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ABSTRACT

Emotion recognition systems face significant challenges in real-world applications,
where novel emotion categories continually emerge and multiple emotions often
co-occur. This paper introduces multi-label fine-grained class incremental emotion
decoding, which aims to develop models capable of incrementally learning new
emotion categories while maintaining the ability to recognize multiple concurrent
emotions. We propose an Augmented Emotional Semantics Learning (AESL)
framework to address two critical challenges: past- and future-missing partial label
problems. AESL incorporates an augmented Emotional Relation Graph (ERG) for
reliable soft label generation and affective dimension-based knowledge distillation
for future-aware feature learning. We evaluate our approach on three datasets
spanning brain activity and multimedia domains, demonstrating its effectiveness
in decoding up to 28 fine-grained emotion categories. Results show that AESL
significantly outperforms existing methods while effectively mitigating catastrophic
forgetting.

1 INTRODUCTION

Accurately decoding human emotional states remains a fundamental challenge in affective computing
research. Whlle conventional deep learning approaches have demonstrated promising performance (

, , ), they struggle to adapt to the evolving nature of real-world scenarios,
where novel emotlon categories continuously emerge to capture increasingly nuanced emotional
experiences. As eloquently expressed by the renowned novelist Jeffrey Eugenides ( , ),
“Emotions, in my experience, are not covered by single words. I do not believe in ’sadness’, ’joy’, or
‘regret’" — this profound observation underscores the inherent complexity of human emotions. Indeed,
individuals typically experience a sophisticated blend of multiple emotions simultaneously when
responding to emotional stimuli ( , ). Motivated by these insights, we introduce a novel
research paradigm: multi-label fine-grained class incremental emotion decoding.

As illustrated in Figure 1, multi-label class incremental emotion decoding aims to develop a unified
model capable of incrementally learning and integrating knowledge from both existing and emerging
emotion classes while comprehensively decoding multiple concurrent emotional states. Unlike
traditional single-label class incremental learning (SLCIL), the multi-label class incremental learning
(MLCIL) faces unique challenges in addressing catastrophic forgetting, primarily stemming from
past- and future-missing partial label problems. Consider the past-missing partial label scenario: the
left screenshot (The corgi is diving) in task 3’s training dataset contains the label Adoration, yet this
emotion remains imperceptible to the model during the current task. Similarly, in the future-missing
partial label case, the right screenshot (The father is combing his daughter’s hair) in task 1’s dataset
encompasses the label Joy, which is inaccessible to the model in the current task. Existing MLCIL
approaches either rely on storing historical instances ( ; , ), limiting
their practical applicability, or overlook the critical future- mlssmg parual label problem ( ,
), leading to suboptimal performance.

To address these challenges, we propose a novel Augmented Emotional Semantics Learning (AESL)
framework. First, we tackle the past-missing partial label problem by introducing an augmented
Emotional Relation Graph (ERG) module with graph-based label disambiguation. Upon encountering
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Figure 1: The illustration of the multi-label class-incremental emotion decoding task. Each instance
can be associated with multiple emotion categories. The class-incremental learning process is
demonstrated through three sequential tasks: Task 1 begins with emotion adoration, Task 2 introduces
"awe", and Task 3 adds joy. The unified model 1) with parameters ®', ®2, ®3 evolves across tasks
while maintaining the ability to recognize all previously learned emotions.

new tasks, this module not only generates reliable soft labels for existing emotion classes but also
constructs an enhanced ERG by integrating historical ERG with new data, thereby preserving
crucial emotional label correlations. Second, to resolve the future-missing partial label problem,
we leverage the affective dimension space — an alternative emotion model capable of representing
infinite emotion categories (Russell & Mehrabian, 1977) — to provide complementary domain
knowledge (Le et al., 2023) for continuous emotion learning. This insight leads to our development
of a relation-based knowledge distillation framework that aligns model features with the affective
dimension space. Furthermore, we utilize the ERG to design an emotional semantics learning module
incorporating a graph autoencoder, which learns emotion embeddings to facilitate semantic-specific
feature decoupling, crucial for enhanced multi-label learning. We conduct extensive evaluations across
three datasets: a human brain activity dataset (Brain27) with 5 subjects and two multimedia datasets
(Video27 and Audio28), implementing multiple incremental learning protocols that encompass up to
28 fine-grained emotion categories. Our key contributions are threefold:

e We pioneer the investigation of multi-label class incremental emotion decoding, advancing
emotion recognition capabilities in dynamic real-world environments.

e We develop an innovative augmented emotional semantics learning framework that enhances
emotion decoding performance while effectively mitigating catastrophic forgetting in MLCIL
scenarios.

e We demonstrate the superior effectiveness of our approach through comprehensive experi-
ments across three datasets and multiple incremental learning protocols. Our source code
will be publicly available post-publication.

2 RELATED WORK

Class Incremental Learning. Class incremental learning has gained significant attention in machine
learning research (De Lange et al., 2021; Masana et al., 2020). Traditional methods mainly focus
on preventing catastrophic forgetting through regularization (Kirkpatrick et al., 2017), knowledge
distillation (i & Hoiem, 2017), or memory replay (Rebuffi et al., 2017). Recent advances have
explored more sophisticated approaches such as parameter isolation (Serra et al., 2018) and dynamic
architecture adaptation (Yan et al., 2021).

Class Incremental Emotion Decoding. The continuous learning of new emotion categories has
emerged as a crucial research direction in affective computing. (Churamani & Gunes, 2020) proposed
CLIFER, combining a generative model with a complementary learning-based dual-memory model
for continual facial expression recognition. (Ma et al., 2022) developed a GCN-based approach
for few-shot class-incremental classification across emotion categories, while (Jiménez-Guarneros
et al,, 2022) introduced weight alignment to address bias in new emotion classes. More recent works
have explored adaptive architectures (Wang et al., 2023) and meta-learning approaches (Zhang et al.,
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Figure 2: The framework of AESL for multi-label class incremental emotion decoding. (a) Emo-
tional semantics learning and semantic-guided feature decoupling procedure in incremental learning
scenario. We omit the semantic-guided feature decoupling module in task b — 1 for clarity. (b) The
process of constructing augmented ERG with label disambiguation in task b.

2022) for emotion recognition. However, these studies are primarily limited to a small number of
coarse-grained emotion categories and fail to address the complexity of human emotional expression.

Multi-label Learning. Multi-label learning primarily focuses on modeling label dependencies.
Graph-based approaches have shown promising results, with several studies utilizing GCN for
label-specific feature learning (Chen et al., 2019a;b; Wang et al., 2020). Recent advances have
leveraged Transformer architectures to capture instance-label relationships (Zhao et al., 2021; Liu
et al., 2021) and attention mechanisms for label correlation learning (You et al., 2020). In the context
of emotion decoding, (Fei et al., 2020) proposed LEM to learn latent emotion distributions and
emotion coherence in textual data. (Fu et al., 2022) developed a multi-view multi-label hybrid model
for brain activity-based emotion decoding. However, these approaches lack incremental learning
capabilities.

Multi-label Class Incremental Learning. MLCIL addresses the crucial challenge of simultaneously
handling incremental class learning and multi-label classification. Recent works have explored
various approaches: (Dong et al., 2023) proposed an attention-based knowledge restore and transfer
framework, while AGCN (Du et al., 2022) employed GCN for label relationship learning. Online
class incremental learning has been addressed through specialized replay buffer designs in PRS (Kim
etal,, 2020) and OCDM (Liang & Li, 2022). Additional studies have investigated prototype learning
(Zhang et al., 2021) and knowledge distillation (Liu et al., 2022) for MLCIL. However, MLCIL
specifically focused on emotion decoding remains largely unexplored, particularly concerning the
challenges of partial label problems and emotional semantic preservation.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

In the MLCIL scenario, we have a sequence of B training tasks {D', D2, --.  DP} without over-
lapping emotion classes, where D? = {(xi, Y'i?)}™ | is the b-th incremental task with n? training
instances. xﬁ? € RP is an instance with classes Yib C CY. (" is the label set of task b, where
ctnCY =@ forb # b'. Only data from D" is accessible during task b training. y? € RICl is
the multi-hot label vector where y2. € {0, 1} indicates whether emotion c is relevant to instance x?.
After task b, the model is evaluated over all seen emotion classes C* = C* U - - - CP.
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3.2 FRAMEWORK OVERVIEW

As shown in Figure 2(a), AESL processes each incremental task through four interconnected mod-
ules. The ERG module first constructs and maintains the emotion relationship graph, providing the
foundation for emotional semantics learning. The graph autoencoder (GAE) then learns emotion
embeddings from ERG, which guide the feature decoupling module to extract label-specific features.
Finally, relation-based knowledge distillation preserves previously learned knowledge while accom-
modating new emotion categories. These components work jointly to address both past-missing and
future-missing partial label problems in MLCIL.

3.3 AUGMENTED EMOTIONAL RELATION GRAPH

Here, we first introduce the Augmented Emotional relation Graph module with label Disambiguation
(AEG-D), as shown in Figure 2(b). At the beginning of task b, we have access to new labels Cj.
Compared with the existing emotional relation graph G*~!, we need to augment the node set and
adjacency matrix to V® and A?, respectively. For the former, we only need to sample |Cp| vectors
from the standard Gaussian distribution. For the latter, it is difficult to infer A® directly from statistical
label co-occurrence due to the partial label problem. The adjacency matrix on the given class set C is
defined based on label co-occurrence:
N

- (1)

Ay =Pl €Clt; € O)lingg = w7
J

where N;; is the number of instances with both class ¢; and ¢;, N; is the number of instances with
class £;. When the task b is coming, the augmented ad]acency matrix A’ can be formulated as the
followmg block form ( , ):

Ab = A1 R? Old-Old  Old-New )
1 Q B New-Old New-New | -

Ab~1 can be directly inherited from task b, and B? can be easily computed from D°. However, R?
and QY involve the inter-task label relationship between old classes in past tasks and new classes
in task b. We should first assign soft labels in the past label set C®~! for the instances in new
dataset D for subsequent calculation. For clarity, we use s = 1(x, A; ®) to denote the procedures
of emotional semantics learning and semantic-guided feature decoupling, with ® = {6, ¢, W}.
Although s® = 1(x?, AP~1; ®*~1) is a feasible solution for the soft labels construction, this kind of
soft labels contain a significant amount of noise and fail to utilize the correlation among instances.

To tackle this problem, we adopt a Graph-based Label Disambiguation (GLD) module to the label
confidence score s®. Firstly, the similarity between two instances is calculated with Gaussian kernel

(omit b without ambiguity) P;; = exp(— M) in which x; and x; are two different samples

in DP. Following the label propagation procedure, let P = PD! be the propagation matrix by
normalizing weight matrix P in column, where D = diag[d, - - - , d,,»] is the diagonal matrix with
d; = > i, P;j. Assume that we have access to a past label confidence matrix using ¢ (; ®*~1)
for DP, which denotes as S € R"bx|cb71|. And we set the initial label confidence matrix Fg = S.
For the ¢-th iteration, the refined label confidence matrix is updated by propagating current labeling
confidence over P: .

Fi=3-P'Fi+(1-5) Fo. 3)
The balancing parameter § € [0, 1] controls the amount of labeling information inherited from
iterative label propagation and F. Let F* be the final label confidence matrix and also serve as the

soft labels after disambiguation, which means S = F*. We set the balancing parameter /3 to 0.95
during label disambiguation according to ( , ).

With the dataset PP and soft label matrix S we are able to compute R? e RIC1XIC"] a5 follows:

Do 5ilj

RY = P(l; eC e, € Ch) = i
J

“4)

in which §; denotes the value of class i corresponding to instance x in the soft label matrix, and y;
refers to the value of class j corresponding to the same instance in the label matrix derived from D?.
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Naturally, following the Bayes’ rule, we can obtain the Q¢ € RIC"XIC" I py:

P(f; € C-1|¢; € CY)P(¢; € C¥)  RYN;
P(l; € Cb1) N

=P(l; € CPl; e = )

Above all, we have constructed the adjacency matrix A® and achieved continual learning of new
emotion categories in the multi-label scenario. It is noticeable that, in our experiments we actually
A+A

utilize a symmetric adjacency matrix for model training by applying the operation.

3.4 EMOTIONAL SEMANTICS LEARNING

Now, we focus on how to obtain the emotion embeddings in task b. We construct an augmented ERG
Gb = (V*, E®), where V? represents nodes corresponding to class labels C® and E? refers to edges.
Then, we adopt a GAE to project emotion labels into a label co-occurrence semantic space with the
ERG. We exploit Graph Isomorphism Network (GIN) ( s ) as the encoder of our GAE
due to its powerful representation learning capability. Specifically, given a feature matrix of nodes

H? € RI¢"I¥d: in which each row refers to the embedding of an emotion label and d; corresponds to
the dimensionality of node features in the /-th GIN layer, the node features are able to update within
a GIN layer with a message passing strategy by:

H), ) = fira[(1 + e H) + APH]; 074, (6)

in which Hf’H € RIC"Ixdis1 ig the updated feature matrix of nodes, f;1(:,0;+1) refers to a fully-
connected neural network. Additionally, €;4; is a learnable parameter which regulates the importance
of the node’s own features during the process of neighborhood aggregation. Unlike object labels
in image classification ( , ), emotion category labels are difficult to obtain initial
word embeddings directly from language models. Consequently, the initial feature matrix of nodes
H} € RIC"Ixdo i initialized by standard Gaussian distribution and we set dy = |C| (can also be

other task-agnostic constants). After stacking L GIN layers, we use E> = H} ¢ RIC*1xdL a5 the
final emotion label semantic embeddings in task b for further semantic-specific feature extraction.

Furthermore, we introduce a pairwise decoder to reconstruct the adjacency matrix A®, which can
ensure that the obtained label embeddings capture the topological structure of the label semantic
space well. The loss function of the pairwise decoder can be written as:

e—e

. — Ab? 7
= i 2, e o] ~ A4 v

=1 j=1

Ic’| |c? \ éb)T( b —b)

where &” = E;[e?] corresponds to the average emotion embeddings in task b, e denotes the i-th row

of Eb, and Ab = A + 1P, with I® being an identity matrix. Overall, emotional semantics learning
aims to fit the function f(-, #°), leading to E* = f(H}, A®; 6°) in task b.

3.5 SEMANTIC-GUIDED FEATURE DECOUPLING

A multi-label classification model with semantic-guided feature decoupling can be regarded as the
composition of a semantic-specific feature extractor g and a classification head W' (omitting bias for
simplicity), where g(; ¢°) : RP x RIC"1xde _y RIC"Ixd apd Wb € R4*IC"l in task b. For a specific
emotion label £, € C®, the semantic-specific mapping gj can be formulated as g (x, ez; #%) € RY,
The linear layer can be further decomposed into the combination of classifiers W® = [wy, - - , chb‘],
in which each classifier corresponds to one emotion embedding. The classification head will be
expanded for new classes as the continual learning progresses. The key issue is to design the
semantic-specific feature extractor gy.

To achieve this, we first map the instance representation x” from the original feature space to a more
powerful deep latent feature z with a fully-connected network having parameters W2 € RP*d-
and bg € R In order to utilize emotional semantics to guide the feature extraction for each label,
we adopt an attention-like mechanism. Concretely, we attempt to obtain feature importance values
a; for each emotion category by using a fully-connected network followed by a sigmoid function
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for e} with parameters W2 € R*%= and b € R?. Then, we select pertinent features for each

emotion category via the Hadamard product between the feature importance vector and the latent

representation. Successively, we can obtain the semantic-specific feature for each emotion category
from another fully-connected network. This procedure can be formulated as follows:

T

o, = (Wb (

o

z® o) + b, (8)

where W9 € R?%:*? and b? € RY are shared learnable parameters. © refers to the Hadamard product,
and ¢ denotes the activation function. At this point, we have defined the semantic-specific feature
extractor o, = gi(x?, e%; ¢%), in which ¢ = {W,, W., W, b,,b.,b,}. Then, we can predict the
confidence score of the presence of emotion label ¢ through the corresponding classifier:

sk =o(Wlop +by) = o(wi gu(x”,el;6") +by,). ke {l,-,|C°} ©)

3.6 RELATION-BASED KNOWLEDGE DISTILLATION

Although we have achieved

the semantic-specific fea- B Toned — Arousal

ture learning and overcome .
o . . (active)
the past-missing partial la- xb Joy
bel problem by AEG-D, r.chert Student
we have not yet addressed - .
the issue of future-missing W Wy plissfull Valence
partial label problem in Mb-1 M? M f -
. . (positive)
MLCIL. Previous studies -~y %) 2 T
( , ; Pt TP w
et R
, ) have N AR AR .
shown that the affective di- M v — Pleasure
'demvdel [’kdaff (passive)

mension, as a complemen-
tary emotion model to emo-
tion category, can represent
infinitely many emotion cat-
egories within its construct-
ed affective space. We pro-
pose that incorporating the domain knowledge of affective dimension space into the model can
alleviate the problem of future-missing partial label problem. During the training process for each
task, we attempt to align the feature space of our model with the predefined affective space constructed
by some affective dimensions such as Arousal and Valence. Taking into account the heterogeneity
of the two spaces, we adopt relation-based knowledge distillation (RKD). Specifically, we firstly
calculate the representation similarity matrix (RSM) ( , ) obtained from model
feature z for task b:

Figure 3: Diagram of relation-based knowledge distillation with two
teachers in the process of training task b. Teachers 1&2 were frozen
during training. Each discrete emotion category represents a point in
the affective space formed by Arousal and Valence.

(zi —2)"(z; — 2)
||z: —2|||z; — 2|’

M}, = (10)

where z = E;[z;] denotes the mean model feature of all instances. Similarly, RSM obtained from
affective dimension feature 7 can be formulated as:

M:;;f: (Tz‘—i:)T("'j —f') an
|7 = 7|l — 7l
Then, we define the similarity loss Lxq,, as:
Liay = Biz;[L7, ] = Eizj {[arctanh(M?;) — arctanh(M:1)]?} (12)

where £, is the sample-based centered kernel alignment index. We leverage arctanh to reparame-
terize the similarity values from the interval (—1, 1) to (—oo, 00) to approximately obey a Gaussian
distribution. Besides, to ensure training stability, we simultaneously pull together M?. and Mg-_l
using the same method to obtain L4, . In this way, the model has access to two teachers: the
affective dimension and the old model, as shown in Figure 3. This approach derives the overall
knowledge distillation loss:

Lid = M Ldpoa + A2 Lrkdys- (13)
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3.7 OBIECTIVE FUNCTION

As mentioned above, the prediction confidence scores s for an instance x can be computed by Eq.
. b .
9, which denotes s = [sq1, - - ,S‘Cbl]T € RI€"l in task b. We have access to the ground truth from

Db, which is denoted as the multi-hot vector y = [yy, - -+, ycs]7 € RIC’l. Additionally, we have
computed the soft labels for the previous emotion categories using the model b — 1, as described

in Section 3.1, which are denoted as § = [5y,- - ,é‘cb—l‘]T c R|Cb_1\, and C? U CP—1 = Cb. In

summary, we train task b using the mixed ground truth y = [87,y7|T € RICl, with a the binary
cross entropy loss, formulated as follows:

Ic”|
Lee == [jilog(si) + (1 — fi)log(1 — 5)]. (14)
i=1
Finally, our model is trained with the following objective function in an end-to-end manner:
L= Lee + MLrdpga + A2Lkdy + A3Lie. (15)

After training in task b, given an unseen instance, its associated label set is predicted as
{€4]sr > 0.5,1 < k < C"}. The algorithm of AESL is written in Appendix A.

model

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. For thoroughly evaluating the performance of AESL and comparing approaches, three

datasets are leveraged for experimental studies including Brain27 ( , ), Video27
( . ) and Audio28 ( s ). We evaluate our method using two
popular protocols in class incremental learning work ( , ), including (1) training

all emotion classes in several splits and (2) first training a base model on a few classes while the
remaining classes being divided into several tasks. For Brain27 and Video27, we split the datasets
with BO-I9 (base class is O and incremental class is 9), BO-I13, B15-13 and B15-12. For Audio28, we
split the dataset with BO-17, BO-14, B16-13 and B16-12.

Table 1 shows the characteristics of the three datasets used in our experiments. Properties of each
dataset are characterized by several statistics, including the number of training instances |Dy,|, the
number of test instances |Dy.|, the number of features Dim(D), the threshold for constructing
label matrix T'h(D), the number of possible class labels L(D), the number of affective dimensions
Af f(D), the label cardinality (average number of labels per instance) LCard(D), the label density
(label cardinality over L(D)) LDen(D), and the modality. For Brain27, we also exhibit the number
of voxels V(D) before ROI-pooling used in our experiments.

Table 1: The characteristics of the experimental datasets.

Dataset D] D] V(D) Dim(D) Th(D) L(D) Aff(D) LCard(D) LDen(D) Modality
Brain27(Subjectl) 1800 396 120930 2880 0.10 27 14 4.64 0.17 fMRI
Brain27(Subject2) 1800 396 116260 2880 0.10 27 14 4.64 0.17 fMRI
Brain27(Subject3) 1800 396 102941 2880 0.10 27 14 4.64 0.17 fMRI
Brain27(Subject4) 1800 396 118533 2880 0.10 27 14 4.64 0.17 fMRI
Brain27(Subject5) 1800 396 116699 2880 0.10 27 14 4.64 0.17 fMRI

Video27 1800 396 - 1000 0.10 27 11 4.64 0.17 Video

Audio28 1500 341 - 512 0.15 28 11 5.27 0.19 Audio

Baselines. The performance of AESL is compared with multiple essential and state-of-art class
incremental methods. Finetune is a baseline which means fine-tuning the model without any anti-
forgetting constraints. We select four SLCIL methods including EWC ( , ), LwF
( R ), ER ( , ) and RS ( . ) for comparison. Furthermore, other
three well-established MLCIL approaches AGCN ( , ), PRS ( s ), OCDM
( , ), and KRT-R ( , ) are also employed as comparing approaches.
Besides, we set the Upper-bound as the supervised training on the data of all tasks.

More details about the experimental setups, including dataset introductions, comparing approaches,
feature extractions, and hyper-parameter settings can be found in Appendix B.
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Table 2: Class incremental results on subject 1 of Brain27 dataset. AGCN, PRS, OCDM and KRT-R
are MLCIL algorithms among these compared methods.

Brain27 B0-19 Brain27 B0-I3 Brain27 B15-13 Brain27 B15-12

Method Avg. Acc ‘ Last Acc Avg. Acc ‘ Last Acc Avg. Acc ‘ Last Acc Avg. Acc ‘ Last Acc

mAP ‘ maFl  miFI  mAP mAP ‘ maFl  miFl  mAP mAP ‘ maFl  miFl  mAP mAP ‘ maFl  miFI  mAP
Upper-bound - | 390 472 458 -] 3901 472 458 - 391 472 458 | 39.1 472 458
Finetune 34.8 9.2 19.3 260 30.8 5.0 13.8  21.2 26.0 5.0 139 211 23.7 3.6 13.2 18.7
EWC 33.2 8.1 17.1 250 30.9 5.0 139 221 26.7 53 143 221 24.8 3.6 132 195
LwF 373 12.2 29.1 29.1 37.0 234 400 270 319 14.2 28.6 249 29.1 152 31.8 204
ER 40.7 8.0 1.7 362 40.2 49 9.1 343 379 9.7 123 354 375 9.6 11.7 337
RS 421 9.4 126 398 41.2 45 74 333 383 8.0 11.1 339 379 5.1 8.7 325
AGCN 422 29.5 445 404 42.1 354 437 349 393 28.8 417 372 36.3 24.4 364 309
PRS 41.6 9.3 15.1 382 41.7 55 8.4 335 395 8.2 122 36.1 37.7 9.4 13.1 332
OCDM 41.6 9.7 159 377 40.6 53 7.6 31.6 372 4.9 7.1 31.4 373 4.4 7.6 325
KRT-R 425 18.2 303 41.1 44.3 229 32.1 39.1 40.4 20.0 332 391 39.5 20.3 337 371
AESL 4.2 328 447 426 43.8 371 440 369 41.9 325 417 393 39.5 268 365 3438

Table 3: Class incremental results on Video27 dataset. AGCN, PRS, OCDM, and KRT-R are MLCIL
algorithms among these compared methods.

Video27 B0-19 Video27 BO-13 Video27 B15-13 Video27 B15-12

Method Avg. Acc ‘ Last Acc Avg. Acc ‘ Last Acc Avg. Acc ‘ Last Acc Avg. Acc ‘ Last Acc

mAP | maFl miFl mAP | mAP | maFl miFl mAP | mAP | maFl miFl mAP | mAP | maFl miFl mAP
Upper-bound | | 368 463 454 | - | 368 463 454 | - | 368 463 454 | - | 368 463 454
Finetune 33.8 6.6 137 25.1 315 42 130 217 26.0 4.3 133 21.6 24.3 4.2 13.7 191
EWC 35.6 75 178 278 329 47 132 236 284 49 139 233 26.0 39 131 199
LwF 34.4 68 233 240 382 199 373 247 300 125 334 242 27.7 158 327 204
ER 420 5170 390 43.0 45 48 354 39.4 80 83 376 372 101 126 340
RS 428 46 61 401 43.6 46 78 345 39.3 42 52 370 372 67 99 320
AGCN 42.1 224 394 392 445 342 445 361 39.5 227 384 370 38.0 238 362 340
PRS 426 95 150 404 43.0 58 96 334 37.8 89 134 360 317 74 133 337
OCDM 43.1 5.5 6.8 402 43.8 5.0 78 350 389 49 66 363 37.1 52 58 327
KRT-R 429 267 358 401 455 263 347 370 415 250 355 404 39.5 242 342 383
AESL 4.6 234 397 419 47.1 352 450 371 415 235 392 381 39.8 245 367 361

Table 4: Class incremental results on Audio28 dataset. AGCN, PRS, OCDM and KRT-R are MLCIL
algorithms among these compared methods.

Audio28 B0-I7 Audio28 B0-14 Audio28 B16-13 Audio28 B16-12

Method Avg. Acc | Last Acc Avg. Acc | Last Acc Avg. Acc | Last Acc Avg. Acc | Last Acc

mAP | maFl miFl mAP mAP | maFl miFl mAP mAP | maFl miFl mAP mAP | maFl miFl mAP
Upper-bound - | 514 en1 571 -] 514 6Ll 571 -] 514 el1 571 - | 514 en1 571
Finetune 36.4 9.2 148 273 33.9 53 10.0 233 29.9 4.4 10.3 22.6 27.6 2.8 8.2 20.2
EWC 37.9 8.3 14.3 29.3 37.1 54 10.5 26.6 322 4.4 9.7 24.7 28.1 2.8 8.7 225
LwF 46.6 37.9 51.7  40.6 458 39.9 49.8 37.6 45.0 323 452 400 423 28.8 414 36.5
ER 44.7 8.1 11.4 38.0 45.6 6.5 55 35.2 413 9.2 13.3 36.8 39.4 10.1 13.6 34.1
RS 43.7 8.1 123 36.5 43.6 5.9 9.3 32.0 38.7 75 1.7 329 38.2 58 11.6  31.8
AGCN 47.3 353 509 419 46.6 375 51.0 386 44.5 29.3 446 39.6 41.1 275 42.4 34.8
PRS 43.3 9.0 128 355 44.5 6.8 9.0 342 392 6.2 83 329 39.1 8.8 114 352
OCDM 44.5 8.7 120  38.0 438 15 8.8 315 382 55 9.7 30.1 36.3 3.7 79 30.2
KRT-R 46.3 8.2 237 413 473 18.1 33.0  40.0 42.6 11.4 279 389 423 13.1 29.2 38.8
AESL 49.0 384 51.8 427 48.7 41.1 51.7 3938 47.8 323 480 423 453 30.8 45.1 393

4.2 EXPERIMENTAL RESULTS

Comparative Studies. Tables 2, 3, and 4 show the results on subject 1 of Brain27 (more results are
shown in Appendix C), Video27 and Audio, respectively. We can observe that AESL shows obvious
superiority under different datasets and protocols, in terms of three widely used metrics mAP, maF1
and miF1 ( , ). Especially for Brain27, AESL has a relative improvement of 9.6%
in mAP (4 protocols averaged) and 9.7% in maF1 compared with the second place method. Figure 4
exhibits the comparison curves of AESL and comparing methods, which indicates that our method is
consistently optimal at each task of incremental learning. Among the compared methods, EWC and
LwF are traditional SLCIL methods. We can find that EWC is not suitable for direct application to
MLCIL task due to its poor performance. In contrast, LwF achieves impressive performance on the
Audio28 dataset. We infer that knowledge distillation, which essentially provides soft labels for old
classes, contributes to overcoming catastrophic forgetting in MLCIL. Besides, it is noticeable that
rehearsal-based methods, including ER, RS, PRS, OCDM and KRT-R, are not satisfactory, especially
for maF1 and miF1. This is because just saving the labels of current task aggravates the partial
label problem in subsequent training, which illustrates that data replay is not suitable for MLCIL.
Furthermore, AGCN serves as a strong baseline which can rank 2nd for most cases, and our method
surpasses AGCN by incorporating effective label semantics learning and introducing knowledge
distillation from the affective space.



Under review as a conference paper at ICLR 2025

—— Finetune —— EWC LwF —— ER —— RS —— AGCN —— PRS OCDM KRT-R —— AESL
B9-19 B3-13 B15-13 - B15-12
s A ‘\\\\i’.—\‘\\‘ 40 IS
40 |
. ‘ ¥ 3 X
£35 30 30 1
30 25 25
25 2 20
9 18 27 36 9 12 05 18 21 24 27 15 18 21 2 27 57 19 21 23 25 27
Number of classes Number of classes Number of classes Number of classes

(a) Brain27(1)

B9-19 B3-13 B15-13 B15-12

©
~
3

3 6 9 12 15 18 21 24 27 15 18 21 24 27 15 17 19 21 23 25 27
Number of classes Number of classes Number of classes Number of classes

(b) Video27

/(/
if

B7-17 B4-14 B16-13 B16-12
5 45
40 40
15 35
7 14 21 2 4 8 12 16 20 24 28 e 19 2 25 2 16 18 20 22 24 26 28

55
\
50
A 45 \ 50
25 25
Number of classes Number of classes Number of classes Number of classes

50
2 20
(c) Audio28

Figure 4: Comparison results (mAP) on three datasets used in our experiment under different protocols
against compared CIL methods.

Ablation Studies. To evaluate
the roles of AESL’s three key
components, we conduct abla-

Table 5: The contribution of each component. Accuracy of these
models is measured by mAP.

L&LD: Feed the feature vec-

tion experiments on the Audio28 ~ _Model [ESL LD RKD [ Avg Acc A [ LastAcc A

dataset under the BO-17 setting. w/o ESL&LD 47.6 -1.4 413 -1.4

: : +SE 453 37| 409 -18

We des.lgn seven baselines, as B v tos By 419 o

shown in Table 5: (1) w/o ES- +AD 48.4 06 4.3 0.4
\

w/o LD \ 48.1 09 | 420 07

v
tor z directly into the classifi-
er without semantic-guided fea- Wliﬁ;m v v jgf) i% ?&é ig:g
ture decoupling. (2) w/o ES- 7
L&LD, +SE: Extract sentence
embeddings of emotion category
descriptions via the advanced LLaMA 3.1-8B (Dubey et al., 2024) and utilize them as emotion
embeddings. (3) w/o ESL&LD, +LE: Assign a learnable embedding to each new emotion category.
(4) w/o ESL&LD, +AD: Directly integrate the sample-wise affective dimension into category-wise
emotion embeddings. (5) w/o LD: Use original confidence score S for constructing adjacency matrix
without label disambiguation. (6) w/o RKD: Remove the module of knowledge distillation from
affective space. (7) w/o RKD, + LR: Replace RKD with a linear regressor with a non-linear activa-
tion to predict the target affective dimension, thereby constraining z and incorporating the affective
dimension.

AESL | v v | 490 00 | 427 00

It is noteworthy, but not surprising, that even when sentence embeddings are extracted using state-of-
the-art large language models, their usage as emotion category labels fails to achieve comparable
performance to semantic-guided feature decoupling. This performance degradation suggests that the
effectiveness of AESL relies not only on the quality of embeddings but also on the explicit structural
alignment provided by semantic-guided decoupling. Results show that all the three components in
AESL are critical for preventing forgetting and improving the model performance of MLCIL.

Emotional Semantics Visualization. Emotional semantics learning is an essential module for our
approach. In Figure 5, we adopt the t-SNE (Van der Maaten & Hinton, 2008) to visualize the emotion



Under review as a conference paper at ICLR 2025

@Awkwardness UA.“lgré' .
Disgust g .Confzsion " lg;:é:’l;ljd
o Anger Boredom Sexual dcs.irc ° @Triumphant
@ Sadness Ron® o Nauscating ©Amazing
® Empathic pain .Nostalgia omance .ﬁnnqying
e “.Xmus.Gcosc bumps
Painful .Scary L.
Amusement .Awe ekEnergizing
A dorati Eerie ®Exciting
glorror Admiration g ® oration
@ Anxiety Joy . .
®fcar ®Relicf .satisfaction‘ o Euphoric Erotic|
@Calmness ..JOYﬁJ] Romantic|
. i Ent i o4
©Surprise Entrancement Ausing n.ra.ncmg al mTcndc‘
o Transcendent’ Dreh y® e@Bcautiful
. Aesthetic appreciation Cor?xpassionate
Excitement ?nt rest Bittersweet®
® Craving eres 05,4
(a) Brain27 (b) Audio28

Figure 5: t-SNE on the emotion embeddings learned by AESL.

embeddings learned by the emotional semantics learning module. It is clear to see that, the learned
embeddings maintain meaningful emotional semantic topology. Specifically, in Brain27, positive
emotions are predominantly distributed in the bottom right, while negative emotions are distributed
in the top left. In Audio28, Bittersweet is just located between Sad and other positive emotions. This
visualization further demonstrates the necessity of modeling label dependencies.
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Figure 6: (a) Visualization of augmented emotional relation graph in Audio28 dataset. (b) The
performance of AESL measured by the last mAP changes as \; and A3 vary.

Augmented ERG Visualization. In Figure 6(a), we provide the augmented ERG visulization on
Audio28 dataset. We utilize the oracle ERG, which is constructed using ground truth label statistics
of all tasks, as the upper bound. We also compute the Pearson’s Correlation Coefficients (PCCs)
to measure the similarity between the augmented and oracle ERG. We can observe that using
the proposed method, inter- and intra-task label relationships are reconstructed well. Besides, by
incorporating RKD from the affective dimension space, the augmented ERG is closer to the oracle
ERG (r = 0.86 vs r = 0.75). We speculate that this is due to the introduction of RKD, which is
conducive to alleviating the issue of future-missing partial label.

Parameter Sensitivity. Figure 6(b) gives an illustrative example of how the performance of AESL
changes as the regulation parameters Ao and A3 vary on the BO-19 and B0O-17 protocols of three
datasets (\; is fixed to 1). Here, when the value of one parameter varies, the other is fixed to a
reasonable value. We find that too large value of Ay dramatically degrades the model performance
due to the noise in affective ratings, while too small value will not play the role of alleviating the
future-missing partial label problem. As for A3, too large value will cause the model to focus too
much on graph reconstruction, while too small value will not be able to learn label embeddings well,
which both lead to a decline in model performance.

5 CONCLUSION

In this paper, we have proposed a novel AESL framework for multi-label class incremental emotion
decoding. In detail, we developed an augmented ERG generation method with label disambiguation
for handling the past-missing partial label problem. Then, knowledge distillation from affective
dimension space was introduced for alleviating the future-missing partial label problem. Besides,
we constructed an emotional semantics learning module to learn indispensable label embeddings
for subsequent semantic-specific feature extraction. Extensive experiments have illustrated the
effectiveness of AESL.
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A THE ALGORITHM OF AESL

B DETAILS OF EXPERIMENTS

B.1 DETAILS OF DATASETS

Brain27 is a visually evoked emotional brain activity dataset ( , ), which contains
the blood-oxygen-level dependent (BOLD) responses of five subjects, who were shown 2196 video
clips while functional Magnetic Resonance Imaging (fMRI) data were recorded. These data were
collected using a 3T Siemens scanner with a multiband gradient Echo-Planar Imaging (EPI) sequence
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Algorithm 1: Training procedure of AESL.

Input: Training sequence {Dl, ..., DB } Hyperparameters o, 3, A1, A2, A3. Affective dimension features
{rl,.. B,
forb=1: Bdo

while not converged do
for (x°,y?) ~ D’ do

N AN AW N -

10

11

12
13

14
15

16

17

18

if b = 1 then
‘ Compute A® directy with label matrix Y using Eq.1.
else
Compute soft label matrix S with s = t(x?, A®~!; ®*~1) and set intial label confidence
matrix Fo = S. .
Compute the normalizing weight matrix P = PD ™!, P;; is the similarity between two
instances in D°. .
Implement label propagating to obatin refined soft label matrix S with Eq.3.
Compute B directy with label matrix Y? using Eq.1.
b—1 b
Compute R® and Q® with S and Y using Eq.4 and 5, then obtain A® = [AQ,, gb} .

// Get augmented ERG shown in Section 3.1.

Construct (augmented) ERG G° with initial node features HY and adjacency matrix A®°.

Implement message passing strategy using Eq.6 to obtain label semantic embeddings E®.

// Implement label semantics learning shown in Section 3.4.

Compute importance vectors « using a fully-connected network followed by a sigmoid function.

Compute semantic-specific features o with deep latent feature z and importance vectors o with

Eq.8.

C(cl)lipute the label confidence scores s using Eq.9 to obtain the prediction for emotion classes

1,..,C.

// Implement semantic-guided feature decoupling to obtain
semantic-specific features shown in Section 3.5.

Compute the representation similarity matrix M®, M®~! and M*" with Eq.10 and 11.

// Implement relation-based knowledge distillation with
affective dimension features shonw in Section 3.6.

Compute the final loss £ with Eq.7, 12 and 13. Update AESL model by minimizing £.
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(TR, 2000ms; TE, 43ms; flip angle, 80 deg; FOV, 192x 192 mm; voxel size, 2x2x2 mm; number
of slices, 76; multiband factor, 4). The fMRI data was preprocessed and averaged with each video
stimulus, which means the brain activity of one voxel is a scalar for a video stimulus.

Video27 is an emotionally evocative visual dataset ( . ), which had been used to
collect the brain activity in Brain27. This dataset contains 2196 videos whose durations ranged from
0.15s to 90s. Some video screenshots of Video27 have been shown in Figure 1.

Audio28 is an emotionally evocative auditory dataset ( , ), which consists of 1841
music samples without lyrics. In these music clips, 1572 were selected from YouTube, 88 came
from Howard Shore’s Lord of the Rings soundtrack, and 181 came from Wagner’s Ring cycle. These
segments of music can convey strong feelings, whose durations ranged from 0.73s to 7.89s.

In terms of emotion category and affective dimension ratings, in Brain27 and Video27, each instance
was voted by multiple raters across 27 emotion categories and 14 affective dimensions. In Audio28,
each music clip was judged by multiple rates across 28 emotion categories and 11 affective dimensions.
Emotion category ratings range from 0 to 1 and we set threshold 0.1 for Brain27 and Video27 and
0.15 for Audio28 to construct emotion label matrix. The average number of emotion labels for the
former two datasets and Audio28 is 4.64 and 5.27, respectively. Affective dimension ratings were
rated by a 9-scale Likert scale, which are standardized before RKD in our experiments.

In the process of splitting emotion labels for incremental learning, we just follow the order of the
alphabet without other interfere. The order of Brain27 and Video27 is Admiration, Adoration, Aes-
thetic appreciation, Amusement, Anger, Anxiety, Awe, Awkwardness, Boredom, Calmness, Confusion,
Craving, Disgust,Empathic pain, Entrancement,Excitement, Fear, Horror, Interest, Joy, Nostalgia,
Relief, Romance, Sadness, Satisfaction, Sexual desire and Surprise. The order of Audio28 is Amusing,
Angry, Annoying, Anxious, Amazing, Beautiful, Bittersweet, Calm, Compassionate, Dreamy, Eerie,
Energizing, Entrancing, Erotic, Euphoric, Exciting, Goose bumps, Indignant, Joyful, Nauseating,
Painful, Proud, Romantic, Sad, Scary, Tender, Transcendent and Triumphant. Definitions of the 27
and 28 emotion categories are detailed in Tables 6.

Affective dimensions used in Brain27 and Video27 are Approach, Arousal, Attention, Certainty,
Commitment, Control, Dominance, Effort, Fairness, Identity, Obstruction, Safety, Upswing and
Valence. Affective dimensions used in Audio28 are Arousal, Attention, Certainty, Commitment,
Dominance, Enjoyment, Familiarity, Identity, Obstruction, Safety and Valence.

B.2 COMPARING APPROACHES

Details of these compared methods are as follows.

EWC ( , ): A Single-Label Class Incremental Learning algorithm that reduces
catastrophic forgetting by constraining important parameters uses the Fisher information matrix to
compute the importance of parameters.

LWEF ( , ): The first algorithm to apply knowledge distillation to the Single-Label Class
Incremental Learning task uses the old model as a teacher and minimizes the KL divergence between
the probability distributions of the outputs of the new and old models.

ER ( , ): A Single-Label Class Incremental Learning algorithm based on data replay,
where the construction of a data buffer employs a random sampling strategy.

RS ( , ): A Single-Label Class Incremental Learning algorithm based on data replay, where
the construction of a data buffer utilizes a reservoir sampling strategy.

AGCN ( , ): A Multi-Label Class Incremental Learning algorithm based on graph con-
volutional neural networks, where the graph adjacency matrix continuously expands as the tasks
progress.

PRS ( , ): A Multi-Label Class Incremental Learning algorithm based on data replay,
which improves upon the reservoir sampling strategy to ensure that the number of samples for each
class in the data buffer is as balanced as possible.
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Table 6: Definitions of emotion categories for Brain27, Video28, and Audio28.

Name Definition
Admiration A feeling of deep respect and appreciation for someone’s qualities or achievements.
Adoration A profound sense of love, devotion, or reverence for someone or something cherished.
Aesthetic appreciation  The pleasure and admiration felt when encountering beauty or artistic excellence.
Amusement A lighthearted and joyful response to something funny or entertaining.
Anger A strong emotional reaction to perceived harm, injustice, or frustration.
Anxiety A tense, uneasy feeling often associated with fear or worry about uncertain outcomes.
Awe A profound emotional response to something vast, grand, or beyond ordinary comprehension.
Awkwardness A sense of discomfort or embarrassment in socially clumsy or uncertain situations.
Boredom A state of weariness or dissatisfaction caused by a lack of interest or engagement.
Calmness A serene, peaceful state of mind free from stress or agitation.
3 Confusion A feeling of bewilderment or uncertainty when faced with something unclear or unexpected.
g,, Craving An intense desire or longing for something specific, often food or experiences.
§ Disgust A strong feeling of aversion or revulsion, often triggered by something offensive or unpleasant.
g Empathic pain An emotional resonance with another’s suffering, leading to shared feelings of distress.
2 Entrancement A captivating, hypnotic feeling that draws one into a deeply absorbing experience.
§ Excitement A heightened state of anticipation or enthusiasm about something exhilarating or enjoyable.
& Fear A powerful emotion in response to perceived danger or threat, prompting a fight-or-flight reaction.
Horror An intense fear mixed with shock or revulsion, often caused by something terrifying or gruesome.
Interest A sense of curiosity and attention sparked by something engaging or thought-provoking.
Joy A profound and uplifting feeling of happiness or delight.
Nostalgia A bittersweet longing for past experiences, often accompanied by fond memories.
Relief A lightened and eased feeling after the alleviation of stress, pain, or worry.
Romance A tender and affectionate emotion linked to love and intimate connection.
Sadness A heavy, sorrowful feeling typically associated with loss, disappointment, or empathy.
Satisfaction A contented sense of fulfillment after achieving a goal or desire.
Sexual desire A deep, physical and emotional yearning for intimacy and connection.
Surprise A sudden and unexpected emotion elicited by an unforeseen event or realization.
Amusing This emotion brings a light-hearted, fun feeling, often sparking smiles and laughter.
Angry A powerful emotion, usually triggered by frustration or injustice, that drives a strong sense of displeasure.
Annoying A mild irritation or frustration caused by something persistently bothersome or inconvenient.
Anxious A feeling of worry, nervousness, or unease about an uncertain outcome or future event.
Amazing A sense of wonder and admiration often evoked by something remarkable or extraordinary.
Beautiful An emotion tied to the appreciation of visual, auditory, or conceptual harmony and appeal.
Bittersweet A mixed emotion of happiness and sadness, usually arising from nostalgia or a cherished memory.
Calm A soothing, peaceful feeling of tranquility and lack of disturbance.
Compassionate A warm, empathetic response that involves caring deeply for someone else’s suffering.
Dreamy A relaxed, whimsical feeling, often associated with a sense of escapism or fantasy.
3 Eerie A feeling of mystery tinged with unease, often evoked by something strange or uncanny.
5 Energizing A rush of motivation and vitality that makes one feel alert and ready for action.
%ﬂ Entrancing A mesmerizing, absorbing emotion that captivates one’s full attention.
g Erotic A deeply intimate, sensual feeling characterized by physical and emotional desire.
£ Euphoric An intense, exhilarating joy that feels almost transcendent or surreal.
g Exciting A feeling of lively anticipation and enthusiasm about something anticipated or unfolding.
; Goose bumps A physical reaction to intense emotions, often linked to awe, fear, or admiration.
o Indignant A righteous anger or resentment, typically provoked by perceived unfair treatment.
Joyful A pure, light-hearted happiness that uplifts and brightens one’s mood.
Nauseating A strong feeling of physical discomfort, often coupled with disgust or revulsion.
Painful An intense, often distressing sensation caused by physical or emotional suffering.
Proud A positive feeling of satisfaction and fulfillment, often in recognition of an achievement.
Romantic A tender, affectionate feeling centered around love and connection.
Sad A heavy, sorrowful feeling often caused by loss, disappointment, or empathy.
Scary A strong, unsettling sense of fear triggered by a perceived threat or danger.
Tender A gentle, warm-hearted feeling of affection and care.
Transcendent An emotion that goes beyond ordinary experience, often bringing a sense of awe or enlightenment.
Triumphant A victorious, celebratory emotion after overcoming a challenge or achieving success.
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ROI

Figure 7: A schematic diagram of ROI pooling. Each orange small cube represents a voxel. Using
the brain voxels signal directly for voxel-wise decoding will introduce lots of noise and easily cause
overfitting. Therefore, we first use the HCP360 template ( , ) to divide the whole
brain into multiple brain regions (ROIs) that include 360 cortical regions defined by a parcellation
provided from the Human Connectome Project. In order to further extract the features of each ROI,
we place the voxels of each ROl in a 3-D volume according to its coordinates, then split the volume
evenly into 8 sub-volumes and calculate the average brain activity of voxels in each sub-volume
as the feature of this sub-volume as illustrated in Figure 7. In other words, for each ROI we get
8-dimensional features. Then we concatenate the features of 360 ROIs in each hemisphere to get
2880-dimensional features.

OCDM ( , ): A Multi-Label Class Incremental Learning algorithm based on data
replay that defines the construction and updating of the data buffer as an optimization problem to be
solved.

KRT-R ( , ): A Multi-Label Class Incremental Learning algorithm based on Knowl-
edge Restore and Transfer (KRT) framework.

B.3 FEATURE EXTRACTION

In Brain27 dataset, we extract a 2880-dimensional feature vector with ROI-pooling (see Figure 7).
In Video27, visual object features have been extracted with a pre-trained VGG19 model (

, ) for one frame and averaged across all frames to construct 1000-dimensional
features. In Audio28 dataset, we compute Mel-frequency cepstral coefficients (MFCC) for each audio
fragment. All MFCC fragments from the same audio are then input into a pre-trained ResNet-18 (

, ) model and averaged across all fragments to obtain 512-dimensional features.

B.4 HYPERPARAMETERS SETTINGS

In our experiments, the balancing parameter (3 is set to 0.95 in Eq.3. We set A to 1 in Eq.15. Besides,
Ag is searched in {0.2,0.3,0.4,0.5,0.6,0.7,0.8} and A3 is searched in {0.001,0.01,0.1, 1,2, 5,10}.
The dimensionality of deep latent representations z is set to 64 in three datasets. We train the model
using the Adam optimizer with {81, 82} = {0.9,0.9999}. We set weight decay to 0.005 and learning
rate to 10~ for Brain27 and Video27, and weight decay of 0 and learning rate to 102 for Audio28.
We conducted all the experiments on one NVIDIA TITAN GPU.

C MORE COMPARATIVE RESULTS

Tables 8, 9, 10 and 11 show the results on subject 2, subject 3, subject4 and subject 5 in Brain27
dataset. Figure 9 exhibits the comparison curves of AESL and comparing methods for these subjects
in Brain27 dataset. We observe that similar conclusions can be drawn as mentioned in Section 4.2.

Furthermore, we adopt the Friedman test ( s ) for statistical testing in order to discuss
the relative performance among the compared methods'. If there are k algorithms and N datasets,

we take use of the average ranks of algorithms R; = + >, 77 for Friedman test in which 77/ is the

"We average the last mAP of four protocols regarding each dataset for further analysis.
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Table 7: Friedman statistics Fx in terms of each metric and the critical value at 0.05 significance
level. (# compared algorithms k = 9, # subjects N = 7.)

maF1 miF1 mAP critical value
37.025 64.000 70.696 2.138

ranks of the j-th algorithm on the i-th dataset. If the null-hypothesis is that all the algorithms have
the equivalent performance, the Friedman statistic 'z which will satisfy the F-distribution with k£ — 1
and (k — 1)(N — 1) degrees of freedom can be written as:

(N = 1)x3
Fr=_——_ /AF 16
in which i
12N k(k+1)?
2 - = 2 Mt
XFr = CESY ;Rj 1 . (17)

Table 7 shows the Friedman statistics F» and the corresponding critical value in regard to each metric
(# comparing algorithms k = 9, # datasets N = 7). With respect to each metric, the null hypothesis
of equivalent performance among the compared methods can be rejected at the 0.05 significance
level.

Then, we perform the strict post-hoc Nemenyi test ( , ) which is used to account for
pairwise comparisons for all compared approaches. The critical difference (CD) value of the rank
difference between two algorithms is:

kE(k+1)
6N

in which ¢, = 3.102 at 0.05 significance level. Therefore, one algorithm can be considered as having
significantly different performance than another method if their average ranks difference is larger
than CD (C'D = 4.540 in our experimental setting). Figure 8 reports the CD diagrams on each
metric, where the average rank of each compared method is marked along the axis (the smaller the
better). The algorithms that are not connected by a horizontal line are considered to have significant
differences in performance. We can observe that: (1) In terms of mAP, AESL and other MLCIL
approaches (except OCDM) significantly outperform SLCIL methods. (2) In terms of miF1 and
maF1, rehearsal-free methods are significantly better than rehearsal-based algorithms. (3) AESL
is not significantly different from some MLCIL approaches. This is due to the factor that these
approaches beat other comparing approaches and the Nemenyi test fails to detect that AESL achieves
a consistently better average ranks than other methods on all evaluation metrics.

CD = qq (18)

D LIMITATIONS

At the application level, in the affective HCI tasks in real-life scenarios, in addition to learning new
emotion categories, we also need to adapt to new subjects. Therefore, it is necessary to further
consider the continuous learning of emotions from different subjects, which can be regarded as
domain incremental learning. At the experimental level, the impact of the order of learning emotion
categories and the number of emotion categories in each task on the experimental results needs to be
further explored.
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Figure 8: Pairwise comparisons with the Nemenyi test in 7 datasets and 9 algorithms used in our
experiments. Algorithms not connected with each other in the CD diagram are considered to have
significantly different performance (C'D = 4.540 at 0.05 significance level).

Table 8: Class incremental results on subject 2 of Brain27 dataset. AGCN, PRS and OCDM are
MLCIL algorithms among these compared methods.

Brain27 B0-19 Brain27 B0-13 Brain27 B15-13 Brain27 B15-12
Method Avg. Acc ‘ Last Acc Avg. Acc ‘ Last Acc Avg. Acc ‘ Last Acc Avg. Acc ‘ Last Acc
mAP | maFl miFl mAP| mAP |maFl miFl mAP| mAP |[maFl miFl mAP| mAP |[maFl miFl mAP
Upper-bound - | 340 43 @3 - | 340 43 43 - | 340 43 423 - | 340 43 @3
Finetune 34.9 82 185 248 | 310 50 140 21.0| 258 51 144 200 | 234 37 133 187
EWC 343 78 181 252 | 312 50 137 217 | 264 50 138 20.1 24.1 37 133 194
LwF 38.9 114 286 296 | 370 194 370 259 | 318 157 325 244 | 294 154 326 219
ER 40.4 85 131 349 | 393 38 48 208 | 373 69 116 341 36.3 74 110 327
RS 41.0 76 108 359 | 404 37 59 289 | 364 62 103 314 | 358 43 78 310
AGCN 434 288 431 398 | 430 324 436 337 ] 390 248 395 352 | 373 240 355 321
PRS 404 79 144 344 | 409 36 78 202 | 378 84 120 341 372 85 118 325
OCDM 40.0 84 129 334 | 405 45 81 282 361 59 92 309 | 347 51 86 294
AESL 45.4 298 432 414 | 455 325 442 353 | 402 255 401 364 | 393 248 364 350

Table 9: Class incremental results on subject 3 of Brain27 dataset. AGCN, PRS and OCDM are
MLCIL algorithms among these compared methods.

Brain27 B0-19 Brain27 B0-13 Brain27 B15-13 Brain27 B15-12
Method Avg. Acc | Last Acc Avg. Acc | Last Acc Avg. Acc | Last Acc Avg. Acc | Last Acc
mAP | maFl miFl mAP| mAP |maFl miFl mAP| mAP |[maFl miFl mAP| mAP [maFl miFl mAP
Upper-bound - | 336 442 420 - | 336 442 420 - | 336 442 420 - | 336 442 420
Finetune 33.0 77 173 258 | 294 50 140 205 | 250 53 140 200 | 232 41 138 192
EWC 324 77 167 253 | 296 52 138 198 | 255 53 140 200 | 240 40 136 196
LwF 36.4 117 287 303 | 347 217 383 235 | 303 154 315 236 | 282 156 318 213
ER 37.1 70 102 335| 367 24 24 305| 346 50 86 319| 354 6.8 109 329
RS 38.1 65 92 358 377 29 52 290 | 341 50 77 303 | 338 3.6 68 300
AGCN 402 27.6 420 382 | 40.1 320 429 327 ] 370 270 371 336 | 349 24.1 366 302
PRS 38.0 76 120 343 | 388 36 60 295 | 355 55 77 327 360 45 73 331
OCDM 37.9 84 117 350 | 380 54 82 301 34.4 40 60 303 | 332 3.1 53 285
AESL 42.6 285 440 408 | 423 334 432 334 | 388 272 389 354 | 379 255 377 341
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Table 10: Class incremental results on subject 4 of Brain27 dataset. AGCN, PRS and OCDM are
MLCIL algorithms among these compared methods.

Brain27 B0-19

Brain27 B0-13

Brain27 B15-13

Brain27 B15-12

Method Avg. Acc | Last Acc Avg. Acc | Last Acc Avg. Acc | Last Acc Avg. Acc | Last Acc
mAP | maFl miFl mAP| mAP |maFl miFl mAP| mAP |[maFl miFl mAP| mAP [maFl miFl mAP
Upper-bound - 383 486 451 - ]383 486 451 - 383 486 451 - | 383 486 451
Finetune 36.0 79 190 252 | 309 49 137 211 26.4 46 134 203 23.9 37 132 181
EWC 35.0 79 185 253 317 51 138 220 | 272 48 137 204 | 251 37 132 201
LwF 39.6 151 339 308 37.5 205 37.5 231 333 172 328 252 | 309 158 335 227
ER 42.0 10.1 156 377 | 418 39 48 348 | 401 93 113 370 | 388 9.7 124 364
RS 426 9.0 142 381 43.5 43 71 344 | 388 75 108 346 | 378 54 106 332
AGCN 43.7 31.8 464 409 | 441 36.1 445 363 | 410 303 437 386 | 393 266 371 350
PRS 43.5 10.7 159 399 | 442 40 56 328| 402 85 1L1 361 39.3 9.1 122 356
OCDM 434 114 151 398 | 430 49 78 317 38.2 6.0 59 334 384 52 94 334
AESL 45.7 364 473 440 | 471 372 464 387 | 434 313 444 399 | 422 290 404 377

Table 11: Class incremental results on subject 5 of Brain27 dataset. AGCN, PRS, OCDM are MLCIL
algorithm in these compared methods.

Brain27 B0-19

Brain27 B0-I3

Brain27 B15-13

Brain27 B15-12

Method Avg. Acc ‘ Last Acc Avg. Acc ‘ Last Acc Avg. Acc ‘ Last Acc Avg. Acc ‘ Last Acc
mAP | maFl miFl mAP| mAP |maFl miFl mAP| mAP |maFl miFl mAP| mAP [maFl miFl mAP
Upper-bound - | 366 468 450 - | 366 468 450 - | 366 468 450 - | 366 468 450
Finetune 347 | 73 178 254 311 54 143 217 | 254 | 52 139 189 | 234 | 39 132 192
EWC 34.1 67 156 251 | 310 | 49 135 219 | 263 50 137 203 | 243 | 40 135 202
LwF 376 | 122 303 287 | 355 | 210 379 258 | 312 | 158 317 246 | 294 | 143 290 224
ER 407 88 139 358 | 417 45 76 340 | 381 69 89 364 | 363 | 69 98 329
RS 414 | 76 113 369 | 415 44 76 317 | 371 57 86 334 373 | 54 90 330
AGCN 438 | 295 440 414 | 429 | 325 425 341 | 384 | 287 415 350| 373 | 246 376 331
PRS 412 89 164 370 | 424 | 53 83 320 378 67 90 341 | 384 | 65 94 349
OCDM 41.1 83 140 355| 413 54 80 297 | 368 | 44 79 315| 348 | 46 80 301
AESL 460 | 329 458 441 | 455 | 353 456 354 | 404 | 295 445 375 | 399 | 293 408 362
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Figure 9: Comparison results (mAP) on three datasets used in our experiment under different protocols
against compared CIL methods.
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