Under review as a conference paper at ICLR 2026

PLUG-AND-FOLD:
WEIGHT-PRESERVING STRUCTURED COMPRESSION
FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have achieved remarkable performance across
a wide range of tasks, but their growing size poses significant challenges for
deployment and efficiency. Among existing model compression methods,
structured pruning has emerged as a popular approach for reducing model size.
However, these methods remove structural components such as layers, heads,
or channels, which can disrupt pre-trained weights and lead to fragile recovery
fine-tuning process. In this work, we propose Plug-and-Fold (PnF), a weight-
preserving yet structurally effective compression method. Rather than directly
modifying or factorizing the pretrained weights, PnF introduces lightweight,
learnable adapter modules into the projection layers of attention and feed-forward
networks. These adapters are trained while keeping the original weights frozen,
and are later folded into the base weights via simple matrix multiplications.

This process yields a compressed model that preserves the original architecture
and can be deployed with a standard Transformer inference stack, without cus-
tom kernels or additional runtime components.

We evaluate PnF across a variety of benchmarks and model scales, demonstrating
consistent improvements over recent state-of-the-art structured compression
baselines. Our results highlight that preserving the integrity of pretrained weights
not only simplifies the compression pipeline, but also improves generalization
and performance recovery in compressed LLMs.

1 INTRODUCTION

Large language models (LLMs) based on the Transformer (Vaswani et al., 2017) have achieved
remarkable progress across various domains, including natural language processing (Zhao et al.,
2023; Jiang et al., [2024a; Radford et al., |2018)), code generation (Jiang et al.| 2024b), computer
vision (Liu et al., 2023a; [Hamadi, [2023)), and scientific applications (Zhang et al., |2025; [Lin et al.,
2023). This progress is attributable to two factors: (1) scaling model size to billions to trillions of
parameters (Team et al.,|2024; [slam & Moushi, [2025} [Team et al., 2025;Zhang & Sennrich, 2019)
and (2) pre-training on massive, diverse corpora (Langlais et al.l 2025} [Liu et al., [2024). Together,
these endow LLMs with deep language understanding and ability to generate high-quality code, text,
and multi-modal contents.

Despite these successes, their massive parameter sizes pose critical challenges: they require large
storage, memory footprints, increase inference latency, and substantial computation for training and
deployment, especially in resource-constrained settings. To address these practical limitations, a
substantial body of research has focused on model compression techniques that shrink the footprint
while preserving performance. These methods can be grouped into three principal categories: (1)
knowledge distillation, which transfers capabilities from a large teacher to a smaller student (Hinton,
2014; |Ojha et al., [2023; |Agarwal et al. [2023; Bing et al., [2025; |Cui et al.| [2025)); (2) quantization,
which lowers numerical precision to save memory and accelerate inference (Liu et al., [2023b; |L1
et al.l 2024b; [Shang et al., 2023} [Hu et al) 2025} |An et al., 2025); and (3) pruning, a structured
approach that removes redundant channels, heads, or layers (Voita et al., 2019} |Gao et al., [2024b}
Ma et al.} 2023 |Ashkboos et al., 2024; Men et al., 2024; Mugnaini et al.| 2025} |Yang et al., [2024)).

Under review as a conference paper at ICLR 2026

Pruning gained a lot of attention since it leverages the pre-trained weights of the original model
and typically does not require to training a new network from the ground up. Moreover, once
the unnecessary components have been eliminated, the resulting model can be further compressed
through quantization, yielding additional reductions in memory consumption and inference latency.

{In the context of LLMs, structured compression has primarily focused on pruning-based meth-
ods, such as deleting channels from the projection weights in attention and feed-forward networks
(Ashkboos et al.} 2024} |Gao et al.,|2024b}; [Ma et al., 2023)), removing heads in the multi-head atten-
tion (Voita et al.| 2019; [Mugnaini et al., 2025), and pruning whole Transformer layers (Yang et al.,
2024;|Men et al.|[2024). The selection of components to prune is guided by metrics that estimate the
impact of removal, such as the magnitude of weights and activations (Sun et al.), cosine similarity
(Men et al.l|2024), or the L2-norm (Ashkboos et al.,|2024)). Other approaches adopt learning-based
structural compaction schemes, where auxiliary matrices (e.g., compactor or mask matrices) are
inserted around backbone weights and jointly optimized with the original weights; after training,
rows, columns, or channels of these learned structures are pruned and folded back into compressed
weights (Wu et al., 2024} Hu et al.,|2024). Although these approaches leave the overall Transformer
architecture intact, their joint optimization scheme still perturb parameters that were carefully tuned
during large-scale pretraining, often leading to non-trivial performance loss.

Consequently, many approaches incorporate a recovery fine-tuning (RFT) stage to restore accuracy,
often employing the lightweight adapter such as LoRA (Voita et al., [2019; |Gao et al., [2024b; [Ma
et al., 2023 |Ashkboos et al., 2024; Men et al., 2024; Mugnaini et al., 2025; |Yang et al., [2024).
However, the recovery process can be fragile: even extensive RFT often fails to fully restore the
performance of precisely optimized foundation models.

To overcome these limitations, we propose a weight-preserving structured compression that retain
the integrity of pretrained weight while still achieving substantial efficiency gains. Our method,
Plug-and-Fold (PnF), inserts lightweight, learnable adapter modules into the original projection ma-
trices of the attention and feed-forward sub-layers rather than removing heads, channels, or layers.

In contrast to prior pruning and low-rank approaches that directly modify original pretrained
weights, PnF freezes all pretrained weights throughout compression and trains only lightweight
adapter modules attached to the original model, thereby formulating model compression as a PEFT-
style training problem that preserves the expressivity and knowledge encoded in the original model.
After training, the learned adapters are folded into a single dense matrix via simple matrix multipli-
cations; PnF therefore uses PEFT-style adapters as a tool for structured compression and deploys
a compressed model that is structurally identical to the original, rather than directly editing or
factorizing the backbone.

Because no architectural modification is introduced and no extra operations are required during
inference, PnF can be integrated seamlessly into existing serving frameworks and hardware acceler-
ators.

We evaluate PnF with extensive experiments covering a broad spectrum of model sizes and com-
pression rates. To validate its effectiveness, PnF is benchmarked against the latest state-of-the-art
structured-compression baselines on a diverse set of tasks that demand varied domain knowledge
and comprehensive capabilities. Across all settings, PnF consistently surpasses existing methods,
delivering notable gains in downstream performance. These results show that preserving the in-
tegrity of pretrained weights not only yields a simpler and more scalable compression pipeline, but
also enhances the recovery of accuracy and the generalization ability of the compressed models.

The main contributions of our paper are summarized as follows:

* We propose Plug-and-Fold (PnF), a novel weight preserving structured compression
method that inserts lightweight, learnable adapter modules into the original projection lay-
ers without modifying the model architecture.

 After training, the adapters are folded into the base weights via simple matrix multiplica-
tions, resulting in a compressed model that is structurally identical to the original model
and reduces runtime effectively.

Under review as a conference paper at ICLR 2026

» Extensive experiments demonstrate that PnF outperforms recent state-of-the-art
structured-compression baselines across a wide range of model scales and benchmark tasks,
confirming its effectiveness and scalability.

2 BACKGROUND
2.1 DECODER-BASED TRANSFORMER ARCHITECTURE

Large Language Models (LLMs) primarily leverage a decoder-based Transformer architecture com-
posed of stacked decoder blocks. These blocks consist of two core components: the Multi-Head
Self-Attention (MHSA) mechanism and the Feed Forward Network (FFN). These components form
the core layers of decoder blocks, enabling sequential data processing and contextual understanding.

2.1.1 MULTI-HEAD SELF-ATTENTION (MHSA)

The MHSA mechanism enables the model to dynamically weight and aggregate contextual informa-
tion from different positions in the input sequence by utilizing attention heads. Formally, let the [-th
decoder block takes input hidden state X (=1) ¢ Rn*dembea | where n and demped 1S the length and
the dimension of the input, respectively. For the i-th attention head, i € {1,--- ,n;}, the MHSA
mechanism computes the query vectors le) € R7*dea key vectors K. fl) € R"*dea and value

vectors V") € R as follows:

Qz(l) _ X(l*l)WQ(‘U’ Kl(l) — X(lil)WK‘(l), ‘/’L(l) — X(lil)WV_(lh (1)
where WQ(_L>, Wew, Wy € Reemoea X dheas are the learned weight parameters for query, key, and

value projections, and dpe,q is the dimension of the head (often dpeaq = ‘i‘ﬁ’“‘). Then, the self-
attention operation is applied to each triple (Qz(-l), K i(l), V;(l)) and computes the attention output of
the i-th head Z'") as follows:

0 (O

QW (k™)'
Zz® = Attention(Q", KV, vV = SOftmax(é) v,)
Vg

where /dy, is a scaling factor applied to ensure numerical stability. To represent comprehensive
contextual information, these outputs from individual heads are concatenated and transformed as
follows:

zW0 = Concat(Z{l), e ,Z}(Ll))WOu) € R dembed (3)

where Concat(-) is the concatenation operation and Wy € R (hdheat) Xdembea ig learned weight pa-
rameters for output.

2.1.2 FEED-FORWARD NETWORK (FFN)

Following the MHSA mechanism, the output is passed through a Feed Forward Network (FFN) to
enhance the model’s capacity to process through non-linear transformations and increased number
of parameters. The FFN is often applies linear transformations separated by a nonlinear activation
function o(+) (e.g., SILU(Elfwing et al.| [2018)). For example, SwiGLU (Shazeer, 2020) module is
defined as follows:

SwiGLU(z") = (U(Z”)Wgatem) o Z(l)Wup(U)Wdown(z) “4)

where o is the Swish activation function (Ramachandran et al.| 2018) , and Wgateﬂh Wupa) S
R embea X diner - gy Wup(z) € RimerXdemted gre learnable parameters with the intermediate dimension
dinter-

3 METHOD

In this section, we present Plug-and-Fold (PnF) compression, a straightforward yet effective com-
pression method for large language models, whose complete workflow is illustrated in Figure

!'Snowflake and Fire icons created by Freepik — Flaticon

Under review as a conference paper at ICLR 2026

Plug for Training

WQi(z) P o® "
. y Wgate(z) P
> X(l—l) WKi(z) PK(I)
w p(l) Pup(l)

W, @ =
—

Fold for Evaluation

-~
@ i
weem| |
i |
) s Cump
gate(’> N
i
-5,]
Com, i
1—1 comp| | 1 P I-1) Comp '
> X() WK}” i FAGHIIES = Wa(l) Z(Wduwn(’) :—-}
p i
. 1
. Comp (g
\
i
weome| |
1
,

up(r)

Figure 1: Visualization of Plug-and-Fold framework. The top half illustrates the training
phase: lightweight PnF adapters are plugged into the pretrained linear layers and project to a
reduced-dimensional space; the backbone weights remain frozen (shown as snowflakes), while
the adapters are the only trainable components (shown as fire), enabling them to fully leverage
the already-optimized structure. The bottom half shows the evaluation phase: after training, each
adapter is folded back into its corresponding weight matrix via a simple matrix multiplication, yield-
ing a compressed model that preserves the original architecture, interface, and performance.

gate’ O

~—
—

The main objective of this method is to preserve the original projection weight during training while
reducing their dimensionality, yeidling a compact model that maintains the original signal.

Section introduce the PnF adapter, a foldable compression module plugged into the original
projection weights and trained to induce low-dimensional projection while preserving the original
signal. Section[3.2]presents training schemes used to train these adapters effectively. Finally, Section
describes how the trained PnF adapters are folded into low-dimensional projection weights,
producing a compact model that is computationally efficient while preserving performance suitable
for deployment.

3.1 PLUG-AND-FOLD (PNF) COMPRESSION
3.1.1 PLUG-AND-FOLD (PNF) ADAPTER

In order to preserve the original signal while training, Plug-and-Fold adapters are plugged into the
pre-trained model. Given a pre-trained linear weight W € R™*", we define the PnF adapter as a
linear projection:

P eR™T, (5)
where r < n. The adapter is applied to W and subsequently trained to recover the performance of
the original model. Formally, our aim is to find an adapter P that satisfies:

P(W) = P(WP), (6)

where P(-) denotes the performance measures on various tasks induced by the corresponding
weight. Consequently, projecting the weights through the trained adapter P that satisfies Eq. (6)
yields output representations in the reduced-dimensional space (r-dimension), while preserving a
quality comparable to that of the full-size model. i.e., this projection yields compact representations
that preserve the fidelity of the original weight matrix, allowing highly efficient deployment across
a broad range of downstream tasks.

3.1.2 PNF ADAPTER FOR MHSA

We now explain how PnF adapter is integrated into the MHSA layer of an LLM. Let the projection
weights for queries, keys, values and the output at layer [be WQm , WK?’) , WV(z) € RembeaX dnead

Under review as a conference paper at ICLR 2026

and Wy € R(7ndheat) X demvea \where ny, is the number of attention heads. For each of these matrices,
we plug in a corresponding PnF adapter with dimension rpeaq < dpead:

Q K v,
These adapters, multiplied with the original weights, produce lower-dimensional projections:

0
Mi P c Rdembed XThead

(1)
WK(z) PK(Z) € R%embea X Theag

(1) (1)
P OB P OF P 10) € Rdhe“dxrhe*‘d, and Po(L) € R(nhrhei‘d)x(nhdhead) (7)

(®)

%

i

(D)
W (l)PV(l) S RdembEdXTh“‘i
i i

(1
PO(")WO(I,) c R(nhrhea)d)Xdembed

Thus, each attention projection incorporates a learnable low-rank adapter. After training, folding the
adapter into the original weight via matrix multiplication gives substantial reduction in both memory
usage and computational overhead, while maintaining output quality of the uncompressed model.

3.1.3 PNF ADAPTER FOR FEED FORWARD NETWORK

Next, we present the applicaiton of PnF adapters to the FFN. Let the gate, up-projection, and down-
projection at layer [be Wyer, W) € R%embea X diner qpp (] Wiown® € Riner X demved | respectively. For
these matrices, we introduce the corresponding PnF adapters:

din er (l) (l> dimcr
Pretrs Pupty € R and Py) € Rme™ ©)
where ri(rfl)er < di(ét)er. Multiplying these adapter with the original weights yields the compressed
projections:
dempeax 7D
Wgate(l)Pgate(l) € R bed X T'inter
0]

Wup(z)Pup(z) € TR %embed X Tinger (10)

(O]
P down(®) Wdown(U S TR "inter X dembed

Therefore, similar to that of the attention mechanism with PnF adapters above, each FFN layer is
equipped with a learnable low-rank adapter. Because the feed-forward network (FFN) comprises
the majority of a transformer’s parameters, folding the adapters into the original weights provides
substantial savings in both memory and computation.

3.2 TRAINING PIPELINE FOR PNF ADAPTER

To obtain PnF adapters with high fidelity, we propose a three-stage training pipeline: (i) Compres-
sion Planning that determines the per-layer degree of dimensionality reduction, (ii) Group-wise
Sequential Training that stabilizes optimization by sequentially training a small, isolated set of
adapters, and (iii) KL-divergence Distillation Loss that aligns the compressed model’s output dis-
tribution with the original model’s distribution.

Stage 1: Compression Planning Based on desired compression ratio (e.g., 20%), we first de-
termine the degree of reduction of dimensionality (i.e., rk(lgd and ri(rfl)er) for each layer /. While the
allocation of reductions can be flexible, we recommend a pyramidal schedule where deeper layers
(closer to the language modeling head) are compressed more aggressively, and earlier layers receive
milder reductions. Prior work on layer pruning Men et al.| (2024)); (Gromov et al.| (2024) shows that
later (upper) layers can often be removed with little impact on downstream performance, indicat-
ing that they contribute less to the model’s expressivity. Based on this finding, we allocate a larger

portion of the compression budget to the top of the model.

Because the reduction ratio can be explicitly set, the approach is highly flexible and can be tailored
to meet a user’s requirements. Our empirical studies reveal that applying a higher compression rate
to the FFN yields considerably better results than compressing the MHSA modules, and a concrete
example of this planning is provided in the Appendix

Under review as a conference paper at ICLR 2026

Stage 2: Group-wise Sequential Training Plugging all adapters at once might perturb the orig-
inal model’s signal at the beginning of training, inducing covariate shift and misleading gradients.
Alternatively, training a single adapter at a time preserves this signal but is prohibitively slow. To
address this issue, we introduce Group-wise Sequential Training. This training scheme trains small
groups of adapters in turn, retaining most of the signal preservation benefits while substantially
reducing training time and stabilizing convergence, which is further discussed in Section[4.3.1] For-
mally, we first partition the L transformer layers into disjoint groups of size N , starting from the
top of the model (output side) and moving downward. The k-th group is defined as:

Gy={L—kN+1,--- L—(k—1)N}, k=12, (11)
where n, = | L/N] is the number of groups. Given the compression plan that specifies per-layer

reductions (i.e., rk(lgd and)

7nga

inter)» We first identify which group contain layers slated for compression.
Then training proceeds sequentially from G, towards G, .

At step k, if Gi includes layers selected by the compression plan, we insert adapters only into those
layers and train them, while keeping the adapters trained in previous groups (G1, ..., Gr_1) frozen.
During this phase, only the parameters of current group are updated; all previous groups remain
frozen with their trained adapters, while remaining groups (Gr41,- - - , gng) remain frozen without
adapters (i.e., in their original state).

An instance of group-wise sequential training is illus-
trated in Figure [2] given L = 36 and N = 4, the
compression plan targeting layers 13 - 36 covers six

p 2 p % p 5
‘ Layer 1-12 ‘ ‘ Layer 1-12 ‘ Layer 1-12 ‘

groups (Gi1,---,Gg). We train these six groups se- [13-16 | [13-16 | (316 [P
quentially from the output side toward the input (i.e., [7-20] [w-20 | (1720 |
G1 — - -+ — Gg) while the lower 12 layers remain un- [21-24) Toaa VY L aa
compressed. By activating one small group per stepand 2= [5-9 EECN
keeping the remaining group fixed, this approach pre- [232 (2932 (7 (2-: |
serves the backbone signal and improves optimization 2% [P (33360 B
Step 1 (1) Step 2 (G) Step 6 (G)

stability.

Figure 2: Visualization of group-wise se-
quential training. Training proceeds group
by group, beginning with the output side. At
any step, only the current group G; is updated

Stage 3: KL-divergence Distillation Loss During
the group-wise sequential training for the adapters, we
adopt a Kullback-Leibler (KL) divergence loss. Specif-

ically, the logits of the PnF-plugged model are aligned
with those of the frozen backbone model by minimiz-
ing:

while all other groups stay frozen, which pre-
serves the backbone signal and enhances op-
timization stability.

Lxr = KL(pw||pw p (12)

where pyy and py p denote the predictive distribution of the backbone and the PnF-plugged models,
respectively.

We adopt a KL-divergence distillation loss for two reasons. First, the goal of compression is to pro-
duce a smaller model that reproduces the original model’s behavior. The KL-divergence can achieve
this by aligning the predictive distribution of student (PnF-plugged model) with the teacher (original
model). Second, recent studies (Bercovich et al.| [2024; Muralidharan et al.| 2024; |Li et al., [2024al)
report that KL-based distillation often outperforms cross-entropy, yielding better downstream per-
formance.

3.3 DEPLOYMENT FOR INFERENCE

After the adapters are fully trained leveraging unhindered pre-trained weights, they can be seam-
lessly integrated into the backbone model. In MHSA, for example, each adapter is folded into its
corresponding pre-trained weight matrix via matrix multiplication:

Comp

W_ P o =W

QE’) QEZ) Qil)
Comp

WKQ)PKQ) — W)

o f (13)

omp

WVI.(")PVI.(") — in“)
Comp

Po(L) WO(z) — WO(Z)

Under review as a conference paper at ICLR 2026

A similar folding procedure applies to FFN, where each adapter is integrated into its corresponding
weight matrix:

Comp
Wgale(”Pgate(l) — Wgate(l)

Wup(z)Pup(z) — W:i:z?;p (14)

Comp
Pdown(l)Wdown(l) — Wdown(l>

The resulting weights directly replace the original model, reducing parameter counts and
computational costs while preserving the model’s architectural structure and inference
pipeline. This fold-in operation has two key benefits. First, deployment is simple: the
trained PnF adapters are folded into the original weights via plain matrix multiplications—
no auxiliary metrics, graph edits, or specialized operators. Second, it ensures that the
deployed model remains identical structure and interface to the original model, which
facilitates compatibility with existing serving frameworks and hardware accelerators.
In practice, layer-wise non-uniform width patterns used in PnF have been empirically shown to be
deployment-friendly. Both elastic Transformer designs, such as MatFormer-style models deployed
in Gemma 3n Devvrit et al.| (2024)); (Google DeepMind| (2025), as well as adaptive pruning and
compression methods that allocate capacity under a global budget Ban et al.| (2025); |Yang et al. ef-
fectively support irregular per-layer widths on standard dense general matrix to matrix multiplication
(GEMM) inference pipelines and existing serving frameworks.

We concisely summarize the PnF compression pipeline: compression planning, group-wise adapter
training, and the final folding step in Appendix [A]

4 EXPERIMENTS

In this section, we first evaluate the PnF Compression method against several widely-used com-
pression methods across different compression rates and original model sizes, demonstrating its
effectiveness (Section [4.2). We then examine the impact of our weight-preserving mechanism and
training strategies through an ablation study (Section 4.3).

4.1 EXPERIMENTAL SETUP

All experiments were conducted to systematically compare the effectiveness of various large
language model (LLM) compression techniques across a suite of widely-used benchmark
tasks. We evaluated each method Slice-GPT (Ashkboos et al. 2024), LaCo (Yang et al.,
2024), ShortGPT (Men et all 2024), LLM-Streamline (Chen et all 2025), and our pro-
posed method in three target compression rates (approximately 20%, 30%, and 40%) relative
to the original model size. The baselines consist of the uncompressed models: Qwen3-
4B-Base, Qwen3-8B-Base, OPT 2.7B, OPT 6.7B, LLaMA-3.2-3B, and LLaMA-3.1-8B.

We additionally report comparisons on LLaMA-2-7B at a 20% compression ratio against latest
structured compression and quantization/distillation baselines—SVD-LLM Wang et al.| (2024), Bit-
Distiller Du et al. (2024), LLM-Pruner Ma et al.| (2023)), and DISP-LLM |Gao et al.|(2024b) in Ap-
pendices [F and |G| Moreover, we report task performance and average per-token inference latency
for the original backbone, SliceGPT, and PnF across various compression ratios in Appendix [H]to
assess the impact of compression on generation speed.

The evaluation benchmarks include: PIQA (physical commonsense reasoning), HellaSwag (com-
monsense inference), WinoGrande (pronoun resolution), CSQA (commonsense QA), ARC-e/ARC-
¢ (science questions), OpenBookQA, BoolQ (boolean QA), Social IQA (multiple-choice), MMLU
(multi-task language understanding), and Lambda OpenAl (factual QA). Each model’s performance
is measured using task-specific accuracy, or accuracy norm if available, reported per dataset. For
each compression approach and setting, we tabulate the compression rate (CR) and all benchmark
scores, along with the average performance (AVG) across tasks and relative performance rate (RP).

For a fair comparison, all compressed models underwent a performance recovery phase follow-
ing the respective compression procedure. Specifically, our approach utilizes adapter training for
post-compression recovery; the Streamline baseline employs light layer training; and other methods
adopt LoRA (Hu et al., 2022)) training as their recovery protocol. All recovery procedures leveraged
the SlimPajama dataset (Soboleva et al., 2023), sampling 600,000 training instances, each with a

Under review as a conference paper at ICLR 2026

Table 1: Performance of the various compression methods on Qwen-3-8B-Base. The pretrained
backbone model and its compressed variants are evaluated across multiple benchmarks at several
compression rates. The best and second-best results at each compression rate are highlighted with
boldface and underline, respectively.

Method | CR | PIQA HS WG CSQA ARC-e ARC-c OBQA boolg SIQA mmlu Id | Avg | RP
Baseline 0% (8.19B)| 0793 0786 0724 0.860 0.801 0573 0410 0830 0547 0747 0709 | 0707 | 1.000

20% (6.52B)] 0.716 0.617 0.665 0.195 0.644 0401 0376 0.749 0418 0247 0571 | 0509 | 0.720
Slice GPT 30% (5.71B)| 0.667 0.544 0.624 0.199 0511 0317 0362 0.601 0404 0231 0505 | 0451 | 0.638

40% (491B)| 0.618 0447 058 0194 0405 0263 0332 0523 0392 0230 0422 | 0401 | 0567
20% (6.65B) 0.733 0.645 0658 0627 0665 0422 0382 0673 0453 0560 0587 | 0582 | 0.824
LaCo 30% (5.88B) 0.687 0524 0589 0405 0561 0337 0320 0722 0425 0362 0522 | 0496 | 0.701
40% (5.10B)] 0.614 0398 0554 0205 0423 0277 0292 0501 0387 0242 0305 | 0382 | 0.540
20% (6.65B) 0757 0612 0559 0211 0647 0375 0400 0618 0441 0255 0508 | 0489 | 0.692
LLM-Streamline| 30% (5.88B)] 0.717 ~ 0.501 0534 0192 0524 0303 0348 0617 0393 0229 0358 | 0429 | 0.606
40% (5.10B) 0589 0362 0571 0196 0356 0264 0286 0430 0376 0230 0017 | 0334 | 0473
20% (6.65B)| 0.632 0362 0513 0.195 0439 0261 0300 0553 0368 0247 0070 | 0358 | 0.506
Short GPT 30% (5.88B) 0.608 0326 0507 0.187 0416 0238 0286 0462 0356 0231 0059 | 0334 | 0473
40% (5.10B) 0572 0287 0526 0185 0367 0214 0262 0440 0347 0229 0021 | 0314 | 0444
20% (6.55B) 0774 0714 0709 0757 0773 0479 0410 0818 0521 0.645 0.677 | 0.661 | 0.935
Ours 30% (5.74B) 0749 0.651 0.658 0553 0.687 0412 0372 0776 0483 0501 0.629 | 0.588 | 0.832
40% (4.91B)| 0.719 0587 0.626 0476 0.655 0378 0358 0749 0427 0398 0.538 | 0.545 | 0.771

Table 2: Performance of the different compression methods on Qwen3-4B-Base. The pretrained
backbone and its compressed variants are evaluated on the same set of benchmarks and compres-
sion rates as in Table For each compression rate, the best result is shown in boldface and the
second-best in underlined text.

Method | CR | PIQA HS WG CSQA ARC-e ARC-c OBQA boolg SIQA mmlu Id | Avg | RP
Baseline 0% (4.02B)| 0779 0736 0703 0827 0760 0516 0412 0830 0502 0713 0.9 | 0.679 | 1.000

20% (3.53B)| 0.688 0554 0.628 0.197 0546 0346 0338 0723 0411 0236 0528 | 0472 | 0.696
Slice GPT 30% (3.06B)| 0.633 0462 0.599 0.193 0431 0260 0308 0.680 0386 0231 0441 | 0420 | 0.619

40% (2.65B)| 0.584 0384 0553 0197 0348 0251 0276 0602 0371 0230 0359 | 0378 | 0556
20% (3.22B)| 0715 0578 0631 058 0634 0387 0358 0738 0434 0584 0502 | 0559 | 0.823
LaCo 30% (2.81B) 0.644 0470 0589 0306 0517 0317 0282 0651 0404 0335 0359 | 0443 | 0653
40% (241B)] 0.630 0416 0562 0.95 0453 0273 0284 0.606 038 0234 0341 | 0398 | 0587
20% (3.22B)| 0739 0559 0556 0.196 0619 0369 0378 0558 0417 0235 0448 | 0461 | 0.679
LLM-Streamline{ 30% (2.81B) 0.678 0443 0530 0.95 0498 0272 0336 058 0395 0229 0330 | 0408 | 0.601
40% (2.41B)] 0581 0351 0556 0196 0352 0274 0290 0426 0378 0230 0006 | 0331 | 0488
20% (3.22B)| 0.694 0557 0580 0561 0645 0411 0344 0684 0417 0487 0529 | 0538 | 0.792
Short GPT 30% (2.81B)| 0.654 038 0551 0.185 0492 0308 0312 0588 0372 0245 0253 | 0395 | 0582
40% (241B)] 0548 0274 0519 0222 0319 0226 0238 0538 0350 0244 0029 | 0319 | 0469
20% (3.22B)| 0736 0.662 0.669 0.779 0.704 0436 0382 0784 0501 0.657 0.651 | 0.633 | 0.932
Ours 30% (2.82B) 0712 0588 0.618 0.628 0.665 0380 0362 0749 0464 0524 0595 | 0571 | 0.842
40% (2.41B)] 0702 0513 0587 0420 0552 0310 0342 0.685 0421 0395 0542 | 0497 | 0.732

sequence length of 1,024 tokens, to ensure consistency and robustness in recovered performance
across all benchmarks. Comprehensive implementation and experimental details are provided in

Appendix
4.2 RESULTS

We evaluate the proposed compression method on two base LLMs, Qwen3-4B-Base and Qwen3-
8B-Base, under compression rates of approximately 20%, 30%, and 40% relative to their original
parameter counts. All models were assessed in a zero-shot setting using the LLM evaluation library
(Gao et al., |2024a). Additional experiments, including evaluations on other LLM variants and in
five-shot settings, are reported in Appendix [C}

Tables[2)and[I|summarize the results on compressing Qwen3-4B-Base and Qwen3-8B-Base, respec-
tively. Across all compression rates, our method consistently outperforms competing approaches on
most benchmarks, while preserving performance close to that of the uncompressed models. The ad-
vantage is most evident on knowledge-intensive tasks such as CSQA, MMLU, and ARC, which rely
heavily on retrieving and applying pretrained knowledge. On benchmarks emphasizing common-
sense reasoning and general language understanding (e.g., HellaSwag, WinoGrande), the perfor-
mance gap between methods is smaller, yet our approach still achieves the best overall balance
across tasks.

When comparing Qwen3-4B-Base and Qwen3-8B-Base, we observe that the larger base model re-
tains higher absolute accuracy across all compression methods and rates, reflecting its greater capac-
ity. However, the relative performance preservation (RP) of our method remains consistently strong
for both model scales, demonstrating its robustness. Notably, the 8B model shows slightly smaller
performance degradation under compression, suggesting that larger models may provide more re-

Under review as a conference paper at ICLR 2026

dundancy that can be better exploited during parameter reduction. This trend highlights that while
scaling up improves baseline performance, an effective compression strategy is crucial. Overall,
our method achieves stable gains across both model sizes, indicating strong generalizability of the
approach.

Discussion. These findings suggest that updating adapter weights while preserving core model
parameters is critical for effective LLM compression. Retaining the pretrained weight structure
allows the compressed models to maintain essential knowledge and reasoning capabilities needed
for complex tasks. In contrast, methods that aggressively modify core parameters tend to incur larger
performance degradation, particularly on knowledge-demanding benchmarks.

4.3 ABLATIONS

4.3.1 TRAINING STRATEGY

To understand how the size of the adapter groups influences effectiveness and efficiency, we per-
formed an ablation study in which the group size N was varied while keeping all other hyper pa-
rameters, compression plan, learning rate schedule, and total training epochs identical to the default
configuration described in Appendix [B| The experiments, summarized in Table [3) were conducted
on Qwen-3-4B-Base compressed to a 20% reduction rate.

When N = 36 every adapter is inserted and trained at once, which min-
imizes the number of training phases but perturbs the entire backbone
simultaneously. This large covariate shift leads to unstable gradients
and a noticeable drop in downstream performance, as reflected by an

Table 3: Ablation of the
group size N used in
the group wise sequen-
tial training scheme. The

average score of 0.6182. At the opposite extreme, N = 1 updates one
adapter at a time, moving sequentially through the 36 layers. Because
only a single component is altered during each step, the original sig-

table reports the average
downstream score.

nal is largely preserved, resulting in the highest average performance. Group size] Avg

However, the training iteration grows roughly linearly with the number

of groups, making this setting impractical for larger models N=36 (alh)| 0.6182
’ ’ N=1 0.6346

Our default configuration adopts N = 4, grouping four consecutive ~ N=4 (ours)| 0.6329

layers together. This approach retains most of the stability advantages
of the single-adapter regime while dramatically reducing the total number of training phases. The
resulting average score (0.6329) is only marginally below the optimal N = 1 setting, yet the com-
putational cost is comparable to the “all-at-once” baseline. Consequently, we select N = 4 as the
standard group size for all subsequent experiments.

4.3.2 IMPACT OF RECOVERY-TRAINING SET SIZE

Table 4: Effect of recovery-training set size on the performance of our 20% compressed Qwen-3-
4B-Base. Results are reported for four different sample budgets (300k, 600k, 1M, and 2M) on a
range of downstream benchmarks.

Method | CR | Samples | PIQA HS WG CSQA ARC-e ARC-c OBQA boolgq SIQA mmlu ld | Avg | RP
Baseline - - 0.7786 0.7364 0.7032 0.8272 0.7597 0.5162 0.4120 0.8299 0.5015 0.7131 0.6898 | 0.6789 | 1.0000
300K 0.7163 0.6433 0.6630 0.7802 0.7046 0.4181 03720 0.7976 0.4928 0.6476 0.6418 | 0.6252 | 0.9209
Ours 20% 600K 0.7363 0.6622 0.6690 0.7790 0.7044 0.4358 0.3820 0.7837 0.5013 0.6573 0.6514 | 0.6329 | 0.9322
IM 0.7350 0.6757 0.6788 0.8354 0.7022 0.4488 0.3720 0.7985 0.4923 0.7084 0.6693 | 0.6469 | 0.9528
2M 0.7679 0.7230 0.6890 0.8215 0.7513 0.5060 0.4020 0.8315 0.4908 0.7076 0.6804 | 0.6701 | 0.9870

In this section, we evaluate how the size of the recovery-training set influences the effective-
ness of our compression pipeline. Table [reports results for four different sample budgets
(300K, 600K, 1M, and 2M) under a fixed compression rate of 20%. As the number of training
instances grows, downstream performance improves consistently across virtually all bench-
marks: the average score rises from 0.6252 (300K samples) to 0.6701 (2M samples), and the
relative performance (RP) climbs from 0.9209 to 0.9870, narrowing the gap with the uncom-
pressed baseline (Avg=0.6789). For most tasks the improvement is gradual, but a few—namely
HS, BoolQ, OBQA, and ARC—show a different pattern. With only 300K-1M samples their
scores increase only marginally, reflecting the limited signal provided by a small recovery
set. Once the sample count reaches over 1M, the gains accelerate sharply; at 2M samples
these tasks almost match the baseline performance (e.g., HS jumps from 0.6757 to 0.7230,
BoolQ from 0.7985 to 0.8315, OBQA from 0.3720 to 0.4020, ARC-e from 0.7022 to 0.7513).

Under review as a conference paper at ICLR 2026

Moreover, even the 300K-sample configuration of PnF matches or surpasses strong structured com-
pression baselines such as LaCo, ShortGPT, SliceGPT, and LLM-Streamline that are trained with
600K recovery samples, demonstrating strong data efficiency of PnE.

Opverall, the results show that even a modest recovery set captures more than 90% of the attainable
relative performance (RP). When the recovery data are scaled to a few million examples, the com-
pressed model nearly matches the uncompressed baseline, incurring less than a 2% performance
drop while preserving the 20% compression ratio.

5 LIMITATION AND FUTURE WORKS

A possible limitation of our approach is that the first stage of the pipeline is deliberately empirical:
the compression plan and grouping schedule currently rely on manually specified per-layer reduction
rates and layer groups. While this design grants practitioners flexibility to tailor compression plans
to specific deployment constraints, it also places a burden on users to possess a priori knowledge
about the relative importance of different layers, which may hinder reproducibility and scalability. In
practice, an uninformed choice of layer-wise rates or groups can lead to sub-optimal performance or
unnecessary training overhead. On the other hand, this flexibility makes the stage a useful diagnostic
tool: by systematically varying the layers or groups that are compressed, users can probe which parts
of an LLM are most critical for specific linguistic or reasoning abilities.

Future work will focus on automated, data-driven planning schemes, such as sensitivity-based
or reinforcement-learning-based strategies inspired by recent structured pruning and compression
methods Wei et al.| (2024); |Gao et al.| (2024b) that learn layer-wise ranks and grouping patterns in-
stead of fixing them heuristically, aiming to reduce manual tuning while preserving the analytical
benefits of the current empirical design.

6 CONCLUSION

In this work, we introduce a novel framework Plug-and-Fold (PnF), a compression framework that
preserves both weights and structure of the pretrained LLM. In our workflow, lightweight PnF
adapters are first plugged into a pretrained LLM’s weight matrices. After going through adaption
phase, adapters are folded back into the base model via simple matrix multiplication. The resulting
model is structurally identical to the original backbone yet enjoys substantial reductions in parame-
ters with unimpaired performance. Extensive experiments on four backbones and three compression
rates show PnF consistently outperforms strong baselines, highlighting the benefit of retaining pre-
trained weights. Ablation studies on training strategies confirm the effectiveness of our workflow,
while experiments on recovery-training set size demonstrate that with sufficient data PnF can nearly
match the original model’s performance. In summary, Plug-and-Fold provides an efficient, scalable,
architecture-preserving compression pipeline that maintains the expressive power of large pretrained
LLMs, enabling deployment on resource-constrained hardware without performance loss.

REFERENCES

Rishabh Agarwal, Nino Vieillard, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier
Bachem. Gkd: Generalized knowledge distillation for auto-regressive sequence models. CoRR,
2023.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Systematic outliers in large language
models. arXiv preprint arXiv:2502.06415, 2025.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Zhihua Ban, Haotian Ma, Siheng Zhang, Shengyu Liu, Xichen Chen, and Ming Yang. Gap: a global
adaptive pruning method for large language models. In Proceedings of the 2025 Conference on
Empirical Methods in Natural Language Processing, pp. 20909-20914, 2025.

Akhiad Bercovich, Tomer Ronen, Talor Abramovich, Nir Ailon, Nave Assaf, Mohammad Dabbah,
Ido Galil, Amnon Geifman, Yonatan Geifman, Izhak Golan, et al. Puzzle: Distillation-based nas
for inference-optimized 1lms. arXiv preprint arXiv:2411.19146, 2024.

10

Under review as a conference paper at ICLR 2026

Zhaodong Bing, Linze Li, and Jiajun Liang. Optimizing knowledge distillation in transformers: En-
abling multi-head attention without alignment barriers. arXiv preprint arXiv:2502.07436, 2025.

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Stream-
lining redundant layers to compress large language models. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
1id=IC5RJIVRoMpl

Xiao Cui, Mo Zhu, Yulei Qin, Liang Xie, Wengang Zhou, and Hougiang Li. Multi-level optimal
transport for universal cross-tokenizer knowledge distillation on language models. In Proceedings
of the AAAI Conference on Atrtificial Intelligence, volume 39, pp. 23724-23732, 2025.

Fnu Devvrit, Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit Dhillon, Yu-
lia Tsvetkov, Hanna Hajishirzi, Sham Kakade, Ali Farhadi, et al. Matformer: Nested transformer
for elastic inference. Advances in Neural Information Processing Systems, 37:140535-140564,
2024.

Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller:
Unleashing the potential of sub-4-bit llms via self-distillation. arXiv preprint arXiv:2402.10631,
2024.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3-11, 2018.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024a. URL https://zenodo.org/records/12608602.

Shanggian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, Yilin Shen, Hongxia Jin, and Yen-Chang
Hsu. Disp-llm: Dimension-independent structural pruning for large language models. Advances
in Neural Information Processing Systems, 37:72219-72244, 2024b.

Google DeepMind. Gemma 3n model overview. https://ai.google.dev/gemma/docs/
gemma-—3n, 2025. Accessed: 2025-12-01.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Raby Hamadi. Large language models meet computer vision: A brief survey. arXiv preprint
arXiv:2311.16673, 2023.

G Hinton. Distilling the knowledge in a neural network. In Deep Learning and Representation
Learning Workshop in Conjunction with NIPS, 2014.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Xing Hu, Yuan Cheng, Dawei Yang, Zukang Xu, Zhihang Yuan, Jiangyong Yu, Chen Xu, Zhe
Jiang, and Sifan Zhou. Ostquant: Refining large language model quantization with orthogonal
and scaling transformations for better distribution fitting. arXiv preprint arXiv:2501.13987, 2025.

Yuxuan Hu, Jing Zhang, Zhe Zhao, Chen Zhao, Xiaodong Chen, Cuiping Li, and Hong Chen.
Sp3: Enhancing structured pruning via pca projection. In Findings of the Association for
Computational Linguistics: ACL 2024, pp. 3150-3170, 2024.

Raisa Islam and Owana Marzia Moushi. Gpt-40: The cutting-edge advancement in multimodal 1lm.
In Intelligent Computing-Proceedings of the Computing Conference, pp. 47—60. Springer, 2025.

11

https://openreview.net/forum?id=IC5RJvRoMp
https://openreview.net/forum?id=IC5RJvRoMp
https://zenodo.org/records/12608602
https://ai.google.dev/gemma/docs/gemma-3n
https://ai.google.dev/gemma/docs/gemma-3n

Under review as a conference paper at ICLR 2026

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024a. URL https://arxiv.org/abs/2401.04088,

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024b.

Pierre-Carl Langlais, Carlos Rosas Hinostroza, Mattia Nee, Catherine Arnett, Pavel Chizhov,
Eliot Krzystof Jones, Iréne Girard, David Mach, Anastasia Stasenko, and Ivan P Yamshchikov.
Common corpus: The largest collection of ethical data for llm pre-training. arXiv preprint
arXiv:2506.01732, 2025.

Shengrui Li, Junzhe Chen, Xueting Han, and Jing Bai. Nuteprune: Efficient progressive pruning
with numerous teachers for large language models. arXiv preprint arXiv:2402.09773, 2024a.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Evaluating quantized large language models. In Proceedings of
the 41st International Conference on Machine Learning, pp. 28480-28524, 2024b.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123-1130, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892-34916, 2023a.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. QIIm:
Accurate and efficient low-bitwidth quantization for large language models. arXiv preprint
arXiv:2310.08041, 2023b.

Yang Liu, Jiahuan Cao, Chongyu Liu, Kai Ding, and Lianwen Jin. Datasets for large language
models: A comprehensive survey. arXiv preprint arXiv:2402.18041, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702-21720, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Leandro Giusti Mugnaini, Bruno Lopes Yamamoto, Lucas Lauton de Alcantara, Victor Zacarias,
Edson Bollis, Lucas Pellicer, Anna Helena Reali Costa, and Artur Jordao. Efficient llms with
amp: Attention heads and mlp pruning. arXiv preprint arXiv:2504.21174, 2025.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact lan-
guage models via pruning and knowledge distillation. Advances in Neural Information Processing
Systems, 37:41076-41102, 2024.

Utkarsh Ojha, Yuheng Li, Anirudh Sundara Rajan, Yingyu Liang, and Yong Jae Lee. What
knowledge gets distilled in knowledge distillation? Advances in Neural Information Processing
Systems, 36:11037-11048, 2023.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. In
International Conference on Learning Representations, 2018.

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen Dong. Pb-llm: Partially binarized large lan-
guage models. arXiv preprint arXiv:2310.00034, 2023.

12

https://arxiv.org/abs/2401.04088

Under review as a conference paper at ICLR 2026

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
plicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv e-prints, pp.
arXiv-2507, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418, 2019.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

Jiateng Wei, Quan Lu, Ning Jiang, Siqi Li, Jingyang Xiang, Jun Chen, and Yong Liu. Structured
optimal brain pruning for large language models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 13991-14007, 2024.

Taiqiang Wu, Cheng Hou, Shanshan Lao, Jiayi Li, Ngai Wong, Zhe Zhao, and Yujiu Yang. Weight-
inherited distillation for task-agnostic bert compression. In Findings of the Association for
Computational Linguistics: NAACL 2024, pp. 13-28, 2024.

Mingzhe Yang, Sihao Lin, Changlin Li, and Xiaojun Chang. Let llm tell what to prune and how
much to prune. In Forty-second International Conference on Machine Learning.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in neural
information processing systems, 32, 2019.

Qiang Zhang, Keyan Ding, Tianwen Lv, Xinda Wang, Qingyu Yin, Yiwen Zhang, Jing Yu, Yuhao
Wang, Xiaotong Li, Zhuoyi Xiang, et al. Scientific large language models: A survey on biological
& chemical domains. ACM Computing Surveys, 57(6):1-38, 2025.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

13

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B

Under review as a conference paper at ICLR 2026

A PNF COMPRESSION PIPELINE (PSEUDO-CODE)

Algorithm[T|provides a concise pseudo-code summary of the plug-and-fold (PnF) pipeline, including
(i) compression planning of per-layer rank allocation and selection of layers to compress, (ii) group-
wise adapter training on a frozen backbone, and (iii) the folding step that replaces each compressed

layer’s weight with folded weight W, "™ = W, P,.

Algorithm 1 Plug-and-Fold (PnF) Compression Pipeline

Require: Pretrained decoder-only LLM weights {Wl}lel, global compression rate p, teacher
model fieacher, distillation dataset D

Ensure: Compressed weights {W, "™}~

1: [Compression Planning]
Compute per-layer target ranks/widths {r; }lel to match the global compression rate p.
Define the set of layers to compress C <— {l € {1,..., L} : r; < full_.dim(W;)}.
Partition C into groups G, .. ., Gk (single-stage PnF uses K=1 and G1=C).

Initialize PnF adapters { P, };ec (e.g., near-identity).
for k = 1to K do
for each layer | € G, do
9: Attach adapter P; to W (replace W, by W, P, with rank ;).
10: Freeze W; and mark only P; as trainable.
11: end for
12: for training step t = 1 to 7}, do

2:
3:
4:
5. [Group-Wise Sequential Training for adapter]
6:
7:
8

13: Sample a minibatch x ~ D.

14: Compute teacher outputs preacher (- |) = freacher (Z)-

15: Compute student outputs psudent (- | ; {Wi, P.}).

16: Update { P, };cc, by minimizing a distillation loss (e.g., KL(Preacher || Pstudent))-
17: end for

18: [Folding Step for adapter (for saving memory in training process)]
19: for each layer I € Gy do

20: W™ — Wi P

21: Remove P, and keep W, "™ for inference.
22: end for

23: end for

B EXPERIMENT SETTINGS

B.1 HYPER-PARAMETER CONFIGURATION

In all experiments we follow the two-stage pipeline described in Section Below we detail the
hyperparameter settings that were used to instantiate the compression plan, to construct the training
groups, and to train the adapters. The values are the same for every model and compression rate
unless explicitly noted. Also, the PnF are initialized as identity matrix, where only the diagonal
elements are set to 1 otherwise 0.

B.2 COMPRESSION PLAN (PER-LAYER REDUCTION RATES)

For each target compression rate ¢ € {20%,30%,40%}, we empirically driven target
hidden-dimension targets for the multi-head self-attention (MHSA) and feed-forward network (FFN)
sub-layers. The resulting dimensionalities are listed in Table[5] The notation indicates the target hid-
den size for each group in the order in which the groups are visited (from the output side toward the
input side).

Interpretation of Table Taking OPT 2.7B as an example, for a 20% reduction the first two
groups (closest to the output) compress both the MHSA projection matrices to rhe,g = 72 and the

14

Under review as a conference paper at ICLR 2026

Table 5: Target hidden dimensions for MHSA and FFN at each compression rate. Each entry corre-
sponds to a successive group of layers (see Figure @)

Backbone | CR | MHSA \ FFN
20% (72,72, —,-) (3584, 3584, 4096, 4864)

OPT2.7B | 30% (64,72,72,—, —, —, —) (3328, 3328, 3840, 4608, 5632, 6144, 8192)
40% (64,64,72,72,—, —, —, —) (2560, 2560, 2816, 2816, 2816, 3840, 5888, 8096)
20% [—— (5120, 5632, 7168, 7168)

OPT6.7B | 30% (64,80,96,112, —, —) (4608, 5376, 6144, 8192, 10240, 13312)
40% (64, 64,64, 64,96, —) (5632,5376,5120,5120, 7168, 7168)
20% (=== =) (2560, 2816, 3328, 4608, 9216)

Qwen34B | 30% (=== == =) (2560, 2560, 2560, 3072, 3584, 4864)
40% (=== === =) (2560, 2560, 2560, 2816, 2816, 3072, 3328, 5632)
20% [(4096, 4352, 4864, 6144, 8704)

Qwen3 8B | 30% (=== == =) (4096, 4352, 4608, 4864, 4864, 5632, 7680)
40% (== == === =) (4096, 4352, 4608, 4608, 4352, 4608, 4608, 4608, 7936)

FFN intermediate dimensions to 7y, = 3584. Subsequent groups use the next values in the list,
while “ — 7 denotes it retains the original dimension. At 30% and 40% the plan contains more
groups, thereby spreading the reduction more gradually across the stack.

B.3 TRAINING SCHEDULE
The overall workflow of training is as follows. For each selected group Gy, we:

1. Insert PnF adapters corresponding to index belonging to G,
2. Train for F epochs while keeping all previously trained groups frozen
3. Proceed to Gy 41 until G,

Through out the entire experiments, the number of epochs is fixed to F := 1, giving a total of n,
iteration.

B.4 FOLDING STEP

After the final group has been trained, each adapter pair is merged into its corresponding projection
matrix W by the closed-form multiplication. No additional fine-tuning is performed after folding,
which guarantees that the resulting model has exactly the same architecture and runtime character-
istics as the original uncompressed model.

B.5 BASELINE RECOVERY FINE-TUNING SETTINGS

For the recovery-fine-tuning (RFT) stage we adopt LoRA, since LoRA fine-tuning is widely used
in recent work. To ensure a fair comparison, we fix the low-rank dimension to » = 16 for every
LoRA experiment. Unless a particular method explicitly restricts its scope, LoRA is applied to all
transformer layers—both the multi-head self-attention (MHSA) and feed-forward network (FFN)
sub-layers.

C ADDITIONAL RESULTS

C.1 COMPARISON WITH BASELINE METHODS

In this section we compare our proposed approach with several baselines across a broader set of
conditions. We evaluate four backbone models—Qwen-3-4B-Base, Qwen-3-8B-Base, OPT-2.7B,
and OPT-6.7B, LLaMA-3.2-3B, LLaMA-3.1-8B-and we assess performance in both zero-shot and
five-shot settings. Across all experiments, our method consistently yields the highest average score
(Avg), closely matching the performance of the uncompressed baseline for each backbone.

15

Under review as a conference paper at ICLR 2026

The same trend observed in the zero-shot experiments holds in the five-shot setting. Our com-
pression method consistently outperforms the baselines across all compression rates, and the per-
formance gap widens on knowledge-intensive benchmarks. Thus, the superior performance of our
approach is preserved when a few exemplars are provided.

Table 6: Performance of the different compression methods on LLaMA-3.2-3B on zero-shots set-
ting.

Method | CR |Sample| PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu d | Avg | RP
Bascline 0% (321B)| -] 07748 0.7370 0.6906 0.6404 07168 04582 04320 0.7278 04708 0.5396 0.7000 | 0.6262 -
20% (2.90B) 05664 03318 05217 0.1998 03396 02543 03020 05966 03552 02420 0.0714 | 0.3437 -
Slice GPT 30% (2.56B)| 600k | 0.5484 03178 04996 0.1966 03211 02415 02580 0.5841 03449 02562 0.0732 | 03310 -
40% (2.22B) 05424 02923 04980 0.1957 03026 02278 02540 04798 03444 02617 00472 | 03133 -
20% (2.61B) 07002 0.6330 0.6890 06183 0.6044 03771 03520 06697 04427 05177 0.6330 | 0.5670 -
LaCo 30% (2.21B)| 600k | 0.6736 0.5134 05864 03227 05248 03131 03200 0.6242 04033 03148 0.4801 | 04615 -
40% (1.90B) 0.6028 04156 05667 02228 03952 02491 02840 0.6217 03915 02652 03972 | 0.4011 -
20% (2.61B) 07138 0.6171 06661 06372 06103 03840 03740 07150 04401 05450 0.5131 | 0.5651 -
LLM-Streamline|30% (2.21B)| 600k | 0.6763 05317 0.6504 04390 0.5459 03345 03160 0.6450 04150 04172 04147 | 0.4896 -
40% (1.90B) 0.6556 03884 05162 0.1949 04743 02517 03000 0.6076 03608 02295 0.1906 | 0.3791 -
20% (2.61B) 0.6948 0.6095 0.6827 0.6126 05947 03840 03520 0.6419 04473 05207 0.6043 | 0.5586 -
Short GPT 30% (2.21B)| 600k | 0.6425 04954 0.6369 0.5315 04769 03123 03080 0.6355 04115 04806 0.3831 | 0.4831 -
40% (1.90B) 06110 03929 05809 0.1949 03948 02713 02860 0.6226 03675 02299 0.2243 | 0.3797 -
20% (2.55B) 07548 0.6541 06877 06073 06824 04029 03820 0.6868 04430 05087 0.6493 | 0.5872 -
Ours 30% (2.22B)| 600k | 0.7331 0.5916 0.6256 0.4998 0.6283 03625 03500 0.6798 04235 04386 0.5981 | 0.5392 -
40% (1.92B) 0.6977 05169 05830 03500 05436 03041 03480 0.6391 04087 03571 0.5294 | 0.4798 -

Table 7: Performance of the different compression methods on LLaMA-3.2-3B on five-shots setting.

Method ‘ PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu lambada_openai
Baseline 0% (3.21B) 0.8025 0.7546 0.7238 0.6658 0.7816 0.4838 0.4489 0.7336 0.5066 0.5616 0.6652
Slice GPT 20% (2.90B) 0.5805 0.3358 0.5359 0.1892 0.3573 0.2415 0.2640 0.6031 0.3634 0.2539 0.0505
Slice GPT 30% (2.56B) 0.5528 0.3216 0.5257 0.1925 0.3430 0.2389 0.2760 0.5355 0.3414 0.2516 0.0611
Slice GPT 40% (2.22B) 0.5365 02921 0.5154 0.1867 0.3148 0.2355 0.2620 0.4321 0.3347 0.2519 0.0380
LaCo 20% (2.61B) 0.7095 0.6463 0.6890 0.6486 0.6616 0.4019 0.3500 0.6951 0.4846 0.5219 0.5913
LaCo 30% (2.21B) 0.6823 0.5281 0.5991 02678 0.5694 0.3311 0.3240 0.6217 0.4417 03109 0.3798
LaCo 40% (1.90B) 0.6104 0.4173 0.5841 0.2154 04205 0.2551 0.2840 0.6135 0.3869 0.2559 0.3767

LLM-Streamline 20% (2.61B)| 0.7236 0.6373 0.6827 0.6536 0.6561 0.3891 0.3600 0.7428 0.4826 0.5548 0.4564
LLM-Streamline 30% (2.21B)| 0.6828 0.5475 0.6709 0.4120 0.5829 0.3473 0.3220 0.6755 0.4478 0.4190 0.3546
LLM-Streamline 40% (1.90B)| 0.6545 0.3870 0.5178 0.2097 04718 0.2423 0.2800 0.5410 0.3639 0.2465 0.1679

Short GPT 20% (2.61B) 0.6964 0.6372 0.6875 0.6396 0.6414 0.3831 0.3560 0.6673 0.4821 0.5394 0.5845
Short GPT 30% (2.21B) 0.6507 0.5114 0.6433 0.5536 0.5130 0.3097 0.3140 0.6315 0.4386 0.4657 0.3910
Short GPT 40% (1.90B) 0.6094 03970 0.5714 0.1957 04196 02696 0.2760 0.6064 0.3838 0.2553 0.2199
Ours 20% (2.55B) 0.7742 0.6719 0.6896 0.6274 0.7238 0.4281 0.3920 0.7338 0.4975 0.5231 0.6056
Ours 30% (2.22B) 0.7409 0.6297 0.6461 0.5144 0.6486 0.3889 0.3700 0.6906 0.4806 0.4686 0.5553
Ours 40% (1.92B) 0.7175 0.5390 0.6083 0.3727 0.5623 0.3223 0.3600 0.6599 0.4606 0.3785 0.4904

Table 8: Performance of the different compression methods on LLaMA-3.1-8B on zero-shots set-
ting.

Method | cr Sample| PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu d | Avg | RP
Baseline 0% (8.03B)| -] 08123 0.7884 07356 0.7150 0.8123 05367 04460 08196 04713 0.6345 0.7533 | 0.6841 | 1.0000
20% (6.41B) 05582 03818 05414 02015 03068 02449 02840 05535 03511 02466 0.0726 | 0.3402 | 0.4973
Slice GPT 30% (5.61B)| 600k | 0.5854 0.3592 05335 0.1966 03603 02568 02760 04590 03403 02376 0.0819 | 03351 | 0.4898
40% (4.83B) 05609 03299 05067 0.1957 03439 02321 02560 04367 03454 02461 0.0770 | 0.3210 | 0.4692
20% (6.50B) 07693 0.7056 0.6875 05209 0.7155 04317 03800 0.7691 04565 04671 0.6534 | 0.5961 | 0.8714
LaCo 30% (5.63B)| 600k | 0.7280 0.6209 0.6630 03604 0.6233 03558 03500 0.6667 04350 03478 0.5694 | 0.5200 | 0.7601
40% (4.76B) 0.6670 05141 0.6243 04210 05139 03055 02900 0.6312 04181 04141 04809 | 0.4800 | 0.7017
20% (6.50B) 07514 07007 0.7238 0.6912 0.7214 04633 03940 0.7609 04585 0.6164 03872 | 0.6062 | 0.8861
LLM-Streamline|30% (5.63B)| 600k | 0.6986 0.6035 0.6906 0.7035 0.6170 03763 03620 07593 04360 0.6271 03949 | 0.5699 | 0.8331
40% (4.76B) 0.6785 04778 05872 0.1941 05059 02833 03260 0.6190 04007 02301 0.2750 | 0.4161 | 0.6082
20% (6.50B) 07465 0.6924 07159 06986 07024 04437 03740 0.7214 04611 05919 0.7075 | 0.6232 | 0.9110
Short GPT 30% (5.63B)| 600k | 0.6855 0.5914 0.6993 05872 0.5875 03626 03060 07113 04222 04208 0.5410 | 0.5377 | 0.7860
40% (4.76B) 0.6213 04531 05983 0.1974 04310 02807 02780 0.6226 03889 02302 0.3427 | 0.4040 | 0.5906
20% (6.42B) 07750 07369 0.7130 0.6326 0.7494 04654 04040 0.7942 04606 0.6170 0.7226 | 0.6428 | 0.9396
Ours 30% (5.62B)| 600k | 0.7584 07048 0.6932 0.5892 07149 04389 03920 07525 04503 05713 0.6942 | 0.6145 | 0.8983
40% (4.48B) 07439 0.6240 0.6438 04562 0.6135 03494 03620 07094 04368 04528 0.6219 | 0.5467 | 0.7992

16

Under review as a conference paper at ICLR 2026

Table 9: Performance of the different compression methods on LLaMA-3.1-8B on five-shots setting.

Method | CR |Sample| PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu d | Avg | RP
Baseline 0% (8.03B)| -] 08243 0.8092 07719 07412 08502 05768 04640 08275 05251 0.6503 0.6848 | 0.7023 -
20% (6.41B) 05756 04066 05541 0.1916 03359 02491 03020 0.6355 03675 02339 0.0660 | 0.3562 -
Slice GPT 30% (5.61B)| 600k | 0.6023 0.3787 05320 0.1990 04398 02773 02520 0.5410 03593 0.2385 0.0681 | 03535 -
40% (4.83B) 0.5740 03350 0.5217 02113 03826 02432 02620 04330 03582 02465 0.0530 | 0.3291 -
20% (6.50B) 07688 0.7243 0.6953 05356 0.7437 04539 03860 0.7639 04985 04490 0.6140 | 0.6030 -
LaCo 30% (5.63B)| 600k | 0.7274 0.6413 0.6630 04357 0.6810 03891 03560 07131 04724 04323 04830 | 0.5449 -
40% (4.76B) 0.6654 05273 0.6243 04595 05581 03038 03120 0.6636 04437 04385 04407 | 0.4943 -
20% (6.50B) 07563 0.7269 0.7648 0.7314 0.7626 04804 04080 0.8080 05164 0.6339 03553 | 0.6313 -
LLM-Streamline|30% (5.63B)| 600k | 0.6828 0.5475 0.6709 04120 05829 03473 03220 0.6755 04478 04190 03546 | 0.4966 -
40% (4.76B) 0.6545 03870 05178 02097 04718 02423 02800 05410 03639 02465 0.1679 | 0.3711 -
20% (6.50B) 07508 07202 0.7388 0.7281 0.7462 04676 03720 0.6596 05118 0.6318 0.6231 | 0.6318 -
Short GPT 30% (5.63B)| 600k | 0.6942 0.6085 07230 0.6298 0.6237 03737 03240 07095 04821 04828 0.5300 | 0.5619 -
40% (4.76B) 06328 04622 06212 02031 04735 02935 02860 06214 04222 02793 03113 | 04188 -
20% (6.42B) 0.8094 07548 0.7482 06714 07990 05132 04300 0.8046 05131 0.6262 0.6641 | 0.6667 -
Ours 30% (5.62B)| 600k | 0.7844 0.7224 07082 0.6063 07662 0.4680 04140 07656 0.4969 05842 0.6462 | 0.6329 -
40% (4.48B) 07527 0.6369 0.6546 04776 0.6818 03754 03760 07332 04772 04761 05814 | 0.5657 -

Table 10: Performance of the different compression methods on Qwen3-4B-Base on five-shots set-
ting.

Method | CR |Sample| PIQA HS WG CSQA ARC-e ARC-c OBQA boolg SIQA mmlu d | Avg | RP
Baseline 0% (4.02B)| - [0.7889 07532 07206 0.8198 0.8674 0.6425 04500 0.8654 05502 07319 0.6501 | 0.7127 | 1.0000
20% (3.53B) 0.6980 05612 0.6425 03030 0.6902 04130 03480 0.7746 04641 03250 0.4487 | 0.5153 | 0.7230
Slice GPT 30% (3.06B)| 600k | 0.6409 0.4661 0.6085 02293 0.5370 02952 03120 0.6911 04181 02651 03656 | 0.4390 | 0.6160
40% (2.65B) 0.5832 03857 05596 0.1925 04158 02440 02780 0511 03909 02672 02928 | 0.3746 | 0.5256
20% (3.22B) 07236 05840 0.6425 07273 07016 04249 03680 0.7679 04698 0.6192 0.4496 | 0.5889 | 0.8264
LaCo 30% (2.81B)| 600k | 0.6398 0475 05841 03194 05556 03362 02820 07028 04252 02863 03043 | 0.4464 | 0.6264
40% (2.41B) 0.6300 04136 05509 0.2080 0.4996 02944 02880 0.6242 04083 02810 0.2550 | 0.4048 | 0.5680
20% (3.22B) 07448 05572 05241 02015 07428 04292 03880 05474 04544 02895 03974 | 0.4797 | 0.6730
LLM-Streamline[30% (2.81B)| 600k | 0.6724 0.4333 05059 0.1891 0.5883 03054 03180 0.6012 0.4027 0.2538 03049 | 0.4159 | 0.5836
40% (2.41B) 0.5865 03468 0.5643 0.1957 03742 02611 02800 03841 03602 02295 0.0060 | 0.3262 | 0.4577
20% (3.22B) 07008 0.5520 0.6014 05766 0.7189 04573 03280 0.6914 04631 05167 0.4644 | 0.5519 | 0.7743
Short GPT 30% (2.81B)| 600k | 0.6088 0.3142 05138 0.1974 04196 02747 02480 03847 03561 0.2446 0.0134 | 0.3250 | 0.4561
40% (2.41B) 0.5294 02564 04972 02080 0.2950 0.2568 02460 03869 0.3439 02370 0.0000 | 0.2961 | 0.4154
20% (3.22B) 07559 0.6714 0.6772 0.8003 0.7739 04955 0.4100 0.8355 05417 0.6771 0.6055 | 0.6585 | 0.9240
Ours 30% (2.82B)| 600k | 0.7233 0.5847 0.6343 0.6798 0.7070 0.4008 04000 0.7602 0.4955 0.5412 0.5411 | 0.5880 | 0.8250
40% (2.41B) 0.6912 05134 05783 0.5030 0.6186 03487 03540 07283 04517 03956 0.4757 | 0.5144 | 0.7218

Table 11: Performance of the different compression methods on Opt 6.7B in zero-shot setting.

Method | CR |Sample| PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu d | Avg | RP
Baseline 0% (6.66B) | - [0.7644 06719 0.6543 02031 0.6002 03473 03760 0.6612 04278 02505 0.6769 | 0.5121 [1.0000
20% (5.49B) 07165 05657 0.6204 0.1916 05055 02961 03560 0.6235 04206 02500 0.5632 | 0.4645 | 0.9070
Slice GPT 30% (4.77B)| 600k | 0.7013 0.5220 0.6093 0.1957 04735 02875 03320 0.6064 03976 02421 04890 | 0.4415 | 0.8621
40% (4.07B) 0.6589 04709 05604 0.1982 0.4495 02671 03280 05835 03899 02290 04017 | 0.4125 | 0.8054
20% (5.25B) 0.6866 05310 0.6014 02064 04899 02995 03280 0.6214 04165 02503 0.5088 | 0.4491 | 0.8769
LaCo 30% (4.64B)| 600k | 0.6213 0.3890 0.5446 0.1974 03965 02560 02980 0.6214 03735 02463 0.1764 | 0.3746 | 0.7315
40% (4.04B) 0.5930 03391 05170 0.1957 03481 02363 02740 0.6211 03613 02371 0.0638 | 03442 | 0.6722
20% (5.25B) 07361 0.6037 06172 0.1761 05745 03191 03320 0.6324 04165 02470 05492 | 0.4731 | 0.9238
LLM-Streamline|30% (4.64B)| 600k | 0.6953 0.4204 0.5588 0.1974 05198 02850 03260 0.6330 03904 0.2381 0.2791 | 0.4130 | 0.8065
40% (4.04B) 0.6284 03430 0.5288 0.1966 04491 02304 02960 0.6217 03464 02311 0.1186 | 0.3627 | 0.7083
20% (5.25B) 0.5044 02597 05051 0.1957 02668 02594 02720 0.3783 03515 02295 0.0000 | 0.2929 | 0.5720
Short GPT 30% (4.64B)| 600k | 0.5065 0.2578 04917 0.1957 02597 02568 02860 03783 03418 0.2295 0.0000 | 0.2913 | 0.5687
40% (4.04B) 0.5065 0.2579 04878 0.1957 02601 02491 02980 03783 0.3454 02295 0.0000 | 0.2917 | 0.5695
20% (5.32B) 07403 06126 0.6461 02146 0.5886 0.3278 03600 0.6666 04207 02567 0.6135 | 0.4952 | 0.9671
Ours 30% (4.66B)| 600k | 0.7126 0.5321 0.6127 0.1998 0.5495 03069 03340 0.6496 04140 02512 05269 | 0.4627 | 0.9035
40% (3.99B) 0.6417 04926 05920 0.1966 0.4877 02874 03260 0.6382 03949 02464 0.4728 | 0.4342 | 0.8479

17

Under review as a conference paper at ICLR 2026

Table 12: Performance of the different compression methods on Opt 2.7B in zero-shot setting.

Method | CR |Sample] PIQA HS ~ WG CSQA ARC-e ARC-c OBQA boolq SIQA mmiu 1d | Avg | RP
Baseline 0% (265B)| - [07481 0.6063 06101 0.1990 05438 03131 03520 06027 04212 02567 0.6361 | 04808 | 1.0000
20% (2.23B) 06654 04682 05904 02031 04322 02637 03300 05257 03838 02415 04108 | 04104 | 0.8537
Slice GPT 30% (1.94B)| 600k | 0.6300 04228 05635 0.1966 04175 02585 03060 05168 03705 02316 0.3551 | 0.3881 | 0.8072
40% (1.66B) 05865 03674 05343 0.1957 03742 02509 02820 0.3982 03602 0.2301 02880 | 0.3516 | 0.7313
20% (2.10B) 06697 04629 05612 0.1957 04356 02782 03080 0.6223 03899 02436 04768 | 04222 | 0.8781
LaCo 30% (1.86B)| 600k | 0.6197 03677 05627 02113 03699 02415 02880 0.5832 03853 02330 0.1469 | 0.3645 | 0.7581
40% (1.63B) 05762 03006 05193 0.1957 03308 02261 02920 0.5920 03561 02312 0.0279 | 0.3316 | 0.6897
20% (2.10B) 07100 05471 06038 0.1974 05097 02867 03240 0.6058 04053 02537 05692 | 04557 | 0.9478
LLM-Streamline |30% (1.86B)| 600k | 0.6763 04016 0.5438 0.1966 04609 02585 03160 06012 03756 02344 02876 | 0.3957 | 0.8230
40% (1.63B) 06023 03122 05114 0.1949 03788 02150 02760 0.6119 03454 02298 0.0778 | 03414 | 0.7101
20% (2.10B) 06692 04476 05745 0.1941 04457 02696 03080 05929 03904 02315 03155 | 04035 | 0.8393
Short GPT 30% (1.86B)| 600k | 0.5354 02715 05083 0.1982 03081 02381 02600 03789 03459 02301 0.0029 | 0.2979 | 0.6197
40% (1.63B) 05152 02677 05067 0.1974 02908 0.2500 02600 03810 03423 02315 00035 | 0.2951 | 0.6138
20% (2.11B) 07235 05012 06088 02023 05139 02922 03460 0.6287 04243 02500 0.5666 | 0.4598 | 0.9563
Ours 30% (1.85B)| 600k | 0.6908 04615 05741 01981 04724 02782 03180 0.6157 04132 02462 05407 | 0.4347 | 0.9042
40% (1.53B) 0.6642 04205 05449 0.1957 04486 02759 02940 0.5861 04020 02388 04584 | 04117 | 0.8564

Table 13: Performance of the different compression methods on Opt 6.7B in five-shot setting.

Method | cr Sample| PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu d | Avg | RP
Baseline 0% (6.66B) 07704 0.6797 0.6598 0.1867 0.6982 03703 03920 07012 04785 0.2634 0.6451 | 0.5314 | 1.0000
20% (5.49B) 07187 05652 06211 0.1981 05984 03293 03600 05492 04206 02622 04189 | 0.4583 | 0.8625
Slice GPT 30% (4.77B)| 600k | 0.6921 0.5221 0.6314 0.1826 05699 03063 03280 0.5318 04124 02553 0.3623 | 04358 | 0.8202
40% (4.07B) 0.6561 0.4669 05912 0.1859 05173 02790 03220 05028 0.3935 02666 0.2925 | 0.4067 | 0.7654
20% (5.25B) 0.6915 05318 0.6069 02146 05244 03038 03280 06217 04355 02595 04935 | 0.4556 | 0.8573
LaCo 30% (4.64B)| 600k | 0.6170 0.3914 05375 0.1998 04411 02730 02840 0.6220 03817 02549 0.1300 | 03757 | 0.7069
40% (4.04B) 05919 03399 05312 0.1949 03733 02406 02660 0.6211 03541 02542 0.0324 | 0.3454 | 0.6500
20% (5.25B) 07426 0.6207 05943 02006 0.6485 03455 03700 0.6519 04600 02522 05356 | 0.4929 | 0.9275
LLM-Streamling|30% (4.64B)| 600k | 0.6219 03529 0.5099 0.1810 04428 02338 02640 05927 03572 02496 0.0714 | 0.3525 | 0.6633
40% (4.04B) 0.5811 02982 04964 0.1998 03577 02167 02560 05838 03326 02433 00213 | 0.3261 | 0.6136
20% (5.25B) 05060 02606 05233 0.1957 02622 02594 02680 03783 03490 02295 0.0000 | 0.2938 | 0.5529
Short GPT 30% (4.64B)| 600k | 0.4984 02562 04957 0.1957 02563 02474 02800 03783 03423 02295 0.0000 | 0.2891 | 0.5440
40% (4.04B) 0.5054 02552 04972 0.1957 02546 02534 02820 03783 03464 02295 0.0000 | 0.2907 | 0.5470
20% (5.32B) 07647 0.6255 0.6319 02080 06477 03423 03720 06729 04683 02610 0.6032 | 0.5089 | 0.9576
Ours 30% (4.66B)| 600k | 0.7323 0.5273 0.6221 0.1909 05905 03167 03520 0.6461 04468 02547 05081 | 0.4716 | 0.8874
40% (3.99B) 0.6896 04673 0.6038 0.1959 05343 02819 03320 0.6086 04292 02501 03951 | 0.4353 | 0.8191

Table 14: Performance of the different compression methods on Opt 2.7B in five-shot setting.

Method | CR |Sample| PIQA HS WG CSQA ARC-e ARC-c OBQA boolq SIQA mmlu d | Avg | RP
Baseline 0% (2.65B)| - [07481 0.6068 0.6204 0.1884 0.6469 03311 03580 0.6272 04550 02579 0.6010 | 0.4946 | 1.0000
20% (2.23B) 0.6757 04632 05770 0.1933 0.5080 0.2918 03100 04205 04099 02457 0.3037 | 0.3999 | 0.8085
Slice GPT 30% (1.94B)| 600k | 0.6322 04179 05746 02015 04609 02551 03000 04477 03991 0.2538 0.2663 | 0.3826 | 0.7736
40% (1.66B) 0.5936 0.3612 05383 0.2080 03880 02449 02800 04349 03756 02480 0.1974 | 03518 | 0.7113
20% (2.10B) 0.6746 04600 05825 0.1925 04886 02824 02900 0.6217 04252 02628 0.4221 | 0.4275 | 0.8643
LaCo 30% (1.86B)| 600k | 0.6186 0.3690 0.5588 0.1900 0.3986 0.2491 02600 0.6211 03705 02465 0.1025 | 0.3622 | 0.7324
40% (1.63B) 0.5745 02973 05130 02023 03350 02287 02600 0.6208 03561 02366 0.0155 | 0.3309 | 0.6690
20% (2.10B) 0.7198 0.5554 0.6006 0.1990 05871 03012 03260 0.6000 04385 02512 0.4925 | 0.4610 | 0.9321
LLM-Streamline|30% (1.86B)| 600k | 0.6436 04228 05138 0.1818 04524 02627 02720 05422 03689 02570 0.2327 | 0.3773 | 0.7628
40% (1.63B) 05539 0.2823 0.5075 0.1990 03338 0.2099 02500 0.5673 03336 0.2505 0.0165 | 0.3186 | 0.6441
20% (2.10B) 06442 04013 05604 0.1916 04566 02637 02980 0.5621 03935 02505 0.1970 | 0.3835 | 0.7754
Short GPT 30% (1.86B)| 600k | 0.5152 0.2553 05257 0.1966 0.2727 0.2457 02800 03783 03413 02295 0.0000 | 0.2946 | 0.5956
40% (1.63B) 0.5011 02572 05193 02007 02685 02654 02820 03783 03413 0.2342 0.0000 | 0.2953 | 0.5970
20% (2.11B) 07107 05642 0.6099 0.1901 0.5835 03101 03320 0.6300 04302 02534 0.5110 | 0.4659 | 0.9420
Ours 30% (1.85B)| 600k | 0.6794 04540 05741 02015 0.5243 02894 03300 05701 04291 02588 04518 | 0.4330 | 0.8754
40% (1.58B) 0.6518 04096 05551 0.1966 0.4827 02777 03080 05498 04230 02503 03678 | 0.4066 | 0.8220

18

Under review as a conference paper at ICLR 2026

Table 15: Performance of the different compression methods on Qwen3-8B-Base with five shots
setting. The pretrained backbone and its compressed variants are evaluated on the same set of
benchmarks and compression rates as in Table E

Method | CR | PIQA HS WG CSQA ARC-e ARC-c OBQA boolg SIQA mmlu Id | Avg | RP
Baseline 0% (8.19B)| 0.815 0795 0770 0.856 0.880 0.681 0490 0882 0572 0770 0.671 | 0744 | 1.000

20% (6.52B)| 0.714 0.632 0.686 0329 0747 0462 0396 0.781 0496 0356 0.527 | 0.557 | 0.749
Slice GPT 30% (5.71B)| 0.676 0.553 0.642 0275 0.621 0361 0370 0.696 0443 0275 0456 | 0488 | 0.656

40% (4.91B)| 0.627 0.451 0.594 0.201 0.494 0.279 0.318 0.614 0.415 0.255 0.363 0.419 0.564
20% (6.65B)| 0.736 0.651 0.671 0.709 0.748 0.493 0.406 0.534 0.503 0.604 0.546 0.600 0.807
LaCo 30% (5.88B)| 0.694 0.535 0.600 0.506 0.629 0.358 0.318 0.673 0.456 0.408 0.471 0.514 0.690
40% (5.10B)| 0.617 0.403 0.572 0.215 0.487 0.297 0.276 0.623 0.402 0.251 0.256 0.400 0.538
20% (6.65B)| 0.774 0.613 0.561 0.238 0.769 0.446 0.402 0.548 0.477 0.268 0.462 0.505 0.680
LLM-Streamline|30% (5.88B)| 0.724 0.500 0.553 0.194 0.673 0.338 0.346 0.450 0.418 0.243 0.310 0.432 0.580
40% (5.10B)| 0.608 0.364 0.568 0.196 0.392 0.266 0.310 0.451 0.382 0.230 0.010 0.343 0.462
20% (6.65B)| 0.574 0.301 0.494 0.197 0.353 0.260 0.252 0.592 0.346 0.247 0.003 0.329 0.443
Short GPT 30% (5.88B)| 0.561 0.278 0.494 0.195 0.327 0.227 0.252 0.493 0.347 0.256 0.002 0.312 0.420
40% (5.10B)| 0.540 0.258 0.512 0.198 0.307 0.230 0.256 0.417 0.348 0.229 0.000 0.300 0.403
20% (6.55B)| 0.788 0.718 0.730 0.796 0.819 0.540 0.442 0.853 0.546 0.660 0.653 0.686 0.922
Ours 30% (5.74B)| 0.753 0.654 0.679 0.658 0.737 0.442 0.392 0.786 0.511 0.501 0.574 0.608 0.817
40% (4.91B)| 0.724 0.587 0.637 0.526 0.680 0.402 0.352 0.775 0.463 0.404 0487 0.549 0.738

19

Under review as a conference paper at ICLR 2026

D ON KNOWLEDGE PRESERVATION VIA ADAPTER FOLDING

This section provides additional evidence for the claim that adapter folding better preserves pre-
trained knowledge than conventional low-rank compression. We present (i) an empirical compari-
son between adapt-before-folding and train-after-folding pipelines under matched rank and training
budget, and (ii) an intuitive small-scale example that clarifies why learned adapters can retain more
of the original transformation than truncation-first strategies.

D.1 EMPIRICAL COMPARISON OF RECONSTRUCTION FIDELITY

We compare our default PnF pipeline (adapt-before-folding) with the baseline (train-after-folding)
under the same compression ratio (20%) and the same training budget (600K samples). In the
baseline, the model is first reduced to the target rank 7 (i.€., T'head, Tinter) USIng a low-rank projector,
and the resulting compressed weights are directly fine-tuned without any adapters. In PnF, the
pretrained backbone is frozen, only lightweight adapters are trained with KL-distillation, and the
adapters are folded into a dense matrix after training. Table 16| reports zero-shot performance for
Qwen-3-4B-Base compressed to 20% across a diverse set of benchmarks. At a fixed rank and
training budget, PnF consistently outperforms the train-after-folding baseline on most tasks as well
as on the averaged metric, indicating that adapter-based parameterization preserves the pretrained
model’s behavior more effectively than directly training on truncated weights.

Table 16: Comparison between baseline (train-after-folding) and PnF (adapt-before-folding) at 20%
compression on Qwen-3-4B-Base. All models are trained for 600K samples.

Method Comp.(%)PIQA HS WG CSQAARC-e ARC-cOBQAB0olQSIQAMMLU LD Avg

Baseline 20% 0.7040.6360.642 0.740 0.675 0.416 0.334 0.772 0.473 0.607 0.6210.602
PnF 20% 0.7360.6620.669 0.779 0.704 0.435 0.382 0.783 0.501 0.657 0.6510.632

D.2 TOY EXAMPLE: TRUNCATION-FIRST VS. ADAPT-BEFORE-FOLDING

To build intuition, we contrast the backbone transformation, a truncation-first strategy, and our adapt-
before-folding scheme on a simple 2 x 3 example.

Let

Backbone. The original pretrained transformation is

fM@zﬂW:mlﬂ;z;j:W+W ad+bg ae+bh].

Truncation-first. A truncation-first strategy applies a fixed selector S € R**? that drops the third
column, e.g.

10 y
S=10 1}, Wm“—WS—r }.
0 0 fg

The compressed transformation becomes

fwrne(x) = T W = [b] [JCC Cgl] =[ac+bf ad+bg].

20

Under review as a conference paper at ICLR 2026

Here the contribution of the third column (e, k) is discarded by construction; the compressed model
can only exploit the first two columns of V.

Adapt-before-folding (PnF). In PnF, we instead introduce a learnable adapter P € R3*2 and
keep W frozen. For illustration, write

i
P=lk 117 weomp — W p.
m n

Then

fweom (z) = 2T W™ = 2 TWP =[a b ¢ d ¢ IZC %
A] B

= [(ac+ bf)i+ (ad + bg)k + (ae + bh)m (ac+bf)j + (ad + bg)l + (ae + bh)n].

Although W™ also has only two output dimensions, every entry of the original W (including e
and h) participates in the product W P and can still influence fy;-comp () through the learned coeffi-
cients (i, j, k, [, m,n). The adapter P is optimized so that fycom (z) & fy(x) on the training dis-
tribution, effectively redistributing the contribution of all columns of W into the lower-dimensional
representation. This toy example highlights the qualitative difference between truncation-first and
adapt-before-folding: truncation irrevocably removes part of the pretrained weights, whereas PnF
retains the full pretrained matrix and learns how to compress it via a data-driven adapter.

E TRAINING COST AND PRACTICAL EFFICIENCY OF PNF

In this section, we provide the experimental results with a cost-performance analysis of PnF. Ta-
ble [T7] reports training latency and average downstream zero-shot performance for Qwen-3-4B-
Base compressed to 20% on an 8xH100 configuration under two training regimes: a single-
stage non-sequential variant, where all adapters are trained at once, and the group-wise sequential
schedule used in our main experiments. At a compression ratio (20%) and training budget
(600K samples), non-sequential (all-at-once) PnF uses a single-stage training loop similar in struc-
ture to standard fine-tuning, yet it already recovers strong performance surpasses the baselines
(LaCo: 0.559 vs. PnF: 0.602). By contrast, group-wise sequential training increases recovery
phase by roughly a factor of three, but yields a clear additional gain in average performance
(0.602 — 0.633). Importantly, the proposed group-wise sequential training schedule is optional for
our method to work rather than a requirement of PnF: the non-sequential “all-at-once” PnF training
already provides a competitive cost—performance trade-off, and practitioners can choose the config-
uration that best fits their resources, using the single-stage variant when wall-clock time is limited
and the multi-stage variant when the highest possible performance is desired.

Table 17: Training latency and average performance for the two PnF training regimes on Qwen-3-
4B-Base (20% compression, 600K samples, 8 xH100).

Regime # Groups Training latency (h) GPU hours Avg. performance
Non-sequential training 1 8.21 65.7 0.602
Sequential training 4 23.32 186.6 0.633

F ADDITIONAL COMPARISONS WITH SVD-LLM AND BITDISTILLER

We provide additional baseline comparisons to SVD-LLM(Wang et al., 2024) and BitDistiller (Du.
et al., 2024) at a common 20% compression ratio on LLaMA-2-7B, in order to offer a more com-
prehensive and fair evaluation against structured low-rank and quantization/distillation baselines.

21

Under review as a conference paper at ICLR 2026

F.1 COMPARISON WITH SVD-LLM

Following the experimental setup of the original SVD-LLM paper, we use LLaMA-2-7B and eval-
uate PnF at a 20% compression ratio on the shared tasks: PIQA, HellaSwag, WinoGrande, ARC-e,
OpenBookQA, GSMS8K, MathQA, and TruthfulQA. The results for PnF are obtained under our
standard PnF training pipeline, and the numbers for SVD-LLM are taken from (Wang et al., 2024)
under the same compression ratio and backbone. At this 20% setting, PnF attains a higher average
performance than SVD-LLM.

Table 18: Performance comparison between PnF and SVD-LLM on LLaMA-2-7B at 20% compres-
sion.

Method PIQA HellaSwag WinoGrande ARC-e OpenBookQA GSM8K MathQA TruthfulQA Avg.

SVD-LLM 0.69 0.52 0.68 0.59 0.33 0.08 0.26 0.28 0.43
PnF 0.76 0.56 0.69 0.73 0.33 0.09 0.26 0.38 0.48

F.2 COMPARISON WITH BITDISTILLER

BitDistiller (Du et al., 2024) is a low-bit quantization framework that integrates quantization-aware
training with self-distillation, whereas PnF focuses on structured compression. Because BitDis-
tiller applies only quantization, exact model-size matching with our method, which uses structured
compression, is difficult. Nonetheless, we adopt the same backbone (LLaMA-2-7B) and compare
the performance of BitDistiller with 3-bit quantization to PnF with 20% compression rate with ad-
ditional 4 bit quantization. Even under this conservative setting (quantization-only vs. structured
compression + quantization), PnF+quant. achieves higher or comparable downstream performance
than the 3-bit BitDistiller model.

Table 19: Benchmark comparison between BitDistiller and PnF with 4-bit quantization on LLaMA-
2-7B.

Method PIQA HellaSwag WinoGrande ARC-c MMLU Avg.

BitDistiller 0.7699 0.5538 0.6835 0.4121 0.4465 0.5732
PnF + quant. 0.7673 0.5645 0.6941 0.4184 0.4285 0.5746

G ADDITIONAL COMPARISONS WITH LLM-PRUNER AND DISP-LLM

We provide additional baseline comparisons with LLM-Pruner (Ma et al., 2023) and DISP-
LLM (Gao et al., 2024b) at a 20% compression ratio on LLaMA-2-7B, to offer a more compre-
hensive evaluation against latest structured compression methods.

G.1 COMPARISON WITH LLM-PRUNER

For a fair comparison, we align with the experimental setting of LLM-Pruner by adopting LLaMA-2-
7B and comparing results at a 20% compression ratio on the shared benchmarks (PIQA, HellaSwag,
WinoGrande, ARC-e, ARC-c, OpenBookQA, and BoolQ). The results for LLM-Pruner are sourced
from (Ma et al., 2023), and our PnF results are obtained under the same backbone and compression
ratio. Under this setting, as summarized in Table[20] PnF attains a higher average performance than
LLM-Pruner.

G.2 COMPARISON WITH DISP-LLM

We additionally compare PnF with DISP-LLM (Gao et al., 2024b), another latest structured com-
pression approach. Using LLaMA-2-7B and the same 20% compression setting, we place our PnF
results alongside the DISP-LLM performance reported in (Gao et al., 2024b) on the overlapping
benchmarks. PnF again achieves higher average performance.

22

Under review as a conference paper at ICLR 2026

Table 20: Benchmark comparison between LLM-Pruner and PnF on LLaMA-2-7B at 20% com-
pression.

Method PIQA HellaSwag WinoGrande ARC-e ARC-c OpenBookQA BoolQ Avg.
LLM-Pruner 0.76 0.68 0.65 0.63 0.38 0.40 0.70 0.60
PnF (LLM-Pruner) 0.78 0.70 0.69 0.73 041 0.42 0.75 0.62

Table 21: Benchmark comparison between DISP-LLM and PnF on LLaMA-2-7B at 20% compres-
sion. “~” denotes a missing value.

Method PIQA HellaSwag WinoGrande ARC-e ARC-c Avg.
DISP-LLM 0.77 0.68 0.65 065 037 0.62
PnF (DISP-LLM) 0.78 0.70 0.69 073 041 0.66

H INFERENCE LATENCY ANALYSIS

We present supplemental results analyzing the practical impact of compression on generation speed.
We measure the average per-token generation latency (in milliseconds) for the original backbone,
SliceGPT (Ashkboos et al., 2024), and PnF on Qwen3-4B-Base using a single H100 GPU under
different compression ratios (0%, 20%, 30%, and 40%). As shown in Table @ the average per-
token latency decreases as the compression ratio increases for both PnF and SliceGPT.

Table 22: Average per-token generation latency (ms) of SliceGPT and PnF at different compression
ratios on Qwen3-4B-Base with 1 xH100. Here, 0% means that the model is not compressed.

Method 0% 20% 30% 40%
SliceGPT 29.126 ms 22.299 ms 22.120 ms 22.099 ms
PnF 29.126 ms 22.081 ms 21.719ms 21.559 ms

I COMPATIBILITY WITH LOW-BIT QUANTIZATION

To evaluate the deployment efficacy of PnF, we additionally examine whether the folded matrices,
WCmp — W P, produced by PnF introduce distributional shifts that complicate low-bit quantization
compared to the original weight. To this end, we apply the same 4-bit post-training quantization
pipeline to both the uncompressed Qwen3-4B-Base model and its PnF-compressed variants at 20%,
30%, and 40% compression ratios. The results are summarized in Table[23] For the uncompressed
baseline, 4-bit quantization reduces the average score from 0.6789 to 0.6441, a 5.13% relative drop.
For PnF, the corresponding drops are 0.6329 — 0.6244 (1.13%), 0.5713 — 0.5454 (4.53%), and
0.4971 — 0.4720 (5.05%), for 20%, 30%, and 40% compression, respectively. In other words,
the quantization-induced degradation for PnF model does not exceed that of full-size backbone.
These results provide empirical evidence that the folded weights, W°™ do not introduce harmful
outliers that would harm the quantization pipeline, and, therefore, fully compatible with standard
4-bit post-training quantization pipelines.

23

Under review as a conference paper at ICLR 2026

Table 23: 4-bit post-training quantization results on Qwen3-4B-Base and its PnF-compressed vari-
ants. “Drop rate” denotes the relative performance drop compared to the corresponding FP16 model.

Method Comp. Ratio PIQA HS WG CSQA ARC-e ARC-c OBQA BoolQ SIQA MMLU LAMBADA Avg Drop rate
Baseline 0% (4.02B) 0.7786 0.7364 0.7032 0.8272 0.7597 0.5162 0.4120 0.8299 0.5015 0.7131 0.6898 0.6789 0
Baseline (4bit) 0% (4.02B) 0.7758 0.7200 0.6811 0.7721 0.7214 0.4906 0.3940 0.8086 0.4918 0.6774 0.5525 0.6441 5.13% ({)
Ours 20% (3.22B) 0.7363 0.6622 0.6690 0.7790 0.7044 0.4358 0.3820 0.7837 0.5013 0.6573 0.6514 0.6329 0
Ours 30% (2.82B) 0.7118 0.5878 0.6177 0.6275 0.6649 0.3803 0.3620 0.7485 0.4639 0.5243 0.5951 05713 0
Ours 40% (2.41B) 0.7015 0.5134 0.5874 0.4195 0.5517 0.3095 0.3420 0.6846 0.4210 0.3949 0.5423 04971 0
Ours (4bit) 20% (3.22B) 0.7341 0.6436 0.6611 0.7424 0.6704 0.4221 0.3660 0.7632 0.4839 0.6209 0.5549 0.6244 1.13% ({)
Ours (4bit) 30% (2.82B) 0.7142 0.5698 0.6091 0.5759 0.6489 0.3760 0.3520 0.7054 0.4481 0.5002 0.5000 0.5454 4.53% ({)
Ours (4bit) 40% (2.41B) 0.6874 0.4985 0.5743 0.4021 0.5349 0.2969 0.3160 0.6547 0.4063 0.3765 0.4439 0.4720 5.05% (1)

24

Under review as a conference paper at ICLR 2026

J STATEMENT OF LARGE-LANGUAGE-MODEL (LLM) USAGE

The authors acknowledge that a large-language-model (LLM) was employed as a general-purpose
assistance tool during the preparation of this manuscript. Specifically, the following tasks were
supported by the LLM under the direct supervision of the authors:

» Formatting and LaTeX assistance — The LLM supplied LaTeX snippets for tables, equa-
tions, and figure captions (e.g., Table[5]and the hyper-parameter description). The authors
integrated these snippets into the manuscript and performed all final compilation and for-
matting checks.

* Language polishing — The LLM was used to improve readability, correct grammar, and
adjust stylistic tone across the entire manuscript. The final wording reflects the authors’
own decisions after thorough review.

All content generated by the LLM was fully supervised, fact-checked, and substantially revised by
the human authors before inclusion in the final version. No portion of the manuscript was submitted
to the LLM for autonomous generation without subsequent author verification.

The authors affirm that the intellectual contributions, experimental design, data analysis, and conclu-
sions are entirely their own work, and that the LLLM served only as an auxiliary writing and editing
aid.

25

	Introduction
	Background
	Decoder-based Transformer Architecture
	Multi-Head Self-Attention (MHSA)
	Feed-Forward Network (FFN)

	Method
	Plug-and-Fold (PnF) Compression
	Plug-and-Fold (PnF) Adapter
	PnF adapter for MHSA
	PnF adapter for Feed Forward Network

	Training Pipeline for PnF adapter
	Deployment for Inference

	Experiments
	Experimental Setup
	Results
	Ablations
	Training Strategy
	Impact of Recovery‑Training Set Size

	Limitation and Future works
	Conclusion
	PnF Compression Pipeline (Pseudo-code)
	Experiment Settings
	Hyper‑parameter Configuration
	Compression plan (per‑layer reduction rates)
	Training schedule
	Folding step
	Baseline Recovery Fine-Tuning Settings

	Additional Results
	Comparison with Baseline Methods

	On Knowledge Preservation via Adapter Folding
	Empirical comparison of reconstruction fidelity
	Toy example: truncation-first vs. adapt-before-folding

	Training Cost and Practical Efficiency of PnF
	Additional Comparisons with SVD-LLM and BitDistiller
	Comparison with SVD-LLM
	Comparison with BitDistiller

	Additional Comparisons with LLM-Pruner and DISP-LLM
	Comparison with LLM-Pruner
	Comparison with DISP-LLM

	Inference Latency Analysis
	Compatibility with low-bit quantization
	Statement of Large‑Language‑Model (LLM) Usage

