IRIS: An Immersive Robot Interaction System

Xinkai Jiang!, Qihao Yuan?, Enes Ulas Dincer', Hongyi Zhou', Ge Li*, Xueyin Li’,
Xiaogang Jia', Timo Schnizer', Nicolas Schreiber!, Weiran Liao', Julius Haag!,
Kailai Li%, Gerhard Neumann', Rudolf Lioutikov'

IKarlsruhe Institute of Technology, 2University of Groningen
Project Page: https://intuitive-robots.github.io/iris-project-page/

Figure 1: We present IRIS, an Immersive Robot Interaction System designed to support various
simulators and real-world scenarios.

Abstract:

This paper introduces IRIS, an Immersive Robot Interaction System leveraging
Extended Reality (XR). Existing XR-based systems enable efficient data collec-
tion but are often challenging to reproduce and reuse due to their specificity to par-
ticular robots, objects, simulators, and environments. IRIS addresses these issues
by supporting immersive interaction and data collection across diverse simula-
tors and real-world scenarios. It visualizes arbitrary rigid and deformable objects,
robots from simulation, and integrates real-time sensor-generated point clouds for
real-world applications. Additionally, IRIS enhances collaborative capabilities by
enabling multiple users to simultaneously interact within the same virtual scene.
Extensive experiments demonstrate that IRIS offers efficient and intuitive data
collection in both simulated and real-world settings.

Keywords: Human-Robot Interaction, Extended Reality, Imitation Learning

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://intuitive-robots.github.io/iris-project-page/

1 Introduction

Robot learning relies on diverse and high-quality data to acquire complex behaviors [1, 2]. Recent
studies indicate that models trained on more varied and complex datasets generalize more effectively
across diverse scenarios [3, 4, 5]. By providing immersive perspectives and interactions, Extended
Reality ! (XR) has emerged as a promising tool for efficient and intuitive large-scale data collection
in both simulation [7, 8, 9] and real-world environments [10, 11]. However, existing XR approaches
face significant challenges when reused or reproduced in new scenarios, primarily due to three lim-
itations: asset diversity, platform dependency, and XR device compatibility.

Current approaches [12, 7, 8, 13, 14] rely heavily on predefined sets of objects and robot models,
thereby exhibiting limited asset diversity. Furthermore, most methods [15, 16, 9, 8] are specif-
ically tailored to particular simulators or real-world conditions, resulting in substantial platform
dependency. This limitation significantly reduces reusability and complicates adaptation to different
simulation platforms. Additionally, existing XR frameworks [16, 17, 10, 18] are typically optimized
for specific XR headset versions, leading to poor device compatibility. Together, these limitations
severely constrain reproducibility and broader adoption of XR-based data collection and robot inter-
action methodologies within the research community.

To address these challenges, we propose IRIS—an Immersive Robot Interaction System, demon-
strated in Figurel. IRIS is a general and extensible framework that supports various simulators
and real-world environments, with compatibility across different XR headsets. It is designed to
generalize robot applications with XR across six key features: Cross-Scene, Cross-Embodiment,
Cross-Simulator, Cross-Reality, Cross-Platform, and Cross-User.

Cross-Scene enables XR systems to handle arbitrary simulated objects, removing constraints from
predefined models. IRIS introduces a unified scene specification representing all objects as data
structures with meshes, materials, and textures. This specification is transmitted to XR headsets
for consistent scene rendering, with dynamic updates during simulation. Through its flexible and
dynamic architecture, IRIS is also the first XR-based system that supports deformable objects manip-
ulation. Cross-Embodiment is achieved by modeling robots as compositions of standard objects,
enabling seamless compatibility with diverse robot embodiments without requiring specialized con-
figurations. Cross-Simulator ensures compatibility with a range of simulation engines. Since the
unified scene specification is simulator-agnostic, new simulators can be supported by implementing
a parser to translate their scenes into this format. This flexibility is demonstrated by IRIS’s sup-
port for MuJoCo [19], IsaacSim [20], CoppeliaSim [21], and Genesis [22]. Cross-Reality allows
IRIS to operate across both simulated and real-world environments. For real-world applications,
IRIS incorporates point cloud visualization using camera data, facilitating immersive data collec-
tion. Cross-Platform ensures compatibility across XR devices. IRIS implements its XR application
using the Unity framework [23], with modular design separating visualization and interaction logic.
This allows developers to deploy the system on new XR headsets by reusing visualization modules
and implementing device-specific input handling. IRIS has been successfully deployed on the Meta
Quest 3 and HoloLens 2. Cross-User supports collaborative multi-user interaction within a shared
scene via a communication protocol that synchronizes XR headsets. This enables coordinated tasks
and collective data collection in both virtual and real environments. Table 1 highlights the advan-
tages of IRIS over existing XR-based systems across these features.

The contributions of IRIS are summarized as follows: (1) A unified scene specification that inte-
grates seamlessly with multiple robot simulators, enabling consistent visualization and interaction
across diverse XR headsets, while promoting reproducibility and reusability. (2) The first XR-based
system to support deformable object manipulation in robot simulators, allowing realistic interaction
and data collection for soft-body tasks. (3) A collaborative, multi-user framework for XR appli-
cations that enhances robot data collection through synchronized interactions in shared virtual or
physical environments.

"Extended Reality (XR) is an umbrella term encompassing Augmented Reality, Mixed Reality, and Virtual
Reality [6].

Cross-Scene Cross-Embodiment Cr i Cross-Reality Cross-Platform Cross-User Control Space

Fan et al. [24]

ARC-LfD [12]

Zhu et al. [25]

Jiang et al. [7] Joint & Cartesian
Mosbach et al. [15] Available Joint & Cartesian
Holo-Dex [26]

ARCADE [8]

DART [9]

ARMADA [17]

Meng et al. [18] Sim & Real

Bunny-VisionPro [27]

IMMERTWIN [28]

Open-TeleVision [11] Meta Quest, Vision Pro

Szczurek et al. [29] Available

OPEN TEACH [10] Available Joint & Cartesian
Ours Available Available Mujoco, CoppeliaSim, IsaacSim Sim & Real Meta Quest 3, HoloLens 2 Available Joint & Cartesian

Table 1: Comparison of XR-based system. IRIS is compared with related works in seven aspects.
2 Related Work

Teleoperation-Based Data Collection on Real Robots. Collecting data using tele-operation on real
robots has been explored by many previous works. Aloha [30] introduced a low-cost teleoperation
system that collects real-world demonstrations for imitation learning. A bimanual workspace is set
up, where leader robots are used to control the follower robots. Followup work [1] improved the
performance, ergonomics, and robustness compared to the original design. In addition, a mobile
version of Aloha [31] improved data collection outside of lab settings. GELLO [32] supports a
variety of robot arms through a 3D-printed low-cost leader robots with off-the-shelf motors. In
order to tele-operate dexterous end effectors, prior work has retrieved hand motion data through
visual hand tracking [33] or customized gloves [2]. In contrast to IRIS, none of these approaches
leverages the immersive advantages of XR.

XR-Based Data Collection in Real World. Common XR systems show virtual robots to help users
understand how their movements control real robots [33]. For instance, recent works developed
mobile apps to allow data collection in augmented reality without the need for XR headsets [34, 35],
which allow more intuitive robot manipulation [8, 17, 7]. Instead of displaying the virtual robot in
a third-person view, Cheng et al. [11], Iyer et al. [10] directly provide the first-person camera feed
of the real robot to the user. Other systems [14, 36, 37, 28, 25, 24] visualize the real-world scene
in the headset and control robot arms with controllers [25] or hand tracking [37]. XR-based data
collection for dexterous hands has also been explored. For example, Arunachalam et al. [38] tracks
hand motion using camera and retargets it on the real robot hand. Chen et al. [39] controls robot
hand and robot arm at the same time. While these approaches do use XR, the robot data collection
and interaction is limited to the real world, with no simulators used in the process.

XR-Based Data Collection in Simulation. Real robot data collection is limited by available envi-
ronments and objects. Virtual data collection offers a more efficient way to gather demonstrations
while providing access to extensive 3D asset libraries. For instance, DART [9] runs a cloud-based
simulation, and users collect demonstrations in any virtualized environment from any location. Mos-
bach et al. [15] collects dexterous hand manipulation data with a special glove device in physics
simulations. Although Meng et al. [18] also leverages simulators, their virtual scene is a replica of
the real scene, thus the flexibility of simulation is not fully exploited.

3 System Overview

This section presents the hardware and software architecture of IRIS, along with several applications
which have been explored in this paper. An overview of its paradigm is shown in Figure 2.

3.1 System Architecture

Node Communication Protocol. The IRIS system operates across simulation or sensor-processing
computers and XR headsets. It provides a dedicated Python library, SimPublisher, for use on the

T =
P — [E—
Il Spatial Anchor Il m pr— @ pr————ll Sensor
o'
Lo FE Y.l
- .l Teleoperator a Follower

vl

Simulation Extended Reality

(a) Interact with Robots in Simulation (b) Interact with Robots in Real World

Figure 2: Paradigms of the system architecture in both simulation (left) and real world (right). All
the devices are connected through a Wi-Fi router. In the left image, the simulation updates the scene
to all headsets using the SimPublisher. A spatial anchor is used to align the virtual scenes across
different headsets. In the right image, a sensor generates a point cloud transmitted to the XR headset,
allowing the operator to clearly observe the manipulated object in front of the follower robot.
computers, in combination with a Unity application deployed on the headsets. Through this library,
users are able to render objects remotely on the headsets and manage groups of headsets without
the need to write C# code. This approach eliminates the requirement for developing separate Unity
projects, thereby substantially reducing the cost and complexity associated with integrating robotic
systems into VR applications. This architecture requires a robust network connection between all
components. While Robot Operating System (ROS) [40] offers a general communication framework
and it is possible to connect to Unity and XR development, it is quite heavy to deploy. IRIS was
intentionally designed to be decoupled from the ROS framework in order to support a broader range
of simulators and avoid introducing unnecessary dependencies. It built an lightweight communica-
tion protocol based on ZeroMQ (ZMQ) [41], and extended it by auto-node discovery features. This
design choice enhances modularity and simplifies integration in diverse environments. Importantly,
IRIS remains compatible with ROS through a lightweight and flexible communication interface, al-
lowing seamless integration when needed. To ensure node discovery, the master node broadcasts
UDP messages to the broadcast port on the network at a specific frequency. The network is built via
Wi-Fi or cable. When a new XR node launches, it listens to the broadcast port and receives mes-
sages from the master node. Then it extracts connection details from these messages and establishes
a ZMQ connection. This protocol achieves Cross-User ability, ensures reliable communication,
automatic reconnection, and smooth recovery from disconnections, making it ideal for dynamic
multi-device XR systems.

Unified Scene Representation. To visualize simulation scenes and virtual objects in XR headsets,
existing solutions [7, 9, 8, 12] rely on predefined models, which limits flexibility for incorporating
new objects and robots. IRIS overcomes this limitation with a Unified Scene Representation (USR)
parsed directly from simulations. Unlike URDF, USR can be serialized with meshes and texture
information and is adapted to Unity’s GameObject structure, allowing scenes to be reconstructed na-
tively in Unity. Serving as a middleware layer between simulators and Unity, USR enables objects to
be generated in Python, serialized, and seamlessly loaded into Unity without additional conversion.
The USR includes all objects with their geometry, meshes, materials, and textures. All the objects
is loaded in this specification using a kinematic tree structure and serialized into byte format. IRIS
application rebuild an identical scene upon received this specification from simulation node. IRIS
provides a custom Python library named SimPublisher that automatically generates specifications
from simulation data, then it continuously collects simulation states and transmits them to headsets
at a fixed frequency. This scene specification enables IRIS to process all kinds of robots and objects
in simulation, facilitating both Cross-Scene and Cross-Embodiment capabilities. The USR is a
general definition that does not rely on any specific simulator. Hence, IRIS can be easily adapted to
various simulators by implementing a new simulation parser to generate a scene specification from
the simulator and a new publisher to update the states of the scene. Currently, IRIS supports scene
parsers for MuJoCo, IsaacSim, CoppeliaSim, and Genesis, with the potential to be extended to
other simulation engines as desired. This demonstrates that IRIS can be easily adapted to various
benchmarks and simulators, highlighting its Cross-Simulator capability.

Multiple Headsets Compatibility. IRIS implements an XR application using Unity. This appli-
cation can be directly deployed to other headset platforms using the Unity deployment pipeline,
showcasing IRIS’s Cross-Platform capability. Currently, IRIS has been tested on HoloLens 2 [42]
and Meta Quest 3 [43]. Due to Meta Quest 3 visualization resolution is better than HoloLens 2, this
paper conducted experiments and displayed XR scenes using this headset.

Intuitive Robot Control Interface. In data collection tasks or robot interaction, robot control in-
terfaces are used to operate the robot in both simulated and real-world environments. Based on
prior work [7, 10], IRIS implemented Kinesthetic Teaching (KT) and Motion Controller (MC) as
its default robot controllers. The details of these two interfaces are in the Appendix. C. These two
methods were used and evaluated with other interfaces in Sec. 4.1. IRIS’s flexible framework al-
lows users to easily customize and implement additional control interfaces, including hand tracking,
gloves, smartphones, and motion tracking systems. Fig. 14 shows how these two interfaces work.

3.2 System Application

IRIS is a versatile platform with significant potential for robot learning and robotics research com-
munity. This section outlines several applications that have been explored in this work.

General Manipulation Data Collection. Through its flexible framework design, IRIS supports
four simulators and various robot manipulation benchmarks. IRIS has been tested in some MuJoCo-
based benchmarks including Meta World [44], LIBERO [45], RoboCasa [46], robosuite [47],
Fancy Gym [48], and CoppeliaSim-based benchmark like PyRep [49], Colosseum [50]. Robots
can be operated using either our default controllers (Sec. 3.1) or user-customized controllers.

Deformable Object Manipulation. IRIS supports deformable object by dynamically updating the
mesh in real time, making it possible to train and test robotic algorithms for tasks that involve soft
objects. As far as we know, no existing work has explored the manipulation of deformable objects
using by rendering them in XR headsets. This paper conducted an experiment (Sec. 4.2) to validate
the data collected by IRIS based on IsaacSim.

Figure 3: Collaborative manipulation in simulation via IRIS. The left image shows the collaborative
manipulation for handing over a hammer between two Franka Panda robots by KT, and the right
image shows that collaborative manipulation for handing over a red board between two Aloha 2
Arms by MC.

Collaborative Manipulation. Collaborative manipulation, where multiple users provide demon-
strations simultaneously, is vital for human-robot systems [51]. Previous approaches [33] often use
multiple screens, lacking XR’s immersion, and typically limit control to one person while others
merely observe [29]. IRIS’s communication protocol enables seamless integration of devices for
controlling multiple robots in shared scenes, supporting additional XR headsets with minimal setup
for dynamic collaborative environments. Fig. 3 shows collaborative manipulation for handover task.

High-Dynamic Task Data Collection and Interaction Prior work used keyboards, 3D mice, or
smartphones [54, 55, 45, 56], which are limited for complex motions. With the support for motion
controllers, IRIS can capture precise user movements. This paper demonstrates the usage of motion
controllers in a simulated table tennis task against an RL agent trained with BBRL [52]. Fig. 4
presents this application and an experiment of using collected data to train policies used in Sec. 4.2.

Figure 4: Playing table tennis with RL agent in Fancy Gym environment. The RL agent policy is
trained with Deep Black-Box Reinforcement Learning (BBRL) [52, 53]

Headset ,

Figure 5: IRIS Real-world Application. This setup features two Franka robots: a leader robot
controlled by a user wearing a Meta Quest 3 headset and a follower robot that mirrors its movements.
A depth camera captures the environment for real-time point cloud visualization in XR.

Real World Teleoperation and Data Collection. IRIS not only supports simulation but can also be
used in the real-world setting. To minimize physical obstruction from humans, tele-operation using
XR is commonly employed for collecting such data. Current approaches [10, 11] that utilize video
streaming to XR headsets are restricted to fixed viewpoints. IRIS overcomes this limitation by pro-
jecting point cloud from depth cameras to XR headsets, ensuring both immersion and interactivity.
Fig. 5 shows the real-world application, and the details are in the Appendix. B.5.2

4 Experiment

In this section, we focus on three questions to demonstrate the effectiveness and scalability of IRIS:
(1) How effective and intuitive is the IRIS system for data collection in terms of user experience? (2)
Can data collected by IRIS be effectively used for policy training in simulation? (3) Is IRIS suitable
for data collection in real-world scenarios? To address these questions, we evaluate the performance
of IRIS across three groups of tasks, with detailed experimental settings presented in Appendix D.

4.1 User Experience Evaluation

To assess the efficiency and intuitiveness of IRIS data collection application, a pilot study was con-
ducted by collecting demonstrations for LIBERO benchmark tasks [45]. Four tasks (Fig. 17 in the
Appendix) were selected in the dimension of translation, rotation, and compound movement, in-
cluding close the microwave, turn off the stove, pick up the book in the middle and place it on the
cabinet shelf, and turn on the stove and put the frying pan on it. The control interface baselines for
this study are two control interfaces from LIBERO: the Keyboard (KB) and the 3D Mouse (3M).

Study Design This study involved eight participants with no prior experience using IRIS or XR
headsets. They evaluated each interface through both objective and subjective metrics. Objective
measurements included success rate and average time per task, while subjective assessments were
gathered via a questionnaire based on the UMUX framework [57]. The questionnaire evaluates each
interface by a 7-point Likert scale in four dimensions including Experience, Usefulness, Intuitive-
ness, and Efficiency. This paper employed the Kruskal-Wallis test [58] for a better and more robust
statistical analysis for the study.

Interface Task 1 Task 2 Task 3 Task 4

KB (LIBERO) 0.90 0.725 0.750 0.500
3M (LIBERO) 1.00 0.950 0.375 0.900
KT (Ours) 1.00 1.00 0.975 0.950
MC (Ours) 1.00 0.900 0.975 1.00

Table 2: Success rate of four interfaces. KT and MC lead to higher success rate across four tasks.

& Task 1 Task 2 Task 3 Task 4

ng* 30- 40-

E 10- 20- 3 40|

2 20-

g 5- i 10'% 10- 20'%

e S = o

§ KT MC KB 3M KT MC KB 3M KT MC KB 3M KT MC KB 3M

Usefulness Experience Intuitiveness Efficiency

7- 7- 7- 7-

iF—o iE—_ EE] 5E

8 i * 4- 4- 4-

3 3 3 3 3

@3 2- % 2- = 37
1 1- 1- 1-

KT MC KB 3M KT MC KB 3M KT MC KB 3M KT MC KB 3M

Figure 6: The first row: average task completion time for each interface across tasks. The second
row: subjective evaluation scores of four metrics. Our interfaces, KT and MC in XR setting, are
faster in data collection with better user experience.

Study Result In the result of objective metrics, Tab. 2 and Fig. 6 present the success rates and the
average time consumed for each interface across the tasks. The result shows a success rate of over
90% across all four tasks when using the KT and MC interfaces from IRIS, and these XR-based
interface significantly outperformed the non-XR interface (p < 0.05 2) in all conditions except MC
in Task 2. The KT and MC interfaces consistently demonstrate lower task completion times than
KB and 3M (p < 0.05) particularly for Task 3 and Task 4, indicating higher efficiency. The result
of subjective result is shown in Fig. 6. The KT and MC interfaces consistently receive significant
(p < 0.05) higher scores than KB and 3M across all criteria, indicating positive user perception and
ease of use. This study demonstrates that IRIS outperformed baseline interfaces in both objective and
subjective metrics, indicating it provides a more intuitive and efficient approach for data collection.

4.2 Policy Evaluation in Simulation

Task1 Task?2 Task3 Task4

° 0.7- 0.7- 0.7- 0.7-
2 == LIBERO

g 0.6- == IRIS 0.6 0.6- 0.6
£ 0.5 0.5- 0.5- 0.5-
Q

S04 0.4- 0.4- 0.4-
=]

» 0.3- 0.3- 0.3- 0.3-

BC BESO BC BESO BC BESO BC BESO

Figure 7: Performance comparison of policies trained on different datasets across LIBERO tasks

General Manipulation To evaluate the quality of data collected using IRIS, we employ two standard
imitation learning algorithms: BC-Transformer [59] and BESO [60]. These models are trained
separately on datasets collected with IRIS and on the original LIBERO dataset, with results shown
in Figure 7. To ensure a fair comparison, we collect the same number of trajectories using IRIS
as in LIBERO, using only the MC interface (instead of KT), since LIBERO operates in Cartesian
space rather than joint space. Each model is trained for 50 epochs with three random seeds to
capture performance variance, and all experiments use identical training parameters. The results
demonstrate that the quality of data collected by IRIS is on par with the original LIBERO dataset.

Deformable Objects We also evaluate the data collected by IRIS from deformable object manip-
ulation. Three tasks were designed to evaluate the data including Fold Cloth, Lift Teddy, and Stow

2Jevel of statistical significance by Kruskal-Wallis test

Teddy. The policy used in this experiment is the U-Net diffusion model [61]. Observations are robot
EEF pose, depth, and image data. The success rate of each task are Fold Cloth: 0.97 &+ 0.018, Lift
Teddy: 0.90 £ 0.035, and Stow Teddy: 0.85 £ 0.053.

Dynamic Task Data Collection To evaulate the data quality of highly dynamic task collected by
IRIS, this paper uses the table tennis from Fancy_Gym [48] by motion controllers. The observation
includes bat proprioceptive state and dual camera images, and the action is the desired bat position
and orientation in task space. Fig. 8a shows the performance of imitation learning models [62, 63]
trained on the collected data, using ball interception rate and successful return rate as evaluation
metrics. These experiments validate the data from three data collection scenarios in Section 3.2.
The results demonstrate that IRIS collects data of comparable quality to traditional methods, while
offering significantly greater efficiency.

Table Tennis Cup Inserting Pick Up Lego

9 [T Ball Interception g [Tele-Op
© 0.5 =3 Ball Return 5] =3 IRIS
~ ~
A £1.0- 1.0-
$ 0.3 &
§ § 0.8- 0.8-
»n 0.1- n0.6- 0.6-

MoDE ~ MoDE120 BEAST120 BEAST240 Collection Policy Collection Policy
(a) Policy Performance of Table Tennis Task (b) Policy Performance of Real World Experiment

Figure 8: Performance evaluation of policies trained on IRIS-collected data across diverse scenarios

4.3 Real World Evaluation

This experiment evaluates the effectiveness of IRIS for real-world data collection through two tasks:
Cup Inserting and Picking Up Lego. IRIS was compared against Tele-Op, a widely used method for
real robot data collection. In Tele-Op [59, 11, 10], users observe the scene via a monitor or from
a distance, which is less comfortable and narrows the operator’s field of view. For each task, 30
successful demonstrations were collected from both methods. These two datasets were used to train
two BC-Transformer policies with identical hyperparameters. The metrics include data collection
success rate (the percentage of successful attempts during data collection) and policy success rate
after training. The results (Fig. 8 b) show that IRIS achieves a higher data collection success rate,
and that policies trained with IRIS exhibit better quality than those trained with Tele-Op.

(a) Soft object manipulation in IsaacSim (b) Real-world data collection by IRIS(left) and Tele-Op(right)

Figure 9: The experiment of deformable manipulation and real-world data collection

5 Conclusion

In this work, we introduced IRIS, an innovative framework that seamlessly integrates Extended
Reality (XR) technologies with robotics data collection. IRIS addresses key challenges in repro-
ducibility and reusability that are common in current XR-based systems. Its flexible, extendable
design supports multiple simulators, benchmarks, real-world applications, and multi-user use cases.
User studies demonstrate that IRIS outperforms previous data collection methods, positioning it as
a promising solution for future data collection pipelines. As an open-source project, IRIS codebase
promotes further research and adaptation across diverse use cases and hardware platforms.

Limitations

Based on our development and usage experience, IRIS has three main limitations. First, the visu-
alization in XR headsets is limited to basic RGB textures for materials. IRIS currently supports
deformable objects exclusively in IsaacSim, as other simulators either lack robust deformable object
capabilities or haven’t implemented them. This paper selected IsaacSim for initial testing due to
its superior deformable object simulation. Finally, IRIS has only been tested on Meta Quest 3 and
HoloLens 2, and further evaluation on additional devices would be beneficial.

Acknowledgments

The presented work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) — 448648559. Xinkai Jiang and Xiaogang Jia acknowledge the support from the China
Scholarship Council (CSC).

References

[1] J. Aldaco, T. Armstrong, R. Baruch, J. Bingham, S. Chan, K. Draper, D. Dwibedi, C. Finn,
P. Florence, S. Goodrich, et al. Aloha 2: An enhanced low-cost hardware for bimanual teleop-
eration. arXiv preprint arXiv:2405.02292, 2024.

[2] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and C. K. Liu. Dexcap: Scalable and portable
mocap data collection system for dexterous manipulation. arXiv preprint arXiv:2403.07788,
2024.

[3] B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, S. Agarwal, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 1, 2020.

[4] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages 8748—-8763. PMLR, 2021.

[5] J. Gao, A. Xie, T. Xiao, C. Finn, and D. Sadigh. Efficient data collection for robotic manipu-
lation via compositional generalization. arXiv preprint arXiv:2403.05110, 2024.

[6] Extended reality - Wikipedia — en.wikipedia.org. https://en.wikipedia.org/wiki/
Extended_reality. [Accessed 11-01-2025].

[7] X.Jiang, P. Mattes, X. Jia, N. Schreiber, G. Neumann, and R. Lioutikov. A comprehensive user
study on augmented reality-based data collection interfaces for robot learning. In Proceedings
of the 2024 ACM/IEEE International Conference on Human-Robot Interaction, pages 333—
342, 2024.

[8] Y. Yang, B. Ikeda, G. Bertasius, and D. Szafir. Arcade: Scalable demonstration collection
and generation via augmented reality for imitation learning. In 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2855-2861. IEEE, 2024.

[9] Y. Park, J. S. Bhatia, L. Ankile, and P. Agrawal. Dexhub and dart: Towards internet scale robot
data collection. arXiv preprint arXiv:2411.02214, 2024.

[10] A.lIyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and L. Pinto. Open teach: A versatile
teleoperation system for robotic manipulation. arXiv preprint arXiv:2403.07870, 2024.

[11] X. Cheng, J. Li, S. Yang, G. Yang, and X. Wang. Open-television: Teleoperation with immer-
sive active visual feedback. In 8th Annual Conference on Robot Learning.

https://en.wikipedia.org/wiki/Extended_reality
https://en.wikipedia.org/wiki/Extended_reality

[12] M. B. Luebbers, C. Brooks, C. L. Mueller, D. Szafir, and B. Hayes. Arc-1fd: Using augmented
reality for interactive long-term robot skill maintenance via constrained learning from demon-
stration. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
3794-3800. IEEE, 2021.

[13] A. George, A. Bartsch, and A. B. Farimani. Openvr: Teleoperation for manipulation. Soft-
wareX, 29:102054, 2025.

[14] A. Naceri, D. Mazzanti, J. Bimbo, Y. T. Tefera, D. Prattichizzo, D. G. Caldwell, L. S. Mattos,
and N. Deshpande. The vicarios virtual reality interface for remote robotic teleoperation:
Teleporting for intuitive tele-manipulation. Journal of Intelligent & Robotic Systems, 101:
1-16, 2021.

[15] M. Mosbach, K. Moraw, and S. Behnke. Accelerating interactive human-like manipulation
learning with gpu-based simulation and high-quality demonstrations. In 2022 IEEE-RAS 21st
International Conference on Humanoid Robots (Humanoids), pages 435-441. IEEE, 2022.

[16] J.I. Lipton, A.J. Fay, and D. Rus. Baxter’s homunculus: Virtual reality spaces for teleoperation
in manufacturing. IEEE Robotics and Automation Letters, 3(1):179-186, 2017.

[17] N. Nechyporenko, R. Hoque, C. Webb, M. Sivapurapu, and J. Zhang. Armada: Augmented re-
ality for robot manipulation and robot-free data acquisition. arXiv preprint arXiv:2412.10631,
2024.

[18] L. Meng, J. Liu, W. Chai, J. Wang, and M. Q.-H. Meng. Virtual reality based robot teleopera-
tion via human-scene interaction. Procedia Computer Science, 226:141-148, 2023.

[19] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026-5033. IEEE,
2012.

[20] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan, R. Singh, Y. Guo, H. Mazhar,
A. Mandlekar, B. Babich, G. State, M. Hutter, and A. Garg. Orbit: A unified simulation
framework for interactive robot learning environments. /[EEE Robotics and Automation Letters,
8(6):3740-3747, 2023. doi:10.1109/LRA.2023.3270034.

[21] E. Rohmer, S. P. N. Singh, and M. Freese. Coppeliasim (formerly v-rep): a versatile and
scalable robot simulation framework. In Proc. of The International Conference on Intelligent
Robots and Systems (IROS), 2013. www.coppeliarobotics.com.

[22] G. Authors. Genesis: A universal and generative physics engine for robotics and beyond,
December 2024. URL https://github.com/Genesis-Embodied-AI/Genesis.

[23] U. Technologies. Unity - Manual: Unity 6 User Manual — docs.unity3d.com. https://
docs.unity3d.com/6000.0/Documentation/Manual/UnityManual.html. [Accessed
31-01-2025].

[24] W.Fan, X. Guo, E. Feng, J. Lin, Y. Wang, J. Liang, M. Garrad, J. Rossiter, Z. Zhang, N. Lepora,
et al. Digital twin-driven mixed reality framework for immersive teleoperation with haptic
rendering. IEEE Robotics and Automation Letters, 2023.

[25] Y. Zhu, B. Jiang, Q. Chen, T. Aoyama, and Y. Hasegawa. A shared control framework for
enhanced grasping performance in teleoperation. IEEE Access, 2023.

[26] S. P. Arunachalam, I. Giizey, S. Chintala, and L. Pinto. Holo-dex: Teaching dexterity with
immersive mixed reality. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 5962-5969. IEEE, 2023.

10

http://dx.doi.org/10.1109/LRA.2023.3270034
https://github.com/Genesis-Embodied-AI/Genesis
https://docs.unity3d.com/6000.0/Documentation/Manual/UnityManual.html
https://docs.unity3d.com/6000.0/Documentation/Manual/UnityManual.html

[27] R. Ding, Y. Qin, J. Zhu, C. Jia, S. Yang, R. Yang, X. Qi, and X. Wang. Bunny-
visionpro: Real-time bimanual dexterous teleoperation for imitation learning. arXiv preprint
arXiv:2407.03162, 2024.

[28] F. P. Audonnet, I. G. Ramirez-Alpizar, and G. Aragon-Camarasa. Immertwin: A mixed reality
framework for enhanced robotic arm teleoperation. arXiv preprint arXiv:2409.08964, 2024.

[29] K. A. Szczurek, R. M. Prades, E. Matheson, J. Rodriguez-Nogueira, and M. Di Castro. Mul-
timodal multi-user mixed reality human-robot interface for remote operations in hazardous
environments. IEEE Access, 11:17305-17333, 2023.

[30] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[31] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. In Conference on Robot Learning (CoRL), 2024.

[32] P. Wu, Y. Shentu, Z. Yi, X. Lin, and P. Abbeel. Gello: A general, low-cost, and intuitive
teleoperation framework for robot manipulators. arXiv preprint arXiv:2309.13037, 2023.

[33] Y. Qin, W. Yang, B. Huang, K. V. Wyk, H. Su, X. Wang, Y.-W. Chao, and D. Fox. Anyteleop: A
general vision-based dexterous robot arm-hand teleoperation system. ArXiv, abs/2307.04577,
2023. URL https://api.semanticscholar.org/CorpusID:259367735.

[34] J. Duan, Y. R. Wang, M. Shridhar, D. Fox, and R. Krishna. Ar2-d2: Training a robot without a
robot. In J. Tan, M. Toussaint, and K. Darvish, editors, Proceedings of The 7th Conference on
Robot Learning, volume 229 of Proceedings of Machine Learning Research, pages 2838-2848.
PMLR, 06-09 Nov 2023. URL https://proceedings.mlr.press/v229/duan23a.html.

[35] J. Wang, C.-C. Chang, J. Duan, D. Fox, and R. Krishna. Eve: Enabling anyone to train robots
using augmented reality. In Proceedings of the 37th Annual ACM Symposium on User Interface
Software and Technology, UIST *24, New York, NY, USA, 2024. Association for Computing
Machinery. ISBN 9798400706288. doi:10.1145/3654777.3676413. URL https://doi.
org/10.1145/3654777.3676413.

[36] S. Arevalo Arboleda, F. Riicker, T. Dierks, and J. Gerken. Assisting manipulation and grasping
in robot teleoperation with augmented reality visual cues. In Proceedings of the 2021 CHI
conference on human factors in computing systems, pages 1-14, 2021.

[37] X.Wang, S. Guo, Z. Xu, Z. Zhang, Z. Sun, and Y. Xu. A robotic teleoperation system enhanced
by augmented reality for natural human—robot interaction. Cyborg and Bionic Systems, 5:0098,
2024.

[38] S. P. Arunachalam, I. Giizey, S. Chintala, and L. Pinto. Holo-dex: Teaching dexterity with
immersive mixed reality. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 5962-5969. IEEE, 2023.

[39] S. Chen, C. Wang, K. Nguyen, L. Fei-Fei, and C. K. Liu. Arcap: Collecting high-quality
human demonstrations for robot learning with augmented reality feedback. arXiv preprint
arXiv:2410.08464, 2024.

[40] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng, et al. Ros:
an open-source robot operating system. In ICRA workshop on open source software, volume 3,
page 5. Kobe, Japan, 2009.

[41] ZeroMQ — zeromgq.org. https://zeromq.org/. [Accessed 01-05-2025].
[42] lolambean. Hololens 2 hardware, Mar. 2023. URL https://learn.microsoft.com/

en-us/hololens/hololens2-hardware.

11

https://api.semanticscholar.org/CorpusID:259367735
https://proceedings.mlr.press/v229/duan23a.html
http://dx.doi.org/10.1145/3654777.3676413
https://doi.org/10.1145/3654777.3676413
https://doi.org/10.1145/3654777.3676413
https://zeromq.org/
https://learn.microsoft.com/en-us/hololens/hololens2-hardware
https://learn.microsoft.com/en-us/hololens/hololens2-hardware

[43] Meta Quest 3 - Wikipedia — en.wikipedia.org. https://en.wikipedia.org/wiki/Meta_
Quest_3. [Accessed 01-05-2025].

[44] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
robot learning, pages 1094-1100. PMLR, 2020.

[45] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone. Libero: Benchmarking knowl-
edge transfer for lifelong robot learning. Advances in Neural Information Processing Systems,
36, 2024.

[46] S. Nasiriany, A. Maddukuri, L. Zhang, A. Parikh, A. Lo, A. Joshi, A. Mandlekar, and Y. Zhu.
Robocasa: Large-scale simulation of everyday tasks for generalist robots. arXiv preprint
arXiv:2406.02523, 2024.

[47] Y. Zhu, J. Wong, A. Mandlekar, R. Martin-Martin, A. Joshi, S. Nasiriany, and Y. Zhu. ro-
bosuite: A modular simulation framework and benchmark for robot learning. arXiv preprint
arXiv:2009.12293, 2020.

[48] F. Otto, O. Celik, D. Roth, and H. Zhou. Fancy gym. URL https://github.com/ALRhub/
fancy_gym.

[49] S. James, M. Freese, and A. J. Davison. Pyrep: Bringing v-rep to deep robot learning. arXiv
preprint arXiv:1906.11176, 2019.

[50] W.Pumacay, I. Singh, J. Duan, R. Krishna, J. Thomason, and D. Fox. The colosseum: A bench-
mark for evaluating generalization for robotic manipulation. arXiv preprint arXiv:2402.08191,
2024.

[51] A.Tung,J. Wong, A. Mandlekar, R. Martin-Martin, Y. Zhu, L. Fei-Fei, and S. Savarese. Learn-
ing multi-arm manipulation through collaborative teleoperation. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 9212-9219. IEEE, 2021.

[52] F. Otto, O. Celik, H. Zhou, H. Ziesche, V. A. Ngo, and G. Neumann. Deep black-box reinforce-
ment learning with movement primitives. In Conference on Robot Learning, pages 1244—1265.
PMLR, 2023.

[53] F. Otto, H. Zhou, O. Celik, G. Li, R. Lioutikov, and G. Neumann. Mp3: Movement primitive-
based (re-) planning policy. arXiv preprint arXiv:2306.12729, 2023.

[54] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,
E. Orbay, et al. Roboturk: A crowdsourcing platform for robotic skill learning through imita-
tion. In Conference on Robot Learning, pages 879-893. PMLR, 2018.

[55] J. Luo, C. Xu, J. Wu, and S. Levine. Precise and dexterous robotic manipulation via human-
in-the-loop reinforcement learning. arXiv preprint arXiv:2410.21845, 2024.

[56] A.Mandlekar, C. R. Garrett, D. Xu, and D. Fox. Human-in-the-loop task and motion planning
for imitation learning. In Conference on Robot Learning, pages 3030-3060. PMLR, 2023.

[57] K. Finstad. The usability metric for user experience. Interacting with computers, 22(5):323—
327, 2010.

[58] Kruskal-Wallis test - Wikipedia — en.wikipedia.org. https://en.wikipedia.org/wiki/
Kruskal’E2%80%93Wallis_test. [Accessed 27-04-2025].

[59] X. Jia, D. Blessing, X. Jiang, M. Reuss, A. Donat, R. Lioutikov, and G. Neumann. Towards
diverse behaviors: A benchmark for imitation learning with human demonstrations. arXiv
preprint arXiv:2402.14606, 2024.

12

https://en.wikipedia.org/wiki/Meta_Quest_3
https://en.wikipedia.org/wiki/Meta_Quest_3
https://github.com/ALRhub/fancy_gym
https://github.com/ALRhub/fancy_gym
https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_test
https://en.wikipedia.org/wiki/Kruskal%E2%80%93Wallis_test

[60] M. Reuss, M. Li, X. Jia, and R. Lioutikov. Goal-conditioned imitation learning using score-
based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

[61] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics
Research, 2024.

[62] M. Reuss, O. E. Yagmurlu, F. Wenzel, and R. Lioutikov. Multimodal diffusion transformer:
Learning versatile behavior from multimodal goals. arXiv preprint arXiv:2407.05996, 2024.

[63] H.Zhou, W. Liao, X. Huang, Y. Tang, F. Otto, X. Jia, X. Jiang, S. Hilber, G. Li, Q. Wang, et al.
Beast: Efficient tokenization of b-splines encoded action sequences for imitation learning.
arXiv preprint arXiv:2506.06072, 2025.

[64] N. Bell and J. Hoberock. Thrust: A productivity-oriented library for cuda. In GPU computing
gems Jade edition, pages 359-371. Elsevier, 2012.

[65] NVIDIA Corporation. NVIDIA Isaac Sim, 2024. URL https://developer.nvidia.com/

isaac—-sim.

[66] NVIDIA Corporation. NVIDIA Omniverse, 2024. URL https://www.nvidia.com/en-us/
omniverse/.

[67] R. Gong, J. Huang, Y. Zhao, H. Geng, X. Gao, Q. Wu, W. Ai, Z. Zhou, D. Terzopoulos, S.-C.
Zhu, et al. Arnold: A benchmark for language-grounded task learning with continuous states
in realistic 3d scenes. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2023.

[68] P. A. Studios. Universal scene description (usd). https://github.com/
PixarAnimationStudios/USD, 2016. Accessed: 2025-01-29.

[69] S.James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. /IEEE Robotics and Automation Letters, 5(2):3019-3026, 2020.

[70] trimesh - trimesh 4.6.1 documentation — trimesh.org. https://trimesh.org/trimesh.
html. [Accessed 01-02-2025].

[71] S. Wrede, C. Emmerich, R. Griinberg, A. Nordmann, A. Swadzba, and J. Steil. A user study on
kinesthetic teaching of redundant robots in task and configuration space. Journal of Human-
Robot Interaction, 2(1):56-81, 2013.

[72] F. Sukkar, V. H. Moreno, T. Vidal-Calleja, and J. Deuse. Guided learning from demonstration
for robust transferability. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 5048-5054. IEEE, 2023.

[73] A. Pettinger, C. Elliott, P. Fan, and M. Pryor. Reducing the teleoperator’s cognitive burden for
complex contact tasks using affordance primitives. In 2020 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 11513-11518. IEEE, 2020.

[74] T.-C. Lin, A. U. Krishnan, and Z. Li. Comparison of haptic and augmented reality visual cues
for assisting tele-manipulation. In 2022 International Conference on Robotics and Automation
(ICRA), pages 9309-9316. IEEE, 2022.

[75] SteamVR — store.steampowered.com. https://store.steampowered.com/steamvr.
[Accessed 31-01-2025].

[76] three.js docs — threejs.org. https://threejs.org/docs/index.html#manual/en/
introduction/Creating-a-scene. [Accessed 30-01-2025].

13

https://developer.nvidia.com/isaac-sim
https://developer.nvidia.com/isaac-sim
https://www.nvidia.com/en-us/omniverse/
https://www.nvidia.com/en-us/omniverse/
https://github.com/PixarAnimationStudios/USD
https://github.com/PixarAnimationStudios/USD
https://trimesh.org/trimesh.html
https://trimesh.org/trimesh.html
https://store.steampowered.com/steamvr
https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene
https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene

A IRIS Framework

A.1 Node Communication Protocol

The IRIS system operates across simulation and/or sensor-processing computers, multiple XR head-
sets, and other monitoring and control programs, requiring a robust and reliable network connection
between them. All devices are part of the same subnet, with all the devices connected via Wi-
Fi or cable. Different from Robot Operating System (ROS [40]), IRIS leverages a local network
across multiple hosts instead of using a single host, while using both Request-Response and Publish-
Subscribe patterns for data transmission. This protocol follows a master-node architecture, where
the simulation PC serves as the master node, and the XR headsets and other devices act as XR nodes.
Communication is achieved through a combination of UDP sockets and ZeroMQ (ZMQ).

Node
Address
UDP Broadcast Socket ZMQ Socket
(xxx.xxx.xxx.100 / 7720) (XXX.XXX.XXX.100 / 0)
Broadcast
Address
(XXX.XXX.XXX.255 / 7720) S
2
|z
» UDPSocket | ZMASockel = zma socket £
(XXX.XXX.XXx.1/7720) (XXX.XXX.XxX.1/0) \ (3]
Address) pet
g
m
|, UDP Socket M ZMQ Socket ‘
(XXX.XXX.XXX.2 / 7720) Address (XXX.XXX.XXX.2/ 0) \

)

— " = E R

Figure 10: The master node broadcasts UDP messages containing its details to the broadcast address
(e.g., 192.168.0.255) at port 7720. Each IP address in the diagram (e.g., 192.168.0.100/0) represents
a device’s unique address on the network, where ’0’ indicates a dynamically assigned port provided
by the operating system. XR nodes, upon startup, listen on the broadcast port (7720) to receive these
messages, extract the master node’s IP and ZMQ socket address, and build a stable connection. This
architecture supports both request-response and publish-subscribe communication patterns, ensuring
robust, multi-device connectivity with automatic reconnection capabilities.

To ensure node discovery, the master node broadcasts UDP messages at 5 Hz to a fixed broadcast
port on the network. When a new XR node is launched, it listens on the broadcast port to receive
a broadcast message from the master node. Upon receiving the broadcast message, the XR node
extracts the master node’s details, including its ZMQ socket address and port, to establish a reliable
ZMQ connection. If the master node goes offline, XR nodes continue listening on the discovery
port, allowing automatic reconnection when the master node relaunches. This protocol (Fig. 10)
achieves Cross-User ability of IRIS, ensures reliable communication, automatic reconnection, and
smooth recovery from disconnections, making it ideal for dynamic multi-device XR systems.

A.2 Unified Scene Specification

To visualize a scene with arbitrary objects, the XR headsets need to receive the scene model from
the simulation and reconstruct it. However, the XR application and the simulation run on different
devices and use different software architectures (the XR application is developed with C# and Unity,
while simulators might be built in Python or C++). This makes it impractical to directly transfer the
scene from the simulation to the XR environment. To address this issue, existing solutions rely
on predefined models in the XR application for specific robots and assets, requiring a static set of

14

: SimScene
— . ostr
— : SimObject
— . str
— : SimTransform
— : List[3]
— : List[4]
L— i List[3]
— : List[SimVisual]
— : SimVisual
— : SimMaterial

[TTTTT

: SimTexture

L— : SimMesh
— : SimVisual

L : List[SimObject]
L : Dict[str, bytes]

Figure 11: The hierarchical structure of the Scene Specification begins with a root SimObject, which
contains all objects in the scene. Each SimObject has a name, a list of child SimObjects, and a list
of visuals. Each visual represents a geometric element attached to the object. Within each geometric
element, materials define properties such as color and texture, while meshes determine the shape.
The scene’s raw data includes the byte streams of meshes and textures. Since these streams are
extensive, they are sent to XR headsets sequentially after the initial scene specification is transmitted.

models to be maintained within the application. This approach restricts flexibility and reusability,
preventing the support of robots or objects not included in the model set. To address this issue,
IRIS introduces a novel unified scene specification, which is generated by parsing the scene directly
from the simulation. This specification is subsequently transmitted to the headsets using the node
communication protocol, enabling the XR application to accurately and dynamically recreate the
scene in real time.

The unified scene specification (shown in Fig. 11) includes all objects with their geometry, meshes,
materials, and textures. IRIS provides a Python library called ScenePublisher to parse a simula-
tion scene into this scene specification. In the specification, geometry defines the object’s shape
(e.g., cube, sphere, capsule, cylinder, or mesh). The mesh contains vertex lists, face lists, nor-
mals, and texture coordinates. Materials define surface properties, including color, emission color,
reflectance, and attached textures, and the texture is an image representing the object’s surface ap-
pearance. Objects are organized using a kinematic tree structure and are serialized into JSON by the
ScenePublisher.

Since meshes and textures contain large amounts of data, geometry and materials store only their
hash code to reduce the transmission load. The XR application rebuilds the scene upon receiving the
kinematic tree and then requests the meshes and textures from the simulation server in byte format.
In some cases, textures can be quite large (e.g., the textures for the RoboCasa [46] scene exceed 700
MB). To ensure the scene loads within an acceptable time for users, we compress the textures. This
compression reduces the loading time to a few seconds. Afterwards, the ScenePublisher continually
acquires simulation states and forwards them to the XR headset. This way the positions and rotations
of all the objects are updated at a fixed frequency.

The scene specification enables IRIS to support a wide range of robots and objects in simulation,
facilitating both Cross-Scene and Cross-Embodiment capabilities.

15

A.3 Extendable and Flexible Framework Support

The unified scene specification is a general definition that does not rely on any specific simulator,
providing an extensible mechanism for scene loading and updating. IRIS can be easily adapted to
various simulation engines and frameworks by implementing a new simulation parser to generate
the unified specification from the simulation scene and a new publisher to update the states of scene.

Currently, IRIS supports scene parsers for MuJoCo, IsaacSim, CoppeliaSim, and Genesis, with
the potential to be extended to other simulation engines as desired. IRIS has been tested in some
MuJoCo-based benchmarks including Meta World [44], LIBERO [45], RoboCasa [46], robosuite
[47], Fancy Gym [48], and CoppeliaSim-based benchmark like PyRep [49], Colosseum [50]. This
demonstrates that IRIS can be easily adapted to various benchmarks and simulators, highlighting its
Cross-Simulator capability.

IRIS provides a user-friendly API. For each environment or framework, a single line of code suffices
to visualize and update the simulation in the XR headset. Here is a short example of how to use it in
the MuJoCo Simulation:

import scenepub

from scenepub.sim.mj_publisher import MujocoPublisher
define the mujoco environment

model = mujoco.MjModel.from_xml_path(xml_path)

data = mujoco.MjData(model)

define the ScenePublisher for mujoco; only this line needs to be added
publisher = MujocoPublisher (model, data, host)

run simulation

while True:
run simulation step logic
pass

The MujocoPublisher instance only needs to access the model and data from the MuJoCo simulation.
It then creates a separate thread to run the communication protocol, automatically connecting and
communicating with all available XR headsets. IRIS provides various Simulation Publishers for
different environments, all with a consistent and easy-to-use interface. This mechanism ensures a
seamless experience, making the system very user-friendly.

A.4 Real Scene Loading

The loading and updating of real-world scenes in IRIS follow a process similar to that of simulation
scenes, demonstrating its Cross-Reality capability. It processes point clouds from one or multiple
RGB-D cameras, which are extrinsically calibrated to a fiducial marker in the scene. A point cloud
processor applies the extrinsic transformation to each point cloud before merging them. The merged
point cloud is then cropped and downsampled using a voxel-grid filter. This filter maps all 3D points
to voxel-grid indices, blends the colors of points within the same voxel, and calculates the voxels
centroid. The output is a reduced point cloud that retains both color and position data. To ensure
low latency, this process runs on the GPU using Thrust [64]. Finally, the processed point cloud is
transmitted to the headsets, where IRIS uses a particle system in Unity to visualize and dynamically
update the scene in real-time.

B Simulator Support and Real-world Data Collection

B.1 Mujoco

MuJoCo [19] is a fast, accurate physics engine ideal for simulating robots with complex joint struc-
tures and contact dynamics. It supports advanced robot simulations with features like customizable
actuators, collision detection, and friction modeling, enabling realistic testing of robotic control,
manipulation, and learning algorithms in dynamic environments.

16

When starting a MuJoCo simulation, MuJoCo provides a model instance and a data instance. The
scene specification of IRIS can be generated from the model, while the simulation states can be
retrieved from the data instance. The model instance contains all the necessary assets for the scene
specification, including meshes, textures, and materials. These assets are stored as NumPy arrays
and need to be converted to byte streams with data types such as float32 or int8 for transmission.

MuJoCo uses a standard robotic coordinate system, where X is forward, Y is left, and Z is up. This
differs from Unity’s coordinate system, where X is right, Y is up, and Z is forward. Therefore, object
transforms, mesh vertices, faces, and normal data must be adapted for Unity using the following
code:

def mj2unity_pos(pos: List[float]) -> List[float]:
return [-pos[1], pos[2], pos[0]]

def mj2unity_quat (quat: List[float]) -> List[float]:
return [quat[2], -quat[3], -quat[1], quat[0]]

Since MuJoCo includes visual group settings that specify which object groups can be visualized,
IRIS provides an API to support this feature through the MujocoPublisher definition, as shown
below:

class MujocoPublisher (ScenePublisher):

def __init__(
self ,
mj_model,
mj_data,
host: str = "127.0.0.1",
no_rendered_objects: Optional[List[str]] = None,
no_tracked_objects: Optional[List[str]] = None,
visible_geoms_groups: Optional[List[int]] = None,

) -> None:

B.2 IsaacSim

IsaacSim [65] is a robotics simulation environment based on the NVIDIA Omniverse platform [66].
Several frameworks [20, 67] are built on top of it, sharing the same underlying data structures.
IsaacSim supports ray-tracing for realistic rendering, and batched physics simulation on GPUs, sig-
nificantly accelerating the training of models.

The scenes in IsaacSim are organized in a Universal Scene Description (USD) format, and data can
be accessed directly with the OpenUSD API [68]. The scene hierarchy consists of transformations
(Xform), meshes, articulations (joints) among other elements. Fig. 12 illustrates a sample scene
hierarchy.

Besides the low-level OpenUSD API, IsaacSim also provides some utility APIs for accessing scene
data. In our system, we use a mix of both APIs. A (simplified) code snippet for accessing parsing
the tree structure of the USD scene is given below. We use the OpenUSD API GetChildren() to
retrieve child primitives here.

compute local transforms of the current prim
trans, rot, scale = self.compute_local_trans(root)
parse material and geometry
mat_info = self.parse_prim_material (prim=root)
self.parse_prim_geometries(
prim=root,
prim_path=prim_path,
sim_obj=sim_object,
mat_info=mat_info or inherited_material,
)
parse children of the current prim
for child in root.GetChildren():
if obj := self.parse_prim_tree(
root=child,
parent_path=prim_path,
inherited_material=mat_info or inherited_material,

sim_object.children.append(obj)

17

Figure 12: An example of USD scene hierarchy for Franka Panda robot arm in IsaacSim.

Here is another snippet for computing the world transform of a primitive in the hierarchy. Instead of
computing the world transform with OpenUSD API, the class in IsaacSim API XFormPrim is used
to simplify the code.

from pxr import Usd
from omni.isaac.core.prims import XFormPrim

def compute_world_trans(self, prim: Usd.Prim):
prim = XFormPrim(str (prim.GetPath()))
assert prim.is_valid()

pos, quat = prim.get_world_pose ()
scale = prim.get_world_scale ()

return (
pos.cpu() .numpy (),
quat_to_rot_matrix (quat.cpu().numpy()),
scale.cpu() .numpy (),

B.3 CoppeliaSim

CoppeliaSim, formerly known as V-REP, is a versatile and widely used robot simulation software
that supports various physics engine backbones. Scenes in CoppeliaSim are constructed using a tree
structure, which includes objects such as visual shapes, dynamic shapes, and joints, as illustrated in
Fig. 13.

In our system, we interact with CoppeliaSim using Python APIs. Depending on the version of
CoppeliaSim, we utilize two groups of Python API functions:

ZeroMQ Remote API 3. This is an official API introduced in version 4.4. It facilitates fast and
straightforward communication between the simulator and a Python script, enabling users to effi-
ciently build scenarios. For example, to retrieve mesh information for all shape objects in a Cop-

peliaSim scene, one can use the following call:

from coppeliasim_zmqremoteapi_client import RemoteAPIClient
client = RemoteAPIClient ()

sim = client.require(’sim’)

list_vertices, list_indices, list_normals = [], [1, []

*https://manual.coppeliarobotics.com/en/apiFunctions.htm

18

co () IRB4EDD 1
A IRB4E00_wvisible
B &
B @
& IRB4600_link1 _visible

B0
AV IRE4R00_link?_visible
B &

B Q
O IRB4B00_link3_visikle
B &

B &
) IRB4B00_linkd_wvisikle
B &
B @
Y IRB4B00_link5_wisible

& IRB4E00_connection (]
&Y IRB4B00_linkB_visible
B &
Ho- & ReferenceFramed

Figure 13: An example of a tree structure for building an ABB IRB4600 manipulator.

objects_id_list = sim.getObjectsInTree(sim.handle_scene,
sim.handle_all, 0)

for idx in objects_id_list:
if sim.getObjectType(idx) == sim.sceneobject_shape:
We assume all the shapes are primary shapes
vertices, indices, normals = sim.getShapeMesh (idx)

list_vertices.append(vertices)
list_indices.append(indices)
list_list_normals.append(normals)

Listing 1: Example ZeroMQ Remote APL

PyRep API[49] #. This is a widely-used third-party Python communication interface under the
CoppeliaSim version 4.1. Several notable CoppeliaSim projects and benchmarks, such as RLBench
[69], are built on this interface. Similar to the official interface, PyRep provides various API func-
tions and properties. For instance, to retrieve all object handles from a CoppeliaSim scene, one can
use the following call:

from pyrep.backend.sim import simGetObjectsInTree

from pyrep.backend.sim import simGetObjectType

from pyrep.backend.sim import simGetShapeMesh

from pyrep.backend.simConst import sim_handle_scene

from pyrep.backend.simConst import sim_handle_all
from pyrep.backend.simConst import sim_object_shape_type

list_vertices, list_indices, list_normals = [1, [1, []

objects_id_list = simGetUbjectsInTree(sim_handle_scene,
sim_handle_all, 0)

for idx in objects_id_list:

if simGetObjectType (idx) == sim_object_shape_type:
We assume all the shapes are primary shapes
vertices, indices, normals = simGetShapeMesh (idx)

list_vertices.append(vertices)
list_indices.append(indices)
list_list_normals. append(normals)

Listing 2: Example PyRep APL.

*https://github.com/stepjam/PyRep

19

B.4 Genesis

Genesis [22] is a versatile physics platform designed for robotics, embodied Al, and physical Al
applications. It combines a universal, re-engineered physics engine capable of simulating diverse
materials and phenomena with a lightweight, ultra-fast, and user-friendly robotics simulation envi-
ronment. It also features a powerful, photorealistic rendering system and a generative data engine
that transforms natural language prompts into multi-modal data. By integrating various physics
solvers within a unified framework, Genesis supports automated data generation through a genera-
tive agent framework, with its physics engine and simulation platform now open-source and further
expansions planned.

IRIS supports Genesis by providing a Genesis parser designed to translate simulation data from
the Genesis physics platform into the IRIS framework’s internal representation. It manages this
by reading rigid entities, links, and geometries from a gs.Scene object and converting them into
equivalent IRIS structures such as SimScene, SimObject, SimVisual, and SimMaterial. Here’s a
detailed breakdown of the parsing process and its components:

The main function initializes a SimScene and iterates through all entities in the Genesis scene. It
builds a hierarchical scene graph based on parent-child relationships between entities and links. The
graph is stored in the hierarchy dictionary, which tracks each object’s parent and child nodes.

Each rigid entity (RigidEntity) from Genesis is processed to create a SimObject. The position and
rotation of the entity are retrieved and transformed is similart to Mujoco (B.1) to ensure compatibility
with Unity’s coordinate system. If the Genesis scene is already built, the function pulls actual
position and rotation data; otherwise, it defaults to identity transforms.

Links (RigidLink) represent individual parts of a rigid entity’s structure. Each link is converted
into a SimObject and positioned within the scene based on its parent link’s position and orientation.
If the link has associated visual geometries (vgeoms), the parser processes each visual element to
create SimVisual objects, which store geometry and material data. Links without visual elements are
simply added to the scene hierarchy without rendering.

Visual geometries (RigidGeom) from Genesis are mapped to IRIS visual representations. The parser
constructs a SimVisual object, including position, rotation, and mesh data. The mesh generation
function extracts vertex and face data from the Genesis mesh and constructs a SimMesh object for
the IRIS scene, defining both the physical and visual structure of the geometry. Genesis leverages
the Trimesh [70] library to handle mesh processing, which simplifies the conversion to the IRIS
mesh format.

After processing all entities, the parser organizes the parsed objects into a tree structure. Objects
without parents are attached to the root of the scene, while others are linked to their respective
parents based on the hierarchy dictionary.

B.5 Real World

The point cloud-based XR teleoperation system enables immersive teleoperation and data collection
by allowing users to interact with a real-world robotic setup through an Extended Reality (XR) inter-
face. Unlike conventional video-streaming methods, this approach provides spatial awareness and
depth perception by rendering real-time 3D reconstructions of the environment in XR. The system
consists of an ORBBEC Femto Bolt depth camera positioned in front of the robot to capture RGB
and depth data in real time. A QR code on the robot’s end effector serves as a reference marker for
pose estimation, aligning point clouds with the robot’s frame. A C++-based point cloud processing
pipeline converts raw data into XYZ-RGB point clouds at 30Hz, generating approximately 2 million
points per frame. To optimize computational efficiency, GPU-accelerated voxel grid downsampling
is applied before transmission. The processed point clouds are sent to a main process that handles
transformation, cropping, and communication with the XR system. A ZeroMQ (ZMQ) messaging
protocol is used to enable efficient, low-latency communication between system components, ensur-
ing real-time transmission of point clouds and control commands. A Meta Quest 3 headset renders

20

the processed point clouds in real time, enabling users to visualize and interact with the scene in a
fully immersive 3D environment.

B.5.1 Camera-to-Robot Base Transformation

Pose Estimation and Homogeneous Transformation To ensure accurate spatial alignment, the
system transforms the camera’s coordinate frame into the robot’s base coordinate frame using a
homogeneous transformation matrix, computed as follows:

* The QR code on the robot’s end effector provides a fixed reference point for tracking posi-
tion and orientation in the camera’s space.

* Using Forward Kinematics (FK), the end effector’s pose relative to the robot base is deter-
mined.

¢ The camera-to-robot base transformation is derived as:

TCamera __ mEndEffector nCamera (1)
RobotBase — - RobotBase EndEffector

where:
— TEndBifector ig obtained from the robot’s FK.

gfﬁégctor is estimated using the QR code tracking system.

This ensures that the captured point clouds align precisely with the robot’s coordinate frame, elimi-
nating drift and inconsistencies in XR visualization.

B.5.2 Point Cloud Processing Pipeline

Raw Data Acquisition The ORBBEC Femto Bolt camera captures:

* Depth images (encoded as a depth map),
* RGB images (color information),

* Camera intrinsic parameters (for depth-to-3D conversion).

Conversion to XYZ-RGB Point Cloud Using the camera intrinsics, each depth pixel is converted
into 3D world coordinates (X, Y, Z) using:

Y=(@w- Z = D(u,v) (2)

Z Z
E7 C?J)Ev

where:

(u, v) are pixel coordinates,

* (cs, cy) are the camera’s principal point offsets,
(fz, fy) are focal lengths,

* D(u,v) is the depth value at pixel (u,v).

Each (X,Y, Z) point is assigned an (R, G, B) value from the color image, forming the XYZ-RGB
point cloud.

Cropping and Filtering To reduce noise and retain only relevant portions of the workspace, the
system:

* Crops unnecessary regions using bounding box constraints,

* Applies statistical outlier removal to eliminate noise points.

21

Voxel Grid Downsampling (GPU-Accelerated) Since the raw point cloud consists of approxi-
mately 2 million points per frame, direct transmission is computationally expensive. To optimize
efficiency, voxel grid downsampling is applied, which:

* Divides the workspace into 3D voxels,

* Averages all points within each voxel to generate a single representative point,

* Reduces the point cloud size while preserving structural details.

B.5.3 XR Visualization and Teleoperation

Real-Time Communication with XR System The processed point cloud is transmitted to a main
process, which then relays the data to the Meta Quest 3 headset using ZeroMQ. ZeroMQ ensures ef-
ficient, asynchronous, and low-latency messaging between the processing node and the XR system,
allowing:

 Real-time rendering of the scene in XR,

* Full 3D immersion with accurate depth perception,

* Reliable transmission of point cloud data and control commands.

Leader-Follower Teleoperation Framework The teleoperation system consists of:

* A leader robot controlled by a human wearing the Meta Quest 3 headset,

A follower robot that replicates the leader’s movements, including gripper actions.
A networked control architecture ensures:

* Low-latency synchronization between the leader and follower,

* Seamless remote manipulation, removing the need for physical human presence.

B.5.4 Calibration for XR-Robot Alignment

To ensure that XR visualization aligns precisely with real-world objects, the system undergoes a
calibration process consisting of:

* Robot workspace alignment: The follower robot’s workspace is adjusted to match the
leader’s XR-rendered environment,
* Point cloud adjustment: The camera-to-robot transformation is fine-tuned,

 User feedback correction: Users verify object positions in XR and real-world views.
B.5.5 Future Extensions: Multi-Camera and ICP-Based Fusion
Future implementations will:

* Incorporate multiple cameras for wider coverage,

* Perform point cloud fusion using Iterative Closest Point (ICP) for improved spatial accu-
racy,

* Enhance depth perception by reconstructing high-fidelity 3D representations of the
workspace.

C Intuitive Robot Control Interface

In data collection tasks, robot control interfaces are used to operate the robot in both simulated
and real-world environments. Based on research in teleoperation and robot data collection [7],

22

Kinesthetic Teaching and Motion Controllers have been identified as the most intuitive and effective
control interfaces. Hence, we ensured that IRIS supports these two methods. Thanks to IRIS’s
flexible framework, it is possible to easily customize and implement additional alternative control
interfaces, such as hand tracking, gloves, smartphones, or motion tracking systems. This adaptability
enables tailored solutions to meet specific requirements, enhancing both the usability and versatility
of the system for various applications. Fig. 14 shows how these two interfaces work in IRIS. The
implementation of these interfaces is outlined below.

Figure 14: This image illustrates examples of using two interfaces to control robots in simulation:
Kinesthetic Teaching (left) and Motion Controller (right), shown from a third-person perspective.

C.1 Kinesthetic Teaching

Kinesthetic teaching is an intuitive interface that allows users to control robots by physically moving
the real robot [71, 72, 7]. The real robot transmits joint positions and velocities in real time to the
controlled robot, which can be either a virtual or another physical robot. In both real-world and
simulation data collection, the key aspect of kinesthetic teaching is ensuring alignment between the
real robot and its virtual counterpart in the XR headsets. By utilizing Spatial Anchors (C.4), the
virtual robot in the XR headsets can be perfectly aligned with the real robot, which provide users
with an intuitive and immersive experience.

C.2 Motion Controller

Motion controller Interfaces are commonly used in robot data collection and teleoperation [73, 74],
providing stable tracking and flexibility for various applications. Although some XR headsets, such
as HoloLens 2, do not natively support motion controllers, this limitation can be resolved by inte-
grating third-party controllers compatible with platforms such as SteamVR [75]. Motion controllers
utilize inverse kinematics to control robots in Cartesian space, with the movement of the robot’s end
effector controlled by the controller’s trigger. IRIS supports retrieval of motion controller data from
devices like the Meta Quest 3. For more complex scenarios, users can design custom controllers
using IRIS’ flexible framework.

C.3 Affiliated Monitor Tools

The extensibility of IRIS opens up numerous possibilities for creating new applications. IRIS in-
cludes a web-based monitoring tool for managing all XR headsets. This tool allows users to eas-
ily start and stop alignment processes, as well as rename devices. Additionally, the tool supports
real-time scene visualization using three.js [76], using the unified scene specification. An example
screenshot is shown in Fig. 15.

23

IRIS Dashboard 00t e

Quest:1 IP: 192.168.0.3
Type: XR-Device

[Start QR Alignment] [Stop QR Alignment]

T

(=] =)

Quest:2 IP: 192.168.0.28
Type: XR-Device

I Start QR Alignment I l Stop QR Alignment l

[o] []

Environment
Occlusion | I Log l

Figure 15: The IRIS Dashboard, accessible via a web interface, allows the control and monitoring
of all connected nodes. The scene streamed by IRIS is rendered on the right-hand side. The left
panel displays the connected XR devices, providing an interface through which users can control all
services made available by each device.

C.4 Spatial Anchor

A spatial anchor serves as a reference point in a 3D environment to accurately position virtual
objects within physical space. It enables virtual objects to maintain their position, orientation, and
alignment, even as users move around or leave and return to the environment. IRIS utilizes either QR
codes or motion controllers (currently only implemented for the Meta Quest 3) as spatial anchors.
This approach allows for the alignment of augmented scenes across multiple headsets in the real
world, making it appear as though all users are sharing the same scene. Additionally, this method
can synchronize a virtual robot with its real-world counterpart in the Kinesthetic Teaching (C.1)
interface and facilitate multiple-collector view alignment. Fig. 16 shows the alignment between real
robot and virtual robot.

D Experiment Details

D.1 User Study

In this section, we provide more details of the user study we conducted, which assesses different data
collection interfaces. As mentioned in the main paper, tasks from the LIBERO benchmark [45] were
chosen due to their diversity in various movement patterns. Four representative tasks (see Fig. 17)
were selected in the dimension of translation, rotation, and compound movement:

Task 1: close the microwave

Task 2: turn off the stove

Task 3: pick up the book in the middle and place it on the cabinet shelf

Task 4: turn on the stove and put the frying pan on it.

To ensure a fair comparison, the tasks and data were taken directly from LIBERO [45] without
any modification. The baselines for this study were two standard control interfaces provided by
LIBERO: the Keyboard (KB) and the 3D Mouse (3M). Based on findings from prior research [7],

24

Figure 16: Alignment between real robot and virtual robot with a spatial anchor. It is used for
controlling virtual robot by real world kinesthetic teaching or scene sharing among multiple users.

(a2) (b2)

Figure 17: Four tasks from LIBERO in simulation (top row: al, bl, cl, d1) and corresponding view
from Meta Quest 3 (bottom row: a2, b2, ¢2, d2): (a) Close the microwave, (b) Turn off the stove, (c)
Pick up the book and place it on the shelf, (d) Turn on the stove and place the frying pan on it.

hand tracking was found to be less stable than motion controllers. Therefore, we selected Kinesthetic
Teaching and Motion Controller as the interfaces for the user study.

The study involved eight participants who evaluated the efficiency and intuitiveness of each interface
for collecting demonstrations using both objective and subjective metrics. The objective metrics in-
cluded the success rate and the average time taken per task. To ensure successful demonstrations,
participants executed tasks at a very slow pace, which diluted efficiency measurements (as all inter-
faces appeared efficient when tasks were performed slowly), which biased participants against later
interfaces [7]. To mitigate these biases and ensure high-quality data collection, a time limit per task
was introduced, and the time limits for four tasks are 20s, 20s, 30s, and 40s, which are quite enough
for finishing the task. The subjective metrics were assessed through a questionnaire evaluating four
dimensions: Experience, Usefulness, Intuitiveness, and Efficiency. Each participant performed each
task five times using all interfaces. After finishing using one interface, they provided ratings on the
subjective dimensions using a 7-point Likert scale.

For the objective metrics, Table 2 presents the success rates for each interface across the tasks. A
trial was considered unsuccessful if the participant failed to complete the task or exceeded the time
limit. The time limits were set based on task difficulty: 20 seconds for Task 1 and Task 2, 30 seconds

25

for Task 3, and 40 seconds for Task 4. The data shows a success rate of over 90% across all four
tasks when using the KT and MC interfaces from IRIS. In contrast, the Keyboard and 3D Mouse
methods from LIBERO often resulted in failures. For example, the 3D Mouse interface achieved
only a 37.5% success rate on Task 3.

As is clear in Fig. 6, the results of this user study show that IRIS received higher scores than the
baseline interfaces across both objective and subjective metrics. This indicates that the system offers
a more intuitive and efficient approach for data collection.

D.2 Deformable Object Data Collection

Demonstrations involving deformable objects and cloth as seen in Fig. 18 can be recorded when
using IsaacLab for physics simulation. Each point of a simulated deformable object is transmitted to
IRIS. This allows for an accurate representation of object deformation during simulation. Transmit-
ting each point individually adds a performance penalty compared to rigid objects. IRIS provides
hand-tracking information that is used to control simulated robots and manipulate objects. The suc-
cess criteria for the three example tasks as seen in Sec. 4.2 are as follows. Fold Cloth: The distance
between two of the corner particles is below a threshold. This allows for folding either front-to-back
or side-to-side. Lift Teddy: The center of the teddy must be lifted above a certain threshold. Stow
Teddy: The center of the teddy must be inside the box and below a certain threshold. The initial
object positions are chosen randomly without rotation. The box position for the Stow Teddy task is
fixed. All example policies are using a U-Net diffusion model with reduced down dimension sizes
of [256,512,1024], and a diffusion step embedding dimension size of 256. Other parameters are
at their default values. The models are trained for 100 to 120 epochs. Observations are robot EEF
information, and a mix of depth and image data. The last two observations are stacked and used
as input. The models predict 16 actions at a time. Between 60 and 90 demonstrations are used for
training.

Figure 18: Views wearing a VR headset and collecting task demonstrations using IRIS with Isaa-
cLab. Tasks from left to right are: folding a cloth in half, lifting a deformable teddy, and stowing a
deformable teddy in a slightly undersized box.

D.3 High Dynamic Data Collection

Traditional data collection methods struggle to acquire successful demonstrations in dynamic tasks
that require high action timeliness and precision. To validate the practicality and effectiveness of
IRIS, we applied it to a custom-designed table tennis task in MuJoCo simulation environment. IRIS
was used to collect high-frequency strike data, and the collected demonstrations were evaluated
using state-of-the-art imitation learning algorithms. In the task, a human demonstrator controls a
virtual bat via a handheld controller to return randomly generated incoming balls, closely mimick-
ing real bat manipulation. The system captures 73 around 5-second demonstrations at 100 Hz, where
each demonstration movement consists of a forward stroke and natural backward release. The ob-
servation includes bat proprioceptive state and dual camera images, and the action is the desired bat
position and orientation in task space. Fig. 8a shows the performance of imitation learning models

26

Figure 19: Two real-world manipulation tasks: Cup Inserting and Picking Up Lego.

trained on this data, using ball interception rate and successful return rate as evaluation metrics. The
trained policy should first reach the incoming ball with natural stroke movement as human players
and then hit the ball to opposite side table.

D.4 Real Robot Experiment

To evaluate the real-world applicability of IRIS, we conducted a comparative study against a stan-
dard teleoperation baseline (Tele-Op) using two real-world manipulation tasks: Cup Inserting and
Picking Up Lego (Fig. 19). For each task, 30 demonstrations were collected using both IRIS and
Tele-Op, under identical experimental conditions. These datasets were then used to train two sepa-
rate BC-Transformer policies, using consistent hyperparameters. We assessed both the data collec-
tion success rate (i.e., the percentage of successful demonstrations during collection) and the policy
success rate (i.e., performance of trained policies in executing the tasks). As illustrated in Fig. 8b,
IRIS not only achieved a higher success rate during demonstration collection, but also resulted in
better-performing policies compared to those trained on Tele-Op data. These results indicate that
IRIS facilitates higher-quality real-world data collection, which in turn leads to more effective imi-
tation learning outcomes.

E System Performance Analysis

The performance analysis focuses on two key aspects: network latency and headset FPS (frames per
second). Since IRIS uses asynchronous bidirectional data transfer, network latency is low, averaging
around 20-30 ms. Transmission bandwidth depends on Wi-Fi capacity. Even for large scenes from
RoboCasa, which contain over 200 MB of compressed assets, it takes no more than 5 seconds to
transfer and generate a full scene with more than 300 objects. For real robot teleoperation, the
system handles point cloud data efficiently, achieving a transmission speed of 10,000 points at 60
Hz—exceeding the camera’s frame rate.

The FPS performance depends on the hardware. On the Meta Quest 3, a scene with one robot runs
at approximately 70 FPS, while on HoloLens 2, it runs around 40 FPS. As the scene size increases,
FPS gradually decreases. With around 200 objects, the Meta Quest 3 headsets struggle to keep
up with head movement, causing virtual objects to lag or become stuck. However, performance is

27

additionally influenced by the complexity of the meshes and textures, as these require significant
computational resources from the XR headset.

In our experiments by using Meta Quest 3, IRIS successfully handled all benchmark scenarios listed
in the paper, except for some scenes from RoboCasa [46]. These scenes have over 700 MB of assets
in one single instance, which is closed to the Meta Quest 3 RAM limit. Nonetheless, IRIS was
able to manage most of scenes from RoboCasa without any significant performance issues. For real
robot data collection, the optimal point cloud size is around 10,000 points, which achieves a balance
between point cloud quality and FPS, maintaining a frame rate of approximately 40 FPS.

28

	Introduction
	Related Work
	System Overview
	System Architecture
	System Application

	Experiment
	User Experience Evaluation
	Policy Evaluation in Simulation
	Real World Evaluation

	Conclusion
	IRIS Framework
	Node Communication Protocol
	Unified Scene Specification
	Extendable and Flexible Framework Support
	Real Scene Loading

	Simulator Support and Real-world Data Collection
	Mujoco
	IsaacSim
	CoppeliaSim
	Genesis
	Real World
	Camera-to-Robot Base Transformation
	Point Cloud Processing Pipeline
	XR Visualization and Teleoperation
	Calibration for XR-Robot Alignment
	Future Extensions: Multi-Camera and ICP-Based Fusion

	Intuitive Robot Control Interface
	Kinesthetic Teaching
	Motion Controller
	Affiliated Monitor Tools
	Spatial Anchor

	Experiment Details
	User Study
	Deformable Object Data Collection
	High Dynamic Data Collection
	Real Robot Experiment

	System Performance Analysis

