
Under review as a conference paper at ICLR 2024

SEQUENTIAL FLOW STRAIGHTENING FOR GENERA-
TIVE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Even though the continuous-time generative models simulating ODEs and SDEs,
such as diffusion models or flow-based models, have achieved great success in
tasks such as large-scale image synthesis, generating high-quality samples from
those models requires a large number of function evaluations (NFE) of neural net-
works. One key reason for the slow sampling speed of the ODE-based solvers
that simulate these generative models is the high curvature of the ODE trajec-
tory, which explodes the truncation error of the numerical solvers in the low-NFE
regime. As straightening the probability flow is the key to fast sampling through
the numerical solvers by increasing the tolerance of the solver, existing methods
directly generate the joint distribution between the noise and data distribution and
learn a linear path between those data pairs. However, this method also suffers
from a high truncation error while generating the pair through the full simulation,
thus worsening the sampling quality. To address this challenge, We propose a
novel method called sequential reflow, a learning technique to straighten the flow
that reduces the global truncation error and hence enabling acceleration and im-
proving the synthesis quality. In both theoretical and empirical studies, we first
observe the straightening property of our sequential reflow. Via sequential reflow,
We achieved FID 3.97 with 8 function evaluations in CIFAR-10 dataset.

1 INTRODUCTION

Figure 1: Generation Performance of SeqRF
compared to existing results in CIFAR-10.

In recent times, continuous-time generative mod-
els, exemplified by diffusion models (Song & Er-
mon, 2019; Song et al., 2021b; Ho et al., 2020) and
flow-based models (Lipman et al., 2023; Liu et al.,
2023a), have demonstrated significant improvement
across diverse generative tasks, encompassing do-
mains such as image generation (Dhariwal & Nichol,
2021), videos (Ho et al., 2022), and 3D scene
representation (Luo & Hu, 2021), and molecular
synthesis (Xu et al., 2022). Notably, these mod-
els have outperformed established counterparts like
Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014) and Variational Autoencoders
(VAEs) (Kingma & Welling, 2014). Operating within
a continuous-time framework, these models acquire
proficiency in discerning the time-reversal character-
istics of stochastic processes extending from the data
distribution to the Gaussian noise distribution in the
context of diffusion models. Alternatively, in the case of flow-based models, they directly learn the
probability flow, effectively simulating the vector field.

Recently, Lipman et al. (2023) introduced a novel concept termed flow matching within continuous-
time generative models. This approach focuses on learning the vector field connecting the Gaussian
noise and the data distribution. The authors initially demonstrated that the marginal vector field,
representing the relationship between these two distributions, is derived by marginalizing over the
gradients of the conditional vector fields. Moreover, they found that the conditional vector field

1

Under review as a conference paper at ICLR 2024

yields optimal transport between the data and noise distributions, particularly when the noise distri-
bution adheres to the standard Gaussian distribution. Learning the (marginal) vector field involves
independent sampling from both the noise and data distributions, followed by the marginalization of
the conditional vector field over the data distributions. Despite the advantageous property of iden-
tifying optimal transport paths with optimal coupling, this method faces challenges such as high
learning variance and slow training speed attributable to the independent drawing of training data
from data and noise distributions, which results in high gradient variance even at its convergence.
This threatens the stability of the Ordinary Differential Equation (ODE) solver due to the accumu-
lation of truncation errors. In response to this challenge, Liu et al. (2023a) proposed a method to
straighten the trajectory by leveraging the joint distribution. This involves running the numerical
ODE solver from the noise to approximate the data point. However, traversing a long path from
noise to image space still leaves exploding global truncation errors unaddressed.

To address the challenge posed by truncation errors, we introduce a novel framework termed se-
quential reflow. This novel approach represents a straightforward and effective training technique
for flow-based generative models, specifically designed to alleviate the truncation error issue. The
key innovation lies in the segmentation of the ODE trajectory with respect to the time domain. In this
strategy, we harness the joint distribution by partially traversing the solver, as opposed to acquiring
the complete data with the entire trajectory. The overall concept of our method is briefly introduced
in Figure 2.

Our contribution is summarized as follows.

• Controlling the global truncation error We begin by highlighting the observation that
the global truncation error of numerical ODE solvers experiences explosive growth, ex-
hibiting superlinear escalation. This underscores the significance of generating the joint
distribution from segmented time domains, thereby ensuring diminished global truncation
errors through the strategic halting of the solver before the error reaches critical levels.

• Main Proposal: Sequential Reflow for Flow Matching Our primary contribution is the
introduction of sequential reflow as a method for flow matching in generative modeling.
This innovative flow straightening technique aims to diminish the curvature of segmented
time schedules. It achieves this by generating the joint distribution between data points at
different time steps. Specifically, the source data point, originating from the training set
enveloped in noise, undergoes the ODE solver constructed by pre-trained continuous-time
generative models such as flow-based or diffusion models. This marks a departure from
conventional reflow methods, which straighten the entire ODE trajectory.

• Validation of Sequential Reflow We empirically validate that our sequential reflow
method accelerates the sampling process, thereby enhancing the image synthesis quality;
the sampling quality improves with the rectified flow, achieved by employing sequential
reflow method subsequent to the initial flow matching procedure. Furthermore, We imple-
ment distillation on each time fragment, enabling the transversal of one time segment at a
single function evaluation. This strategic approach results in superior performance, achiev-
ing a remarkable 3.97 Frechét Inception Distance (FID) with only 8 function evaluations on
the CIFAR-10 dataset, as sketched in Figure 1.

The overall structure of our paper is as follows. In § 2, we lay the groundwork for our paper by in-
troducing essential concepts such as rectified flow and elucidating on the truncation error associated
with the ODE solver. In § 3, we present our primary contribution, the ”sequential reflow” method.
This approach effectively diminishes the curvature of the ODE trajectory, thereby enhancing the
quality of the joint distribution for learning flow-based models. The section also encompasses the-
oretical and empirical validations, demonstrating the successful mitigation of the truncation error
through our proposed method. § 4 delve into existing works that relate to our newly introduced
framework. This contextualization provides a comprehensive understanding of the broader land-
scape within which our research unfolds. § 5 reports our experiments’ findings, showcasing our
proposed method’s efficacy. We highlight improvements in image synthesis quality and accelerated
sampling speed as key outcomes of our approach. Finally, in § 6, we summarize our contributions
and suggest potential avenues for future research. This section serves as a reflection on the implica-
tions of our work and invites further exploration in related domains.

2

Under review as a conference paper at ICLR 2024

Figure 2: The concept figure of our method. The red, yellow and blue triangles represent the trun-
cation error being accumulated in the corresponding time. Compared to the red reflow method,
sequential reflow (SeqRF) mitigates marginal truncation error by running time-segmented ODE.

2 BACKGROUND: CONTINUOUS NORMALIZING FLOW AND FLOW
MATCHING

Consider the problem of constructing the probability path between the two distributions π0 and π1
in the data space RD. Let the time-dependent vector field be u : RD × [0, 1]→ RD with t ∈ [0, 1].
Then the ODE generated by this vector field is

dXt = u(Xt, t)dt. (1)

Chen et al. (2018); Grathwohl et al. (2019) suggested the generative model called Continuous Nor-
malizing Flow (CNF) that reshapes the simple, easy-to-sample density (i.e., Gaussian noise p0)
into the data distribution p1, by constructing the vector field u with a neural network, denoted by
ut(·, θ) : RD → RD. This vector field ut is used to generate a time-dependent continuously differ-
entiable map called flow ϕt(·, θ) : RD → RD if the random variable generated with Xt ∼ ϕt(x, θ)
satisfy Equation 1. A vector field ut is called to generate the flow ϕt if it satisfies the push-forward
(i.e. (generalized) change of variables) equation

pt = [ϕt]∗ p0,

where [ϕt]∗ p0(x) = p0(ϕ
−1
t (x)) det

[
∂ϕ−1

t

∂x
(x)

]
.

(2)

However, constructing the CNF requires backpropagation of the entire adjoint equation with the NLL
objective, which requires full forward simulation and gradient estimation of the vector field over the
time domain [0, 1]. The flow matching (Lipman et al., 2023; Liu et al., 2023a) algorithm overcomes
this limit with a simulation-free (e.g., does not require a complete forward pass for training) algo-
rithm by replacing this with the ℓ2-square objective

LFM(θ) = Et,p1(x1)

[
∥ut(x, θ)− vt(x)∥22

]
, (3)

where vt(x) is true vector field that the neural network model ut aims to learn. However, the com-
putational intractability of vt makes it difficult to directly learn from the true objective Equation 3.
Lipman et al. (2023) found that by using the conditional flow matching objective instead,

LCFM(θ) = Et,p1(x1),pt(xt|x1)

[
∥ut(xt, θ)− vt(xt|x1)∥22

]
, (4)

where pt(xt|x1) is the conditional probability density of noisy data xt given the data x1, we can
learn the flow matching model with conditional flow matching objective based on the proposition
below.

3

Under review as a conference paper at ICLR 2024

Algorithm 1 Training Sequential Rectified Flow for Generative Modeling

Require: Data distribution πdata, Noise distribution πnoise, data dimension D, Number of divisions
K, Flow network model vθ : RD → RD, Time division {ti}K−1

i=1 , 0 = t0 < t1 < · · · < tK−1 <
tK = 1.
Stage 1. Pre-training rectified flow
while Not converged do

Draw (X0, X1) ∼ πdata × πnoise, t ∈ (0, 1).
Xt ← (1− t)X0 + tX1.

Update θ to minimize EXt,t

[
∥vθ(Xt, t)− (X1 −X0)∥22

]
(Learning the flow network)

end while
Stage 2. Sequential reflow + Distillation with segmented time divisions
while Not converged do

Sample Xti = (1− ti)X0 + tiX1, (X0, X1) ∼ πdata × πnoise, ti, i ∈ {1, 2, · · · ,K}
Obtain X̂t−1 by running dXt = vθ(Xt, t)dt with an ODE solver from ti → ti−1.
if Reflow then
Xs ← (1− r)X̂ti−1 + rXti , s = t′ + (ti − ti−1)r, r ∼ U(0, 1)

else if Distill then
Xs ← Xti , s = t

end if
Update θ to minimize EXs,r

[∥∥∥vθ(Xs, s)−
Xs−Xti−1

ti−ti−1

∥∥∥2
2

]
(Learning with sequential reflow)

end while

Proposition 2.1 (Equivalence of the FM and CFM objective). The gradient of Equation 3 and Equa-
tion 4 is equal. That is, LFM(θ) = LCFM(θ) + C for a constant C. The detailed proof is in Ap-
pendix C.

A natural choice to construct flow between two distributions is to independently draw samples from
two distributions and let the vector field at t be the conditional Gaussian, centered at the linear
interpolants of these samples. Liu et al. (2023a); Albergo & Vanden-Eijnden (2023) designed the
source distribution p1 and the conditional distribution as

p1 ∼ π0 × π1, vt(xt|x0, x1) ∼ N (tx1 + (1− t)x0, σ2) (5)

that is, the source distribution is the product of two independent distributions π0 and π1, and the
conditional vector field vt is the (stochastic) linear interpolation between the two conditional data
drawn independently from two distributions. Then, the CFM objective becomes

Et,π0(x0),π1(x1),n∼N (0,σ2) [∥ut(xt, θ)− (tx1 + (1− t)x0 + n)∥] , (6)

which is reduced to
Et,π0(x0),π1(x1) [∥ut(xt, θ)− (tx1 + (1− t)x0)∥] (7)

when the conditional vector field is given deterministic, i.e., σ = 0, and corresponds to the rectified
flow objective (Liu et al., 2023a;b).

3 SEQUENTIAL REFLOW

In this section, we propose our main method called sequential reflow, a training technique that can be
unifiedly applied to continuous-time generative models, including flow-based models and diffusion
models. We first introduce the overall method in § 3.1, and provide further discussions on our
method in § 3.2. The sketch of our training algorithm is explained in Algorithm 1.

3.1 TIME-SEGMENTED RECTIFIED FLOW FOR GENERATIVE MODELING

Constructing flow. Following the widely used existing literature (Liu et al., 2023a;b; Albergo
& Vanden-Eijnden, 2023; Albergo et al., 2023), we first construct the rectified flow that simulates
the ODE with the conditional flow matching objective Equation 7 by first drawing (x0, x1) ∼ π0×π1

4

Under review as a conference paper at ICLR 2024

from independent distributions. For generative modeling, for instance, we use π0 = πdata and π1 =
N (0, ID), respectively. Then, the conditional vector field vt(xt, t) yields the gap between the drawn
data and noise sample. As we investigated in § 2, this conditional flow matching objective finally
constructs the (marginal) flow ψt, which is a push-forward between the noise and data distributions.
The Stage 1 of Algorithm 1 summarizes the training procedure via this flow matching objective.

Generating Joint Distribution. Even though the vector field vt constructed by rectified flow is
known to marginally converge to the true vector field ut, this is intractable in large-scale datasets
because of high training variance. Pooladian et al. (2023) provides the variance reduction argument
that sheds light on using joint distribution as training data, as follows.
Proposition 3.1 (Pooladian et al. (2023), Lemma 3.2). Let (x0, x1) be jointly drawn from the joint
density π = π0 × π1. And let the flow-matching objective from joint distribution be given as

LJCFM = Eπ(x0,x1)

[
∥ut(xt; θ)− vt(xt|x1)∥22

]
. (8)

Then the expectation of the total variance of the gradient at a fixed (x, t) is bounded as

Et,pt(x)

[
Tr(Covpt(x1|x)

(
∇θ ∥ut(x; θ)− vt(x|x1)∥22

)]
≤ max

t,x
∥∇θut(x; θ)∥22 LJCFM. (9)

This proposition implies that training from joint distributions, instead of the product of independent
distributions, improves training stability and thus efficiently constructs the optimal transport (OT)
mapping between two distributions.

Recently, Liu et al. (2023a) introduced the reflow algorithm to reduce training variance and
straighten the trajectory by drawing the joint distribution by starting from noise and then simu-
lating through the ODE solver to generate samples. The idea of reflow is simple: first sample noise
from π1 = N (0, ID), then run the reverse-time ODE with existing ODE solvers, such as the Euler
method, Runge-Kutta method, or Heun’s method to obtain the output of the reverse-time ODE from
t = 1 to t = 0.

Main method: Sequential reflow ((K)-SeqRF). Even though the Reflow algorithm seeks the
rectified path between distributions, the ODE solver, which is used to simulate the Reflow algorithm,
always has inaccuracy because of the high curvature of the probability path. As the ODE solver
always has inaccuracy within a single step, and this error accumulates over the running steps, the
output of the reverse-time ODE from the initial noise does not correspond to the actual output of the
continuous-time ODE, causing the global truncation error. The detailed interpretation and analysis
of this phenomenon are further described in § 3.2. And we denote K-SeqRF as sequential reflow
with K intervals.

Our new method, called sequential reflow (SeqRF), proposes a simple and efficient way to deal with
this issue by dividing the time domain of the ODE into multiple steps. To be precise, let the entire
time interval be t ∈ [0, 1], where the X0 ∼ π0 and X1 ∼ π1. Then we divide the interval [0, 1] into
K steps, as 0 = t0 < t1 < t2 < · · · < tK = 1. Then we draw the joint distribution by (1) random
sampling the interval [ti−1, ti] where i ∈ [1 : K], (2) Drawing (x0, x1) independently from x0 ∈ π0
and x1 ∈ π1, (3) Sampling the initial data at time ti as Xti = tiX0 + (1 − ti)X1, and finally (4)
solve the ODE, beginning in xti at time ti until ti−1.

Distillation. After training the probability path with joint distribution, we fine-tuned our model
with distillation in order to move directly toward the whole time segment. That is, the number of
function evaluations is the same as the number of time segments after distillation finishes. The
distillation process is done as follows: we use the same generated dataset as joint distribution, but
we fix the time to the starting point of the time segment instead of uniformly training from t ∈ [0, 1].
Then, by distilling the reflow model, we directly take advantage of the straightened probability flow
of the previously trained SeqRF model. We later interpret the straightness of the flow in the SeqRF
model in § 3.2 to delve more into this.

3.2 MAIN PROPERTIES OF SEQUENTIAL REFLOW (SEQRF).

In this section, we provide how the SeqRF algorithm provides a straighter flow. First, we show
theoretically that SeqRF provably mitigates the global truncation error, which is an upper bound

5

Under review as a conference paper at ICLR 2024

of the global error of an ODE solver. After that, we empirically validate that SeqRF rectifies the
flow, by showing that the vector field constructed by SeqRF is straighter in image datasets such as
CIFAR-10 and CelebA.

3.2.1 FIXING THE GLOBAL TRUNCATION ERROR

Let the Initial Value Problem (IVP) on an ODE be given as follows:

dXt = v(Xt, t)dt, t ∈ [a, b], Xa = x(0). (10)

Let the initial value a and the terminal value b be divided by h equidistributed intervals, i.e., ti =
a + i

h (b − a), and let the generalized linear multistep method which includes most of widely used
ODE methods, solving this ODE IVP be given as

x(i+ 1) =

p∑
j=0

αjx(i− j) + h

p∑
j=−1

βjv(x(i− j), ti−j), i ≥ p. (11)

Then the global truncation error of the ODE solver ∥Xb − x(th)∥ is defined by the absolute dif-
ference between the true ODE solution and the output of the solver at the terminal value b. Then,
Dahlquist (1963) provided that the upper bound of the global truncation error is as follows.
Lemma 3.2 (Dahlquist Equivalence Theorem (Dahlquist, 1963)). For a linear multistep method
that is consistent with the ODE (10) where vt satisfy the Lipschitz condition and with fixed initial
value xa at t = a, the global truncation error is O(hr).

With this lemma, we provably show that the sequential reflow algorithm reduces the global trunca-
tion error by the order of Kr−1, where K is the number of intervals and r is the order of the ODE
solver. To be precise,
Theorem 3.3 (The global truncation error of the Sequential reflow algorithm). Suppose that a linear
multistep method (11) successfully simulates the ODE (10). And suppose that the Number of Function
Evaluation (NFE) of the reflow and the sequential reflow algorithm is given the same as b−a

K . And
let the global truncation error of the reflow algorithm and the sequential reflow be GTERF and
GTESeqRF, respectively. Let K be the number of equidistributed intervals that segment [a, b]. And
let (11) is of order p, i.e. the local truncation error is O(hp+1), then the following holds.

GTESeqRF = O
(
K1−r

)
GTERF (12)

Proof. Please refer to Appendix B.

3.2.2 FLOW STRAIGHTENING EFFECT

Liu et al. (2023a) proposed a measure called straightness of a continuously differentiable process
Z = {Zt}1t=0 to measure how straight the path generated by the ODE solver, as defined by

S(Z) =

∫ 1

0

∥∥∥∥(Z1 − Z0)−
d

dt
Zt

∥∥∥∥2 dt, (13)

where zero S(Z) means the process is completely straight and the vector field is constant over time,
which implies that the Euler solver can yield the exact sample in just a single function evaluation. We
propose a metric called sequential straightness to validate how straight the sequential flow (e.g., how
much the truncation error is mitigated.) of a collection of time-segmented processes Z = {Zi}Ki=1
as

Sseq(Z) =
K∑
i=1

∫ ti

ti−1

∥∥∥∥∥Zi
ti − Z

i
ti−1

ti − ti−1
− d

dt
Zi
t

∥∥∥∥∥
2

dt, (14)

where zero Sseq(Z) denotes that each time-segmented process is completely straight.

Figure 3 demonstrates the sequential straightness of the rectified flow models trained on CIFAR-10
and CelebA datasets with respect to the number of segments, where the number of reflow pairs is
fixed to 50, 000 for both datasets and the pre-trained rectified flow is fine-tuned with those reflow

6

Under review as a conference paper at ICLR 2024

Figure 3: The number of steps vs. the sequential straightness with respect to the number of equidis-
tributed segments within t ∈ [0, 1] over the number of sampling steps. The legends denote the
number of segments of sequential reflow; N = 1 denotes the naı̈ve reflow. Having lower sequential
straightness stands for a better flow straightening effect. Left: CelebA, Right: CIFAR-10 dataset.

Figure 4: The sequential straightness over time in training SeqRF with CIFAR-10 dataset in 100,000
steps, in {1,4,8}-SeqRF, 4-SeqRF, 8-SeqRF, from left to right.

pairs by 100, 000 steps when the batch size is 128. The sequential straightness lowers in both
datasets as the we train with finer intervals, implying that we achieved a superior straightening
performance by using the SeqRF method.

Figure 4 demonstrates the mean sequential straightness with respect to time when we train SeqRF
with CIFAR-10 dataset. We can observe that the sequential straightness at t = 0 (near data) or t = 1
(near noise) is greater than other t, which implies that straightening the ODE trajectory is more
difficult in near-data or near-noise regime, which is an analogous observation as Choi et al. (2021).

Moreover, this figure implies the evidence that distillation improves the performance in a large
margin, as introduced in Figure 1. The sequential straightness is shown to spike at the boundary
regions between adjacent intervals, since in the boundary point we learn the vector field of both
facing regions, that may cause instability in training the right vector field. The distillation scheme we
have proposed focuses on the spiking boundary points, which will mitigate the spiking phenomenon.

For details in the time-dependent sequential correctness and implementation details, refer to Ap-
pendix D.

4 RELATED WORK

As a problem of designing ODEs as probability path, Chen et al. (2018) has opened up a new way
by showing that an ODE can be learned with neural network objectives, and Grathwohl et al. (2019)
further applied this for the generative models. Generating the invertible flow has been also achieved
as architecture design (Kingma & Dhariwal, 2018) and from autoregressive model (Papamakarios

7

Under review as a conference paper at ICLR 2024

et al., 2017; Huang et al., 2018). Those early methods, however, are computationally inefficient, had
memory issue, or not competitive in terms of synthesis quality in generative model literature.

Table 1: CIFAR-10 and CelebA Generation Results on
Flow Matching Methods. The superscript† denotes the
re-implementation based on the authors’ proposed hy-
perparameters using JAX/Flax.

CIFAR-10

Method NFE (↓) IS (↑) FID (↓) Solver

1-Rectified Flow 127 9.60 2.58 RK45
(Liu et al., 2023a) 1 1.13 378 Euler

(+Distill) 1 9.08 6.18 Euler
2-Rectified Flow 110 9.24 3.36 RK45

1 8.47 12.21 Euler
(+Distill) 1 8.79 4.85 Euler

3-Rectified Flow 104 9.01 3.96 RK45
1 8.47 8.15 Euler

(+Distill) 1 8.79 5.21 Euler
Conditional FM 183 - 8.06
I-CFM 50 - 10.68 Euler
OT-CFM 10 - 20.86 Euler

DDPM (Ho et al., 2020) 1000 3.16
Analytic-DDPM (Bao et al., 2022) 50 7.34
Analytic-DDIM (Bao et al., 2022) 50 4.28
EDM (Karras et al., 2022) 35 1.97

1-Rectified Flow† 1000 - 3.03 Euler
2-Rectified Flow† 100 - 4.54 Euler

(+Distill)† 1 - 4.85 Euler
4-SeqRF (+Distill) (Ours) 4 9.09 4.75 Euler
6-SeqRF (+Distill) (Ours) 6 9.17 4.29 Euler
8-SeqRF (+Distill) (Ours) 8 9.32 3.97 Euler

CelebA

1-Rectified Flow† 1000 - 2.37 Euler
2-Rectified Flow† 100 - 4.35 Euler

(+Distill)† 1 - 6.22 Euler
2-SeqRF (+Distill) (Ours) 2 - 4.95 Euler
4-SeqRF (+Distill) (Ours) 4 - 3.67 Euler

As a family of continuous-time genera-
tive modeling by learning dynamics, Sohl-
Dickstein et al. (2015) interpreted the gen-
erative modeling as the construction of the
vector field of the stochastic processes.
Later on, Ho et al. (2020); Song & Er-
mon (2019); Song et al. (2021b) proposed
efficient techniques for training this by in-
terpreting the reverse stochastic process as
the denoising model. According to the
diffusion models trained on SDEs, Song
et al. (2021a) proposed an efficient tech-
nique by sampling from a generalized non-
Gaussian process, which results in a fast
deterministic sampling speed. Further,
Kingma et al. (2021); Huang et al. (2021)
unified the framework of continuous-time
models, including diffusion model and
flow-based generative models.

Recently, straightening the continuous
flow by mitigating the curvature of the
probability path has been considered by
considering the optimal transport regular-
ization by introducing CNF norms (Finlay
et al., 2020; Onken et al., 2021; Bhaskar
et al., 2022) for training neural ODE,
and Kelly et al. (2020) learned the straight-
ened neural ODEs by learning to decrease
the surrogate higher-order derivatives. Lee
et al. (2023) showed that minimizing the
curvature in flow matching is equivalent to
the β-VAE in variational inference. As a
generalization of finding optimal transport interpolant, Albergo et al. (2023); Albergo & Vanden-
Eijnden (2023) proposed stochastic interpolant, which unifies the flows and diffusions by showing
that the probability density of the noisy interpolant between two distributions satisfies the Fokker-
Planck equations of an existing diffusion model.

Our work can also be interpreted to match the noise and data distribution pairs to make training
more efficient by reducing training variance. Pooladian et al. (2023) used the minibatch coupling to
generate joint distributions in a simulation-free manner by constructing a doubly stochastic matrix
with transition probabilities and obtaining coupling from this matrix. Even though this generates
one-to-one matching between noise and images, this is numerically intractable when the number of
minibatch increases. Tong et al. (2023b) also introduced the concept of minibatch optimal transport
by finding optimal coupling within a given minibatch. Tong et al. (2023a) further expanded this
approach to generalized flow (e.g., Schrödinger bridge) in terms of stochastic dynamics.

5 EXPERIMENTS

In this section, we empirically evaluate SeqRF, compared to other generative models especially
with diffusion and flow-based models in CIFAR-10 and CelebA datasets. We used the NCSN++
architecture based on the repository of Song et al. (2021b), implemented with JAX/Flax packages
on TPU-v2-8 (CIFAR-10) and TPU-v3-8 (CelebA) nodes. In CIFAR-10 and CelebA dataset, we
used 1M and 200k reflow datasets for generating reflow models or SeqRF models, and 100k reflow
datasets for distillation in both cases. The whole experimental details are described in Appendix A.

8

Under review as a conference paper at ICLR 2024

Figure 5: Non-curated CIFAR-10 image synthesis result with 2-SeqRF after distillation. From up
to down: {1, 2, 4, 6, 8}-step Euler solver, each with FID score of 11.89, 6.97, 4.75, 4.29, 3.97 with
our own implementation.

5.1 IMAGE GENERATION RESULT

We demonstrate our image synthesis quality in Table 1 in CIFAR-10 and CelebA domain, compared
to existing flow matching methods including rectified flow (Liu et al., 2023a), conditional flow
matching (Lipman et al., 2023), I-CFM and OT-CFM (Tong et al., 2023b). In case of rectified
flow, we re-implemented the method using JAX/Flax packages. Both in CIFAR-10 and CelebA
dataset, we achieved superior performance compared to other flow-based models, also achieving
high sampling speed with less than ten function evaluations. As a comparing model to ours, the
rectified Reflow model (2-RF) has its performance in very long-NFE region as 4.54 in CIFAR-
10 dataset and 4.35 in CelebA datasets, respectively. As the distilled performance cannot surpass
this extreme point, the 2-Reflow model cannot reach our FID of 3.97 in CIFAR-10 and 3.67 in
CelebA dataset with previous methods. For additional images generated by SeqRF, please refer
to Appendix E.

6 CONCLUSION AND DISCUSSION

We introduce sequential reflow, a straightforward and effective technique for rectifying flow-based
generative models. This method initially subdivides the time domain into multiple segments and
subsequently generates a joint distribution by traversing over partial time domains. Through the
division of the time domain, we successfully alleviate the global truncation error associated with the
ODE solver. Consequently, this process yields a straighter path, thereby enhancing the efficiency
and speed of the sampling procedure.

While our method has been validated for addressing truncation errors within the context of a spe-
cific flow matching method, namely rectified flow, its applicability extends beyond this specific
framework. Our proposed sequential reflow technique can be readily applied to diverse frameworks
utilized for constructing ODEs. Moreover, its utility is not limited to the domain of flow matching;
rather, it holds potential for broader applications in tasks such as image-to-image translation and
domain adaptation. The versatility of our method underscores its potential to enhance the stability
and efficiency of various ODE-based models and applications beyond the specific instance studied
in this work.

9

Under review as a conference paper at ICLR 2024

7 ETHICS STATEMENT

This is the work in the field of generative model algorithm, which is not directly involved in an
ethical issue.

REFERENCES

Michael S. Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic inter-
polants. In International Conference on Learning Representations (ICLR), 2023. 4, 8

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unify-
ing framework for flows and diffusions. CoRR, abs/2303.08797, 2023. 4, 8

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the opti-
mal reverse variance in diffusion probabilistic models. In International Conference on Learning
Representations (ICLR), 2022. 8

Dhananjay Bhaskar, Kincaid MacDonald, Oluwadamilola Fasina, Dawson Thomas, Bastian Rieck,
Ian Adelstein, and Smita Krishnaswamy. Diffusion curvature for estimating local curvature in
high dimensional data. In Advances in Neural Information Processing Systems 35 (NeurIPS
2022), 2022. 8

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 2018. 3, 7

Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. ILVR:
conditioning method for denoising diffusion probabilistic models. In IEEE/CVF International
Conference on Computer Vision (ICCV), 2021. 7

Germund G. Dahlquist. A special stability problem for linear multistep methods - bit numer-
ical mathematics, 1963. URL https://link.springer.com/article/10.1007/
BF01963532. 6

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
Advances in Neural Information Processing Systems 34 (NeurIPS 2021), 2021. 1

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M. Oberman. How to train your
neural ODE: the world of jacobian and kinetic regularization. In Proceedings of The 37th Inter-
national Conference on Machine Learning (ICML 2020), 2020. 8

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems 27 (NIPS 2014), 2014. 1

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud.
FFJORD: free-form continuous dynamics for scalable reversible generative models. In Inter-
national Conference on Learning Representations (ICLR), 2019. 3, 7

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems 32 (NeurIPS 2019), 2020. 1, 8

Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video diffusion models. In Advances in Neural Information Processing Systems 35
(NeurIPS 2022), 2022. 1

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron C. Courville. Neural autoregressive
flows. In Proceedings of The 35th International Conference on Machine Learning (ICML 2018),
2018. 8

Chin-Wei Huang, Jae Hyun Lim, and Aaron C. Courville. A variational perspective on diffusion-
based generative models and score matching. In Advances in Neural Information Processing
Systems 34 (NeurIPS 2021), 2021. 8

10

https://link.springer.com/article/10.1007/BF01963532
https://link.springer.com/article/10.1007/BF01963532

Under review as a conference paper at ICLR 2024

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Advances in Neural Information Processing Systems 35 (NeurIPS
2022), 2022. 8

Jacob Kelly, Jesse Bettencourt, Matthew J. Johnson, and David Duvenaud. Learning differential
equations that are easy to solve. In Advances in Neural Information Processing Systems 33
(NeurIPS 2020), 2020. 8

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 2018. 7

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR), 2014. 1

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. On density estimation with diffu-
sion models. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021), 2021.
8

Sangyun Lee, Beomsu Kim, and Jong Chul Ye. Minimizing trajectory curvature of ode-based gener-
ative models. In Proceedings of The 40th International Conference on Machine Learning (ICML
2023), 2023. 8

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In International Conference on Learning Representations
(ICLR), 2023. 1, 3, 9, 14

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In International Conference on Learning Representations (ICLR),
2023a. 1, 2, 3, 4, 5, 6, 8, 9

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and Qiang Liu. Instaflow: One step is enough
for high-quality diffusion-based text-to-image generation, 2023b. 4

Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
1

Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate continu-
ous normalizing flows via optimal transport. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021. 8

George Papamakarios, Iain Murray, and Theo Pavlakou. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017. 7

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
man, and Ricky T. Q. Chen. Multisample flow matching: Straightening flows with minibatch
couplings. In Proceedings of The 40th International Conference on Machine Learning (ICML
2023), 2023. 5, 8

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In Proceedings of The 32nd International
Conference on Machine Learning (ICML 2015), 2015. 8

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations (ICLR), 2021a. 8

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems 32 (NeurIPS 2019), 2019. 1, 8

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations (ICLR), 2021b. 1, 8

11

Under review as a conference paper at ICLR 2024

Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume
Huguet, Guy Wolf, and Yoshua Bengio. Simulation-free schrödinger bridges via score and flow
matching. arXiv preprint 2307.03672, 2023a. 8

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
Fatras, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint 2302.00482, 2023b. 8, 9

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
metric diffusion model for molecular conformation generation. In International Conference on
Learning Representations (ICLR), 2022. 1

12

Under review as a conference paper at ICLR 2024

A EXPERIMENTAL DETAILS

A.1 DATASET DESCRIPTION

CIFAR-10 The CIFAR-10 dataset is the image dataset that consists of 10 classes of typical real-
world objects with 50, 000 training images and 10, 000 test images with 32 × 32 resolution. In our
experiments, we did not use the image labels and constructed unconditional generative models.

CelebA The CelebA dataset is the face dataset that consists of 202, 599 training images from
10, 177 celebrities with 40 binary attribute labels, with size 178×218. In our experiment, we resized
and cropped the image to 64×64 resolution to unify the input shape of the generative models. Also,
we did not use the attribute labels and constructed unconditional generative models.

LSUN-Church The Large-Scale Scene UNderstanding (LSUN)-Church(-Outdoor) dataset is the
dataset that consists of the church images as well as the background which surrounds them. This
data consists of 126, 227 images with 256× 256 resolution.

A.2 DETAILS ON TRAINING HYPERPARAMETERS

Table 2: The hyperparameter used to train our model.

CIFAR-10 CelebA LSUN-Church

Channels 128 128 128
Depth 3 3 4
Channel multiplier (1, 2, 2) (1, 2, 2) (1, 2, 2, 4)
Heads 4 4 4
Attention resolution 16 16 16
Dropout 0.15 0.1 0.1
Effective batch size 128 128 32
TPUs v2-8 v3-8 v3-8
Steps 100000 100000 200000
Reflow images 1M 200k 500k
Learning rate (Adam) 2e− 3 2e− 3 5e− 4

We report the hyperparmeters that we used for training in Table 2. We used 32-bit precision floating
number for training all datasets. For CIFAR-10 and CelebA datasets, we used Adam optimizer with
β1 = 0.5 and β2 = 0.9. The architectural hyperpameters are specified in (Table).

EMA rate Since the flow matching and rectified flow is much harder to converge than the con-
ventional diffusion model because of matching pairs of the independent distributions, we tuned the
EMA rate in two ways:

• We have increased the EMA rate to 0.999999, higher than other models. (Table) shows
the ablation study on the EMA rate of the image synthesis quality from CIFAR-10 datasets
from baseline 1-rectified flow model for a 1000-step Euler solver.

• Warm-up training policy. Fixing the EMA rate high makes converging the model almost
impossible because of the extremely high momentum. So, we introduce the warmup phase
with respect to the training step as

EMA rate=min((1 + step) / (10 + step), decay) (15)

where decay and step are the given EMA rate and the training steps, respectively. Intro-
ducing this warmup phase further improved the FID of our implementation in 1.3M steps
and 128 batch size to 3.03 in CIFAR-10 dataset generation using a 1,000-step Euler solver.

13

Under review as a conference paper at ICLR 2024

Table 3: The performance of the 1-rectified flow model, trained with batch size 128, 1.3M steps and
different EMA rates. The model does not converge with EMA rate 0.999999.

EMA rate 0.999 0.9999 0.99999 0.999999 Warm-up

FID 5.78 4.77 3.91 - 3.03

B ON THE GLOBAL TRUNCATION ERROR OF THE LINEAR MULTISTEP ODE
SOLVER

Let the linear multistep method is defined as

yn+1 =

p∑
j=0

αjx(i− j) + h

p∑
j=−1

βjvt(x(i− j), ti−j), i ≥ p (16)

where the interval of a single step is h, ti = t0 + hi stands for i-th time step, and vt is the vector
field, or the drift function. Let the linear multistep method have the convergence order of r. Then
according to the Dahlquist equivalence theorem, the global truncation error of the ODE solver has
the order ofO(hr). In case of the sequential reflow algorithm with the same NFE, the single interval
of a single step is given as h

K where K is the number of equidistribted intervals that divide [a, b]
into time segments. Then the global truncation error of the ODE solver of the sequential reflow
algorithm is of O

((
h
K

)r)
. As we have K segments, the order of the global truncation error is

K ×O
((

h
K

)r)
= K1−rO(hr).

C EQUIVALENCE OF FLOW MATCHING AND CONDITIONAL FLOW
MATCHING

In this section, we recap the equivalence of gradients of flow matching objective Equation 3 and
conditional flow matching objective Equation 4. For further information, refer to Lipman et al.
(2023), Theorem 2.
Proposition C.1 (Equivalence of Equation 3 and Equation 4). Let pt(x) > 0,∀x ∈ RD and t ∈
[0, 1], where pt is the marginal probability path over x. Then, ∇θLFM(θ) = ∇θLCFM(θ).

Proof. First, we remind the two equations.

LFM(θ) = Et,p1(x1)

[
∥ut(x, θ)− vt(x)∥22

]
LCFM(θ) = Et,p1(x1),pt(xt|x1)

[
∥ut(xt, θ)− vt(xt|x1)∥22

]
.

(17)

From direct computation, we have

∥ut(x, θ)− vt(x)∥22 = ∥ut(x, θ)∥22 − 2ut(x) · vt(x) + ∥vt(x)∥22
∥ut(x, θ)− vt(x)∥22 = ∥ut(x, θ)∥22 − 2ut(x) · vt(x|x1) + ∥vt(x|x1)∥22 .

(18)

Since Ept(x)

[
∥ut(x, θ)∥22

]
= Ept(x|x1)q(x1)

[
∥v(t)∥22

]
, the first term at the right-hand side is re-

moved. Since vt(x) and vt(x|x1) is an analytically calculated form which is independent of θ, the
only remaining term is the dot products. Then

Ept(x) [ut(x) · vt(x)] =
∫
pt(x)(ut(x) · vt(x))dx

=

∫
pt(x)

(
ut(x) ·

∫
vt(x|x1)pt(x|x1)q(x1)

pt(x)
dx1

)
dx

=

∫ ∫
ut(x)q(x1) (ut(x) · vt(x|x1)) dx1dx

= Eq(x1)ut(x) [ut(x)vt(x|x1)]

(19)

where the change of integration is possible since the flow is a diffeomorphism.

14

Under review as a conference paper at ICLR 2024

Figure 6: More results on sequential straightness. From upper left to lower right: the relative
sequential straightness at 100k steps, compared to the original reflow scheme.

D SEQUENTIAL STRAIGHTNESS

D.1 IMPLEMENTATION DETAILS

We measured the sequential straightness

Sseq(Z) =
K∑
i=1

∫ ti

ti−1

∥∥∥∥∥Zi
ti − Z

i
ti−1

ti − ti−1
− d

dt
Zi
t

∥∥∥∥∥
2

dt (20)

by the following procedure.

(1) Random draw the time interval [ti−1, ti] with i ∈ [1 : K], as in the SeqRF algorithm.
(2) Sample the oracle input at time ti as Zti = (1− ti)X0 + tiX1.
(3) Then run the ODE solver to collect all sample within [ti−1, ti].

(4) Zti−1
= X̂ti−1

, that is, the terminal value of the reverse-time ODE solver at time ti−1.

(5) The vector field is calculated as Zti

− Zti−1
ti − ti−1, and the derivative is defined as the

difference between the values of two adjacent ODE solver timesteps, divided by the size of
timesteps.

D.2 MORE RESULTS ON SEQUENTIAL STRAIGHTNESS

Figure 6 demonstrates additional results on sequential straightness.

15

Under review as a conference paper at ICLR 2024

E ADDITIONAL FIGURES

Figure 7: Non-curated LSUN-Church-256 image synthesis result with 2-SeqRF, that starts from the
same random noise. From up to down: {1, 2, 5, 10, 25}-step Euler solver.

Figure 8: Non-curated CelebA images with 2-SeqRF after distillation. From up to down: {1, 2,
4}-step Euler solver, each have FID score of 6.22, 4.95, 4.67.

16

