2355 0.2620 0.4321 0.3347 0.2519 0.0380
LaCo 20% (2.61B) 0.7095 0.6463 0.6890 0.6486 0.6616 0.4019 0.3500 0.6951 0.4846 0.5219 0.5913
LaCo 30% (2.21B) 0.6823 0.5281 0.5991 0.2678 0.5694 0.3311 0.3240 0.6217 0.4417 0.3109 0.3798
LaCo 40% (1.90B) 0.6104 0.4173 0.5841 0.2154 0.4205 0.2551 0.2840 0.6135 0.3869 0.2559 0.3767
LLM-Streamline 20% (2.61B) 0.7236 0.6373 0.6827 0.6536 0.6561 0.3891 0.3600 0.7428 0.4826 0.5548 0.4564
LLM-Streamline 30% (2.21B) 0.6828 0.5475 0.6709 0.4120 0.5829 0.3473 0.3220 0.6755 0.4478 0.4190 0.3546
LLM-Streamline 40% (1.90B) 0.6545 0.3870 0.5178 0.2097 0.4718 0.2423 0.2800 0.5410 0.3639 0.2465 0.1679
Short GPT 20% (2.61B) 0.6964 0.6372 0.6875 0.6396 0.6414 0.3831 0.3560 0.6673 0.4821 0.5394 0.5845
Short GPT 30% (2.21B) 0.6507 0.5114 0.6433 0.5536 0.5130 0.3097 0.3140 0.6315 0.4386 0.4657 0.3910
Short GPT 40% (1.90B) 0.6094 0.3970 0.5714 0.1957 0.4196 0.2696 0.2760 0.6064 0.3838 0.2553 0.2199
Ours 20% (2.55B) 0.7742 0.6719 0.6896 0.6274 0.7238 0.4281 0.3920 0.7338 0.4975 0.5231 0.6056
Ours 30% (2.22B) 0.7409 0.6297 0.6461 0.5144 0.6486 0.3889 0.3700 0.6906 0.4806 0.4686 0.5553
Ours 40% (1.92B) 0.7175 0.5390 0.6083 0.3727 0.5623 0.3223 0.3600 0.6599 0.4606 0.3785 0.4904

Table 8: Performance of the different compression methods on LLaMA-3.1-8B on zero-shots set-
ting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (8.03B) - 0.8123 0.7884 0.7356 0.7150 0.8123 0.5367 0.4460 0.8196 0.4713 0.6345 0.7533 0.6841 1.0000

Slice GPT
20% (6.41B)

600k
0.5582 0.3818 0.5414 0.2015 0.3068 0.2449 0.2840 0.5535 0.3511 0.2466 0.0726 0.3402 0.4973

30% (5.61B) 0.5854 0.3592 0.5335 0.1966 0.3603 0.2568 0.2760 0.4590 0.3403 0.2376 0.0819 0.3351 0.4898
40% (4.83B) 0.5609 0.3299 0.5067 0.1957 0.3439 0.2321 0.2560 0.4367 0.3454 0.2461 0.0770 0.3210 0.4692

LaCo
20% (6.50B)

600k
0.7693 0.7056 0.6875 0.5209 0.7155 0.4317 0.3800 0.7691 0.4565 0.4671 0.6534 0.5961 0.8714

30% (5.63B) 0.7280 0.6209 0.6630 0.3604 0.6233 0.3558 0.3500 0.6667 0.4350 0.3478 0.5694 0.5200 0.7601
40% (4.76B) 0.6670 0.5141 0.6243 0.4210 0.5139 0.3055 0.2900 0.6312 0.4181 0.4141 0.4809 0.4800 0.7017

LLM-Streamline
20% (6.50B)

600k
0.7514 0.7007 0.7238 0.6912 0.7214 0.4633 0.3940 0.7609 0.4585 0.6164 0.3872 0.6062 0.8861

30% (5.63B) 0.6986 0.6035 0.6906 0.7035 0.6170 0.3763 0.3620 0.7593 0.4360 0.6271 0.3949 0.5699 0.8331
40% (4.76B) 0.6785 0.4778 0.5872 0.1941 0.5059 0.2833 0.3260 0.6190 0.4007 0.2301 0.2750 0.4161 0.6082

Short GPT
20% (6.50B)

600k
0.7465 0.6924 0.7159 0.6986 0.7024 0.4437 0.3740 0.7214 0.4611 0.5919 0.7075 0.6232 0.9110

30% (5.63B) 0.6855 0.5914 0.6993 0.5872 0.5875 0.3626 0.3060 0.7113 0.4222 0.4208 0.5410 0.5377 0.7860
40% (4.76B) 0.6213 0.4531 0.5983 0.1974 0.4310 0.2807 0.2780 0.6226 0.3889 0.2302 0.3427 0.4040 0.5906

Ours
20% (6.42B)

600k
0.7750 0.7369 0.7130 0.6326 0.7494 0.4654 0.4040 0.7942 0.4606 0.6170 0.7226 0.6428 0.9396

30% (5.62B) 0.7584 0.7048 0.6932 0.5892 0.7149 0.4389 0.3920 0.7525 0.4503 0.5713 0.6942 0.6145 0.8983
40% (4.48B) 0.7439 0.6240 0.6438 0.4562 0.6135 0.3494 0.3620 0.7094 0.4368 0.4528 0.6219 0.5467 0.7992

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Performance of the different compression methods on LLaMA-3.1-8B on five-shots setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (8.03B) - 0.8243 0.8092 0.7719 0.7412 0.8502 0.5768 0.4640 0.8275 0.5251 0.6503 0.6848 0.7023 –

Slice GPT
20% (6.41B)

600k
0.5756 0.4066 0.5541 0.1916 0.3359 0.2491 0.3020 0.6355 0.3675 0.2339 0.0660 0.3562 –

30% (5.61B) 0.6023 0.3787 0.5320 0.1990 0.4398 0.2773 0.2520 0.5410 0.3593 0.2385 0.0681 0.3535 –
40% (4.83B) 0.5740 0.3350 0.5217 0.2113 0.3826 0.2432 0.2620 0.4330 0.3582 0.2465 0.0530 0.3291 –

LaCo
20% (6.50B)

600k
0.7688 0.7243 0.6953 0.5356 0.7437 0.4539 0.3860 0.7639 0.4985 0.4490 0.6140 0.6030 –

30% (5.63B) 0.7274 0.6413 0.6630 0.4357 0.6810 0.3891 0.3560 0.7131 0.4724 0.4323 0.4830 0.5449 –
40% (4.76B) 0.6654 0.5273 0.6243 0.4595 0.5581 0.3038 0.3120 0.6636 0.4437 0.4385 0.4407 0.4943 –

LLM-Streamline
20% (6.50B)

600k
0.7563 0.7269 0.7648 0.7314 0.7626 0.4804 0.4080 0.8080 0.5164 0.6339 0.3553 0.6313 –

30% (5.63B) 0.6828 0.5475 0.6709 0.4120 0.5829 0.3473 0.3220 0.6755 0.4478 0.4190 0.3546 0.4966 –
40% (4.76B) 0.6545 0.3870 0.5178 0.2097 0.4718 0.2423 0.2800 0.5410 0.3639 0.2465 0.1679 0.3711 –

Short GPT
20% (6.50B)

600k
0.7508 0.7202 0.7388 0.7281 0.7462 0.4676 0.3720 0.6596 0.5118 0.6318 0.6231 0.6318 –

30% (5.63B) 0.6942 0.6085 0.7230 0.6298 0.6237 0.3737 0.3240 0.7095 0.4821 0.4828 0.5300 0.5619 –
40% (4.76B) 0.6328 0.4622 0.6212 0.2031 0.4735 0.2935 0.2860 0.6214 0.4222 0.2793 0.3113 0.4188 –

Ours
20% (6.42B)

600k
0.8094 0.7548 0.7482 0.6714 0.7990 0.5132 0.4300 0.8046 0.5131 0.6262 0.6641 0.6667 –

30% (5.62B) 0.7844 0.7224 0.7082 0.6063 0.7662 0.4680 0.4140 0.7656 0.4969 0.5842 0.6462 0.6329 –
40% (4.48B) 0.7527 0.6369 0.6546 0.4776 0.6818 0.3754 0.3760 0.7332 0.4772 0.4761 0.5814 0.5657 –

Table 10: Performance of the different compression methods on Qwen3-4B-Base on five-shots set-
ting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (4.02B) - 0.7889 0.7532 0.7206 0.8198 0.8674 0.6425 0.4500 0.8654 0.5502 0.7319 0.6501 0.7127 1.0000

Slice GPT
20% (3.53B)

600k
0.6980 0.5612 0.6425 0.3030 0.6902 0.4130 0.3480 0.7746 0.4641 0.3250 0.4487 0.5153 0.7230

30% (3.06B) 0.6409 0.4661 0.6085 0.2293 0.5370 0.2952 0.3120 0.6911 0.4181 0.2651 0.3656 0.4390 0.6160
40% (2.65B) 0.5832 0.3857 0.5596 0.1925 0.4158 0.2440 0.2780 0.511 0.3909 0.2672 0.2928 0.3746 0.5256

LaCo
20% (3.22B)

600k
0.7236 0.5840 0.6425 0.7273 0.7016 0.4249 0.3680 0.7679 0.4698 0.6192 0.4496 0.5889 0.8264

30% (2.81B) 0.6398 0.475 0.5841 0.3194 0.5556 0.3362 0.2820 0.7028 0.4252 0.2863 0.3043 0.4464 0.6264
40% (2.41B) 0.6300 0.4136 0.5509 0.2080 0.4996 0.2944 0.2880 0.6242 0.4083 0.2810 0.2550 0.4048 0.5680

LLM-Streamline
20% (3.22B)

600k
0.7448 0.5572 0.5241 0.2015 0.7428 0.4292 0.3880 0.5474 0.4544 0.2895 0.3974 0.4797 0.6730

30% (2.81B) 0.6724 0.4333 0.5059 0.1891 0.5883 0.3054 0.3180 0.6012 0.4027 0.2538 0.3049 0.4159 0.5836
40% (2.41B) 0.5865 0.3468 0.5643 0.1957 0.3742 0.2611 0.2800 0.3841 0.3602 0.2295 0.0060 0.3262 0.4577

Short GPT
20% (3.22B)

600k
0.7008 0.5520 0.6014 0.5766 0.7189 0.4573 0.3280 0.6914 0.4631 0.5167 0.4644 0.5519 0.7743

30% (2.81B) 0.6088 0.3142 0.5138 0.1974 0.4196 0.2747 0.2480 0.3847 0.3561 0.2446 0.0134 0.3250 0.4561
40% (2.41B) 0.5294 0.2564 0.4972 0.2080 0.2950 0.2568 0.2460 0.3869 0.3439 0.2370 0.0000 0.2961 0.4154

Ours
20% (3.22B)

600k
0.7559 0.6714 0.6772 0.8003 0.7739 0.4955 0.4100 0.8355 0.5417 0.6771 0.6055 0.6585 0.9240

30% (2.82B) 0.7233 0.5847 0.6343 0.6798 0.7070 0.4008 0.4000 0.7602 0.4955 0.5412 0.5411 0.5880 0.8250
40% (2.41B) 0.6912 0.5134 0.5783 0.5030 0.6186 0.3487 0.3540 0.7283 0.4517 0.3956 0.4757 0.5144 0.7218

Table 11: Performance of the different compression methods on Opt 6.7B in zero-shot setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (6.66B) - 0.7644 0.6719 0.6543 0.2031 0.6002 0.3473 0.3760 0.6612 0.4278 0.2505 0.6769 0.5121 1.0000

Slice GPT
20% (5.49B)

600k
0.7165 0.5657 0.6204 0.1916 0.5055 0.2961 0.3560 0.6235 0.4206 0.2500 0.5632 0.4645 0.9070

30% (4.77B) 0.7013 0.5220 0.6093 0.1957 0.4735 0.2875 0.3320 0.6064 0.3976 0.2421 0.4890 0.4415 0.8621
40% (4.07B) 0.6589 0.4709 0.5604 0.1982 0.4495 0.2671 0.3280 0.5835 0.3899 0.2290 0.4017 0.4125 0.8054

LaCo
20% (5.25B)

600k
0.6866 0.5310 0.6014 0.2064 0.4899 0.2995 0.3280 0.6214 0.4165 0.2503 0.5088 0.4491 0.8769

30% (4.64B) 0.6213 0.3890 0.5446 0.1974 0.3965 0.2560 0.2980 0.6214 0.3735 0.2463 0.1764 0.3746 0.7315
40% (4.04B) 0.5930 0.3391 0.5170 0.1957 0.3481 0.2363 0.2740 0.6211 0.3613 0.2371 0.0638 0.3442 0.6722

LLM-Streamline
20% (5.25B)

600k
0.7361 0.6037 0.6172 0.1761 0.5745 0.3191 0.3320 0.6324 0.4165 0.2470 0.5492 0.4731 0.9238

30% (4.64B) 0.6953 0.4204 0.5588 0.1974 0.5198 0.2850 0.3260 0.6330 0.3904 0.2381 0.2791 0.4130 0.8065
40% (4.04B) 0.6284 0.3430 0.5288 0.1966 0.4491 0.2304 0.2960 0.6217 0.3464 0.2311 0.1186 0.3627 0.7083

Short GPT
20% (5.25B)

600k
0.5044 0.2597 0.5051 0.1957 0.2668 0.2594 0.2720 0.3783 0.3515 0.2295 0.0000 0.2929 0.5720

30% (4.64B) 0.5065 0.2578 0.4917 0.1957 0.2597 0.2568 0.2860 0.3783 0.3418 0.2295 0.0000 0.2913 0.5687
40% (4.04B) 0.5065 0.2579 0.4878 0.1957 0.2601 0.2491 0.2980 0.3783 0.3454 0.2295 0.0000 0.2917 0.5695

Ours
20% (5.32B)

600k
0.7403 0.6126 0.6461 0.2146 0.5886 0.3278 0.3600 0.6666 0.4207 0.2567 0.6135 0.4952 0.9671

30% (4.66B) 0.7126 0.5321 0.6127 0.1998 0.5495 0.3069 0.3340 0.6496 0.4140 0.2512 0.5269 0.4627 0.9035
40% (3.99B) 0.6417 0.4926 0.5920 0.1966 0.4877 0.2874 0.3260 0.6382 0.3949 0.2464 0.4728 0.4342 0.8479

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 12: Performance of the different compression methods on Opt 2.7B in zero-shot setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (2.65B) - 0.7481 0.6063 0.6101 0.1990 0.5438 0.3131 0.3520 0.6027 0.4212 0.2567 0.6361 0.4808 1.0000

Slice GPT
20% (2.23B)

600k
0.6654 0.4682 0.5904 0.2031 0.4322 0.2637 0.3300 0.5257 0.3838 0.2415 0.4108 0.4104 0.8537

30% (1.94B) 0.6300 0.4228 0.5635 0.1966 0.4175 0.2585 0.3060 0.5168 0.3705 0.2316 0.3551 0.3881 0.8072
40% (1.66B) 0.5865 0.3674 0.5343 0.1957 0.3742 0.2509 0.2820 0.3982 0.3602 0.2301 0.2880 0.3516 0.7313

LaCo
20% (2.10B)

600k
0.6697 0.4629 0.5612 0.1957 0.4356 0.2782 0.3080 0.6223 0.3899 0.2436 0.4768 0.4222 0.8781

30% (1.86B) 0.6197 0.3677 0.5627 0.2113 0.3699 0.2415 0.2880 0.5832 0.3853 0.2330 0.1469 0.3645 0.7581
40% (1.63B) 0.5762 0.3006 0.5193 0.1957 0.3308 0.2261 0.2920 0.5920 0.3561 0.2312 0.0279 0.3316 0.6897

LLM-Streamline
20% (2.10B)

600k
0.7100 0.5471 0.6038 0.1974 0.5097 0.2867 0.3240 0.6058 0.4053 0.2537 0.5692 0.4557 0.9478

30% (1.86B) 0.6763 0.4016 0.5438 0.1966 0.4609 0.2585 0.3160 0.6012 0.3756 0.2344 0.2876 0.3957 0.8230
40% (1.63B) 0.6023 0.3122 0.5114 0.1949 0.3788 0.2150 0.2760 0.6119 0.3454 0.2298 0.0778 0.3414 0.7101

Short GPT
20% (2.10B)

600k
0.6692 0.4476 0.5745 0.1941 0.4457 0.2696 0.3080 0.5929 0.3904 0.2315 0.3155 0.4035 0.8393

30% (1.86B) 0.5354 0.2715 0.5083 0.1982 0.3081 0.2381 0.2600 0.3789 0.3459 0.2301 0.0029 0.2979 0.6197
40% (1.63B) 0.5152 0.2677 0.5067 0.1974 0.2908 0.2500 0.2600 0.3810 0.3423 0.2315 0.0035 0.2951 0.6138

Ours
20% (2.11B)

600k
0.7235 0.5012 0.6088 0.2023 0.5139 0.2922 0.3460 0.6287 0.4243 0.2500 0.5666 0.4598 0.9563

30% (1.85B) 0.6908 0,4615 0.5741 0.1981 0.4724 0.2782 0.3180 0.6157 0.4132 0.2462 0.5407 0.4347 0.9042
40% (1.58B) 0.6642 0.4205 0.5449 0.1957 0.4486 0.2759 0.2940 0.5861 0.4020 0.2388 0.4584 0.4117 0.8564

Table 13: Performance of the different compression methods on Opt 6.7B in five-shot setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (6.66B) 0.7704 0.6797 0.6598 0.1867 0.6982 0.3703 0.3920 0.7012 0.4785 0.2634 0.6451 0.5314 1.0000

Slice GPT
20% (5.49B)

600k
0.7187 0.5652 0.6211 0.1981 0.5984 0.3293 0.3600 0.5492 0.4206 0.2622 0.4189 0.4583 0.8625

30% (4.77B) 0.6921 0.5221 0.6314 0.1826 0.5699 0.3063 0.3280 0.5318 0.4124 0.2553 0.3623 0.4358 0.8202
40% (4.07B) 0.6561 0.4669 0.5912 0.1859 0.5173 0.2790 0.3220 0.5028 0.3935 0.2666 0.2925 0.4067 0.7654

LaCo
20% (5.25B)

600k
0.6915 0.5318 0.6069 0.2146 0.5244 0.3038 0.3280 0.6217 0.4355 0.2595 0.4935 0.4556 0.8573

30% (4.64B) 0.6170 0.3914 0.5375 0.1998 0.4411 0.2730 0.2840 0.6220 0.3817 0.2549 0.1300 0.3757 0.7069
40% (4.04B) 0.5919 0.3399 0.5312 0.1949 0.3733 0.2406 0.2660 0.6211 0.3541 0.2542 0.0324 0.3454 0.6500

LLM-Streamline
20% (5.25B)

600k
0.7426 0.6207 0.5943 0.2006 0.6485 0.3455 0.3700 0.6519 0.4600 0.2522 0.5356 0.4929 0.9275

30% (4.64B) 0.6219 0.3529 0.5099 0.1810 0.4428 0.2338 0.2640 0.5927 0.3572 0.2496 0.0714 0.3525 0.6633
40% (4.04B) 0.5811 0.2982 0.4964 0.1998 0.3577 0.2167 0.2560 0.5838 0.3326 0.2433 0.0213 0.3261 0.6136

Short GPT
20% (5.25B)

600k
0.5060 0.2606 0.5233 0.1957 0.2622 0.2594 0.2680 0.3783 0.3490 0.2295 0.0000 0.2938 0.5529

30% (4.64B) 0.4984 0.2562 0.4957 0.1957 0.2563 0.2474 0.2800 0.3783 0.3423 0.2295 0.0000 0.2891 0.5440
40% (4.04B) 0.5054 0.2552 0.4972 0.1957 0.2546 0.2534 0.2820 0.3783 0.3464 0.2295 0.0000 0.2907 0.5470

Ours
20% (5.32B)

600k
0.7647 0.6255 0.6319 0.2080 0.6477 0.3423 0.3720 0.6729 0.4683 0.2610 0.6032 0.5089 0.9576

30% (4.66B) 0.7323 0.5273 0.6221 0.1909 0.5905 0.3167 0.3520 0.6461 0.4468 0.2547 0.5081 0.4716 0.8874
40% (3.99B) 0.6896 0.4673 0.6038 0.1959 0.5343 0.2819 0.3320 0.6086 0.4292 0.2501 0.3951 0.4353 0.8191

Table 14: Performance of the different compression methods on Opt 2.7B in five-shot setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (2.65B) - 0.7481 0.6068 0.6204 0.1884 0.6469 0.3311 0.3580 0.6272 0.4550 0.2579 0.6010 0.4946 1.0000

Slice GPT
20% (2.23B)

600k
0.6757 0.4632 0.5770 0.1933 0.5080 0.2918 0.3100 0.4205 0.4099 0.2457 0.3037 0.3999 0.8085

30% (1.94B) 0.6322 0.4179 0.5746 0.2015 0.4609 0.2551 0.3000 0.4477 0.3991 0.2538 0.2663 0.3826 0.7736
40% (1.66B) 0.5936 0.3612 0.5383 0.2080 0.3880 0.2449 0.2800 0.4349 0.3756 0.2480 0.1974 0.3518 0.7113

LaCo
20% (2.10B)

600k
0.6746 0.4600 0.5825 0.1925 0.4886 0.2824 0.2900 0.6217 0.4252 0.2628 0.4221 0.4275 0.8643

30% (1.86B) 0.6186 0.3690 0.5588 0.1900 0.3986 0.2491 0.2600 0.6211 0.3705 0.2465 0.1025 0.3622 0.7324
40% (1.63B) 0.5745 0.2973 0.5130 0.2023 0.3350 0.2287 0.2600 0.6208 0.3561 0.2366 0.0155 0.3309 0.6690

LLM-Streamline
20% (2.10B)

600k
0.7198 0.5554 0.6006 0.1990 0.5871 0.3012 0.3260 0.6000 0.4385 0.2512 0.4925 0.4610 0.9321

30% (1.86B) 0.6436 0.4228 0.5138 0.1818 0.4524 0.2627 0.2720 0.5422 0.3689 0.2570 0.2327 0.3773 0.7628
40% (1.63B) 0.5539 0.2823 0.5075 0.1990 0.3338 0.2099 0.2500 0.5673 0.3336 0.2505 0.0165 0.3186 0.6441

Short GPT
20% (2.10B)

600k
0.6442 0.4013 0.5604 0.1916 0.4566 0.2637 0.2980 0.5621 0.3935 0.2505 0.1970 0.3835 0.7754

30% (1.86B) 0.5152 0.2553 0.5257 0.1966 0.2727 0.2457 0.2800 0.3783 0.3413 0.2295 0.0000 0.2946 0.5956
40% (1.63B) 0.5011 0.2572 0.5193 0.2007 0.2685 0.2654 0.2820 0.3783 0.3413 0.2342 0.0000 0.2953 0.5970

Ours
20% (2.11B)

600k
0.7107 0.5642 0.6099 0.1901 0.5835 0.3101 0.3320 0.6300 0.4302 0.2534 0.5110 0.4659 0.9420

30% (1.85B) 0.6794 0.4540 0.5741 0.2015 0.5243 0.2894 0.3300 0.5701 0.4291 0.2588 0.4518 0.4330 0.8754
40% (1.58B) 0.6518 0.4096 0.5551 0.1966 0.4827 0.2777 0.3080 0.5498 0.4230 0.2503 0.3678 0.4066 0.8220

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 15: Performance of the different compression methods on Qwen3-8B-Base with five shots
setting. The pretrained backbone and its compressed variants are evaluated on the same set of
benchmarks and compression rates as in Table 1.

Method CR PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (8.19B) 0.815 0.795 0.770 0.856 0.880 0.681 0.490 0.882 0.572 0.770 0.671 0.744 1.000
20% (6.52B) 0.714 0.632 0.686 0.329 0.747 0.462 0.396 0.781 0.496 0.356 0.527 0.557 0.749
30% (5.71B) 0.676 0.553 0.642 0.275 0.621 0.361 0.370 0.696 0.443 0.275 0.456 0.488 0.656Slice GPT
40% (4.91B) 0.627 0.451 0.594 0.201 0.494 0.279 0.318 0.614 0.415 0.255 0.363 0.419 0.564
20% (6.65B) 0.736 0.651 0.671 0.709 0.748 0.493 0.406 0.534 0.503 0.604 0.546 0.600 0.807
30% (5.88B) 0.694 0.535 0.600 0.506 0.629 0.358 0.318 0.673 0.456 0.408 0.471 0.514 0.690LaCo
40% (5.10B) 0.617 0.403 0.572 0.215 0.487 0.297 0.276 0.623 0.402 0.251 0.256 0.400 0.538
20% (6.65B) 0.774 0.613 0.561 0.238 0.769 0.446 0.402 0.548 0.477 0.268 0.462 0.505 0.680
30% (5.88B) 0.724 0.500 0.553 0.194 0.673 0.338 0.346 0.450 0.418 0.243 0.310 0.432 0.580LLM-Streamline
40% (5.10B) 0.608 0.364 0.568 0.196 0.392 0.266 0.310 0.451 0.382 0.230 0.010 0.343 0.462
20% (6.65B) 0.574 0.301 0.494 0.197 0.353 0.260 0.252 0.592 0.346 0.247 0.003 0.329 0.443
30% (5.88B) 0.561 0.278 0.494 0.195 0.327 0.227 0.252 0.493 0.347 0.256 0.002 0.312 0.420Short GPT
40% (5.10B) 0.540 0.258 0.512 0.198 0.307 0.230 0.256 0.417 0.348 0.229 0.000 0.300 0.403
20% (6.55B) 0.788 0.718 0.730 0.796 0.819 0.540 0.442 0.853 0.546 0.660 0.653 0.686 0.922
30% (5.74B) 0.753 0.654 0.679 0.658 0.737 0.442 0.392 0.786 0.511 0.501 0.574 0.608 0.817Ours
40% (4.91B) 0.724 0.587 0.637 0.526 0.680 0.402 0.352 0.775 0.463 0.404 0.487 0.549 0.738

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D ON KNOWLEDGE PRESERVATION VIA ADAPTER FOLDING

This section provides additional evidence for the claim that adapter folding better preserves pre-
trained knowledge than conventional low-rank compression. We present (i) an empirical compari-
son between adapt-before-folding and train-after-folding pipelines under matched rank and training
budget, and (ii) an intuitive small-scale example that clarifies why learned adapters can retain more
of the original transformation than truncation-first strategies.

D.1 EMPIRICAL COMPARISON OF RECONSTRUCTION FIDELITY

We compare our default PnF pipeline (adapt-before-folding) with the baseline (train-after-folding)
under the same compression ratio (20%) and the same training budget (600K samples). In the
baseline, the model is first reduced to the target rank r (i.e., rhead, rinter) using a low-rank projector,
and the resulting compressed weights are directly fine-tuned without any adapters. In PnF, the
pretrained backbone is frozen, only lightweight adapters are trained with KL-distillation, and the
adapters are folded into a dense matrix after training. Table 16 reports zero-shot performance for
Qwen-3-4B-Base compressed to 20% across a diverse set of benchmarks. At a fixed rank and
training budget, PnF consistently outperforms the train-after-folding baseline on most tasks as well
as on the averaged metric, indicating that adapter-based parameterization preserves the pretrained
model’s behavior more effectively than directly training on truncated weights.

Table 16: Comparison between baseline (train-after-folding) and PnF (adapt-before-folding) at 20%
compression on Qwen-3-4B-Base. All models are trained for 600K samples.

Method Comp.(%)PIQA HS WG CSQAARC-eARC-cOBQABoolQSIQAMMLU LD Avg

Baseline 20% 0.704 0.6360.642 0.740 0.675 0.416 0.334 0.772 0.473 0.607 0.6210.602
PnF 20% 0.736 0.6620.669 0.779 0.704 0.435 0.382 0.783 0.501 0.657 0.6510.632

D.2 TOY EXAMPLE: TRUNCATION-FIRST VS. ADAPT-BEFORE-FOLDING

To build intuition, we contrast the backbone transformation, a truncation-first strategy, and our adapt-
before-folding scheme on a simple 2× 3 example.

Let

x =

[
a
b

]
, W =

[
c d e
f g h

]
∈ R2×3.

Backbone. The original pretrained transformation is

fW (x) = x⊤W = [a b]

[
c d e
f g h

]
= [ac+ bf ad+ bg ae+ bh] .

Truncation-first. A truncation-first strategy applies a fixed selector S ∈ R3×2 that drops the third
column, e.g.

S =

[
1 0
0 1
0 0

]
, W Trunc = WS =

[
c d
f g

]
.

The compressed transformation becomes

fW Trunc(x) = x⊤W Trunc = [a b]

[
c d
f g

]
= [ac+ bf ad+ bg] .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Here the contribution of the third column (e, h) is discarded by construction; the compressed model
can only exploit the first two columns of W .

Adapt-before-folding (PnF). In PnF, we instead introduce a learnable adapter P ∈ R3×2 and
keep W frozen. For illustration, write

P =

[
i j
k l
m n

]
, WComp = WP.

Then

fW Comp(x) = x⊤WComp = x⊤WP = [a b]

[
c d e
f g h

][i j
k l
m n

]

= [(ac+ bf)i+ (ad+ bg)k + (ae+ bh)m (ac+ bf)j + (ad+ bg)l + (ae+ bh)n] .

Although WComp also has only two output dimensions, every entry of the original W (including e
and h) participates in the product WP and can still influence fW Comp(x) through the learned coeffi-
cients (i, j, k, l,m, n). The adapter P is optimized so that fW Comp(x) ≈ fW (x) on the training dis-
tribution, effectively redistributing the contribution of all columns of W into the lower-dimensional
representation. This toy example highlights the qualitative difference between truncation-first and
adapt-before-folding: truncation irrevocably removes part of the pretrained weights, whereas PnF
retains the full pretrained matrix and learns how to compress it via a data-driven adapter.

E TRAINING COST AND PRACTICAL EFFICIENCY OF PNF

In this section, we provide the experimental results with a cost-performance analysis of PnF. Ta-
ble 17 reports training latency and average downstream zero-shot performance for Qwen-3-4B-
Base compressed to 20% on an 8×H100 configuration under two training regimes: a single-
stage non-sequential variant, where all adapters are trained at once, and the group-wise sequential
schedule used in our main experiments. At a compression ratio (20%) and training budget
(600K samples), non-sequential (all-at-once) PnF uses a single-stage training loop similar in struc-
ture to standard fine-tuning, yet it already recovers strong performance surpasses the baselines
(LaCo: 0.559 vs. PnF: 0.602). By contrast, group-wise sequential training increases recovery
phase by roughly a factor of three, but yields a clear additional gain in average performance
(0.602→ 0.633). Importantly, the proposed group-wise sequential training schedule is optional for
our method to work rather than a requirement of PnF: the non-sequential “all-at-once” PnF training
already provides a competitive cost–performance trade-off, and practitioners can choose the config-
uration that best fits their resources, using the single-stage variant when wall-clock time is limited
and the multi-stage variant when the highest possible performance is desired.

Table 17: Training latency and average performance for the two PnF training regimes on Qwen-3-
4B-Base (20% compression, 600K samples, 8×H100).

Regime # Groups Training latency (h) GPU hours Avg. performance

Non-sequential training 1 8.21 65.7 0.602
Sequential training 4 23.32 186.6 0.633

F ADDITIONAL COMPARISONS WITH SVD-LLM AND BITDISTILLER

We provide additional baseline comparisons to SVD-LLM(Wang et al., 2024) and BitDistiller (Du
et al., 2024) at a common 20% compression ratio on LLaMA-2-7B, in order to offer a more com-
prehensive and fair evaluation against structured low-rank and quantization/distillation baselines.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F.1 COMPARISON WITH SVD-LLM

Following the experimental setup of the original SVD-LLM paper, we use LLaMA-2-7B and eval-
uate PnF at a 20% compression ratio on the shared tasks: PIQA, HellaSwag, WinoGrande, ARC-e,
OpenBookQA, GSM8K, MathQA, and TruthfulQA. The results for PnF are obtained under our
standard PnF training pipeline, and the numbers for SVD-LLM are taken from (Wang et al., 2024)
under the same compression ratio and backbone. At this 20% setting, PnF attains a higher average
performance than SVD-LLM.

Table 18: Performance comparison between PnF and SVD-LLM on LLaMA-2-7B at 20% compres-
sion.

Method PIQA HellaSwag WinoGrande ARC-e OpenBookQA GSM8K MathQA TruthfulQA Avg.

SVD-LLM 0.69 0.52 0.68 0.59 0.33 0.08 0.26 0.28 0.43
PnF 0.76 0.56 0.69 0.73 0.33 0.09 0.26 0.38 0.48

F.2 COMPARISON WITH BITDISTILLER

BitDistiller (Du et al., 2024) is a low-bit quantization framework that integrates quantization-aware
training with self-distillation, whereas PnF focuses on structured compression. Because BitDis-
tiller applies only quantization, exact model-size matching with our method, which uses structured
compression, is difficult. Nonetheless, we adopt the same backbone (LLaMA-2-7B) and compare
the performance of BitDistiller with 3-bit quantization to PnF with 20% compression rate with ad-
ditional 4 bit quantization. Even under this conservative setting (quantization-only vs. structured
compression + quantization), PnF+quant. achieves higher or comparable downstream performance
than the 3-bit BitDistiller model.

Table 19: Benchmark comparison between BitDistiller and PnF with 4-bit quantization on LLaMA-
2-7B.

Method PIQA HellaSwag WinoGrande ARC-c MMLU Avg.

BitDistiller 0.7699 0.5538 0.6835 0.4121 0.4465 0.5732
PnF + quant. 0.7673 0.5645 0.6941 0.4184 0.4285 0.5746

G ADDITIONAL COMPARISONS WITH LLM-PRUNER AND DISP-LLM

We provide additional baseline comparisons with LLM-Pruner (Ma et al., 2023) and DISP-
LLM (Gao et al., 2024b) at a 20% compression ratio on LLaMA-2-7B, to offer a more compre-
hensive evaluation against latest structured compression methods.

G.1 COMPARISON WITH LLM-PRUNER

For a fair comparison, we align with the experimental setting of LLM-Pruner by adopting LLaMA-2-
7B and comparing results at a 20% compression ratio on the shared benchmarks (PIQA, HellaSwag,
WinoGrande, ARC-e, ARC-c, OpenBookQA, and BoolQ). The results for LLM-Pruner are sourced
from (Ma et al., 2023), and our PnF results are obtained under the same backbone and compression
ratio. Under this setting, as summarized in Table 20, PnF attains a higher average performance than
LLM-Pruner.

G.2 COMPARISON WITH DISP-LLM

We additionally compare PnF with DISP-LLM (Gao et al., 2024b), another latest structured com-
pression approach. Using LLaMA-2-7B and the same 20% compression setting, we place our PnF
results alongside the DISP-LLM performance reported in (Gao et al., 2024b) on the overlapping
benchmarks. PnF again achieves higher average performance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 20: Benchmark comparison between LLM-Pruner and PnF on LLaMA-2-7B at 20% com-
pression.

Method PIQA HellaSwag WinoGrande ARC-e ARC-c OpenBookQA BoolQ Avg.

LLM-Pruner 0.76 0.68 0.65 0.63 0.38 0.40 0.70 0.60
PnF (LLM-Pruner) 0.78 0.70 0.69 0.73 0.41 0.42 0.75 0.62

Table 21: Benchmark comparison between DISP-LLM and PnF on LLaMA-2-7B at 20% compres-
sion. “–” denotes a missing value.

Method PIQA HellaSwag WinoGrande ARC-e ARC-c Avg.

DISP-LLM 0.77 0.68 0.65 0.65 0.37 0.62
PnF (DISP-LLM) 0.78 0.70 0.69 0.73 0.41 0.66

H INFERENCE LATENCY ANALYSIS

We present supplemental results analyzing the practical impact of compression on generation speed.
We measure the average per-token generation latency (in milliseconds) for the original backbone,
SliceGPT (Ashkboos et al., 2024), and PnF on Qwen3-4B-Base using a single H100 GPU under
different compression ratios (0%, 20%, 30%, and 40%). As shown in Table 22, the average per-
token latency decreases as the compression ratio increases for both PnF and SliceGPT.

Table 22: Average per-token generation latency (ms) of SliceGPT and PnF at different compression
ratios on Qwen3-4B-Base with 1×H100. Here, 0% means that the model is not compressed.

Method 0% 20% 30% 40%

SliceGPT 29.126 ms 22.299 ms 22.120 ms 22.099 ms
PnF 29.126 ms 22.081 ms 21.719 ms 21.559 ms

I COMPATIBILITY WITH LOW-BIT QUANTIZATION

To evaluate the deployment efficacy of PnF, we additionally examine whether the folded matrices,
WComp = WP , produced by PnF introduce distributional shifts that complicate low-bit quantization
compared to the original weight. To this end, we apply the same 4-bit post-training quantization
pipeline to both the uncompressed Qwen3-4B-Base model and its PnF-compressed variants at 20%,
30%, and 40% compression ratios. The results are summarized in Table 23. For the uncompressed
baseline, 4-bit quantization reduces the average score from 0.6789 to 0.6441, a 5.13% relative drop.
For PnF, the corresponding drops are 0.6329 → 0.6244 (1.13%), 0.5713 → 0.5454 (4.53%), and
0.4971 → 0.4720 (5.05%), for 20%, 30%, and 40% compression, respectively. In other words,
the quantization-induced degradation for PnF model does not exceed that of full-size backbone.
These results provide empirical evidence that the folded weights, WComp, do not introduce harmful
outliers that would harm the quantization pipeline, and, therefore, fully compatible with standard
4-bit post-training quantization pipelines.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 23: 4-bit post-training quantization results on Qwen3-4B-Base and its PnF-compressed vari-
ants. “Drop rate” denotes the relative performance drop compared to the corresponding FP16 model.

Method Comp. Ratio PIQA HS WG CSQA ARC-e ARC-c OBQA BoolQ SIQA MMLU LAMBADA Avg Drop rate

Baseline 0% (4.02B) 0.7786 0.7364 0.7032 0.8272 0.7597 0.5162 0.4120 0.8299 0.5015 0.7131 0.6898 0.6789 0
Baseline (4bit) 0% (4.02B) 0.7758 0.7200 0.6811 0.7721 0.7214 0.4906 0.3940 0.8086 0.4918 0.6774 0.5525 0.6441 5.13% (↓)
Ours 20% (3.22B) 0.7363 0.6622 0.6690 0.7790 0.7044 0.4358 0.3820 0.7837 0.5013 0.6573 0.6514 0.6329 0
Ours 30% (2.82B) 0.7118 0.5878 0.6177 0.6275 0.6649 0.3803 0.3620 0.7485 0.4639 0.5243 0.5951 0.5713 0
Ours 40% (2.41B) 0.7015 0.5134 0.5874 0.4195 0.5517 0.3095 0.3420 0.6846 0.4210 0.3949 0.5423 0.4971 0

Ours (4bit) 20% (3.22B) 0.7341 0.6436 0.6611 0.7424 0.6704 0.4221 0.3660 0.7632 0.4839 0.6209 0.5549 0.6244 1.13% (↓)
Ours (4bit) 30% (2.82B) 0.7142 0.5698 0.6091 0.5759 0.6489 0.3760 0.3520 0.7054 0.4481 0.5002 0.5000 0.5454 4.53% (↓)
Ours (4bit) 40% (2.41B) 0.6874 0.4985 0.5743 0.4021 0.5349 0.2969 0.3160 0.6547 0.4063 0.3765 0.4439 0.4720 5.05% (↓)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

J STATEMENT OF LARGE-LANGUAGE-MODEL (LLM) USAGE

The authors acknowledge that a large-language-model (LLM) was employed as a general-purpose
assistance tool during the preparation of this manuscript. Specifically, the following tasks were
supported by the LLM under the direct supervision of the authors:

• Formatting and LaTeX assistance – The LLM supplied LaTeX snippets for tables, equa-
tions, and figure captions (e.g., Table 5 and the hyper-parameter description). The authors
integrated these snippets into the manuscript and performed all final compilation and for-
matting checks.

• Language polishing – The LLM was used to improve readability, correct grammar, and
adjust stylistic tone across the entire manuscript. The final wording reflects the authors’
own decisions after thorough review.

All content generated by the LLM was fully supervised, fact-checked, and substantially revised by
the human authors before inclusion in the final version. No portion of the manuscript was submitted
to the LLM for autonomous generation without subsequent author verification.

The authors affirm that the intellectual contributions, experimental design, data analysis, and conclu-
sions are entirely their own work, and that the LLM served only as an auxiliary writing and editing
aid.

25

	Introduction
	Background
	Decoder-based Transformer Architecture
	Multi-Head Self-Attention (MHSA)
	Feed-Forward Network (FFN)

	Method
	Plug-and-Fold (PnF) Compression
	Plug-and-Fold (PnF) Adapter
	PnF adapter for MHSA
	PnF adapter for Feed Forward Network

	Training Pipeline for PnF adapter
	Deployment for Inference

	Experiments
	Experimental Setup
	Results
	Ablations
	Training Strategy
	Impact of Recovery‑Training Set Size

	Limitation and Future works
	Conclusion
	PnF Compression Pipeline (Pseudo-code)
	Experiment Settings
	Hyper‑parameter Configuration
	Compression plan (per‑layer reduction rates)
	Training schedule
	Folding step
	Baseline Recovery Fine-Tuning Settings

	Additional Results
	Comparison with Baseline Methods

	On Knowledge Preservation via Adapter Folding
	Empirical comparison of reconstruction fidelity
	Toy example: truncation-first vs. adapt-before-folding

	Training Cost and Practical Efficiency of PnF
	Additional Comparisons with SVD-LLM and BitDistiller
	Comparison with SVD-LLM
	Comparison with BitDistiller

	Additional Comparisons with LLM-Pruner and DISP-LLM
	Comparison with LLM-Pruner
	Comparison with DISP-LLM

	Inference Latency Analysis
	Compatibility with low-bit quantization
	Statement of Large‑Language‑Model (LLM) Usage

