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ABSTRACT

Large Language Models (LLMs) have achieved remarkable performance across
a wide range of tasks, but their growing size poses significant challenges for de-
ployment and efficiency. Among existing model compression methods, structured
pruning has emerged as a popular approach for reducing model size. However,
pruning removes structural components such as layers, heads, or channels, which
can disrupt pre-trained weights and lead to fragile recovery fine-tuning process. In
this work, we propose Plug-and-Fold (PnF), a weight-preserving yet structurally
effective compression method. Rather than removing weights or modifying the
model architecture, PnF introduces lightweight, learnable adapter modules into
the projection layers of attention and feed-forward networks. These adapters
are trained while keeping the original weights frozen, and are later folded into
the base weights via simple matrix multiplications. This process yields a com-
pressed model that is structurally identical to the original and incurs no additional
runtime overhead. We evaluate PnF across a variety of benchmarks and model
scales, demonstrating consistent improvements over recent state-of-the-art struc-
tured compression baselines. Our results highlight that preserving the integrity of
pretrained weights not only simplifies the compression pipeline, but also improves
generalization and performance recovery in compressed LLMs.

1 INTRODUCTION

Large language models (LLMs) based on the Transformer (Vaswani et al., 2017) have achieved
remarkable progress across various domains, including natural language processing (Zhao et al.,
2023; Jiang et al., 2024a; Radford et al., 2018), code generation (Jiang et al., 2024b), computer
vision (Liu et al., 2023a; Hamadi, 2023), and scientific applications (Zhang et al., 2025; Lin et al.,
2023). This progress is attributable to two factors: (1) scaling model size to billions to trillions of
parameters (Team et al., 2024; Islam & Moushi, 2025; Team et al., 2025; Zhang & Sennrich, 2019)
and (2) pre-training on massive, diverse corpora (Langlais et al., 2025; Liu et al., 2024). Together,
these endow LLMs with deep language understanding and ability to generate high-quality code, text,
and multi-modal contents.

Despite these successes, their massive arameter sizes pose critical challenges: they require large
storage, memory footprints, increase inference latency, and substantial computation for training and
deployment, especially in resource-constrained settings. To address these practical limitations, a
substantial body of research has focused on model compression techniques that shrink the footprint
while preserving performance. These methods can be grouped into three principal categories: (1)
knowledge distillation, which transfers capabilities from a large teacher to a smaller student (Hinton,
2014; Ojha et al., 2023; Agarwal et al., 2023; Bing et al., 2025; Cui et al., 2025); (2) quantization,
which lowers numerical precision to save memory and accelerate inference (Liu et al., 2023b; Li
et al., 2024b; Shang et al., 2023; Hu et al., 2025; An et al., 2025); and (3) pruning, a structured
approach that removes redundant channels, heads, or layers (Voita et al., 2019; Gao et al., 2024b;
Ma et al., 2023; Ashkboos et al., 2024; Men et al., 2024; Mugnaini et al., 2025; Yang et al., 2024).

Pruning gained a lot of attention since it leverages the pre-trained weights of the original model
and typically does not require to training a new network from the ground up. Moreover, once
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the unnecessary components have been eliminated, the resulting model can be further compressed
through quantization, yielding additional reductions in memory consumption and inference latency.
In the context of LLMs, most prior works on pruning focuses on three kinds of structural reductions:
(i) deleting channels from the projection weights in attention and feed-forward network (Ashkboos
et al., 2024; Gao et al., 2024b; Ma et al., 2023), (ii) removing heads in the multi-head attention (Voita
et al., 2019; Mugnaini et al., 2025), and (iii) pruning whole transformer layers (Yang et al., 2024;
Men et al., 2024). The selection of components to prune is guided by metrics that estimate the impact
of removal, such as the magnitude of weight and activation (Sun et al.), cosine similarity (Men et al.,
2024), or the L2-norm (Ashkboos et al., 2024). Although pruning leaves the overall transformer
architecture intact, it disrupts parameters that were carefully tuned during large-scale pretraining,
leading to inevitable performance loss. Consequently, many approaches incorporate a recovery fine-
tuning (RFT) stage to restore accuracy, often employing the lightweight adapter like LoRA (Voita
et al., 2019; Gao et al., 2024b; Ma et al., 2023; Ashkboos et al., 2024; Men et al., 2024; Mugnaini
et al., 2025; Yang et al., 2024). However, the recovery process can be fragile: even extensive RFT
often fails to fully restore the performance of precisely optimized foundation models.

To overcome these limitations, we propose a weight-preserving structured compression that retain
the integrity of pretrained weight while still achieving substantial efficiency gains. Our method,
Plug-and-Fold (PnF), inserts lightweight, learnable adapter modules into the original projection ma-
trices of the attention and feed-forward sub-layers rather than removing heads, channels, or layers.
During training, only the adapters are updated while the pretrained weights remains completely
frozen, preserving the expressivity and knowledge encoded in the original model. Once training
is complete, the adapters are folded back into the base weights by simple matrix multiplications,
resulting in a compressed model that is structurally identical to the original. Because no architec-
tural modification is introduced and no extra operations are required during inference, PnF can be
integrated seamlessly into existing serving frameworks and hardware accelerators.

We evaluate PnF with extensive experiments covering a broad spectrum of model sizes and com-
pression rates. To validate its effectiveness, PnF is benchmarked against the latest state-of-the-art
structured-compression baselines on a diverse set of tasks that demand varied domain knowledge
and comprehensive capabilities. Across all settings, PnF consistently surpasses existing methods,
delivering notable gains in downstream performance. These results show that preserving the in-
tegrity of pretrained weights not only yields a simpler and more scalable compression pipeline, but
also enhances the recovery of accuracy and the generalization ability of the compressed models.

The main contributions of our paper are summarized as follows:

• We propose Plug-and-Fold (PnF), a novel weight preserving structured compression
method that inserts lightweight, learnable adapter modules into the original projection lay-
ers without modifying the model architecture.

• After training, the adapters are folded into the base weights via simple matrix multiplica-
tions, resulting in a compressed model that is structurally identical to the original model
and reduces runtime effectively.

• Extensive experiments demonstrate that PnF outperforms recent state-of-the-art
structured-compression baselines across a wide range of model scales and benchmark tasks,
confirming its effectiveness and scalability.

2 BACKGROUND

2.1 DECODER-BASED TRANSFORMER ARCHITECTURE

Large Language Models (LLMs) primarily leverage a decoder-based Transformer architecture com-
posed of stacked decoder blocks. These blocks consist of two core components: the Multi-Head
Self-Attention (MHSA) mechanism and the Feed Forward Network (FFN). These components form
the core layers of decoder blocks, enabling sequential data processing and contextual understanding.

2.1.1 MULTI-HEAD SELF-ATTENTION (MHSA)

The MHSA mechanism enables the model to dynamically weight and aggregate contextual informa-
tion from different positions in the input sequence by utilizing attention heads. Formally, let the l-th
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decoder block takes input hidden state X(l−1) ∈ Rn×dembed , where n and dembed is the length and
the dimension of the input, respectively. For the i-th attention head, i ∈ {1, · · · , nh}, the MHSA
mechanism computes the query vectors Q

(l)
i ∈ Rn×dhead , key vectors K

(l)
i ∈ Rn×dhead , and value

vectors V (l)
i ∈ Rn×dhead as follows:

Q
(l)
i = X(l−1)W

Q
(l)
i
, K

(l)
i = X(l−1)W

K
(l)
i
, V

(l)
i = X(l−1)W

V
(l)
i

, (1)

where W
Q

(l)
i
, W

K
(l)
i
, W

V
(l)
i

∈ Rdembed×dhead are the learned weight parameters for query, key, and

value projections, and dhead is the dimension of the head (often dhead = dembed
nh

). Then, the self-

attention operation is applied to each triple (Q
(l)
i ,K

(l)
i , V

(l)
i ) and computes the attention output of

the i-th head Z
(l)
i as follows:

Z
(l)
i = Attention(Q(l)

i ,K
(l)
i , V

(l)
i ) = Softmax

(Q(l)
i

(
K

(l)
i

)⊤
√
dk

)
V

(l)
i , (2)

where
√
dk is a scaling factor applied to ensure numerical stability. To represent comprehensive

contextual information, these outputs from individual heads are concatenated and transformed as
follows:

Z(l) = Concat(Z(l)
1 , · · · , Z(l)

h )WO(l) ∈ Rn×dembed , (3)

where Concat(·) is the concatenation operation and WO(l) ∈ R(hdhead)×dembed is learned weight pa-
rameters for output.

2.1.2 FEED-FORWARD NETWORK (FFN)

Following the MHSA mechanism, the output is passed through a Feed Forward Network (FFN) to
enhance the model’s capacity to process through non-linear transformations and increased number
of parameters. The FFN is often applies linear transformations separated by a nonlinear activation
function σ(·) (e.g., SiLU(Elfwing et al., 2018)). For example, SwiGLU (Shazeer, 2020) module is
defined as follows:

SwiGLU(Z(l)) =
(
σ(Z(l)Wgate(l))⊙ Z(l)Wup(l)

)
Wdown(l) (4)

where σ is the Swish activation function (Ramachandran et al., 2018) , and Wgate(l) ,Wup(l) ∈
Rdembed×dinter , and Wup(l) ∈ Rdinter×dembed are learnable parameters with the intermediate dimension
dinter.

3 METHOD

In this section, we present Plug-and-Fold (PnF) compression, a straightforward yet effective com-
pression method for large language models, whose complete workflow is illustrated in Figure 11.
The main objective of this method is to preserve the original projection weight during training while
reducing their dimensionality, yeidling a compact model that maintains the original signal.

Section 3.1 introduce the PnF adapter, a foldable compression module plugged into the original
projection weights and trained to induce low-dimensional projection while preserving the original
signal. Section 3.2 presents training schemes used to train these adapters effectively. Finally, Section
3.3 describes how the trained PnF adapters are folded into low-dimensional projection weights,
producing a compact model that is computationally efficient while preserving performance suitable
for deployment.

3.1 PLUG-AND-FOLD (PNF) COMPRESSION

3.1.1 PLUG-AND-FOLD (PNF) ADAPTER

In order to preserve the original signal while training, Plug-and-Fold adapters are plugged into the
pre-trained model. Given a pre-trained linear weight W ∈ Rm×n, we define the PnF adapter as a
linear projection:

P ∈ Rn×r, (5)
1Snowflake and Fire icons created by Freepik – Flaticon
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Figure 1: Visualization of Plug-and-Fold framework. The top half illustrates the training
phase: lightweight PnF adapters are plugged into the pretrained linear layers and project to a
reduced-dimensional space; the backbone weights remain frozen (shown as snowflakes), while
the adapters are the only trainable components (shown as fire), enabling them to fully leverage
the already-optimized structure. The bottom half shows the evaluation phase: after training, each
adapter is folded back into its corresponding weight matrix via a simple matrix multiplication, yield-
ing a compressed model that preserves the original architecture, interface, and performance.

where r < n. The adapter is applied to W and subsequently trained to recover the performance of
the original model. Formally, our aim is to find an adapter P that satisfies:

P(W ) ≈ P(WP ), (6)

where P(·) denotes the performance measures on various tasks induced by the corresponding
weight. Consequently, projecting the weights through the trained adapter P that satisfies Eq. (6)
yields output representations in the reduced-dimensional space (r-dimension), while preserving a
quality comparable to that of the full-size model. i.e., this projection yields compact representations
that preserve the fidelity of the original weight matrix, allowing highly efficient deployment across
a broad range of downstream tasks.

3.1.2 PNF ADAPTER FOR MHSA

We now explain how PnF adapter is integrated into the MHSA layer of an LLM. Let the projection
weights for queries, keys, values and the output at layer l be W

Q
(l)
i
,W

K
(l)
i
,W

V
(l)
i

∈ Rdembed×dhead ,

and WO(l) ∈ R(nhdhead)×dembed , where nh is the number of attention heads. For each of these matrices,
we plug in a corresponding PnF adapter with dimension rhead < dhead:

P
Q

(l)
i
, P

K
(l)
i
, P

V
(l)
i

∈ Rdhead×r
(l)
head , and PO(l) ∈ R(nhr

(l)
head)×(nhdhead) (7)

These adapters, multiplied with the original weights, produce lower-dimensional projections:

W
Q

(l)
i
P
Q

(l)
i

∈ Rdembed×r
(l)
head

W
K

(l)
i
P
K

(l)
i

∈ Rdembed×r
(l)
head

W
V

(l)
i

P
V

(l)
i

∈ Rdembed×r
(l)
head

PO(l)WO(l) ∈ R(nhr
(l)
head)×dembed

(8)

Thus, each attention projection incorporates a learnable low-rank adapter. After training, folding the
adapter into the original weight via matrix multiplication gives substantial reduction in both memory
usage and computational overhead, while maintaining output quality of the uncompressed model.
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3.1.3 PNF ADAPTER FOR FEED FORWARD NETWORK

Next, we present the applicaiton of PnF adapters to the FFN. Let the gate, up-projection, and down-
projection at layer l be Wgate(l) , Wup(l) ∈ Rdembed×dinter , and Wdown(l) ∈ Rdinter×dembed , respectively. For
these matrices, we introduce the corresponding PnF adapters:

Pgate(l) , Pup(l) ∈ Rdinter×r
(l)
inter , and Pdown(l) ∈ Rr

(l)
inter×dinter (9)

where r
(l)
inter < d

(l)
inter. Multiplying these adapter with the original weights yields the compressed

projections:
Wgate(l)Pgate(l) ∈ Rdembed×r

(l)
inter

Wup(l)Pup(l) ∈ Rdembed×r
(l)
inter

Pdown(l)Wdown(l) ∈ Rr
(l)
inter×dembed

(10)

Therefore, similar to that of the attention mechanism with PnF adapters above, each FFN layer is
equipped with a learnable low-rank adapter. Because the feed-forward network (FFN) comprises
the majority of a transformer’s parameters, folding the adapters into the original weights provides
substantial savings in both memory and computation.

3.2 TRAINING PIPELINE FOR PNF ADAPTER

To obtain PnF adapters with high fidelity, we propose a three-stage training pipeline: (i) Compres-
sion Planning that determines the per-layer degree of dimensionality reduction, (ii) Group-wise
Sequential Training that stabilizes optimization by sequentially training a small, isolated set of
adapters, and (iii) KL-divergence Distillation Loss that aligns the compressed model’s output dis-
tribution with the original model’s distribution.

Stage 1: Compression Planning Based on desired compression ratio (e.g., 20%), we first de-
termine the degree of reduction of dimensionality (i.e., r(l)head and r

(l)
inter) for each layer l. While the

allocation of reductions can be flexible, we recommend a pyramidal schedule where deeper layers
(closer to the language modeling head) are compressed more aggressively, and earlier layers receive
milder reductions. Prior work on layer pruning Men et al. (2024); Gromov et al. (2024) shows that
later (upper) layers can often be removed with little impact on downstream performance, indicat-
ing that they contribute less to the model’s expressivity. Based on this finding, we allocate a larger
portion of the compression budget to the top of the model.

Because the reduction ratio can be explicitly set, the approach is highly flexible and can be tailored
to meet a user’s requirements. Our empirical studies reveal that applying a higher compression rate
to the FFN yields considerably better results than compressing the MHSA modules, and a concrete
example of this planning is provided in the Appendix A.

Stage 2: Group-wise Sequential Training Plugging all adapters at once might perturb the orig-
inal model’s signal at the beginning of training, inducing covariate shift and misleading gradients.
Alternatively, training a single adapter at a time preserves this signal but is prohibitively slow. To
address this issue, we introduce Group-wise Sequential Training. This training scheme trains small
groups of adapters in turn, retaining most of the signal preservation benefits while substantially
reducing training time and stabilizing convergence, which is further discussed in Section 4.3.1. For-
mally, we first partition the L transformer layers into disjoint groups of size N , starting from the
top of the model (output side) and moving downward. The k-th group is defined as:

Gk = {L− kN + 1, · · · , L− (k − 1)N}, k = 1, 2, · · · , ng, (11)
where ng = ⌊L/N⌋ is the number of groups. Given the compression plan that specifies per-layer
reductions (i.e., r(l)head and r

(l)
inter), we first identify which group contain layers slated for compression.

Then training proceeds sequentially from G1 towards Gng
.

At step k, if Gk includes layers selected by the compression plan, we insert adapters only into those
layers and train them, while keeping the adapters trained in previous groups (G1, . . . ,Gk−1) frozen.
During this phase, only the parameters of current group are updated; all previous groups remain
frozen with their trained adapters, while remaining groups (Gk+1, · · · ,Gng

) remain frozen without
adapters (i.e., in their original state).
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Figure 2: Visualization of group-wise se-
quential training. Training proceeds group
by group, beginning with the output side. At
any step, only the current group Gi is updated
while all other groups stay frozen, which pre-
serves the backbone signal and enhances op-
timization stability.

An instance of group-wise sequential training is illus-
trated in Figure 2, given L = 36 and N = 4, the
compression plan targeting layers 13 - 36 covers six
groups (G1, · · · ,G6). We train these six groups se-
quentially from the output side toward the input (i.e.,
G1 → · · · → G6) while the lower 12 layers remain un-
compressed. By activating one small group per step and
keeping the remaining group fixed, this approach pre-
serves the backbone signal and improves optimization
stability.

Stage 3: KL-divergence Distillation Loss During
the group-wise sequential training for the adapters, we
adopt a Kullback-Leibler (KL) divergence loss. Specif-
ically, the logits of the PnF-plugged model are aligned
with those of the frozen backbone model by minimiz-
ing:

LKL = KL(pW ||pWP ) (12)
where pW and pWP denote the predictive distribution of the backbone and the PnF-plugged models,
respectively.

We adopt a KL-divergence distillation loss for two reasons. First, the goal of compression is to pro-
duce a smaller model that reproduces the original model’s behavior. The KL-divergence can achieve
this by aligning the predictive distribution of student (PnF-plugged model) with the teacher (original
model). Second, recent studies (Bercovich et al., 2024; Muralidharan et al., 2024; Li et al., 2024a)
report that KL-based distillation often outperforms cross-entropy, yielding better downstream per-
formance.

3.3 DEPLOYMENT FOR INFERENCE

After the adapters are fully trained leveraging unhindered pre-trained weights, they can be seam-
lessly integrated into the backbone model. In MHSA, for example, each adapter is folded into its
corresponding pre-trained weight matrix via matrix multiplication:

W
Q

(l)
i
P
Q

(l)
i

→ WComp
Q

(l)
i

W
K

(l)
i
P
K

(l)
i

→ WComp
K

(l)
i

W
V

(l)
i

P
V

(l)
i

→ WComp
V

(l)
i

PO(l)WO(l) → WComp
O(l)

(13)

A similar folding procedure applies to FFN, where each adapter is integrated into its corresponding
weight matrix:

Wgate(l)Pgate(l) → WComp
gate(l)

Wup(l)Pup(l) → WComp
up(l)

Pdown(l)Wdown(l) → WComp
down(l)

(14)

The resulting weights directly replace the original model, reducing parameter counts and computa-
tional costs while preserving the model’s architectural structure and inference pipeline. This fold-in
operation has two key benefits. First, deployment is simple: the trained PnF adapters are folded into
the original weights via plain matrix multiplications–no auxiliary metrics, graph edits, or specialized
operators. Second, it ensures that the deployed model remains identical structure and interface to
the original model, which facilitates compatibility with existing serving frameworks and hardware
accelerators.

4 EXPERIMENTS

In this section, we first evaluate the PnF Compression method against several widely-used com-
pression methods across different compression rates and original model sizes, demonstrating its
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Table 1: Performance of the various compression methods on Qwen-3-8B-Base. The pretrained
backbone model and its compressed variants are evaluated across multiple benchmarks at several
compression rates. The best and second-best results at each compression rate are highlighted with
boldface and underline, respectively.

Method CR PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (8.19B) 0.793 0.786 0.724 0.860 0.801 0.573 0.410 0.830 0.547 0.747 0.709 0.707 1.000
20% (6.52B) 0.716 0.617 0.665 0.195 0.644 0.401 0.376 0.749 0.418 0.247 0.571 0.509 0.720
30% (5.71B) 0.667 0.544 0.624 0.199 0.511 0.317 0.362 0.601 0.404 0.231 0.505 0.451 0.638Slice GPT
40% (4.91B) 0.618 0.447 0.586 0.194 0.405 0.263 0.332 0.523 0.392 0.230 0.422 0.401 0.567

LaCo
20% (6.65B) 0.733 0.645 0.658 0.627 0.665 0.422 0.382 0.673 0.453 0.560 0.587 0.582 0.824
30% (5.88B) 0.687 0.524 0.589 0.405 0.561 0.337 0.320 0.722 0.425 0.362 0.522 0.496 0.701
40% (5.10B) 0.614 0.398 0.554 0.205 0.423 0.277 0.292 0.501 0.387 0.242 0.305 0.382 0.540
20% (6.65B) 0.757 0.612 0.559 0.211 0.647 0.375 0.400 0.618 0.441 0.255 0.508 0.489 0.692
30% (5.88B) 0.717 0.501 0.534 0.192 0.524 0.303 0.348 0.617 0.393 0.229 0.358 0.429 0.606LLM-Streamline
40% (5.10B) 0.589 0.362 0.571 0.196 0.356 0.264 0.286 0.430 0.376 0.230 0.017 0.334 0.473

Short GPT
20% (6.65B) 0.632 0.362 0.513 0.195 0.439 0.261 0.300 0.553 0.368 0.247 0.070 0.358 0.506
30% (5.88B) 0.608 0.326 0.507 0.187 0.416 0.238 0.286 0.462 0.356 0.231 0.059 0.334 0.473
40% (5.10B) 0.572 0.287 0.526 0.185 0.367 0.214 0.262 0.440 0.347 0.229 0.021 0.314 0.444
20% (6.55B) 0.774 0.714 0.709 0.757 0.773 0.479 0.410 0.818 0.521 0.645 0.677 0.661 0.935
30% (5.74B) 0.749 0.651 0.658 0.553 0.687 0.412 0.372 0.776 0.483 0.501 0.629 0.588 0.832Ours
40% (4.91B) 0.719 0.587 0.626 0.476 0.655 0.378 0.358 0.749 0.427 0.398 0.538 0.545 0.771

effectiveness (Section 4.2). We then examine the impact of our weight-preserving mechanism and
training strategies through an ablation study (Section 4.3).

4.1 EXPERIMENTAL SETUP

All experiments were conducted to systematically compare the effectiveness of various large lan-
guage model (LLM) compression techniques across a suite of widely-used benchmark tasks. We
evaluated each method Slice-GPT (Ashkboos et al., 2024), LaCo (Yang et al., 2024), ShortGPT
(Men et al., 2024), LLM-Streamline (Chen et al., 2025), and our proposed method in three target
compression rates (approximately 20%, 30%, and 40%) relative to the original model size. The
baselines consist of the uncompressed models: Qwen3-4B-Base, Qwen3-8B-Base, OPT 2.7B, and
OPT 6.7B.

The evaluation benchmarks include: PIQA (physical commonsense reasoning), HellaSwag (com-
monsense inference), WinoGrande (pronoun resolution), CSQA (commonsense QA), ARC-e/ARC-
c (science questions), OpenBookQA, BoolQ (boolean QA), Social IQA (multiple-choice), MMLU
(multi-task language understanding), and Lambda OpenAI (factual QA). Each model’s performance
is measured using task-specific accuracy, or accuracy norm if available, reported per dataset. For
each compression approach and setting, we tabulate the compression rate (CR) and all benchmark
scores, along with the average performance (AVG) across tasks and relative performance rate (RP).

For a fair comparison, all compressed models underwent a performance recovery phase follow-
ing the respective compression procedure. Specifically, our approach utilizes adapter training for
post-compression recovery; the Streamline baseline employs light layer training; and other methods
adopt LoRA (Hu et al., 2022) training as their recovery protocol. All recovery procedures leveraged
the SlimPajama dataset (Soboleva et al., 2023), sampling 600,000 training instances, each with a
sequence length of 1,024 tokens, to ensure consistency and robustness in recovered performance
across all benchmarks. Comprehensive implementation and experimental details are provided in
Appendix A.

4.2 RESULTS

We evaluate the proposed compression method on two base LLMs, Qwen3-4B-Base and Qwen3-
8B-Base, under compression rates of approximately 20%, 30%, and 40% relative to their original
parameter counts. All models were assessed in a zero-shot setting using the LLM evaluation library
(Gao et al., 2024a). Additional experiments, including evaluations on other LLM variants and in
five-shot settings, are reported in Appendix B.

Tables 2 and 1 summarize the results on compressing Qwen3-4B-Base and Qwen3-8B-Base, respec-
tively. Across all compression rates, our method consistently outperforms competing approaches on
most benchmarks, while preserving performance close to that of the uncompressed models. The ad-
vantage is most evident on knowledge-intensive tasks such as CSQA, MMLU, and ARC, which rely
heavily on retrieving and applying pretrained knowledge. On benchmarks emphasizing common-
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Table 2: Performance of the different compression methods on Qwen3-4B-Base. The pretrained
backbone and its compressed variants are evaluated on the same set of benchmarks and compres-
sion rates as in Table 1. For each compression rate, the best result is shown in boldface and the
second-best in underlined text.

Method CR PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (4.02B) 0.779 0.736 0.703 0.827 0.760 0.516 0.412 0.830 0.502 0.713 0.690 0.679 1.000
20% (3.53B) 0.688 0.554 0.628 0.197 0.546 0.346 0.338 0.723 0.411 0.236 0.528 0.472 0.696
30% (3.06B) 0.633 0.462 0.599 0.193 0.431 0.260 0.308 0.680 0.386 0.231 0.441 0.420 0.619Slice GPT
40% (2.65B) 0.584 0.384 0.553 0.197 0.348 0.251 0.276 0.602 0.371 0.230 0.359 0.378 0.556

LaCo
20% (3.22B) 0.715 0.578 0.631 0.586 0.634 0.387 0.358 0.738 0.434 0.584 0.502 0.559 0.823
30% (2.81B) 0.644 0.470 0.589 0.306 0.517 0.317 0.282 0.651 0.404 0.335 0.359 0.443 0.653
40% (2.41B) 0.630 0.416 0.562 0.195 0.453 0.273 0.284 0.606 0.388 0.234 0.341 0.398 0.587
20% (3.22B) 0.739 0.559 0.556 0.196 0.619 0.369 0.378 0.558 0.417 0.235 0.448 0.461 0.679
30% (2.81B) 0.678 0.443 0.530 0.195 0.498 0.272 0.336 0.586 0.395 0.229 0.330 0.408 0.601LLM-Streamline
40% (2.41B) 0.581 0.351 0.556 0.196 0.352 0.274 0.290 0.426 0.378 0.230 0.006 0.331 0.488

Short GPT
20% (3.22B) 0.694 0.557 0.589 0.561 0.645 0.411 0.344 0.684 0.417 0.487 0.529 0.538 0.792
30% (2.81B) 0.654 0.386 0.551 0.185 0.492 0.308 0.312 0.588 0.372 0.245 0.253 0.395 0.582
40% (2.41B) 0.548 0.274 0.519 0.222 0.319 0.226 0.238 0.538 0.350 0.244 0.029 0.319 0.469
20% (3.22B) 0.736 0.662 0.669 0.779 0.704 0.436 0.382 0.784 0.501 0.657 0.651 0.633 0.932
30% (2.82B) 0.712 0.588 0.618 0.628 0.665 0.380 0.362 0.749 0.464 0.524 0.595 0.571 0.842Ours
40% (2.41B) 0.702 0.513 0.587 0.420 0.552 0.310 0.342 0.685 0.421 0.395 0.542 0.497 0.732

sense reasoning and general language understanding (e.g., HellaSwag, WinoGrande), the perfor-
mance gap between methods is smaller, yet our approach still achieves the best overall balance
across tasks.

When comparing Qwen3-4B-Base and Qwen3-8B-Base, we observe that the larger base model re-
tains higher absolute accuracy across all compression methods and rates, reflecting its greater capac-
ity. However, the relative performance preservation (RP) of our method remains consistently strong
for both model scales, demonstrating its robustness. Notably, the 8B model shows slightly smaller
performance degradation under compression, suggesting that larger models may provide more re-
dundancy that can be better exploited during parameter reduction. This trend highlights that while
scaling up improves baseline performance, an effective compression strategy is crucial. Overall,
our method achieves stable gains across both model sizes, indicating strong generalizability of the
approach.

Discussion. These findings suggest that updating adapter weights while preserving core model
parameters is critical for effective LLM compression. Retaining the pretrained weight structure
allows the compressed models to maintain essential knowledge and reasoning capabilities needed
for complex tasks. In contrast, methods that aggressively modify core parameters tend to incur larger
performance degradation, particularly on knowledge-demanding benchmarks.

4.3 ABLATIONS

4.3.1 TRAINING STRATEGY

To understand how the size of the adapter groups influences effectiveness and efficiency, we per-
formed an ablation study in which the group size N was varied while keeping all other hyper pa-
rameters, compression plan, learning rate schedule, and total training epochs identical to the default
configuration described in Appendix A. The experiments, summarized in Table 3, were conducted
on Qwen-3-4B-Base compressed to a 20% reduction rate.

Table 3: Ablation of the
group size N used in
the group wise sequen-
tial training scheme. The
table reports the average
downstream score.

Group size Avg
N=36 (all) 0.6182

N=1 0.6346
N=4 (ours) 0.6329

When N = 36 every adapter is inserted and trained at once, which min-
imizes the number of training phases but perturbs the entire backbone
simultaneously. This large covariate shift leads to unstable gradients
and a noticeable drop in downstream performance, as reflected by an
average score of 0.6182. At the opposite extreme, N = 1 updates one
adapter at a time, moving sequentially through the 36 layers. Because
only a single component is altered during each step, the original sig-
nal is largely preserved, resulting in the highest average performance.
However, the training iteration grows roughly linearly with the number
of groups, making this setting impractical for larger models.

Our default configuration adopts N = 4, grouping four consecutive
layers together. This approach retains most of the stability advantages
of the single-adapter regime while dramatically reducing the total number of training phases. The
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resulting average score (0.6329) is only marginally below the optimal N = 1 setting, yet the com-
putational cost is comparable to the “all-at-once” baseline. Consequently, we select N = 4 as the
standard group size for all subsequent experiments.

4.3.2 IMPACT OF RECOVERY-TRAINING SET SIZE

Table 4: Effect of recovery-training set size on the performance of our 20% compressed Qwen-3-
4B-Base. Results are reported for four different sample budgets (300k, 600k, 1M, and 2M) on a
range of downstream benchmarks.
Method CR Samples PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP
Baseline - - 0.7786 0.7364 0.7032 0.8272 0.7597 0.5162 0.4120 0.8299 0.5015 0.7131 0.6898 0.6789 1.0000

Ours 20%

300K 0.7163 0.6433 0.6630 0.7802 0.7046 0.4181 0.3720 0.7976 0.4928 0.6476 0.6418 0.6252 0.9209
600K 0.7363 0.6622 0.6690 0.7790 0.7044 0.4358 0.3820 0.7837 0.5013 0.6573 0.6514 0.6329 0.9322
1M 0.7350 0.6757 0.6788 0.8354 0.7022 0.4488 0.3720 0.7985 0.4923 0.7084 0.6693 0.6469 0.9528
2M 0.7679 0.7230 0.6890 0.8215 0.7513 0.5060 0.4020 0.8315 0.4908 0.7076 0.6804 0.6701 0.9870

In this section we evaluate how the size of the recovery-training set influences the effectiveness of
our compression pipeline. Table 4 reports results for four different sample budgets (300K, 600K,
1M, and 2M) under a fixed compression rate of 20%. As the number of training instances grows,
downstream performance improves consistently across virtually all benchmarks: the average score
rises from 0.6252 (300K samples) to 0.6701 (2M samples), and the relative performance (RP) climbs
from 0.9209 to 0.9870, narrowing the gap with the uncompressed baseline (Avg=0.6789). For most
tasks the improvement is gradual, but a few—namely HS, BoolQ, OBQA, and ARC—show a differ-
ent pattern. With only 300K–1M samples their scores increase only marginally, reflecting the limited
signal provided by a small recovery set. Once the sample count reaches over 1M, the gains acceler-
ate sharply; at 2M samples these tasks almost match the baseline performance (e.g., HS jumps from
0.6757 to 0.7230, BoolQ from 0.7985 to 0.8315, OBQA from 0.3720 to 0.4020, ARC-e from 0.7022
to 0.7513). This behavior suggests that certain evaluation sets require a richer recovery signal before
the compressed model can fully exploit the knowledge retained in the frozen backbone.

Overall, the results show that even a modest recovery set captures more than 90% of the attainable
relative performance (RP). When the recovery data are scaled to a few million examples, the com-
pressed model nearly matches the uncompressed baseline, incurring less than a 2% performance
drop while preserving the 20% compression ratio.

5 LIMITATION

A possible limitation of our approach is that the first stage of the pipeline is deliberately empiri-
cal. Although this stage grants users freedom to design compression plans, it also places a burden
on the practitioner to possess a priori knowledge about the model’s relative importance of its com-
ponents for the tasks of interest. In practice, an uninformed choice of reduction rates can lead to
sub-optimal performance or unnecessary training overhead. On the other hand, this very flexibility
makes the stage a useful diagnostic tool: by systematically varying the groups that are compressed,
users can probe which parts of an LLM are most critical for specific linguistic or reasoning abilities.
Future work could therefore focus on automated or data-driven heuristics (e.g., sensitivity analy-
ses, reinforcement-learning controllers) that suggest compression configurations with minimal user
intervention, while still preserving the analytical benefits of the current empirical design.

6 CONCLUSION

In this work, we introduce a novel framework Plug-and-Fold (PnF), a compression framework that
preserves both weights and structure of the pretrained LLM. In our workflow, lightweight PnF
adapters are first plugged into a pretrained LLM’s weight matrices. After going through adaption
phase, adapters are folded back into the base model via simple matrix multiplication. The resulting
model is structurally identical to the original backbone yet enjoys substantial reductions in parame-
ters with unimpaired performance. Extensive experiments on four backbones and three compression
rates show PnF consistently outperforms strong baselines, highlighting the benefit of retaining pre-
trained weights. Ablation studies on training strategies confirm the effectiveness of our workflow,
while experiments on recovery-training set size demonstrate that with sufficient data PnF can nearly
match the original model’s performance. In summary, Plug-and-Fold provides an efficient, scalable,
architecture-preserving compression pipeline that maintains the expressive power of large pretrained
LLMs, enabling deployment on resource-constrained hardware without performance loss.
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A EXPERIMENT SETTINGS

A.1 HYPER-PARAMETER CONFIGURATION

In all experiments we follow the two-stage pipeline described in Section 3.2. Below we detail the
hyperparameter settings that were used to instantiate the compression plan, to construct the training
groups, and to train the adapters. The values are the same for every model and compression rate
unless explicitly noted. Also, the PnF are initialized as identity matrix, where only the diagonal
elements are set to 1 otherwise 0.

A.2 COMPRESSION PLAN (PER-LAYER REDUCTION RATES)

For each target compression rate c ∈ {20%, 30%, 40%}, we empirically driven target
hidden-dimension targets for the multi-head self-attention (MHSA) and feed-forward network (FFN)
sub-layers. The resulting dimensionalities are listed in Table 5. The notation indicates the target hid-
den size for each group in the order in which the groups are visited (from the output side toward the
input side).

Table 5: Target hidden dimensions for MHSA and FFN at each compression rate. Each entry corre-
sponds to a successive group of layers (see Figure 2).

Backbone CR MHSA FFN

20% (72, 72,−,−) (3584, 3584, 4096, 4864)

30% (64, 72, 72,−,−,−,−) (3328, 3328, 3840, 4608, 5632, 6144, 8192)OPT 2.7B
40% (64, 64, 72, 72,−,−,−,−) (2560, 2560, 2816, 2816, 2816, 3840, 5888, 8096)

20% (−,−,−,−) (5120, 5632, 7168, 7168)

30% (64, 80, 96, 112,−,−) (4608, 5376, 6144, 8192, 10240, 13312)OPT 6.7B
40% (64, 64, 64, 64, 96,−) (5632, 5376, 5120, 5120, 7168, 7168)

20% (−,−,−,−,−) (2560, 2816, 3328, 4608, 9216)

30% (−,−,−,−,−,−) (2560, 2560, 2560, 3072, 3584, 4864)Qwen3 4B
40% (−,−,−,−,−,−,−,−) (2560, 2560, 2560, 2816, 2816, 3072, 3328, 5632)

20% (−,−,−,−,−) (4096, 4352, 4864, 6144, 8704)

30% (−,−,−,−,−,−,−) (4096, 4352, 4608, 4864, 4864, 5632, 7680)Qwen3 8B
40% (−,−,−,−,−,−,−,−,−) (4096, 4352, 4608, 4608, 4352, 4608, 4608, 4608, 7936)

Interpretation of Table 5 Taking OPT 2.7B as an example, for a 20% reduction the first two
groups (closest to the output) compress both the MHSA projection matrices to rhead = 72 and the
FFN intermediate dimensions to rinter = 3584. Subsequent groups use the next values in the list,
while “ − ” denotes it retains the original dimension. At 30% and 40% the plan contains more
groups, thereby spreading the reduction more gradually across the stack.

A.3 TRAINING SCHEDULE

The overall workflow of training is as follows. For each selected group Gk we:

1. Insert PnF adapters corresponding to index belonging to Gk

2. Train for E epochs while keeping all previously trained groups frozen

3. Proceed to Gk+1 until Gng

Through out the entire experiments, the number of epochs is fixed to E := 1, giving a total of ng

iteration.

A.4 FOLDING STEP

After the final group has been trained, each adapter pair is merged into its corresponding projection
matrix W by the closed-form multiplication. No additional fine-tuning is performed after folding,
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which guarantees that the resulting model has exactly the same architecture and runtime character-
istics as the original uncompressed model.

A.5 BASELINE RECOVERY FINE-TUNING SETTINGS

For the recovery-fine-tuning (RFT) stage we adopt LoRA, since LoRA fine-tuning is widely used
in recent work. To ensure a fair comparison, we fix the low-rank dimension to r = 16 for every
LoRA experiment. Unless a particular method explicitly restricts its scope, LoRA is applied to all
transformer layers—both the multi-head self-attention (MHSA) and feed-forward network (FFN)
sub-layers.

B ADDITIONAL RESULTS

B.1 COMPARISON WITH BASELINE METHODS

In this section we compare our proposed approach with several baselines across a broader set of
conditions. We evaluate four backbone models—Qwen-3-4B-Base, Qwen-3-8B-Base, OPT-2.7B,
and OPT-6.7B—and we assess performance in both zero-shot and five-shot settings. Across all
experiments, our method consistently yields the highest average score (Avg), closely matching the
performance of the uncompressed baseline for each backbone.

The same trend observed in the zero-shot experiments holds in the five-shot setting. Our com-
pression method consistently outperforms the baselines across all compression rates, and the per-
formance gap widens on knowledge-intensive benchmarks. Thus, the superior performance of our
approach is preserved when a few exemplars are provided.

Table 6: Performance of the different compression methods on Qwen3-4B-Base on five-shots set-
ting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (4.02B) - 0.7889 0.7532 0.7206 0.8198 0.8674 0.6425 0.4500 0.8654 0.5502 0.7319 0.6501 0.7127 1.0000

Slice GPT
20% (3.53B)

600k
0.6980 0.5612 0.6425 0.3030 0.6902 0.4130 0.3480 0.7746 0.4641 0.3250 0.4487 0.5153 0.7230

30% (3.06B) 0.6409 0.4661 0.6085 0.2293 0.5370 0.2952 0.3120 0.6911 0.4181 0.2651 0.3656 0.4390 0.6160
40% (2.65B) 0.5832 0.3857 0.5596 0.1925 0.4158 0.2440 0.2780 0.511 0.3909 0.2672 0.2928 0.3746 0.5256

LaCo
20% (3.22B)

600k
0.7236 0.5840 0.6425 0.7273 0.7016 0.4249 0.3680 0.7679 0.4698 0.6192 0.4496 0.5889 0.8264

30% (2.81B) 0.6398 0.475 0.5841 0.3194 0.5556 0.3362 0.2820 0.7028 0.4252 0.2863 0.3043 0.4464 0.6264
40% (2.41B) 0.6300 0.4136 0.5509 0.2080 0.4996 0.2944 0.2880 0.6242 0.4083 0.2810 0.2550 0.4048 0.5680

LLM-Streamline
20% (3.22B)

600k
0.7448 0.5572 0.5241 0.2015 0.7428 0.4292 0.3880 0.5474 0.4544 0.2895 0.3974 0.4797 0.6730

30% (2.81B) 0.6724 0.4333 0.5059 0.1891 0.5883 0.3054 0.3180 0.6012 0.4027 0.2538 0.3049 0.4159 0.5836
40% (2.41B) 0.5865 0.3468 0.5643 0.1957 0.3742 0.2611 0.2800 0.3841 0.3602 0.2295 0.0060 0.3262 0.4577

Short GPT
20% (3.22B)

600k
0.7008 0.5520 0.6014 0.5766 0.7189 0.4573 0.3280 0.6914 0.4631 0.5167 0.4644 0.5519 0.7743

30% (2.81B) 0.6088 0.3142 0.5138 0.1974 0.4196 0.2747 0.2480 0.3847 0.3561 0.2446 0.0134 0.3250 0.4561
40% (2.41B) 0.5294 0.2564 0.4972 0.2080 0.2950 0.2568 0.2460 0.3869 0.3439 0.2370 0.0000 0.2961 0.4154

Ours
20% (3.22B)

600k
0.7559 0.6714 0.6772 0.8003 0.7739 0.4955 0.4100 0.8355 0.5417 0.6771 0.6055 0.6585 0.9240

30% (2.82B) 0.7233 0.5847 0.6343 0.6798 0.7070 0.4008 0.4000 0.7602 0.4955 0.5412 0.5411 0.5880 0.8250
40% (2.41B) 0.6912 0.5134 0.5783 0.5030 0.6186 0.3487 0.3540 0.7283 0.4517 0.3956 0.4757 0.5144 0.7218

Table 7: Performance of the different compression methods on Opt 6.7B in zero-shot setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (6.66B) - 0.7644 0.6719 0.6543 0.2031 0.6002 0.3473 0.3760 0.6612 0.4278 0.2505 0.6769 0.5121 1.0000

Slice GPT
20% (5.49B)

600k
0.7165 0.5657 0.6204 0.1916 0.5055 0.2961 0.3560 0.6235 0.4206 0.2500 0.5632 0.4645 0.9070

30% (4.77B) 0.7013 0.5220 0.6093 0.1957 0.4735 0.2875 0.3320 0.6064 0.3976 0.2421 0.4890 0.4415 0.8621
40% (4.07B) 0.6589 0.4709 0.5604 0.1982 0.4495 0.2671 0.3280 0.5835 0.3899 0.2290 0.4017 0.4125 0.8054

LaCo
20% (5.25B)

600k
0.6866 0.5310 0.6014 0.2064 0.4899 0.2995 0.3280 0.6214 0.4165 0.2503 0.5088 0.4491 0.8769

30% (4.64B) 0.6213 0.3890 0.5446 0.1974 0.3965 0.2560 0.2980 0.6214 0.3735 0.2463 0.1764 0.3746 0.7315
40% (4.04B) 0.5930 0.3391 0.5170 0.1957 0.3481 0.2363 0.2740 0.6211 0.3613 0.2371 0.0638 0.3442 0.6722

LLM-Streamline
20% (5.25B)

600k
0.7361 0.6037 0.6172 0.1761 0.5745 0.3191 0.3320 0.6324 0.4165 0.2470 0.5492 0.4731 0.9238

30% (4.64B) 0.6953 0.4204 0.5588 0.1974 0.5198 0.2850 0.3260 0.6330 0.3904 0.2381 0.2791 0.4130 0.8065
40% (4.04B) 0.6284 0.3430 0.5288 0.1966 0.4491 0.2304 0.2960 0.6217 0.3464 0.2311 0.1186 0.3627 0.7083

Short GPT
20% (5.25B)

600k
0.5044 0.2597 0.5051 0.1957 0.2668 0.2594 0.2720 0.3783 0.3515 0.2295 0.0000 0.2929 0.5720

30% (4.64B) 0.5065 0.2578 0.4917 0.1957 0.2597 0.2568 0.2860 0.3783 0.3418 0.2295 0.0000 0.2913 0.5687
40% (4.04B) 0.5065 0.2579 0.4878 0.1957 0.2601 0.2491 0.2980 0.3783 0.3454 0.2295 0.0000 0.2917 0.5695

Ours
20% (5.32B)

600k
0.7403 0.6126 0.6461 0.2146 0.5886 0.3278 0.3600 0.6666 0.4207 0.2567 0.6135 0.4952 0.9671

30% (4.66B) 0.7126 0.5321 0.6127 0.1998 0.5495 0.3069 0.3340 0.6496 0.4140 0.2512 0.5269 0.4627 0.9035
40% (3.99B) 0.6417 0.4926 0.5920 0.1966 0.4877 0.2874 0.3260 0.6382 0.3949 0.2464 0.4728 0.4342 0.8479
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Table 8: Performance of the different compression methods on Opt 2.7B in zero-shot setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (2.65B) - 0.7481 0.6063 0.6101 0.1990 0.5438 0.3131 0.3520 0.6027 0.4212 0.2567 0.6361 0.4808 1.0000

Slice GPT
20% (2.23B)

600k
0.6654 0.4682 0.5904 0.2031 0.4322 0.2637 0.3300 0.5257 0.3838 0.2415 0.4108 0.4104 0.8537

30% (1.94B) 0.6300 0.4228 0.5635 0.1966 0.4175 0.2585 0.3060 0.5168 0.3705 0.2316 0.3551 0.3881 0.8072
40% (1.66B) 0.5865 0.3674 0.5343 0.1957 0.3742 0.2509 0.2820 0.3982 0.3602 0.2301 0.2880 0.3516 0.7313

LaCo
20% (2.10B)

600k
0.6697 0.4629 0.5612 0.1957 0.4356 0.2782 0.3080 0.6223 0.3899 0.2436 0.4768 0.4222 0.8781

30% (1.86B) 0.6197 0.3677 0.5627 0.2113 0.3699 0.2415 0.2880 0.5832 0.3853 0.2330 0.1469 0.3645 0.7581
40% (1.63B) 0.5762 0.3006 0.5193 0.1957 0.3308 0.2261 0.2920 0.5920 0.3561 0.2312 0.0279 0.3316 0.6897

LLM-Streamline
20% (2.10B)

600k
0.7100 0.5471 0.6038 0.1974 0.5097 0.2867 0.3240 0.6058 0.4053 0.2537 0.5692 0.4557 0.9478

30% (1.86B) 0.6763 0.4016 0.5438 0.1966 0.4609 0.2585 0.3160 0.6012 0.3756 0.2344 0.2876 0.3957 0.8230
40% (1.63B) 0.6023 0.3122 0.5114 0.1949 0.3788 0.2150 0.2760 0.6119 0.3454 0.2298 0.0778 0.3414 0.7101

Short GPT
20% (2.10B)

600k
0.6692 0.4476 0.5745 0.1941 0.4457 0.2696 0.3080 0.5929 0.3904 0.2315 0.3155 0.4035 0.8393

30% (1.86B) 0.5354 0.2715 0.5083 0.1982 0.3081 0.2381 0.2600 0.3789 0.3459 0.2301 0.0029 0.2979 0.6197
40% (1.63B) 0.5152 0.2677 0.5067 0.1974 0.2908 0.2500 0.2600 0.3810 0.3423 0.2315 0.0035 0.2951 0.6138

Ours
20% (2.11B)

600k
0.7235 0.5012 0.6088 0.2023 0.5139 0.2922 0.3460 0.6287 0.4243 0.2500 0.5666 0.4598 0.9563

30% (1.85B) 0.6908 0,4615 0.5741 0.1981 0.4724 0.2782 0.3180 0.6157 0.4132 0.2462 0.5407 0.4347 0.9042
40% (1.58B) 0.6642 0.4205 0.5449 0.1957 0.4486 0.2759 0.2940 0.5861 0.4020 0.2388 0.4584 0.4117 0.8564

Table 9: Performance of the different compression methods on Opt 6.7B in five-shot setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (6.66B) 0.7704 0.6797 0.6598 0.1867 0.6982 0.3703 0.3920 0.7012 0.4785 0.2634 0.6451 0.5314 1.0000

Slice GPT
20% (5.49B)

600k
0.7187 0.5652 0.6211 0.1981 0.5984 0.3293 0.3600 0.5492 0.4206 0.2622 0.4189 0.4583 0.8625

30% (4.77B) 0.6921 0.5221 0.6314 0.1826 0.5699 0.3063 0.3280 0.5318 0.4124 0.2553 0.3623 0.4358 0.8202
40% (4.07B) 0.6561 0.4669 0.5912 0.1859 0.5173 0.2790 0.3220 0.5028 0.3935 0.2666 0.2925 0.4067 0.7654

LaCo
20% (5.25B)

600k
0.6915 0.5318 0.6069 0.2146 0.5244 0.3038 0.3280 0.6217 0.4355 0.2595 0.4935 0.4556 0.8573

30% (4.64B) 0.6170 0.3914 0.5375 0.1998 0.4411 0.2730 0.2840 0.6220 0.3817 0.2549 0.1300 0.3757 0.7069
40% (4.04B) 0.5919 0.3399 0.5312 0.1949 0.3733 0.2406 0.2660 0.6211 0.3541 0.2542 0.0324 0.3454 0.6500

LLM-Streamline
20% (5.25B)

600k
0.7426 0.6207 0.5943 0.2006 0.6485 0.3455 0.3700 0.6519 0.4600 0.2522 0.5356 0.4929 0.9275

30% (4.64B) 0.6219 0.3529 0.5099 0.1810 0.4428 0.2338 0.2640 0.5927 0.3572 0.2496 0.0714 0.3525 0.6633
40% (4.04B) 0.5811 0.2982 0.4964 0.1998 0.3577 0.2167 0.2560 0.5838 0.3326 0.2433 0.0213 0.3261 0.6136

Short GPT
20% (5.25B)

600k
0.5060 0.2606 0.5233 0.1957 0.2622 0.2594 0.2680 0.3783 0.3490 0.2295 0.0000 0.2938 0.5529

30% (4.64B) 0.4984 0.2562 0.4957 0.1957 0.2563 0.2474 0.2800 0.3783 0.3423 0.2295 0.0000 0.2891 0.5440
40% (4.04B) 0.5054 0.2552 0.4972 0.1957 0.2546 0.2534 0.2820 0.3783 0.3464 0.2295 0.0000 0.2907 0.5470

Ours
20% (5.32B)

600k
0.7647 0.6255 0.6319 0.2080 0.6477 0.3423 0.3720 0.6729 0.4683 0.2610 0.6032 0.5089 0.9576

30% (4.66B) 0.7323 0.5273 0.6221 0.1909 0.5905 0.3167 0.3520 0.6461 0.4468 0.2547 0.5081 0.4716 0.8874
40% (3.99B) 0.6896 0.4673 0.6038 0.1959 0.5343 0.2819 0.3320 0.6086 0.4292 0.2501 0.3951 0.4353 0.8191

Table 10: Performance of the different compression methods on Opt 2.7B in five-shot setting.

Method CR Sample PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (2.65B) - 0.7481 0.6068 0.6204 0.1884 0.6469 0.3311 0.3580 0.6272 0.4550 0.2579 0.6010 0.4946 1.0000

Slice GPT
20% (2.23B)

600k
0.6757 0.4632 0.5770 0.1933 0.5080 0.2918 0.3100 0.4205 0.4099 0.2457 0.3037 0.3999 0.8085

30% (1.94B) 0.6322 0.4179 0.5746 0.2015 0.4609 0.2551 0.3000 0.4477 0.3991 0.2538 0.2663 0.3826 0.7736
40% (1.66B) 0.5936 0.3612 0.5383 0.2080 0.3880 0.2449 0.2800 0.4349 0.3756 0.2480 0.1974 0.3518 0.7113

LaCo
20% (2.10B)

600k
0.6746 0.4600 0.5825 0.1925 0.4886 0.2824 0.2900 0.6217 0.4252 0.2628 0.4221 0.4275 0.8643

30% (1.86B) 0.6186 0.3690 0.5588 0.1900 0.3986 0.2491 0.2600 0.6211 0.3705 0.2465 0.1025 0.3622 0.7324
40% (1.63B) 0.5745 0.2973 0.5130 0.2023 0.3350 0.2287 0.2600 0.6208 0.3561 0.2366 0.0155 0.3309 0.6690

LLM-Streamline
20% (2.10B)

600k
0.7198 0.5554 0.6006 0.1990 0.5871 0.3012 0.3260 0.6000 0.4385 0.2512 0.4925 0.4610 0.9321

30% (1.86B) 0.6436 0.4228 0.5138 0.1818 0.4524 0.2627 0.2720 0.5422 0.3689 0.2570 0.2327 0.3773 0.7628
40% (1.63B) 0.5539 0.2823 0.5075 0.1990 0.3338 0.2099 0.2500 0.5673 0.3336 0.2505 0.0165 0.3186 0.6441

Short GPT
20% (2.10B)

600k
0.6442 0.4013 0.5604 0.1916 0.4566 0.2637 0.2980 0.5621 0.3935 0.2505 0.1970 0.3835 0.7754

30% (1.86B) 0.5152 0.2553 0.5257 0.1966 0.2727 0.2457 0.2800 0.3783 0.3413 0.2295 0.0000 0.2946 0.5956
40% (1.63B) 0.5011 0.2572 0.5193 0.2007 0.2685 0.2654 0.2820 0.3783 0.3413 0.2342 0.0000 0.2953 0.5970

Ours
20% (2.11B)

600k
0.7107 0.5642 0.6099 0.1901 0.5835 0.3101 0.3320 0.6300 0.4302 0.2534 0.5110 0.4659 0.9420

30% (1.85B) 0.6794 0.4540 0.5741 0.2015 0.5243 0.2894 0.3300 0.5701 0.4291 0.2588 0.4518 0.4330 0.8754
40% (1.58B) 0.6518 0.4096 0.5551 0.1966 0.4827 0.2777 0.3080 0.5498 0.4230 0.2503 0.3678 0.4066 0.8220
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Table 11: Performance of the different compression methods on Qwen3-8B-Base with five shots
setting. The pretrained backbone and its compressed variants are evaluated on the same set of
benchmarks and compression rates as in Table 1. For each compression rate, the best result is shown
in boldface and the second-best in underlined text.

Method CR PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu ld Avg RP

Baseline 0% (8.19B) 0.815 0.795 0.770 0.856 0.880 0.681 0.490 0.882 0.572 0.770 0.671 0.744 1.000
20% (6.52B) 0.714 0.632 0.686 0.329 0.747 0.462 0.396 0.781 0.496 0.356 0.527 0.557 0.749
30% (5.71B) 0.676 0.553 0.642 0.275 0.621 0.361 0.370 0.696 0.443 0.275 0.456 0.488 0.656Slice GPT
40% (4.91B) 0.627 0.451 0.594 0.201 0.494 0.279 0.318 0.614 0.415 0.255 0.363 0.419 0.564
20% (6.65B) 0.736 0.651 0.671 0.709 0.748 0.493 0.406 0.534 0.503 0.604 0.546 0.600 0.807
30% (5.88B) 0.694 0.535 0.600 0.506 0.629 0.358 0.318 0.673 0.456 0.408 0.471 0.514 0.690LaCo
40% (5.10B) 0.617 0.403 0.572 0.215 0.487 0.297 0.276 0.623 0.402 0.251 0.256 0.400 0.538
20% (6.65B) 0.774 0.613 0.561 0.238 0.769 0.446 0.402 0.548 0.477 0.268 0.462 0.505 0.680
30% (5.88B) 0.724 0.500 0.553 0.194 0.673 0.338 0.346 0.450 0.418 0.243 0.310 0.432 0.580LLM-Streamline
40% (5.10B) 0.608 0.364 0.568 0.196 0.392 0.266 0.310 0.451 0.382 0.230 0.010 0.343 0.462
20% (6.65B) 0.574 0.301 0.494 0.197 0.353 0.260 0.252 0.592 0.346 0.247 0.003 0.329 0.443
30% (5.88B) 0.561 0.278 0.494 0.195 0.327 0.227 0.252 0.493 0.347 0.256 0.002 0.312 0.420Short GPT
40% (5.10B) 0.540 0.258 0.512 0.198 0.307 0.230 0.256 0.417 0.348 0.229 0.000 0.300 0.403
20% (6.55B) 0.788 0.718 0.730 0.796 0.819 0.540 0.442 0.853 0.546 0.660 0.653 0.686 0.922
30% (5.74B) 0.753 0.654 0.679 0.658 0.737 0.442 0.392 0.786 0.511 0.501 0.574 0.608 0.817Ours
40% (4.91B) 0.724 0.587 0.637 0.526 0.680 0.402 0.352 0.775 0.463 0.404 0.487 0.549 0.738
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C STATEMENT OF LARGE-LANGUAGE-MODEL (LLM) USAGE

The authors acknowledge that a large-language-model (LLM) was employed as a general-purpose
assistance tool during the preparation of this manuscript. Specifically, the following tasks were
supported by the LLM under the direct supervision of the authors:

• Formatting and LaTeX assistance – The LLM supplied LaTeX snippets for tables, equa-
tions, and figure captions (e.g., Table 5 and the hyper-parameter description). The authors
integrated these snippets into the manuscript and performed all final compilation and for-
matting checks.

• Language polishing – The LLM was used to improve readability, correct grammar, and
adjust stylistic tone across the entire manuscript. The final wording reflects the authors’
own decisions after thorough review.

All content generated by the LLM was fully supervised, fact-checked, and substantially revised by
the human authors before inclusion in the final version. No portion of the manuscript was submitted
to the LLM for autonomous generation without subsequent author verification.

The authors affirm that the intellectual contributions, experimental design, data analysis, and conclu-
sions are entirely their own work, and that the LLM served only as an auxiliary writing and editing
aid.
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