CONTEXT-DRIVEN NEAREST NEIGHBOR IMPUTATION USING LANGUAGE REPRESENTATION

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

Paper under double-blind review

ABSTRACT

Missing data poses significant challenges for machine learning and deep learning algorithms. In this paper, we aim to enhance post-imputation performance, measured by machine learning utility (MLu). We introduce a nearest-neighbor-based imputation method, DrIM, designed for heterogeneous tabular datasets. However, calculating similarity in the data space becomes challenging due to the varying presence of missing entries across different columns. To address this issue, we leverage the representation learning capabilities of language models. By transforming the tabular dataset into a text-format dataset and replacing the missing entries with mask (or unk) tokens, we extract representations that capture contextual information. This mapping to a continuous representation space enables the use of well-defined similarity measurements. Additionally, we incorporate a contrastive learning framework to refine the representations, ensuring that the representations of observations with similar information in the observed columns, regardless of the missingness patterns, are closely aligned. To validate our proposed model, we evaluate its performance in missing data imputation across 10 real-world tabular datasets, demonstrating its ability to produce a Complete dataset having high MLu.

028 029 1 INTRODUCTION

Handling missing data is challenging, as machine learning (ML) and deep learning (DL) methods
typically require complete datasets (Tan et al., 2013; Kingma & Welling, 2014; Goodfellow et al., 2014; Chen & Guestrin, 2016; Ke et al., 2017; Vaswani et al., 2017; Ho et al., 2020; An & Jeon, 2023). Rubin says that the goal of imputation tasks is to provide complete statistical inference (Rubin & Schenker, 1986). However, many recent imputation methods have focused on providing complete datasets that can yield high post-imputation performance, including machine learning utility (MLu).
Ivanov et al. (2019); Yoon et al. (2018); Mattei & Frellsen (2019); Ipsen et al. (2021); Zhao et al. (2023); Du et al. (2024a); Wen et al. (2024) emphasize the importance of imputing missing data in terms of MLu. In this paper, we also focus on imputing incomplete datasets to provide a complete dataset that enables effective training of many ML and DL algorithms while achieving high MLu.

We empirically observed that nearest-neighbor-based imputation methods, such as *k*-nearest neighbors imputation (kNNI) (Troyanskaya et al., 2001) and its variants (Jiang & Yang, 2015; Thomas & Rajabi, 2021; Du et al., 2024b), can achieve high MLu. Moreover, Anil Jadhav & Ramanathan (2019); Keerin & Boongoen (2022); Ding et al. (2024) have demonstrated that these methods of-ten outperform other imputation techniques. These nearest-neighbor-based methods impute missing values by leveraging the similarities between observations and utilizing the values of their near-est neighbors, thereby preserving local data characteristics (Troyanskaya et al., 2001; Tarsitano & Falcone, 2011).

However, nearest-neighbor-based imputation methods face two key challenges: 1) They struggle to
effectively represent or address missing values. While various distance or similarity metrics have
been proposed for missing data, their performance depends on how they handle these missing values
(Juhola & Laurikkala, 2007; Muñoz & Hernández-González, 2012; AbedAllah & Shimshoni, 2016;
Santos et al., 2020). For instance, assigning a distance of 0 when both values are missing can
be inflexible and adversely affect the imputation process (Santos et al., 2020). 2) Applying these
methods to heterogeneous (i.e., mixed-type) tabular data presents challenges. Jerez et al. (2010);

García-Laencina et al. (2010) have demonstrated that continuous and categorical variables exhibit an imbalance when measuring distance, with continuous variables having a more significant influence on the distance metric, affecting the results of imputation.

Therefore, we introduce a nearest-neighbor-based imputation method termed **DrIM** (Contextual-<u>Driven Missing IMputer</u>) to address these challenges. Our proposed method includes taking advantage of the language model's ability to generate contextualized representations, which are learned from a large collection of text datasets. We utilize textual encoding to convert tabular data into textformat data and apply language models to obtain representations (Yin et al., 2020; Mei et al., 2021; Borisov et al., 2023; Radford & Narasimhan, 2018; Devlin et al., 2019; Nazir et al., 2023).

Our representation-based nearest-neighbor imputation method provides solutions to address challenges 1) and 2), respectively: 1) Missing values are represented as [MASK] (or [UNK]) tokens, allowing language models to utilize their representation capabilities and leverage contextual hints from the other columns. 2) By mapping both continuous and categorical columns into a continuous space using their representation vectors, we enable the use of well-defined similarity measures, such as cosine similarity. Furthermore, we incorporate fine-tuning using a contrastive learning framework to further enhance the language model's representational capacity. This allows it to build more meaningful neighbors, which in turn improves the post-imputation performance.

- 071 Our primary contributions can be summarized as follows:
 - 1. By adopting language models and transforming each record into a representation vector, we propose a nearest-neighbor-based imputation method that is applicable to heterogeneous tabular datasets.
 - 2. We achieve state-of-the-art imputation performance in terms of MLu without any model training.
 - 3. We provide an intuitive explanation while empirically confirming that our fine-tuning using contrastive learning enhances the MLu of the imputed dataset.

We validate the effectiveness of our proposed method by evaluating its imputation performance across 10 real-world tabular datasets, accounting for four missing data mechanisms and five missingness rates. We employ four MLu performance metrics, including classification tasks, model selection, and feature selection performance. Additionally, we demonstrate that applying a contrastive learning framework enhances imputation performance in terms of MLu.

085 086 087

073

074

075 076

077

078

079

2 RELATED WORKS

088 **Imputation methods.** The effectiveness of missing imputation ultimately lies in reducing bias and 089 enhancing estimation efficiency in inference after imputation (Little & Rubin, 2019). This always 090 depends on the missing data mechanism, and in general, a single imputation has the limitation of 091 not accounting for the uncertainty induced by the imputation (van Buuren, 2012). Nevertheless, 092 single imputation is widely used because of its convenience and its ability to improve estimation 093 efficiency in downstream tasks (Álvarez Verdejo et al., 2021). In particular, a single imputation based 094 on estimating conditional expectation performs well when the bias introduced by the imputation 095 does not significantly affect the performance of the specific downstream task (Troyanskaya et al., 096 2001). Deep learning has garnered significant attention for its ability to flexibly model conditional 097 expectations of observed data and effectively learn metrics in the observed data space (Yoon et al., 098 2018; Ivanov et al., 2019; Kyono et al., 2021; Wen et al., 2024). These two tasks are closely related 099 to the nonparametric kNNI. kNNI is a method for calculating local conditional expectations and involves dimension reduction and metric learning to compute conditional expectations effectively. 100

Distance measures for missing data. kNNI is a widely used imputation method because it effectively utilizes the similarity between patterns to generate accurate estimates (Wilson & Martinez, 1997) and maintains the overall data distribution (Santos et al., 2017). However, its performance heavily relies on the chosen distance function. Several distance functions have been developed to handle heterogeneous tabular data and account for missing values. The HEOM (Aha et al., 1991; Wilson & Martinez, 1997) calculates distances based on feature types, using normalized Euclidean distance for continuous features and an overlap metric for categorical ones. Missing values are assigned a distance of 1, and if both are missing, 0. Juhola & Laurikkala (2007) refined HEOM to

108 maintain this approach. The HVDM (Stanfill & Waltz, 1986; Wilson & Martinez, 1997) functions 109 similarly to HEOM but requires class target information for categorical features. SIMDIST (Muñoz 110 & Hernández-González, 2012) introduces a heterogeneous similarity function incorporating prior 111 knowledge, with similarity based on the presence or absence of values. Additionally, redefined ver-112 sions of HVDM treat missing values as special cases (Santos et al., 2020), and the Mean Euclidean Distance (AbedAllah & Shimshoni, 2016) has been used for managing incomplete data in clustering. 113 In contrast, our approach utilizes metric learning for imputing missing values. Instead of relying on 114 existing distance functions, our method learns a distance (similarity) metric on a manifold using lan-115 guage models, specifically by computing the Euclidean distance between the representation vectors 116 obtained from language models. 117

118 **Notations.** Suppose that an observation $\mathbf{x} \in \mathcal{X}_1 \times \cdots \times \mathcal{X}_p$ consists of both continuous and categorical variables (columns), where \mathcal{X}_i denotes the support of *j*th variable. I_C and I_D represent 119 the index sets for continuous and categorical variables, respectively, where $I_C \cup I_D = \{1, \dots, p\}$. 120 \mathbf{x}_j is a value of the *j*th column having its column name with C_j . Here, subscript *j* refers to the 121 *j*th element. $q(\cdot;\theta)$ is a function that extracts the representation vector from the text input, where θ 122 is its trainable parameter. The missingness pattern of an observation is defined by a corresponding 123 missingness indicator vector $\mathbf{m} \in \{0,1\}^p$, where $\mathbf{m}_j = 0$ if \mathbf{x}_j is missing. An incomplete dataset 124 is given $\{(\mathbf{x}^{(i)}, \mathbf{m}^{(i)})\}_{i=1}^{n}$ comprising *n* i.i.d. realizations of **x** and **m**. 125

126 127

128

145

146

147 148

149

157

158

159

160

161

3 METHODOLOGY

DrIM¹ is a single imputation method based on the kNNI employing representations for each tubular record using language models. The main difference between the DrIM and the conventional kNNI approach lies in the way the distance metric between data points is learned using an underlying model for imputing missing values. This distance metric is defined as the Euclidean distance between the representation vectors of [CLS] tokens output by the BERT model (Devlin et al., 2019)². We will elucidate its theoretical properties in this section.

135 136 3.1 Representation of BERT

In this section, we will present some theoretical results demonstrating how the L_2 -distance between BERT representation vectors can reflect the similarity between observations. In the pre-training process of BERT, suppose that the pre-training dataset consists of paired sequences, $(\mathbf{t}, \mathbf{u}) \in \mathcal{T} \times \mathcal{U}$, where all paired sequences in $\mathcal{T} \times \mathcal{U}$ have the same fixed total length. Let $p(\mathbf{t}, \mathbf{u}), p(\mathbf{t})$, and $p(\mathbf{u})$ are joint and marginal distributions of \mathbf{t} and \mathbf{u} , respectively. Let $\mathbf{e} \in \mathcal{U}$ be a sequence of the [PAD] tokens. We formally define the representation of BERT in the following definition.

Definition 1 (Representation of BERT). Let $g(\cdot, \cdot; \theta) : \mathcal{T} \times \mathcal{U} \mapsto \mathbb{R}^D$ is a map of output vector located at the position of the [CLS] token in BERT. Then,

1. in the pre-training of BERT, the representation of BERT for $\mathbf{t} \in \mathcal{T}$ with respect to $\mathbf{u} \in \mathcal{U}$ is defined as $g(\mathbf{t}, \mathbf{u}; \theta)$;

2. in the process of DrIM for $\mathbf{t} \in \mathcal{T}$, the representation of BERT is defined as $g(\mathbf{t}, \mathbf{e}; \theta)$.

In Definition 1, $\mathbf{u} \in \mathcal{U}$ represents auxiliary data used in the next sentence prediction task of BERT, which will be described later. This definition, while restrictive in that it fixes the dimensional sizes of t and u in BERT's training, provides a convenient framework for analysis. In Definition 1, note that the sequence u is replaced with the sequence of [PAD] tokens in the process of DrIM.

Definition 2 (Pre-training of Next Sentence Prediction (NSP) via logistic regression). *In the pretraining of NSP, suppose that the positive and negative samples are sampled from the following distributions:*

 $(\mathbf{t}, \mathbf{u}) \sim p(\mathbf{t}, \mathbf{u})$ (positive sample) $(\mathbf{t}, \mathbf{u}') \sim p(\mathbf{t})p(\mathbf{u}')$ (negative sample).

¹The overall structure of DrIM is outlined in Figure 1.

²In this paper, we chose BERT for a comprehensive comparison and performance analysis; however, we have also included the experimental results using GPT-based models in Appendix A.8.

Figure 1: Overall structure of DrIM. In this case, we impute the missing values in $x^{(4)}$ using 3 nearest neighbors. The neighbor set varies since the presence of missing data differs by column.

Let a risk function

182

183

185

187 188

189

190

191

199 200

$$J_{LR}(\theta,\eta) = -\mathbb{E}_{p(\mathbf{t},\mathbf{u})} \left[\log \frac{\exp(r(\mathbf{t},\mathbf{u};\theta,\eta))}{1 + \exp(r(\mathbf{t},\mathbf{u};\theta,\eta))} \right] - \mathbb{E}_{p(\mathbf{t})p(\mathbf{u}')} \left[\log \frac{1}{1 + \exp(r(\mathbf{t},\mathbf{u}';\theta,\eta))} \right]$$

where $r(\mathbf{t}, \mathbf{u}; \theta, \eta) = \Phi(g(\mathbf{t}, \mathbf{u}; \theta); \eta)$ and $\Phi(\cdot; \eta) : \mathbb{R}^D \to \mathbb{R}$ is a scoring function parameterized with η . The training BERT for NSP is defined by estimating (θ, η) that minimizes an empirical version of J_{LR} .

In practice, BERT training is achieved by minimizing two loss functions: one for the masked language model (MLM) and the other for NSP. Here, we focus only on the loss function for NSP training, which can be analyzed within the theoretical framework of contrastive learning in unsupervised learning.

Theorem 1. Suppose that Φ(·; η) : ℝ^D → ℝ, the scoring function in Definition 2, is modeled as a linear function, i.e., ∀z ∈ ℝ^D, Φ(z; η) = η^T z and BERT is pre-trained by the NSP of Definition 2. Then, for two [CLS] tokens of t, t' ∈ T we have

$$\|g(\mathbf{t}, \mathbf{e}; \theta) - g(\mathbf{t}', \mathbf{e}; \theta)\| \ge \frac{1}{\|\eta\|} \cdot \left|\log \frac{p(\mathbf{e} \mid \mathbf{t})}{p(\mathbf{e} \mid \mathbf{t}')}\right|$$

where p is the distribution defined on sequences from $\mathcal{T} \times \mathcal{U}$.

203 Theorem 1 demonstrates that the representation of BERT has the property that the L_2 -distance between representation vectors can reflect the similarity between observations. Using Bayes' 204 rule, the log-likelihood ratio term in Theorem 1 can be re-written as $\log p(\mathbf{e} \mid \mathbf{t})/p(\mathbf{e} \mid \mathbf{t}') =$ 205 $\left(\frac{p(\mathbf{t},\mathbf{e})/p(\mathbf{t}',\mathbf{e})}{p(\mathbf{t}',\mathbf{e})}\right)$ 206 . As an input of BERT, the observed data is considered as pairs of $(\mathbf{t}, \mathbf{e}) \in \mathcal{T} \times \mathcal{U}$. log $p(\mathbf{t})/p(\mathbf{t}')$ 207 Thus, the likelihood is written in terms of p(t, e), not p(t). Therefore, the Euclidean distance 208 between the representation vectors is an upper bound on the log-likelihood ratio with respect to 209 the observed dataset, $\log p(\mathbf{t}, \mathbf{e})/p(\mathbf{t}', \mathbf{e})$, when compared to the marginalized log-likelihood ratio, 210 $\log p(\mathbf{t})/p(\mathbf{t}')$. Theorem 1 provides a partially theoretical justification for defining neighbors based 211 on the Euclidean distance between [CLS] tokens in a pre-trained BERT model.

212

214

213 3.2 PHASE1: CONTEXTUAL REPRESENTATION

To bridge an inherent gap between the structured nature of tabular data and the unstructured form of text data, we employ a textual encoding approach similar to Yin et al. (2020); Mei et al. (2021);

Borisov et al. (2023). By leveraging the encoding process of Definition 3, we obtain the textual dataset denoted as $\{\mathbf{t}^{(i)}\}_{i=1}^{n}$.

Definition 3 (Textual Encoding). Each observation $\mathbf{x}^{(i)}$ is transformed into a sentence-like format $\mathbf{t}^{(i)}$. This transformation incorporates both the column names and their corresponding values, applying the following subject-predicate-object transformation:

$$\begin{split} \mathbf{t}_{j}^{(i)} &= \begin{cases} ``C_{j} \ \textit{is} \ \mathbf{x}_{j}^{(i)}, ", & \textit{if} \ \mathbf{m}_{j}^{(i)} = 1 \\ ``C_{j} \ \textit{is} \ \textit{[MASK]}, ", & \textit{if} \ \mathbf{m}_{j}^{(i)} = 0 \end{cases} , \\ \mathbf{t}^{(i)} &= ``\textit{[CLS]}" \& \mathbf{t}_{1}^{(i)} \& \mathbf{t}_{2}^{(i)} \& \cdots \& \mathbf{t}_{p}^{(i)} \& ``\textit{[SEP]}" \end{split}$$

where &, called the ampersand operator, is used to concatenate one or more text strings to form a single text, and [CLS] and [SEP] token denote the start and end of the sequence, respectively.

Then, as in Definition 1, we obtain the representation vector corresponding to the observation $\mathbf{x}^{(i)}$, denoted as $\mathbf{z}^{(i)}$, as follows:

$$\mathbf{z}^{(i)} = g(\mathbf{t}^{(i)}, \mathbf{e}; \theta) \in \mathbb{R}^D,$$

where *D* denotes the dimension of the representation vector. The transformation process of contextual representation from $\mathbf{x}^{(i)}$ to $\mathbf{z}^{(i)}$ offers several advantages as follows:

 Handling missing values with contextual information. Since we employ BERT, which is a MLM, we can represent missing values with [MASK] tokens. This approach enables BERT to represent missing entries by leveraging contextual hints from other columns. It allows for the generation of a complete contextual representation of each observation without the need to disregard missing entries.

241 2. Missing-invariant mapping to continuous space. The language model $g(\cdot, \cdot; \theta)$ consistently 242 outputs a *D*-dimensional real-valued vector for each observation, regardless of the various missing-243 ness patterns. By mapping to continuous representation space, we can utilize well-defined distances, 244 such as the L_2 norm, between different observations.

3. Addressing heterogeneous tabular datasets. In the tabular domain, a central challenge lies in heterogeneity, as tabular data includes continuous, categorical, and even date (time) columns. Huang et al. (2020); Somepalli et al. (2021) address this challenge by processing continuous and categorical variables differently to obtain their representations. In contrast, we employ textual encoding to convert each observation into a sentence-like format, deriving representations from this sentence. This provides a type-agnostic preprocessing of the heterogeneous tabular dataset.

251 252

253

254

255

256

261 262 263

222

224 225

226

227

228 229

230

231 232

3.3 PHASE2: CONTEXT-DRIVEN IMPUTATION

Our proposed imputation procedure is based on the nearest neighbor set within the continuous representation space. The top-k nearest neighborhood on the representation space is defined as follows.

Definition 4. The top-k nearest neighbors of $\mathbf{x}^{(i)}$, $i \in \{1, \dots, n\}$ with respect to the *j*th column are defined by the index set $\mathcal{N}_i(\mathbf{x}^{(i)}, k) \subset \{1, 2, \dots, n\}$, satisfying the following conditions:

$$1. |\mathcal{N}_j(\mathbf{x}^{(i)}, k)| = k,$$

2. $\mathbf{m}_{i}^{(l)} = 1$ for all $l \in \mathcal{N}_{i}(\mathbf{x}^{(i)}, k)$, and

3.
$$\forall s \in \{1, \cdots, n\} \setminus \mathcal{N}_j(\mathbf{x}^{(i)}, k)$$
 such that $\mathbf{m}_j^{(s)} = 1$

 $cos(\mathbf{z}^{(i)},\mathbf{z}^{(s)}) \ < \min_{l \in \mathcal{N}_j\left(\mathbf{x}^{(i)},k
ight)} cos(\mathbf{z}^{(i)},\mathbf{z}^{(l)}),$

264 265 266

267

268

where $cos(\cdot, \cdot)$ denotes the cosine similarity.

Note that the neighbor set includes only the indices of observations that are not missing in the dataset with respect to the jth column.

Our imputation procedure utilizes the neighbor set $\mathcal{N}_j(\mathbf{x}^{(i)}, k)$. For continuous columns, we impute using the average of the neighbor set. For categorical columns, we impute using the most frequent category among the neighbor set (see Algorithm 1 in Appendix for detailed procedure).

$$\hat{\mathbf{x}}_{j}^{(i)} = \begin{cases} \frac{1}{k} \sum_{l \in \mathcal{N}_{j}(\mathbf{x}^{(i)}, k)} \mathbf{x}_{j}^{(l)}, & \text{if } j \in I_{C} \\ \text{mode} \Big(\mathbf{x}_{j}^{(l)} : l \in \mathcal{N}_{j} \big(\mathbf{x}^{(i)}, k \big) \Big), & \text{if } j \in I_{D} \end{cases}$$

Then, we obtain completed observation $\tilde{\mathbf{x}}$ as $\tilde{\mathbf{x}} = \mathbf{x} \odot \mathbf{m} + \hat{\mathbf{x}} \odot (\mathbf{1} - \mathbf{m})$, where \odot denotes elementwise multiplication.

3.4 FINE-TUNING: CONTRASTIVE LEARNING

The population version of the objective function for fine-tuning is defined as follows (Ruderman et al., 2012; Belghazi et al., 2018):

$$\max_{\theta} J_{CL}(\theta)$$

$$= \mathbb{E}_{q(\mathbf{t},\mathbf{u},\mathbf{e})} \left[\cos\left(g(\mathbf{t},\mathbf{e};\theta), g(\mathbf{u},\mathbf{e};\theta)\right) \right] - \log \mathbb{E}_{p(\mathbf{t},\mathbf{e})p(\mathbf{u},\mathbf{e})} \left[\exp\left(\cos\left(g(\mathbf{t},\mathbf{e};\theta), g(\mathbf{u},\mathbf{e};\theta)\right)\right) \right]$$

where $q(\mathbf{t}, \mathbf{u}, \mathbf{e})$ is the distribution of the positive sequence pair, and $p(\mathbf{t}, \mathbf{e})p(\mathbf{u}, \mathbf{e})$ is the distribution of the negative sequence pair. $q(\mathbf{t}, \mathbf{e}, \mathbf{u}) = q(\mathbf{u} \mid \mathbf{t}) \cdot p(\mathbf{t}, \mathbf{e})$ and the generating process of \mathbf{u} , i.e., $q(\mathbf{u} \mid \mathbf{t})$ is defined in Definition 5.

Definition 5 (Re-mask). Let ϕ be the re-masking function, which takes an anchor sample and a parameter r, specifying the number of columns to be masked. It randomly selects and masks r columns from the anchor sample, t, to produce a positive sample, u. Formally, the generating process of u is written as:

$$\begin{aligned} \mathbf{(t,e)} &\sim & p(\mathbf{t,e}) \\ \mathbf{u} &= & \phi(\mathbf{t},r). \end{aligned}$$

The dropout augmentation strategy of Definition 5 is widely adopted to generate positive samples due to its simplicity and effectiveness (Chen et al., 2020; Miao et al., 2021; Wu et al., 2022; Jiang & Wang, 2022). For instance, if r = 1, we can obtain a positive sample of $t^{(i)}$, which is denoted as $t^{(i+)}$, by randomly selecting and masking one column from $t^{(i)}$ as follows:

$$\mathbf{t}^{(i)} =$$
 "[CLS], C_1 is \mathbf{x}_1 , C_2 is [MASK], C_3 is \mathbf{x}_3 , C_4 is \mathbf{x}_4 , [SEP]"
 $\mathbf{t}^{(i+)} =$ "[CLS], C_1 is \mathbf{x}_1 , C_2 is [MASK], C_3 is \mathbf{x}_3 , C_4 is [MASK], [SEP]"

where $t^{(i+)}$ is sampled from $q(\mathbf{u} \mid t^{(i)})$. In this case, the value of the C_4 column is re-masked.

Theorem 2. For θ such that the maximizer of $J_{CL}(\theta)$, $g(\mathbf{t}, \mathbf{e}; \theta)$ and $g(\mathbf{u}, \mathbf{e}; \theta)$ provide the representation vectors that maximize the lower bound of the mutual information between \mathbf{t} and \mathbf{u} , where $(\mathbf{t}, \mathbf{u}) \sim q(\mathbf{u} \mid \mathbf{t}) \cdot p(\mathbf{t}, \mathbf{e})$.

Based on the InfoNCE loss calculation in the batch, in practice, we approximate $J_{CL}(\theta)$ as follows (Oord et al., 2018):

 $\max \mathcal{L}(\theta)$

 $= \log \frac{\exp\left(\cos\left(g(\mathbf{t}^{(i)}, \mathbf{e}; \theta), g(\mathbf{t}^{(i+)}, \mathbf{e}; \theta)\right)\right)}{\exp\left(\cos\left(g(\mathbf{t}^{(i)}, \mathbf{e}; \theta), g(\mathbf{t}^{(i+)}, \mathbf{e}; \theta)\right)\right) + \sum_{l=1, l \neq i}^{B} \exp\left(\cos\left(g(\mathbf{t}^{(i)}, \mathbf{e}; \theta), g(\mathbf{t}^{(l)}, \mathbf{e}; \theta)\right)\right)}$

where B is the mini-batch size, $\mathbf{t}^{(i+)}$ is the positive sample of the *i*th sample $(i \in \{1, \dots, B\})$, and we define negative samples within a mini-batch (Tang et al., 2015; Mei et al., 2021). Note that, in the approximate of $J_{CL}(\theta)$ with $\mathcal{L}(\theta)$, $\mathbb{E}_{q(\mathbf{t},\mathbf{u},\mathbf{e})}$ is approximated with a single positive pair of $(\mathbf{t}^{(i)}, \mathbf{t}^{(i+)})$, and $\mathbb{E}_{p(\mathbf{t},\mathbf{e})p(\mathbf{u},\mathbf{e})}$ is approximated with the sequence pairs $(\mathbf{t}^{(i)}, \mathbf{t}^{(i+)}), (\mathbf{t}^{(i)}, \mathbf{t}^{(1)}), \dots, (\mathbf{t}^{(i)}, \mathbf{t}^{(B)})$. Theorem 3. For θ such that the maximizer of $\mathcal{L}(\theta)$, $g(\mathbf{t}^{(i)}, \mathbf{e}; \theta)$ and $g(\mathbf{t}^{(i+)}, \mathbf{e}; \theta)$ provide the representation vectors that their cosine similarity is proportional to mutual information between $\mathbf{t}^{(i)}$ and $\mathbf{t}^{(i+)}$, where $\mathbf{t}^{(i+)} \sim q(\mathbf{u} \mid \mathbf{t}^{(i)})$.

We want to emphasize that Theorem 2 and 3 demonstrate that fine-tuning using contrastive learning allows the representations of BERT to be trained in such a way that they represent and maximize the mutual information between input sequences. In other words, our fine-tuning further enhances the representational capacity of the language model, capturing statistical dependencies between observed and missing entries in the *unseen tabular data scenario*. Therefore, through fine-tuning with contrastive learning, we can perform missing data imputation using the fully observed data points that have high mutual information with the observations containing missing entries.

335 336 337

338

339

357

359

360

361 362

364

376

4 EXPERIMENTS

4.1 OVERVIEW

We propose two versions of our model, DrIM: 1) $DrIM_{BASE}$, which utilizes the pre-trained BERT directly, and 2) $DrIM_{FINE}$, which incorporates contrastive learning framework³. While any BERT model can be used, we employ the BERT-base model ⁴ to extract representation vectors.

Datasets. Similar to several recent studies (Mattei & Frellsen, 2019; Nazábal et al., 2020; Muzellec et al., 2020; Ipsen et al., 2021; Jarrett et al., 2022; Zhao et al., 2023), we utilize 10 real tabular datasets from the UCI repository⁵ and Kaggle⁶, which vary in sample sizes. The datasets are split into training and testing sets, with an 80% training and 20% testing ratio. Detailed statistics of these datasets are provided in Appendix A.4.

Additionally, following the approach in Muzellec et al. (2020); Jarrett et al. (2022); Zhao et al. (2023), we generate missing value masks for each dataset using three mechanisms (MCAR, MAR, MNAR) across four settings (MCAR, MAR, MNARL, MNARQ). Refer to Appendix A.7.1 for detailed descriptions and implementations of these mechanisms. We generate missing values at rates of 0.2, 0.3, 0.4, 0.6, and 0.8 for each mechanism.

Baseline models. In this experiment, we investigate our proposed method, DrIM, alongside 13
 imputation methods, categorized into statistical imputation, ML-based imputation, and DL-based
 imputation as follows:

- Statistical imputation: Mean (Farhangfar et al., 2007), and kNNI (Troyanskaya et al., 2001)
- ML-based imputation: EM (Nelwamondo et al., 2007), SoftImpute (Mazumder et al., 2010), MICE (van Buuren & Groothuis-Oudshoorn, 2011), missForest (Stekhoven & Bühlmann, 2012), and Sinkhorn (Muzellec et al., 2020)
- DL-based imputation: GAIN (Yoon et al., 2018), VAEAC (Ivanov et al., 2019), MIWAE (Mattei & Frellsen, 2019), not-MIWAE (Ipsen et al., 2021), MIRACLE (Kyono et al., 2021), and ReMasker (Du et al., 2024a).

Detailed experimental settings for the reproducibility of these baseline models and our proposed model are provided in Appendix A.5.

Evaluation Metrics. To assess the imputation performance, we use two types of evaluation criteria: 1) imputation fidelity and 2) machine learning utility. The performance of imputers is reported by averaging the metrics across 10 real tabular datasets. Imputation fidelity is measured by the sum of the SMAPE (symmetric mean absolute percentage error) for continuous columns and the AR (accuracy error) for categorical columns, which we refer to as ARSMAPE, similar to (Miao et al., 2022). For machine learning utility, we adopt the metrics proposed by Hansen et al. (2023) to

 ³We conduct experiments using an NVIDIA A10 GPU, with our experimental codes implemented in
 PyTorch and scikit-learn.

⁴https://huggingface.co/google-bert/bert-base-uncased

^{377 &}lt;sup>5</sup>https://archive.ics.uci.edu/

⁶https://www.kaggle.com/datasets/

SoftImpute

378 379 380

381 382

384

385

386

387

389

390

391 392 393

396 397

Sinkhorn

Figure 2: **Imputation fidelity** at 0.3 missingness rate. The missing mechanism corresponding to the figure is indicated below the figure. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported.

not-MIWAE

DrIM_{BASE}

ReMasker

Table 1: **Machine learning utility** at 0.3 missingness under MAR and MNARL. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported. ↑ denotes higher is better. The best value is bolded, and the second best is underlined.

		MAR				
model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑
Mean	$.591_{\pm .027}$	$.548_{\pm.041}$	$.744_{\pm.021}$	$.560_{\pm.027}$	$.428_{\pm.041}$	$.797_{\pm.017}$
kNNI	$.601_{\pm.027}$	$.560_{\pm.043}$	$.868_{\pm.014}$	$.575_{\pm.027}$	$.419_{\pm .049}$	$.843_{\pm.016}$
EM	$.598_{\pm.027}$	$.531_{\pm.043}$	$.833_{\pm.016}$	$.580_{\pm.027}$	$.407_{\pm.048}$	$.804_{\pm.019}$
SoftImpute	$.590_{\pm.027}$	$.554_{\pm.039}$	$.845_{\pm.014}$	$.562_{\pm.027}$	$.342_{\pm.045}$	$.818_{\pm.015}$
MICE	$.598_{\pm.027}$	$.543_{\pm.043}$	$.859_{\pm.014}$	$.571_{\pm .027}$	$.339_{\pm.050}$	$.825_{\pm.017}$
missForest	$.596_{\pm.027}$	$.548_{\pm.044}$	$.833_{\pm.015}$	$.569_{\pm.027}$	$.366_{\pm.048}$	$.809_{\pm.016}$
Sinkhorn	$.599 \pm .027$	$.545 \pm .044$	$.845 \pm .015$	$.569 \pm .027$	$.377_{\pm .049}$	$.821 \pm .017$
GAIN	$.640_{+0.025}$	$.602_{\pm .029}$	$.877_{\pm.011}$	$.621_{\pm .025}$	$.446_{\pm.040}$	$.843_{\pm.016}$
VAEAC	$.606_{\pm,025}$	$.612_{\pm.018}$	$.827_{\pm.007}$	$.598_{\pm.025}$	$.553_{\pm.024}$	$.816_{\pm.012}$
MIWAE	$.588_{\pm,027}$	$.519_{\pm.048}$	$.834_{\pm.014}$	$.556_{\pm.028}$	$.369_{\pm.053}$	$.821_{\pm.016}$
not-MIWAE	$.587_{\pm,027}$	$.540_{\pm.043}$	$.839_{\pm.013}$	$.558_{\pm.027}$	$.394_{\pm.049}$	$.818_{\pm.017}$
MIRACLE	$.597_{\pm.027}$	$.473_{\pm.046}$	$.851_{\pm.014}$	$.564_{\pm.027}$	$.264_{\pm.051}$	$.825_{\pm.016}$
ReMasker	$.592_{\pm .027}$	$.480_{\pm .046}$	$.817_{\pm .019}$	$.566_{\pm .028}$	$.279_{\pm .050}$	$.782_{\pm.021}$
DrIM _{BASE} DrIM _{FINE}	$.640_{\pm.024}$ $.659_{\pm.025}$	$.617_{\pm.041}$ $.658_{\pm.032}$	$.\underline{.894}_{\pm.010}\\.905_{\pm.007}$	$.625_{\pm.024}$ $.653_{\pm.025}$	$\underbrace{.496}_{.553\pm.043}$	$.886 \pm .009$ $.915 \pm .006$

407 408 409

414

415

evaluate the performance of post-imputation prediction. Specifically, we use three metrics detailed in Hansen et al. (2023): classification performance (F_1 score), model selection performance (Model), and feature selection performance (Feature). For a comprehensive evaluation procedure, please refer to Appendix A.6.

4.2 RESULTS

416 **Imputation fidelity.** Figure 2 shows the imputation fidelity of DrIM and baseline models at a 0.3 417 missingness rate. DrIM consistently demonstrates competitive performance across the four miss-418 ingness mechanisms (MCAR, MAR, MNARQ, and MNARL), with consistently low ARSMAPE 419 scores. This indicates that our model is robust to different missing data mechanisms, which are 420 often encountered in real-world datasets. Notably, DrIM_{FINE} benefits from the contrastive learning 421 strategy, as shown by its superior performance compared to $DrIM_{BASE}$. This improvement suggests 422 that the contrastive learning approach enhances DrIM's ability to identify relevant nearest neighbors, 423 resulting in more accurate imputation. These enhanced imputations are crucial for post-imputation tasks, such as MLu, that depend on the quality of the imputed data. 424

425 **Machine learning utility.** We evaluate the post-imputation performance of DrIM and baseline mod-426 els in terms of MLu. As shown in Table 1, DrIM consistently achieves the highest metric scores in 427 F_1 score, model selection, and feature selection. Notably, DrIM_{BASE} outperforms other baselines, 428 such as GAIN and VAEAC, which require training, even though these models achieve similar perfor-429 mance to DrIM. This highlights the superior performance of DrIM_{BASE} without the need for training. 430 This suggests that our approach is cost-effective, providing strong performance without the need for 431 extensive training. Additionally, we confirmed that kNNI demonstrates competitive performance 432 compared to other baseline models. Given that our method outperforms kNNI, this empirically vali-

450

451

452

433	mean across 10 datasets and 10 repeated experiments are reported. ↑ denotes higher is better. Values
434	in parentheses indicate the performance difference compared to DrIM _{BASE} , and the red highlights
435	the positive improvement.
436	

Table 2: Effect of constrastive learning under MAR. The means and the standard errors of the

Rate	model	$F_1\uparrow$	Model ↑	Feature ↑
0.2	DrIM _{BASE}	.673 _{±.024}	$.732_{\pm.029}$	$.934_{\pm.006}$
	DrIM _{FINE}	.684 _{±.025} (+1.64%)	$.773_{\pm.023}$ (+5.59%)	$.948_{\pm.004}$ (+1.50%)
0.4	DrIM _{BASE}	.607 _{±.024}	.452 _{±.044}	$.837_{\pm.015}$
	DrIM _{FINE}	.639 _{±.025} (+5.27%)	.556 _{±.035} (+23.03%)	$.853_{\pm.012}$ (+1.91%)
0.6	DrIM _{BASE}	.545 _{±.024}	$.231_{\pm .052}$.684 _{±.024}
	DrIM _{FINE}	.589 _{±.024} (+8.08%)	$.373_{\pm .040}$ (+61.47%)	.734 _{±.026} (+7.32%)
0.8	DrIM _{BASE}	$.477_{\pm.023}$.072 _{±.054}	.446 _{±.041}
	DrIM _{FINE}	$.534_{\pm.024}$ (+11.96%)	.257 _{±.047} (+257.64%)	.604 _{±.035} (+35.62%)

dates that the distance between representations of BERT is effective. In Appendix A.9.2, we provide more comprehensive results under different missingness mechanisms and missingness rates. Additionally, you can find the MLu performance for each dataset.

453 Effect of contrastive learning. The results pre-454 sented in Table 2 indicate that incorporating the 455 contrastive learning framework into our proposed method improves performance. As shown in Ta-456 ble 1 and Table 2, DrIM_{FINE} outperforms DrIM_{BASE}, 457 supporting our claim in Section 3.4 that fine-tuning 458 with contrastive learning allows the representations 459 of BERT to be trained in a way that performs met-460 ric learning to maximize the mutual information be-461 tween input sequences. Furthermore, we observe 462 performance improvements not only in MAR but 463 also in MNARL, further validating the effective-464 ness of our approach. Additional results for dif-465 ferent missing data mechanisms (MCAR, MNARL, MNARQ) can be found in Appendix A.9.4. 466

467 Sensitivity analysis. To more comprehensively 468 evaluate the post-imputation performance of DrIM, 469 we also conducted a sensitivity analysis by vary-470 ing the missingness rate of the datasets. Figure 3 471 shows that although the performance of each model 472 decreases as the missingness rate increases, both DrIM_{BASE} and DrIM_{FINE} exhibit stable performance 473 compared to the baseline models. This reflects 474 the effectiveness of leveraging the language model's 475 representation learning capabilities, even without 476 fine-tuning. Notably, DrIM_{FINE} consistently out-477 performs the baseline models in terms of F_1 score 478 and feature selection performance. Although the 479 model selection performance of DrIM crosses with 480 VAEAC as the missingness rate changes from 0.4 481 to 0.6, DrIM_{FINE} still demonstrates superior perfor-482 mance compared to other baseline models. This indicates that fine-tuning with contrastive learning 483 continues to be effective even at higher missingness 484 rates. Additional results for different missing data 485 mechanisms can be found in Appendix A.9.5.

Figure 3: Sensitivity analysis for missing**ness rates.** The results MAR and MNARQ are shown, with the first-row representing classification performance (F_1 score) and the last two rows displaying model selection and feature selection performance. The means of the average across 10 datasets and 10 repeated experiments are reported.

486 5 CONCLUSIONS

487 488

This paper introduces DrIM, a context-driven nearest-neighbor-based imputation method specif-489 ically designed to handle incomplete heterogeneous tabular datasets. Our proposed method lever-490 ages the representation learning capabilities of language models and integrates a contrastive learning 491 framework for fine-tuning. In other words, in our proposed method, BERT performs dimensionality reduction on (numerical) tabular datasets in text format through the bidirectional attention mecha-492 nism, and we perform metric learning to maximize mutual information between observed and miss-493 ing data entries. Our extensive experiments across 10 real-world datasets demonstrate that DrIM 191 consistently outperforms existing imputation methods, achieving state-of-the-art post-imputation 495 performance in terms of MLu across various missing data mechanisms, including MCAR, MAR, 496 MNARL, and MNARQ. 497

In this paper we have not explicitly demonstrated how the neighbors using a BERT model for kNNI specifically improves downstream task performance. However, we believe our proposed method provides insights into the relationship between learned metrics obtained through contrastive learning and conditional independence among variables by emphasizing the enhancement of machine learning utility rather than statistical fidelity. This connection between contextual embeddings derived from BERT and downstream task performance may serve as a critical clue for further exploration, which we leave for future research.

505 DEPRO

REPRODUCIBILITY STATEMENT

Detailed information about the datasets we used can be found in Appendix A.4. For the reproducibility of the baseline models and our proposed model, detailed experimental settings are provided in
Appendix A.5. The reproduced codes for the baseline models and our proposed model are available
in the supplementary material. For a comprehensive evaluation of MLu, please refer to Appendix
A.6 for the detailed evaluation procedure and ML model configuration.

512 513

524

525

526

527

506

References

- Loai AbedAllah and Ilan Shimshoni. K-means over incomplete datasets using mean euclidean distance. In *IAPR International Conference on Machine Learning and Data Mining in Pattern Recognition*, 2016. URL https://api.semanticscholar.org/CorpusID: 6796762.
- David W. Aha, Dennis F. Kibler, and Marc K. Albert. Instance-based learning algorithms. Machine
 Learning, 6:37-66, 1991. URL https://api.semanticscholar.org/CorpusID: 207670313.
- Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric regression. *The American Statistician*, 46(3):175–185, 1992.
 - Seunghwan An and Jong-June Jeon. Distributional learning of variational autoencoder: Application to synthetic data generation. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL https://openreview.net/forum?id=GxL6PrmEUw.
- Dhanya Pramod Anil Jadhav and Krishnan Ramanathan. Comparison of performance of data imputation methods for numeric dataset. *Applied Artificial Intelligence*, 33(10):913–933, 2019.
 doi: 10.1080/08839514.2019.1637138. URL https://doi.org/10.1080/08839514.
 2019.1637138.
- Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
 mutual information across views. *Advances in neural information processing systems*, 32, 2019.
- Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron Courville, and Devon Hjelm. Mutual information neural estimation. In *International conference on machine learning*, pp. 531–540. PMLR, 2018.
- Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. Gpt-neo: Large scale
 autoregressive language modeling with mesh-tensorflow. 2021. URL https://api.
 semanticscholar.org/CorpusID:245758737.

- Vadim Borisov, Kathrin Sessler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language models are realistic tabular data generators. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id= cEygmQNOeI.
- Leo Breiman. Random forests. *Machine learning*, 45:5–32, 2001.

- Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings* of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, pp. 785–794, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2939785. URL https://doi.org/10. 1145/2939672.2939785.
- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, pp. 1597–1607. PMLR, 2020.
- Juan Colonna, Eduardo Nakamura, Marco Cristo, and Marcelo Gordo. Anuran Calls (MFCCs). UCI
 Machine Learning Repository, 2015. DOI: https://doi.org/10.24432/C5CC9H.
- Paulo Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Wine Quality. UCI Machine Learning
 Repository, 2009. DOI: https://doi.org/10.24432/C56S3T.
- David R Cox. The regression analysis of binary sequences. *Journal of the Royal Statistical Society: Series B (Methodological)*, 20(2):215–232, 1958.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 bidirectional transformers for language understanding. In North American Chapter of the Association for Computational Linguistics, 2019.
- Zhicheng Ding, Jiahao Tian, Zhenkai Wang, Jinman Zhao, and Siyang Li. Data imputation us ing large language model to accelerate recommendation system. 2024. URL https://api.
 semanticscholar.org/CorpusID:271213203.
- Tianyu Du, Luca Melis, and Ting Wang. Remasker: Imputing tabular data with masked autoencoding. In *The Twelfth International Conference on Learning Representations*, 2024a. URL https://openreview.net/forum?id=KI9NqjLVDT.
- Wenyou Du, Yichen Wang, Guanglei Meng, and Yuming Guo. Privacy-preserving vertical federated knn feature imputation method. *Electronics*, 2024b. URL https://api. semanticscholar.org/CorpusID:267038107.
- Alireza Farhangfar, Lukasz A Kurgan, and Witold Pedrycz. A novel framework for imputation
 of missing values in databases. *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans*, 37(5):692–709, 2007.
- Pedro J. García-Laencina, José-Luis Sancho-Gómez, and Aníbal R. Figueiras-Vidal. Pattern classification with missing data: a review. *Neural Computing and Applications*, 19:263–282, 2010.
 URL https://api.semanticscholar.org/CorpusID:3351246.
- Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Proceedings of the 27th International Conference on Neural Information Processing Systems Volume 2*, NIPS'14, pp. 2672–2680, Cambridge, MA, USA, 2014. MIT Press.
- Lasse Hansen, Nabeel Seedat, Mihaela van der Schaar, and Andrija Petrovic. Reimagining synthetic
 tabular data generation through data-centric AI: A comprehensive benchmark. In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023.
 URL https://openreview.net/forum?id=dKlRs1001j.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu *ral Information Processing Systems*, volume 33, pp. 6840–6851. Curran Associates, Inc.,
 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
 file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

622

638

639

640

- Tin Kam Ho. The random subspace method for constructing decision forests. *IEEE Transactions* on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998. doi: 10.1109/34.709601.
- Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
 modeling using contextual embeddings, 2020.
- Niels Bruun Ipsen, Pierre-Alexandre Mattei, and Jes Frellsen. not-{miwae}: Deep generative modelling with missing not at random data. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=tu29GQT0JFy.
- Oleg Ivanov, Michael Figurnov, and Dmitry Vetrov. Variational autoencoder with arbitrary con ditioning. In International Conference on Learning Representations, 2019. URL https:
 //openreview.net/forum?id=SyxtJh0qYm.
- Daniel Jarrett, Bogdan C Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. Hyper-Impute: Generalized iterative imputation with automatic model selection. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 9916–9937. PMLR, 17–23 Jul 2022. URL https: //proceedings.mlr.press/v162/jarrett22a.html.
- José M. Jerez, Ignacio Molina, Pedro J. García-Laencina, Emilio Alba, Nuria Ribelles, Miguel
 Martín, and Leonardo Franco. Missing data imputation using statistical and machine learning
 methods in a real breast cancer problem. *Artificial Intelligence in Medicine*, 50(2):105–115,
 2010. ISSN 0933-3657. doi: https://doi.org/10.1016/j.artmed.2010.05.002. URL https://
 www.sciencedirect.com/science/article/pii/S0933365710000679.
- Chao Jiang and Zijiang Yang. Cknni: An improved knn-based missing value handling technique. In De-Shuang Huang and Kyungsook Han (eds.), *Advanced Intelligent Computing Theories and Applications*, pp. 441–452, Cham, 2015. Springer International Publishing. ISBN 978-3-319-22053-6.
- Yuxin Jiang and Wei Wang. Deep continuous prompt for contrastive learning of sentence embeddings, 2022.
- Martti Juhola and Jorma Laurikkala. On metricity of two heterogeneous measures in the presence of missing values. Artificial Intelligence Review, 28:163–178, 2007. URL https://api. semanticscholar.org/CorpusID:33847594.
- Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/ file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.
- Phimmarin Keerin and Tossapon Boongoen. Improved knn imputation for missing values in gene expression data. Computers, Materials & Continua, 2022. URL https://api.
 semanticscholar.org/CorpusID:239131676.
 - Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.
- Trent Kyono, Yao Zhang, Alexis Bellot, and Mihaela van der Schaar. MIRACLE: Causally-aware
 imputation via learning missing data mechanisms. In A. Beygelzimer, Y. Dauphin, P. Liang, and
 J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
 https://openreview.net/forum?id=GzeqcAUFG10.
- 647 Roderick JA Little and Donald B Rubin. *Statistical analysis with missing data*, volume 793. John Wiley & Sons, 2019.

648 649 650	Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach. <i>CoRR</i> , abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.
651 652 653	Volker Lohweg. Banknote Authentication. UCI Machine Learning Repository, 2012. DOI: https://doi.org/10.24432/C55P57.
654 655 656	Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer- ence on Learning Representations, 2017. URL https://api.semanticscholar.org/ CorpusID:53592270.
658 659	Pierre-Alexandre Mattei and Jes Frellsen. Miwae: Deep generative modelling and imputation of incomplete data sets. In <i>International Conference on Machine Learning</i> , 2019.
660 661 662	Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for learn- ing large incomplete matrices. <i>The Journal of Machine Learning Research</i> , 11:2287–2322, 2010.
663 664 665 666	Yinan Mei, Shaoxu Song, Chenguang Fang, Haifeng Yang, Jingyun Fang, and Jiang Long. Cap- turing semantics for imputation with pre-trained language models. In 2021 IEEE 37th Interna- tional Conference on Data Engineering (ICDE), pp. 61–72, 2021. doi: 10.1109/ICDE51399. 2021.00013.
667 668 669	Deshui Miao, Jiaqi Zhang, Wenbo Xie, Jian Song, Xin Li, Lijuan Jia, and Ning Guo. Simple contrastive representation adversarial learning for nlp tasks. <i>arXiv preprint arXiv:2111.13301</i> , 2021.
670 671 672 673	Xiaoye Miao, Yangyang Wu, Lu Chen, Yunjun Gao, and Jianwei Yin. An experimental survey of missing data imputation algorithms. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2022.
674 675 676	Lluís A. Belanche Muñoz and Jerónimo Hernández-González. Similarity networks for heteroge- neous data. In <i>The European Symposium on Artificial Neural Networks</i> , 2012. URL https: //api.semanticscholar.org/CorpusID:6885211.
677 678 679	Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing data imputation using optimal transport. In <i>International Conference on Machine Learning</i> , pp. 7130–7140. PMLR, 2020.
680 681	Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes Ford. Abalone. UCI Machine Learning Repository, 1994. DOI: https://doi.org/10.24432/C55C7W.
682 683 684 685 686	Alfredo Nazábal, Pablo M. Olmos, Zoubin Ghahramani, and Isabel Valera. Handling incomplete heterogeneous data using vaes. <i>Pattern Recognition</i> , 107:107501, 2020. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2020.107501. URL https://www.sciencedirect.com/science/article/pii/S0031320320303046.
687 688 689 690	Anam Nazir, Muhammad Nadeem Cheeema, and Ze Wang. Chatgpt-based biological and psychological data imputation. <i>Meta-Radiology</i> , 1(3):100034, 2023. ISSN 2950-1628. doi: https://doi.org/10.1016/j.metrad.2023.100034. URL https://www.sciencedirect.com/science/article/pii/S2950162823000346.
691 692 693	Fulufhelo V Nelwamondo, Shakir Mohamed, and Tshilidzi Marwala. Missing data: A comparison of neural network and expectation maximization techniques. <i>Current Science</i> , pp. 1514–1521, 2007.
695 696	Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic- tive coding. <i>arXiv preprint arXiv:1807.03748</i> , 2018.
697 698 699	Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre- training. 2018. URL https://api.semanticscholar.org/CorpusID:49313245.
700 701	Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. 2019. URL https://api. semanticscholar.org/CorpusID:160025533.

- Donald B. Rubin and Nathaniel Schenker. Multiple imputation for interval estimation from simple random samples with ignorable nonresponse. *Journal of the American Statistical Association*, 81: 366–374, 1986.
- Avraham Ruderman, Mark Reid, Darío García-García, and James Petterson. Tighter variational representations of f-divergences via restriction to probability measures. *arXiv preprint arXiv:1206.4664*, 2012.
- Miriam Seoane Santos, Jastin Pompeu Soares, Pedro Henriques Abreu, Hélder Araújo, and João Santos. Influence of data distribution in missing data imputation. In *Artificial Intelligence in Medicine: 16th Conference on Artificial Intelligence in Medicine, AIME 2017, Vienna, Austria, June 21-24, 2017, Proceedings 16*, pp. 285–294. Springer, 2017.
- Miriam Seoane Santos, Pedro Henriques Abreu, Szymon Wilk, and João A. M. Santos. How distance metrics influence missing data imputation with k-nearest neighbours. *Pattern Recognit.* Lett., 136:111–119, 2020. URL https://api.semanticscholar.org/CorpusID: 219756021.
- Hiroaki Sasaki and Takashi Takenouchi. Representation learning for maximization of mi, nonlinear
 ica and nonlinear subspaces with robust density ratio estimation. *Journal of Machine Learning Research*, 23(231):1–55, 2022.
- David Slate. Letter Recognition. UCI Machine Learning Repository, 1991. DOI: https://doi.org/10.24432/C5ZP40.
- Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss, and Tom Goldstein. Saint: Improved neural networks for tabular data via row attention and contrastive pretraining. ArXiv, abs/2106.01342, 2021. URL https://api.semanticscholar.org/CorpusID:235293989.
- Craig Stanfill and David L. Waltz. Toward memory-based reasoning. Commun. ACM, 29:1213–1228, 1986. URL https://api.semanticscholar.org/CorpusID:16624499.
- Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for mixed-type data. *Bioinformatics*, 28(1):112–118, 2012.
- Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. *Density ratio estimation in machine learning*. Cambridge University Press, 2012.
- Huachun Tan, Guangdong Feng, Jianshuai Feng, Wuhong Wang, Yu-Jin Zhang, and Feng Li.
 A tensor-based method for missing traffic data completion. *Transportation Research Part C: Emerging Technologies*, 28:15–27, 2013. ISSN 0968-090X. doi: https://doi.org/10.1016/j.trc.
 2012.12.007. URL https://www.sciencedirect.com/science/article/pii/ S0968090X12001532. Euro Transportation: selected paper from the EWGT Meeting, Padova, September 2009.
- Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale information network embedding. *Proceedings of the 24th International Conference on World Wide Web*, 2015. URL https://api.semanticscholar.org/CorpusID:8399404.
- Agostino Tarsitano and Marianna Falcone. Missing-values adjustment for mixed-type data. Journal of Probability and Statistics, 2011:1–20, 2011. URL https://api.semanticscholar.org/CorpusID:46672653.
- Tressy Thomas and Enayat Rajabi. Addressing missing data in a healthcare dataset using an improved knn algorithm. In Maciej Paszynski, Dieter Kranzlmüller, Valeria V. Krzhizhanovskaya, Jack J. Dongarra, and Peter M.A. Sloot (eds.), *Computational Science ICCS 2021*, pp. 223–230, Cham, 2021. Springer International Publishing. ISBN 978-3-030-77977-1.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 language models, 2023. URL https://arxiv.org/abs/2302.13971.

- Olga G. Troyanskaya, Michael N. Cantor, Gavin Sherlock, Patrick O. Brown, Trevor J. Hastie, Robert Tibshirani, David Botstein, and Russ B. Altman. Missing value estimation methods for dna microarrays. *Bioinformatics*, 17 6:520–5, 2001. URL https://api.semanticscholar. org/CorpusID:1105917.
- 760 761 Stef van Buuren. Flexible imputation of missing data. 2012.
- Stef van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations in r. *Journal of Statistical Software*, 45(3):1–67, 2011. doi: 10.18637/jss.v045.i03. URL https://www.jstatsoft.org/index.php/jss/article/view/v045i03.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/ file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
- Yizhu Wen, Kai Yi, Jing Ke, and Yiqing Shen. Diffimpute: Tabular data imputation with denoising diffusion probabilistic model. ArXiv, abs/2403.13863, 2024. URL https://api. semanticscholar.org/CorpusID:268554183.
- D Randall Wilson and Tony R Martinez. Improved heterogeneous distance functions. *Journal of artificial intelligence research*, 6:1–34, 1997.
- William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast Cancer Wisconsin (Diagnostic). UCI Machine Learning Repository, 1993. DOI: https://doi.org/10.24432/C5DW2B.
- Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J McLachlan, Angus Ng, Bing Liu, S Yu Philip, et al. Top 10 algorithms in data mining. *Knowledge and information systems*, 14(1):1–37, 2008.
- Xing Wu, Chaochen Gao, Liangjun Zang, Jizhong Han, Zhongyuan Wang, and Songlin Hu. ES-783 imCSE: Enhanced sample building method for contrastive learning of unsupervised sentence em-784 bedding. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wan-785 ner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, 786 Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil 787 Lee, Enrico Santus, Francis Bond, and Seung-Hoon Na (eds.), Proceedings of the 29th In-788 ternational Conference on Computational Linguistics, pp. 3898–3907, Gyeongju, Republic of 789 Korea, October 2022. International Committee on Computational Linguistics. URL https: 790 //aclanthology.org/2022.coling-1.342.
- I-Cheng Yeh. Concrete Compressive Strength. UCI Machine Learning Repository, 1998. DOI: https://doi.org/10.24432/C5PK67.
- Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. TaBERT: Pretraining for joint understanding of textual and tabular data. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp. 8413–8426, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.745. URL https://aclanthology.org/2020.acl-main.745.
- Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAIN: Missing data imputation using
 generative adversarial nets. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
 International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
 Research, pp. 5689–5698. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.
 press/v80/yoon18a.html.
- He Zhao, Ke Sun, Amir Dezfouli, and Edwin V. Bonilla. Transformed distribution matching
 for missing value imputation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*,
 pp. 42159–42186. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/
 v202/zhao23h.html.

810	Encarnación Álvarez Verdejo, Pablo J. Moya-Fernández, and Juan F. Muñoz-Rosas. Single impu-
011 910	tation methods and confidence intervals for the gini index. <i>Mathematics</i> , 9(24), 2021. ISSN
012	2227-7390. doi: 10.3390/math9243252. URL https://www.mdpi.com/2227-7390/9/
013	24/3252.
014	
010	
010	
010	
010	
019	
020	
021	
022	
023	
024	
825	
820	
027	
020	
029	
030	
001	
032	
83/	
835	
836	
837	
838	
839	
840	
841	
842	
843	
844	
845	
846	
847	
848	
849	
850	
851	
852	
853	
854	
855	
856	
857	
858	
859	
860	
861	
862	
863	

A APPENDIX

A.1 PROOF OF THEOREM 1

Proof. Sugiyama et al. (2012); Sasaki & Takenouchi (2022) showed that the minimizer of $J_{LR}(\theta, \eta)$ is given by

$$r(\mathbf{t}, \mathbf{u}; \theta, \eta) = \log \frac{p(\mathbf{t}, \mathbf{u})}{p(\mathbf{t})p(\mathbf{u})}.$$

Then, for the minimizer of $J_{LR}(\theta, \eta)$, we have

$$\begin{aligned} \left| r(\mathbf{t}, \mathbf{e}; \theta, \eta) - r(\mathbf{t}', \mathbf{e}; \theta, \eta) \right| &= \left| \log \frac{p(\mathbf{t}, \mathbf{e})}{p(\mathbf{t})p(\mathbf{e})} - \log \frac{p(\mathbf{t}', \mathbf{e})}{p(\mathbf{t}')p(\mathbf{e})} \right| \\ &= \left| \log \frac{p(\mathbf{e} \mid \mathbf{t})}{p(\mathbf{e} \mid \mathbf{t}')} \right|, \end{aligned}$$

and

$$\begin{aligned} \left| r(\mathbf{t}, \mathbf{e}; \theta, \eta) - r(\mathbf{t}', \mathbf{e}; \theta, \eta) \right| &= \left| \Phi(g(\mathbf{t}, \mathbf{e}; \theta); \eta) - \Phi(g(\mathbf{t}', \mathbf{e}; \theta); \eta) \right| \\ &= \left| \eta^{\top} \Big(g(\mathbf{t}, \mathbf{e}; \theta) - g(\mathbf{t}', \mathbf{e}; \theta) \Big) \Big| \quad \text{(the scoring function is a linear map)} \\ &\leq \|\eta\| \cdot \|g(\mathbf{t}, \mathbf{e}; \theta) - g(\mathbf{t}', \mathbf{e}; \theta)\|, \end{aligned}$$

where the last inequality follows from Cauchy-Schwarz inequality.

The proof is complete.

A.2 PROOF OF THEOREM 2

Proof. Ruderman et al. (2012); Belghazi et al. (2018) showed that

$$\begin{split} &I((\mathbf{t}, \mathbf{e}), (\mathbf{u}, \mathbf{e})) \geq J_{CL}(\theta) \\ &= \mathbb{E}_{q(\mathbf{t}, \mathbf{u}, \mathbf{e})} \Big[\cos \big(g(\mathbf{t}, \mathbf{e}; \theta), g(\mathbf{u}, \mathbf{e}; \theta) \big) \Big] - \log \mathbb{E}_{p(\mathbf{t}, \mathbf{e}) p(\mathbf{u}, \mathbf{e})} \Big[\exp \big(\cos \big(g(\mathbf{t}, \mathbf{e}; \theta), g(\mathbf{u}, \mathbf{e}; \theta) \big) \big) \Big], \end{split}$$

where $I((\mathbf{t}, \mathbf{e}), (\mathbf{u}, \mathbf{e}))$ is the mutual information between t and u.

Therefore, if we obtain θ such that the maximizer of $J_{CL}(\theta)$, $g(\mathbf{t}, \mathbf{e}; \theta)$ and $g(\mathbf{u}, \mathbf{e}; \theta)$ provide the representation vectors that maximizes the lower bound of the mutual information between \mathbf{t} and \mathbf{u} . The proof is complete.

A.3 PROOF OF THEOREM 3

The proof is a restatement of the results from the paper by Oord et al. (2018).

Proof. $\mathcal{L}(\theta)$ is the categorical cross-entropy for classifying the positive sample correctly, with the following expression for the prediction from BERT:

$$\frac{\exp\left(\cos\left(g(\mathbf{t}^{(i)},\mathbf{e};\theta),g(\mathbf{t}^{(i+)},\mathbf{e};\theta)\right)\right)}{\exp\left(\cos\left(g(\mathbf{t}^{(i)},\mathbf{e};\theta),g(\mathbf{t}^{(i+)},\mathbf{e};\theta)\right)\right) + \sum_{l=1,l\neq i}^{B}\exp\left(\cos\left(g(\mathbf{t}^{(i)},\mathbf{e};\theta),g(\mathbf{t}^{(l)},\mathbf{e};\theta)\right)\right)}.$$

916 With respect to the *i*th sample, the optimal probability for $\mathcal{L}(\theta)$ is denoted as

$$\Pr\left(i+\text{ is the positive sample} \mid \mathbf{t}^{(l)}, l \in \{i+, 1, 2, \cdots, B\}\right).$$

Note that the positive sample $\mathbf{t}^{(i+)}$ is drawn from the conditional distribution of $q(\mathbf{u} \mid \mathbf{t}^{(i)})$ and $\Pr(l \text{ is the positive sample}) = 1/B \text{ for all } l \in \{i+, 1, 2, \cdots, B\} \text{ and } l \neq i.$ Then, we have

Pr (*i*+ is the positive sample
$$| \mathbf{t}^{(l)}, l \in \{i+, 1, 2, \cdots, B\}$$
)

$$p(\mathbf{t}^{(l)}, l \in \{i+, 1, 2, \cdots, B\} \mid i+ \text{ is the positive sample}) \Pr(i+ \text{ is the positive sample})$$

$$= \frac{1}{\sum_{j \in \{i+,1,2,\cdots,B\}, j \neq i} p(\mathbf{t}^{(l)}, l \in \{i+,1,2,\cdots,B\} \mid j \text{ is the positive sample}) \Pr(j \text{ is the positive sample})}{q(\mathbf{t}^{(i+)} \mid \mathbf{t}^{(i)}) \prod_{l=1,l \neq i}^{B} p(\mathbf{t}^{(l)}, \mathbf{e})}$$

$$= \frac{\frac{q(\mathbf{t}^{(i+)} | \mathbf{t}^{(i)}) \prod_{l=1, l \neq i}^{B} p(\mathbf{t}^{(l)}, \mathbf{e}) + \sum_{j=1, j \neq i}^{B} q(\mathbf{t}^{(j)} | \mathbf{t}^{(j)}) \prod_{l \in \{i+, 1, 2, \cdots, B\}, l \neq j, l \neq i} p(\mathbf{t}^{(l)}, \mathbf{e})}{\frac{q(\mathbf{t}^{(i+)} | \mathbf{t}^{(i)})}{p(\mathbf{t}^{(i+)}, \mathbf{e})} + \sum_{j=1, j \neq i}^{B} \frac{q(\mathbf{t}^{(j)} | \mathbf{t}^{(i)})}{p(\mathbf{t}^{(j)}, \mathbf{e})}}{\frac{p(\mathbf{t}^{(i)}, \mathbf{t}^{(i+)}, \mathbf{e})}{p(\mathbf{t}^{(i)}, \mathbf{e})p(\mathbf{t}^{(i+)}, \mathbf{e})}} = \frac{\frac{p(\mathbf{t}^{(i)}, \mathbf{t}^{(i+)}, \mathbf{e})}{p(\mathbf{t}^{(i)}, \mathbf{e})p(\mathbf{t}^{(i+)}, \mathbf{e})}}{\frac{p(\mathbf{t}^{(i)}, \mathbf{t}^{(j)}, \mathbf{e})}{p(\mathbf{t}^{(i)}, \mathbf{e})p(\mathbf{t}^{(i+)}, \mathbf{e})}}.$$

=

Therefore, for the optimal value of the prediction from BERT with θ such that the maximizer of $\mathcal{L}(\theta),$

$$\cos\left(g(\mathbf{t}^{(i)}, \mathbf{e}; \theta), g(\mathbf{t}^{(i+)}, \mathbf{e}; \theta)\right) \propto \log \frac{p(\mathbf{t}^{(i)}, \mathbf{t}^{(i+)}, \mathbf{e})}{p(\mathbf{t}^{(i)}, \mathbf{e})p(\mathbf{t}^{(i+)}, \mathbf{e})} = \log \frac{p(\mathbf{t}^{(i)} \mid \mathbf{t}^{(i+)})}{p(\mathbf{t}^{(i)}, \mathbf{e})}$$

where the (unnormalized) density ratio is modeled as log-linear (Bachman et al., 2019), and $q(\mathbf{t}^{(i)}, \mathbf{t}^{(i+)}), q(\mathbf{t}^{(i)}), \text{ and } q(\mathbf{t}^{(i+)})$ denote the joint and marginal distributions of $\mathbf{t}^{(i)}$ and $\mathbf{t}^{(i+)}$, respectively.

A.4 DATASET DESCRIPTIONS **Download links.** • abalone (Nash et al., 1994): https://archive.ics.uci.edu/dataset/1/abalone • anuran (Colonna et al., 2015): https://archive.ics.uci.edu/dataset/406/anuran+calls+mfccs • banknote (Lohweg, 2012): https://archive.ics.uci.edu/dataset/267/banknote+ authentication • breast (Wolberg et al., 1993): https://archive.ics.uci.edu/dataset/17/breast+cancer+ wisconsin+diagnostic • concrete (Yeh, 1998): https://archive.ics.uci.edu/dataset/165/concrete+ compressive+strength • kings (CC0: Public Domain): https://www.kaggle.com/datasets/harlfoxem/ housesalesprediction • letter (Slate, 1991): https://archive.ics.uci.edu/dataset/59/letter+recognition • loan (CC0: Public Domain): https://www.kaggle.com/datasets/teertha/ personal-loan-modeling • redwine (Cortez et al., 2009): https://archive.ics.uci.edu/dataset/186/wine+quality • whitewine (Cortez et al., 2009): https://archive.ics.uci.edu/dataset/186/wine+quality

1003Table 3: Description of datasets. #C represents the number of continuous variables. #D denotes the
number of categorical (discrete) variables. The 'Target' refers to the variable used as the response
variable in a classification task to evaluate machine learning utility.

Dataset	Split	#C	#D	Target
abalone	3.3K/0.8K	7	2	Rings
anuran	5.7K/1.5K	22	3	Species
banknote	1.1K/0.3K	4	1	class
breast	0.5K/0.1K	30	1	Diagnosis
concrete	0.8K/0.2K	8	1	Age
kings	17.3K/4.3K	11	7	grade
letter	16K/4K	16	1	lettr
loan	4K/1K	5	6	Personal Loan
redwine	1.3K/0.3K	11	1	quality
whitewine	3.9K/1K	11	1	quality

Algorithm 1 Imputat	tion procedure of DrIM	
Input: Incomplete of	oservation: (\mathbf{x}, \mathbf{m}) , Colum	ns name: $C = \{C_1, C_2, \cdots, C_p\},\$
Pre-trained B	ERT: $g(\cdot, \cdot; \theta)$, A sequence	e of the [PAD] tokens: e
Output: Complete (1	inputed) observation: x	
Phase 1 – Contex	xtual Representation	
1: for $j = 1, 2, \cdots$, p do	
2: if $\mathbf{m}_j = 1$ th	en	
3: $\mathbf{t}_j \leftarrow \mathbf{C}_j$	j 1S \mathbf{x}_j	
5: if $\mathbf{m}_i = 0$ th	en	
6: $\mathbf{t}_j \leftarrow ``C$	j is [MASK]"	▷ replacing missing value with [MASK] token
7: end if		
8: end for 0 + 4 "[CTS]" ℓ	7 t. l. t. l l. t. l.	"[SED]" Devtual encoding
10: $\mathbf{z} \leftarrow a(\mathbf{t} \mathbf{e}; \theta) \in \mathbf{z}$	\mathbb{R}^D	
$\frac{1012}{Phase ? - Conte}$	xt-Driven Imputation	
$\frac{1}{11} + \frac{1}{10} = 0$		
11: $\mathbf{x} \leftarrow [0, 0, \cdots, 0]$ 12: for $i = \{j : \mathbf{m}\}$	$= 0 \ i = 1 \ 2 \ \cdots \ n $ do	
13: $\mathcal{N}_i(\mathbf{x}, k) \subset$	$\{1, 2, \cdots, n\}$	▷ construct the neighbor index set by Definition 4
14: if $j \in I_C$ the	n	
$\hat{\mathbf{x}}_{i} \leftarrow \frac{1}{-}$	$\sum_{l} \mathbf{x}^{(l)}$	
16: end if k^2	$ l \in \mathcal{N}_j(\mathbf{x},k) $	
17: if $j \in I_D$ the	n	
18: $\hat{\mathbf{x}}_i \leftarrow \mathbf{mc}$	$\det\left(\mathbf{x}_{i}^{(l)}: l \in \mathcal{N}_{i}(\mathbf{x}, k)\right)$	
19: end if		
20: end for		
21: $\hat{\mathbf{x}} \leftarrow \mathbf{x} \odot \mathbf{m} + \hat{\mathbf{x}}$	$\odot (1 - \mathbf{m})$	
A.5 EXPERIMENT.	AL SETTINGS FOR REPRO	DUCTION
• We run expe	eriments using NVIDIA A	A10 GPU, and our experimental codes are available
with Pylor	Chanu Scikit-iearn	
Hyper-parameter of	f DrIM : This demonstrate	s the generalizability of our proposed model to var-
ious tabular datasets.	Our implementation coo	des for the proposed model, DrIM, are provided in
the supplementary m	aterial. For all tabular data	isets, we applied the following hyperparameters uni-
ioning without any a	uunionai tuning.	
• batch size: 1	.6	
• k (the numb	er of neighbors): 5	
For fine-tuning the B	ERT $g(\cdot,\cdot;\theta)$,	
• epochs: 5 (v	with AdamW optimizer (Lo	oshchilov & Hutter, 2017))
• learning rate	: 5e-5	
• r (the numb	er of re-masking): 3	
τ 1	er of te musking). J	
• 7:1		
A.5.1 DETAILS OF	IMPLEMENTING BASELI	ine Models
T		
Lo compore our care	boood mothod with be	n_{0} m_{0} m_{0

1079 To compare our proposed method with baseline models, we performed experiments across four missing data mechanisms and five missingness rates. Our reproduced codes for the baseline models

1080 1081	are provided in the supplementary material. Below are the detailed implementations of the baseline methods:
1082	• Mean (Farhangfar et al., 2007): We employ the SimpleImputer package ⁷ , with the
1084	strategy parameter set to 'mean'.
1085 1086	• kNNI (Troyanskaya et al., 2001): We employ the KNNImputer package ⁸ from scikit-learn for missing data imputation.
1087	• EM (Nelwamondo et al., 2007):
1088	We employ the EM module from hyperimpute. Plugins '.
1089	 SoftImpute (Mazumder et al., 2010): We employ the SoftImpute module in hyperimpute.Plugins¹⁰.
1091 1092	• MICE (van Buuren & Groothuis-Oudshoorn, 2011): We employed the
1093	 missForest (Stekhoven & Bühlmann, 2012):
1094 1095	We employ the missForest module in hyperimpute.Plugins ¹² .
1096	 Sinkhorn (Muzellec et al., 2020): We employ the Sinkhorn module in hyperimpute.Plugins ¹³.
1097	• GAIN (Yoon et al., 2018): We follow the implementations provided in the official repos-
1090	itory ¹⁴ . As the paper does not explicitly discuss the separate handling of categorical and
1100	continuous variables, the code treats them simultaneously. Consequently, a rounding pro- cess is employed to handle categorical variables afterward.
1101	• VAEAC (Ivanov et al., 2019): We follow the implementations provided in the official repos-
1102	itory ¹⁵ . The authors provided hyperparameters that adequately address both continuous and
1103 1104	categorical variables, so we used these without further modification during model fitting.
1105	• MIWAE (Matter & Freilsen, 2019): The implemented MIWAE code in the official reposi-
1106	datasets, we treated the conditional distribution of categorical columns as categorical dis-
1107	tributions and employed cross-entropy loss for reconstruction.
1109 1110	• not-MIWAE (Ipsen et al., 2021): The implemented not-MIWAE code in the official repos- itory ¹⁷ also focused on continuous variables exclusively. To handle categorical variables, we made the same modifications as in MIWAE.
1111 1112	• MIRACLE (Kyono et al., 2021): We utilize the MIRACLE module in hyperimpute.Plugins ¹⁸ .
1114 1115	• ReMasker (Du et al., 2024a): We follow the implementations provided in official repository ¹⁹ .
1116 1117	⁷ https://scikit-learn.org/1.5/modules/generated/sklearn.impute. SimpleImputer.html
1118	⁸ https://scikit-learn.org/stable/modules/generated/sklearn.impute.
1120	⁹ https://github.com/vanderschaarlab/hyperimpute/blob/main/src/
1121 1122	¹⁰ https://github.com/vanderschaarlab/hyperimpute/blob/main/src/
1123	¹¹ https://scikit-learn.org/stable/modules/generated/sklearn.impute.
1124	IterativeImputer.html
1125 1126	hyperimpute/plugins/imputers/plugin_missforest.py
1127	"https://github.com/vanderschaarlab/hyperimpute/blob/main/src/
1128	¹⁴ https://github.com/isvoon0823/GAIN/tree/master
1129	¹⁵ https://github.com/tigvarts/vaeac
1130	¹⁶ https://github.com/pamattei/miwae
1131	¹⁷ https://github.com/nbip/notMIWAE
1132	"https://github.com/vanderschaarlab/hyperimpute/blob/main/src/
1133	¹⁹ https://github.com/tydusky/remasker

A.6	EVALUATION SETTINGS
Rega tasks	rding machine learning utility, we conduct classification, model selection, and feature selection for post-imputation evaluation (Please refer to Table 3 for the classification target variable, and
Table	e 4 for detailed machine learning model configuration).
Class	sification performance (F_1).
	1. Train an imputer using a given incomplete training dataset
	In an imputer using a given incomplete training dataset. Impute the incomplete training dataset using trained imputer
	2. The incomplete training dataset using trained imputer.
	5. Train machine learning models (Logistic Regression (Cox, 1958), Gaussian Naive Bayes, k-nearest neighbors classifier (Altman, 1992), Decision Tree classifier (Wu et al., 2008), and Random Forest classifier (Ho, 1998; Breiman, 2001)) using the imputed dataset.
	4. Assess classification prediction performance by averaging the F_1 scores from the complete test dataset from five different classifiers.
Mod	el selection performance (Model).
	1. Train an imputer using a given incomplete training dataset.
	 Impute the incomplete training dataset using trained imputer
	3. Train machine learning models (Logistic Regression (Cov. 1958), Gaussian Naive Bayes
	k-nearest neighbors classifier (Altman, 1992), Decision Tree classifier (Wu et al., 2008),
	and Random Forest classifier (Ho, 1998; Breiman, 2001) using both the real complete train- ing dataset and the imputed dataset.
	4. Evaluate the classification performance (AUROC) of all trained classifiers on the complete test dataset.
	5. Assess model selection performance by comparing the AUROC rank orderings of classi- fiers trained on the real (original) complete training dataset and those trained on the imputed dataset using Spearman's Rank Correlation.
Feat	ure selection performance (Feature).
	1. Train an imputer using a given incomplete training dataset.
	2. Impute the incomplete training dataset using trained imputer.
	3. Train a Random Forest classifier (Ho, 1998; Breiman, 2001) using both the real (original) complete training dataset and the imputed dataset.
	4. Determine the rank-ordering of important features for both classifiers.
	5. Assess feature selection performance by comparing the feature importance rank orderings of classifiers trained on the real complete training dataset and those trained on the imputed dataset using Spearman's Rank Correlation.
Table of all	e 4: Classifier used to evaluate imputed data quality in machine learning utility. The names parameters used in the description are consistent with those defined in corresponding packages.
	Tesla Madal Description

Tasks	Model	Description		
	Logistic Regression	Package: sklearn.linear_model.LogisticRegression, setting: random_state=0, max_iter=1000, defaulted values		
	Gaussian Naive Bayes	Package: sklearn.naive_bayes.GaussianNB, setting: defaulted values		
Classification	k-Nearest Neighbors	Package: sklearn.neighbors.KNeighborsClassifier, setting: defaulted values		
	Decision Tree	Package: sklearn.tree.DecisionTreeClassifier, setting: random_state=0. defaulted values		
	Random Forest	Package: sklearn.ensemble.RandomForestClassifier, setting: random_state=0, defaulted values		

- 1188 A.7 RELATED WORKS
- 1190 A.7.1 MISSING MECHANISM

Descriptions. Data missingness is a common challenge in research and practical analysis, categorized into three primary missing mechanisms: 1) Missing Completely at Random (MCAR), 2)
 Missing at Random (MAR), and 3) Missing Not at Random (MNAR).

Under the MCAR mechanism, the reason for missingness has no relationship with any data, neither
observed nor unobserved. In other words, the likelihood of data being missing is equal across all
observations. The primary advantage of MCAR is that it does not introduce bias into the data
analysis. However, despite this advantage, data missingness can still reduce the statistical power of
the study because of the reduced sample size.

MAR occurs when the probability of missingness is related to the observed data but not the unobserved missing data. Essentially, even though the data is missing, the mechanism assumes that the missingness is explainable by other variables in the dataset. That is, the missingness can be modeled and imputed using the information available in the data, allowing for more accurate analyses despite the missingness.

Lastly, if the missingness is not specified by either MCAR or MAR, it becomes MNAR. The MNAR
is the most challenging mechanism, as it implies that the missingness is related to the unobserved
data itself. In this case, the missing data is systematically different from the observed data, which
introduces bias if not properly accounted for. For example, patients with severe symptoms may
be less likely to report their health status, making their data missing. MNAR requires sophisticated
statistical methods to address, as ignoring or improperly handling it can lead to biased and unreliable
results.

Implementations. Following Muzellec et al. (2020); Jarrett et al. (2022); Zhao et al. (2023), we generate the missing value mask for each dataset with three mechanisms in four settings. (MCAR) In the MCAR setting, each value is masked according to the realization of a Bernoulli random variable with a fixed parameter. (MAR) In the MAR setting, for each experiment, a fixed subset of variables that cannot have missing values is sampled. Then, the remaining variables have missing values according to a logistic model with random weights, which takes the non-missing variables as inputs. A bias term is fitted using line search to attain the desired proportion of missing values. (MNAR) Finally, two different mechanisms are implemented in the MNAR setting. The first, MNARL, is identical to the previously described MAR mechanism, but the inputs of the logistic model are then masked by an MCAR mechanism. Hence, the logistic model's outcome depends on missing values. The second mechanism, MNARQ, samples a subset of variables whose values in the lower and upper pth percentiles are masked according to a Bernoulli random variable, and the values in-between are left not missing.

1242 A.8 ADDITIONAL EXPERIMENTS

We conduct extensive additional experiments using a variety of pre-trained language models, including both Autoencoding (BERT, RoBERTa) and Autoregressive (GPT-2, GPT-NEO,
LLaMA) models, across different parameter scales.

1248 A.8.1 CONFIGURATION OF LANGUAGE MODELS

Table 5: The language model used to generate contextualized representations. '#Params' represents the number of parameters as defined in the respective language model specifications.

Туре	model	#Params
Autoencoding	BERT _{BASE} (Devlin et al., 2019) RoBERTa (Liu et al., 2019) BERT _{LARGE} (Devlin et al., 2019)	0.11B 0.12B 0.34B
Autoregressive	GPT-2 (Radford et al., 2019) GPT-NEO (Black et al., 2021) LLaMA (Touvron et al., 2023)	1.56B 1.32B 6.61B

1261 A.8.2 EXPERIMENT RESULTS 1262

Table 6: Machine learning utility at 0.3 missingness rate. Results using a pretrained language model without fine-tuning. ↑ denotes that higher values are better. The means and standard errors of the mean across 10 datasets and 10 repeated experiments are reported.

			MCAR			MAR	
Туре	model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑
Autoencoding	BERT _{BASE} RoBERTa BERT _{LARGE}	$\begin{array}{c} .638_{\pm.024}\\ .652_{\pm.024}\\ .647_{\pm.025}\end{array}$	$\begin{array}{c} .517_{\pm .037} \\ .538_{\pm .038} \\ .625_{\pm .031} \end{array}$	$\begin{array}{c} .920_{\pm .006} \\ .922_{\pm .006} \\ .898_{\pm .008} \end{array}$	$\begin{array}{c} .640_{\pm .024} \\ .652_{\pm .024} \\ .652_{\pm .025} \end{array}$	$\begin{array}{c} .617_{\pm .041} \\ .628_{\pm .037} \\ .641_{\pm .030} \end{array}$	$.894 {\scriptstyle \pm .010} \\ .907 {\scriptstyle \pm .007} \\ .909 {\scriptstyle \pm .007}$
Autoregressive	GPT-2 GPT-NEO LLaMA	$\begin{array}{c} .658_{\pm.024}\\ .659_{\pm.025}\\ .657_{\pm.024}\end{array}$	$\begin{array}{c} .620_{\pm .032} \\ .606_{\pm .032} \\ .659_{\pm .030} \end{array}$	$\begin{array}{c} .908 _{ \pm .008 } \\ .922 _{ \pm .006 } \\ .911 _{ \pm .009 } \end{array}$	$\begin{array}{c} .665_{ \pm .025} \\ .665_{ \pm .025} \\ .664_{ \pm .024} \end{array}$	$\begin{array}{c} .685_{ \pm .032} \\ .688_{ \pm .033} \\ .737_{ \pm .026} \end{array}$	$\begin{array}{c} .907_{\pm .007}\\ .916_{\pm .006}\\ .890_{\pm .010}\end{array}$
			MNARL			MNARQ	
Туре	model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑
	BERTBASE	$.625_{\pm 0.24}$	$.496 \pm 0.43$	$.886_{\pm 009}$	$.658_{+ 025}$	$.694 \pm 0.20$	$.913_{+0.07}$
Autoencoding	RoBERTa BERT _{LARGE}	$.641_{\pm.023}$ $.635_{\pm.025}$	$.561_{\pm .042}$ $.596_{\pm .033}$	$.901_{\pm.008}$ $.886_{\pm.009}$	$.672_{\pm.024}$ $.670_{\pm.025}$	$.673_{\pm.025}$ $.713_{\pm.025}$	$.918_{\pm.006}$ $.911_{\pm.007}$

A.8.3 TIME EFFICIENCY

Table 7: Time Efficiency. The reported unit is second(s). Results using a pretrained language model
 without fine-tuning. The means and standard errors of the mean across 10 datasets and 10 repeated
 experiments are reported.

Time (s)	model	MCAR	MAR	MNARL	MNARQ
Autoencoding	BERT _{BASE} RoBERTa BERT _{LARGE}	$\begin{array}{c} 93.240_{\pm 9.887} \\ 92.780_{\pm 9.814} \\ 122.380_{\pm 13.025} \end{array}$	$\begin{array}{c} 86.160_{\pm 9.089} \\ 84.190_{\pm 8.809} \\ 113.220_{\pm 12.186} \end{array}$	$\begin{array}{c} 94.030_{\pm 9.767} \\ 96.020_{\pm 10.274} \\ 127.010_{\pm 13.699} \end{array}$	$\begin{array}{r} 97.860_{\pm 10.399} \\ 94.770_{\pm 10.136} \\ 128.810_{\pm 14.120} \end{array}$
Autoregressive	GPT-2 GPT-NEO LLaMA	$\begin{array}{c} 292.780_{\pm 32.322} \\ 237.670_{\pm 25.515} \\ 1196.240_{\pm 132.644} \end{array}$	$\begin{array}{c} 272.340_{\pm 30.304} \\ 216.765_{\pm 24.932} \\ 1276.640_{\pm 144.409} \end{array}$	$\begin{array}{c} 298.500 \pm 33.329 \\ 233.190 \pm 24.546 \\ 1196.470 \pm 132.269 \end{array}$	$\begin{array}{r} 284.930_{\pm 31.40} \\ 235.620_{\pm 25.31} \\ 1277.320_{\pm 143.2} \end{array}$

1296 A.9 DETAILED EXPERIMENTAL RESULT

A.9.1 IMPUTATION FIDELITY

Figure 4: Imputation fidelity at **0.2** missingness rate. The missing mechanism corresponding to the figure is indicated below the figure. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported.

Figure 5: Imputation fidelity at **0.4** missingness rate. The missing mechanism corresponding to the figure is indicated below the figure. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported.

Figure 6: Imputation fidelity at **0.6** missingness rate. The missing mechanism corresponding to the figure is indicated below the figure. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported.

Figure 7: Imputation fidelity at **0.8** missingness rate. The missing mechanism corresponding to the figure is indicated below the figure. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported.

1350 A.9.2 MACHINE LEARNING UTILITY

Table 8: Machine learning utility at 0.2 missingness rate. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported. ↑ denotes higher is better. The best value is bolded, and the second best is underlined.

		MCAR			MAR			MNARL			MNARQ	
model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑
Mean	$.646 \pm .026$	$.543_{\pm.037}$	$.936_{\pm.005}$	$.642_{\pm.026}$	$.710_{\pm.030}$	$.863_{\pm.013}$	$.629_{\pm.026}$	$.623_{\pm .034}$	$.904_{\pm.009}$	$.668 \pm .026$	$.651_{\pm .034}$	$.899_{\pm.009}$
EM	$.657_{\pm.025}$	$.523_{\pm.032}$	$.934_{\pm.007}$	$.641_{\pm .026}$	$.707_{\pm .037}$	$.912_{\pm.010}$	$.640_{\pm .026}$	$.619 \pm .038$	$.886 \pm .012$	$.669 \pm .025$	$.623_{\pm .032}$	$.916 \pm .008$
SoftImpu	e .650±.026	$.530_{\pm.035}$	$.939 \pm .005$	$.643_{\pm.026}$	$.694 \pm .032$	$.905_{\pm.009}$	$.631 \pm .026$	$.576 \pm .036$	$.903_{\pm.009}$	$.669 \pm .026$	$.670_{\pm.031}$	$.932_{\pm.006}$
kNNI	$.654_{\pm.025}$	$.572 \pm .032$	$.940_{\pm.008}$	$.649 \pm .025$	$.705 \pm .032$	$.923_{\pm.010}$	$.636 \pm .026$	$.605 \pm .039$	$.899 \pm .012$	$.672 \pm .026$	$.646 \pm .032$	$.930_{\pm.007}$
MICE	$.656 \pm .026$	$.489 \pm .035$	$.946 \pm .005$	$.648 \pm .026$	$.690 \pm .034$	$.912_{\pm.009}$	$.637_{\pm .026}$	$.601_{\pm .036}$	$.904_{\pm.010}$	$.673 \pm .026$	$.633 \pm .033$	$.933_{\pm.007}$
missFore	t .651 _{±.026}	$.557_{\pm.033}$	$.925_{\pm .007}$	$.646 \pm .026$	$.705 \pm .032$	$.903_{\pm.009}$	$.634_{\pm.026}$	$.595 \pm .039$	$.894_{\pm.011}$	$.671 \pm .026$	$.659 \pm .033$	$.920_{\pm.007}$
Sinkhorn	$.651_{\pm.026}$	$.563 \pm .035$	$.932 \pm .008$	$.649 \pm .025$	$.696 \pm .033$	$.911_{\pm .009}$	$.635 \pm .026$	$.617_{\pm .037}$	$.900 \pm .011$	$.671 \pm .026$	$.649 \pm .033$	$.918 \pm .008$
GAIN	$.669_{\pm.025}$	$.659 \pm .022$	$.935_{\pm.005}$	$.673 \pm .025$	$.682 \pm .025$	$.931_{\pm.006}$	$.662 \pm .024$	$.630_{\pm .032}$	$.914_{\pm.008}$	$.685 \pm .025$	$.682_{\pm.026}$	$.931_{\pm.005}$
VAEAC	$.611_{\pm .025}$	$.634_{\pm.019}$	$.857_{\pm.004}$	$.610 \pm .025$	$.651_{\pm .017}$	$.853_{\pm.005}$	$.609_{\pm .025}$	$.626_{\pm.019}$	$.851 \pm .005$	$.614 \pm .024$	$.679 \pm .014$	$.847_{\pm.008}$
MIWAE	$.632_{\pm.026}$	$.581 \pm .034$	$.931_{\pm .007}$	$.641_{\pm .026}$	$.669 \pm .034$	$.902 \pm .009$	$.629 \pm .026$	$.578 \pm .039$	$.896 \pm .011$	$.667 \pm .026$	$.645_{\pm.034}$	$.929_{\pm.006}$
not-MIW.	AE .647±.025	$.593_{\pm.032}$	$.939_{\pm .006}$	$.643_{\pm .026}$	$.663 \pm .035$	$.904_{\pm.010}$	$.628 \pm .026$	$.597_{\pm .037}$	$.898 \pm .010$	$.669 \pm .026$	$.669 \pm .032$	$.932_{\pm.006}$
MIRACL	E .648±.025	$.474_{\pm.038}$	$.937_{\pm .006}$	$.646 \pm .026$	$.609 \pm .039$	$.911_{\pm.009}$	$.630 \pm .026$	$.549_{\pm.041}$	$.889_{\pm.012}$	$.670_{\pm .026}$	$.623 \pm .033$	$.923_{\pm.008}$
ReMaske	$.648_{\pm.026}$	$.493_{\pm .037}$	$.907_{\pm.010}$	$.643_{\pm.026}$	$.646 \pm .037$	$.888_{\pm.014}$	$.630_{\pm .027}$	$.523_{\pm .041}$	$.870_{\pm.013}$	$.666_{\pm.026}$	$.599_{\pm.036}$	$.919_{\pm .008}$
DrIMBAS	$.665 \pm .025$	$.692_{\pm .026}$	$.949_{\pm.004}$	$.673_{+.024}$	<u>.732</u> +.029	$.934_{+.006}$	$.660_{\pm.024}$	$.658_{\pm.031}$	$.925_{\pm.007}$	<u>.682</u> + 025	$.771_{+.026}$	$.945_{+.005}$
DrIM _{FINE}	$.678_{\pm.025}$.690 + .029	$.948_{+0.04}$	$.684_{\pm.025}$	$.773 \pm 0.023$	$.948_{\pm,004}$	$.673_{\pm.025}$	$.711_{+.026}$	$.938 \pm .006$	$.689 \pm .025$	$.784 \pm .021$	$.948_{+.004}$

Table 9: Machine learning utility at 0.3 missingness rate. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported. ↑ denotes higher is better. The best value is bolded, and the second best is underlined.

			MCAR			MAR			MNARL			MNARQ	
model		$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑
Mean		$.581_{\pm .027}$	$.289_{\pm.046}$	$.839_{\pm.017}$	$.591_{\pm .027}$	$.548_{\pm.041}$	$.744_{\pm.021}$	$.560 \pm .027$	$.428_{\pm .041}$	$.797_{\pm.017}$	$.620_{\pm .028}$	$.417_{\pm .052}$	$.771_{\pm.021}$
kNNI		$.595_{\pm .026}$	$.292_{\pm .047}$	$.895_{\pm.014}$	$.601_{\pm .027}$	$.560_{\pm .043}$	$.868_{\pm.014}$	$.575_{\pm .027}$	$.419_{\pm .049}$	$.843_{\pm.016}$	$.629_{\pm .027}$	$.448_{\pm.048}$	$.877_{\pm.013}$
EM		$.599 \pm .027$	$.244_{\pm.048}$	$.873_{\pm.015}$	$.598 \pm .027$	$.531_{\pm.043}$	$.833_{\pm.016}$	$.580 \pm .027$	$.407 \pm .048$	$.804_{\pm.019}$	$.626 \pm .028$	$.412 \pm .050$	$.835_{\pm.018}$
SoftImp	ute	$.583_{\pm,027}$	$.233_{\pm.044}$	$.866_{\pm,013}$	$.590_{\pm.027}$	$.554_{\pm.039}$	$.845_{\pm.014}$	$.562_{\pm.027}$	$.342_{\pm.045}$	$.818_{\pm.015}$	$.622_{\pm.028}$	$.403_{\pm.050}$	$.871_{\pm.013}$
MICE		$.593 \pm .027$	$.247_{\pm.046}$	$.892 \pm .013$	$.598 \pm .027$	$.543 \pm .043$	$.859 \pm .014$	$.571 \pm .027$	$.339_{\pm.050}$	$.825 \pm .017$	$.628 \pm .028$	$.410_{\pm .051}$	$.876 \pm .014$
missFor	est	$.588_{\pm,027}$	$.229_{\pm.046}$	$.858_{\pm.015}$	$.596_{\pm.027}$	$.548_{\pm.044}$	$.833_{\pm.015}$	$.569_{\pm.027}$	$.366_{\pm.048}$	$.809_{\pm.016}$	$.625_{\pm.028}$	$.401_{\pm.048}$	$.857_{\pm.014}$
Sinkhor	n	$.589 \pm .027$	$.242_{\pm.043}$	$.868_{\pm.015}$	$.599_{\pm .027}$	$.545_{\pm.044}$	$.845_{\pm.015}$	$.569 \pm .027$	$.377 \pm .049$	$.821_{\pm.017}$	$.626 \pm .028$	$.448_{\pm.045}$	$.840_{\pm.019}$
GAIN		$.629_{\pm.025}$	$.473_{\pm.034}$	$.856_{\pm.012}$	$.640_{+.025}$	$.602_{\pm.029}$	$.877_{\pm.011}$	$.621_{\pm .025}$	$.446_{\pm.040}$	$.843_{\pm.016}$	$.659_{+.026}$	$.567_{\pm.037}$	$.875_{\pm.013}$
VAEAC		$.604_{\pm.025}$	$\frac{.558}{.022}$	$.832_{\pm.007}$	$.606 \pm .025$	$.612_{\pm.018}$	$.827_{\pm.007}$	$.598 \pm .025$	$.553_{\pm.024}$	$.816_{\pm.012}$	$.610_{\pm .025}$	$.593_{\pm.020}$	$.823_{\pm.012}$
MIWAE		$.577_{\pm.027}$	$.245_{\pm.052}$	$.864_{\pm.014}$	$.588_{\pm.027}$	$.519_{\pm.048}$	$.834_{\pm.014}$	$.556_{\pm.028}$	$.369_{\pm,053}$	$.821_{\pm.016}$	$.618_{\pm.028}$	$.405_{\pm.054}$	$.863_{\pm.014}$
not-MI	VAE	$.580 \pm .027$	$.234_{\pm.049}$	$.869_{\pm.015}$	$.587_{\pm.027}$	$.540_{\pm.043}$	$.839_{\pm.013}$	$.558 \pm .027$	$.394 \pm .049$	$.818_{\pm.017}$	$.622 \pm .028$	$.438_{\pm.049}$	$.874_{\pm.013}$
MIRAC	LE	$.576_{\pm,027}$	$.167_{\pm.048}$	$.876_{\pm.013}$	$.597_{\pm.027}$	$.473_{\pm.046}$	$.851_{\pm.014}$	$.564_{\pm.027}$	$.264_{\pm.051}$	$.825_{\pm.016}$	$.625_{\pm.028}$	$.333_{\pm.053}$	$.865_{\pm.016}$
ReMasl	er	$.583_{\pm .029}$	$.229_{\pm .046}$	$.823_{\pm.017}$	$.592_{\pm .027}$	$.480_{\pm .046}$	$.817_{\pm.019}$	$.566_{\pm .028}$	$.279_{\pm .050}$	$.782_{\pm.021}$	$.617_{\pm .028}$	$.340_{\pm.050}$	$.835_{\pm.016}$
DrIM _{BA}	SE	$.638_{+ 024}$	$.517_{\pm .037}$	$.920_{+,006}$	$.640_{+0.024}$	$.617_{+.041}$	$.894_{+.010}$	$.625_{+.024}$	$.496_{+.043}$	$.886_{+.009}$	$.658_{\pm.025}$	$.694_{\pm.029}$	$.913_{\pm.007}$
DrIM _{FI}	Е	$.656_{\pm.025}$	$.616_{\pm.032}$	$.921_{\pm.006}$	$.659_{\pm.025}$	$.658_{\pm.032}$	$.905_{\pm.007}$	$.653_{\pm.025}$	$.553_{\pm.040}$	$.915_{\pm.006}$	$.673_{\pm.025}$	$.691_{+0.030}$	$.910_{+0.07}$

Table 10: Machine learning utility at 0.4 missingness rate. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported. ↑ denotes higher is better. The best value is bolded, and the second best is underlined.

		MCAR			MAR			MNARL			MNARQ	
model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1\uparrow$	Model ↑	Feature ↑	$F_1\uparrow$	Model ↑	Feature ↑	$F_1\uparrow$	Model ↑	Feature ↑
Mean	$.496 \pm .030$	$.062 \pm .046$	$.672_{\pm .037}$	$.533_{\pm.028}$	$.370_{\pm .047}$	$.607_{\pm .029}$	$.493_{\pm .029}$	$.201_{\pm.050}$	$.662_{\pm.031}$	$.561_{\pm.030}$	$.293_{\pm.057}$	$.632_{\pm.030}$
EM	$.532 \pm .028$	$.093_{\pm.052}$	$.819 \pm .018$	$.540_{\pm.028}$	$.369 \pm .050$	$.780_{\pm.020}$	$.522_{\pm.028}$	$.179_{\pm.050}$	$.733_{\pm.024}$	$.578 \pm .030$	$.302 \pm .056$	$.767_{\pm,024}$
SoftImpute	$.491_{\pm .030}$	$080 \pm .045$	$.740_{\pm.025}$	$.534 \pm .029$	$.285 \pm .049$	$.743_{\pm.024}$	$.491 \pm .029$	$.118 \pm .052$	$.715_{\pm .022}$	$.563_{\pm.030}$	$.240_{\pm.058}$	$.785 \pm .023$
kNNI	$.529_{\pm .028}$	$.087_{\pm .053}$	$.849_{\pm.016}$	$.547_{\pm .028}$	$.343_{\pm.051}$	$.806_{\pm.018}$	$.521_{\pm .027}$	$.238_{\pm.055}$	$.775_{\pm.021}$	$.576_{\pm.030}$	$.271_{\pm .055}$	$.806_{\pm.021}$
MICE	$.506 \pm .030$	$032_{\pm.049}$	$.851_{\pm.015}$	$.539 \pm .029$	$.319 \pm .053$	$.817_{\pm.017}$	$.501_{\pm .029}$	$.084_{\pm.052}$	$.774 \pm .020$	$.569 \pm .031$	$.265 \pm .057$	$.816 \pm .020$
missForest	$.509 \pm .029$	$001 \pm .044$	$.791_{\pm.021}$	$.541_{\pm .028}$	$.329_{\pm.050}$	$.775_{\pm.019}$	$.503_{\pm .029}$	$.182 \pm .049$	$.731_{\pm .022}$	$.570_{\pm.030}$	$.266 \pm .056$	$.779 \pm .022$
Sinkhorn	$.511_{\pm .029}$	$.001_{\pm .047}$	$.798_{\pm.021}$	$.540_{\pm .028}$	$.341_{\pm.048}$	$.776_{\pm.021}$	$.505_{\pm .028}$	$.173_{\pm .049}$	$.748_{\pm.022}$	$.572_{\pm.030}$	$.271_{\pm .056}$	$.748_{\pm .027}$
GAIN	$.587_{\pm.026}$	$.320_{\pm .044}$	$.725 \pm .028$	$.612 \pm .026$	$.475 \pm .036$	$.781_{\pm.019}$	$.583 \pm .026$	$.250_{\pm .043}$	$.726 \pm .022$	$\frac{.638}{.026}$	$.461 \pm .040$	$.794_{\pm.019}$
VAEAC	$.595 \pm .025$.488 + .026	$.789 \pm .013$	$.598 \pm .025$	$.521_{+.025}$	$.790 \pm .012$.592 + .025	$.495_{\pm.025}$	$.788 \pm .014$	$.603_{\pm .025}$	$\frac{.585}{.023}$	$.782_{\pm.016}$
MIWAE	$.491_{\pm .030}$	$041_{\pm.047}$	$.791_{\pm.021}$	$.530 \pm .028$	$.317_{\pm.051}$	$.781_{\pm.019}$	$.487_{\pm .029}$	$.083_{\pm .049}$	$.739_{\pm.021}$	$.560 \pm .030$	$.236 \pm .056$	$.790_{\pm.021}$
not-MIWAE	$.490 \pm .030$	$074_{\pm.050}$	$.798 \pm .020$	$.529 \pm .028$	$.347_{\pm.049}$	$.770_{\pm.020}$	$.486 \pm .029$	$.103_{\pm.054}$	$.746 \pm .019$	$.559 \pm .031$	$.246 \pm .058$	$.780_{\pm.022}$
MIRACLE	$.499_{\pm .029}$	$055_{\pm.049}$	$.812_{\pm.015}$	$.535_{\pm .028}$	$.277_{\pm.058}$	$.769_{\pm.021}$	$.493_{\pm .028}$	$.029_{\pm.051}$	$.737_{\pm .024}$	$.566_{\pm.030}$	$.203_{\pm .054}$	$.797_{\pm .023}$
ReMasker	$.496_{\pm.031}$	$.081_{\pm .050}$	$.750_{\pm .026}$	$.535_{\pm .029}$	$.341_{\pm.048}$	$.718_{\pm.028}$	$.499_{\pm .029}$	$.104_{\pm.054}$	$.703_{\pm .027}$	$.557_{\pm.031}$	$.249_{\pm.050}$	$.759_{\pm.025}$
DrIMBASE	$.602_{\pm .024}$	$.301_{\pm .048}$	$.853_{\pm.012}$	$.607_{\pm .024}$	$.452_{\pm .044}$	$.837_{\pm.015}$	$.591_{\pm .023}$	$.326_{\pm .048}$	$.832_{\pm.014}$	$.629_{\pm .025}$	$.534_{\pm .037}$	$.850_{\pm.012}$
DrIM _{FINE}	$.632_{\pm .025}$	$.503_{\pm .038}$	$.889_{\pm.011}$	$.639_{\pm .025}$	$.556_{\pm .035}$	$.853_{\pm.012}$	$.625_{\pm .024}$	$.481_{\pm.042}$	$.864_{\pm.010}$	$.655_{\pm .025}$	$.618_{\pm .033}$	$.853_{\pm.012}$

Table 11: Machine learning utility at **0.6** missingness rate. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported. \uparrow denotes higher is better. The best value is bolded, and the second best is underlined.

			MCAR			MAR			MNARL			MNARQ	
I	model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1\uparrow$	Model ↑	Feature ↑
1	Mean	$.377_{\pm.031}$	$186_{\pm.051}$	$.422_{\pm .047}$	$.433_{\pm.030}$	$.012_{\pm .059}$	$.411_{\pm .037}$	$.380_{\pm.030}$	$138_{\pm.048}$	$.427_{\pm .043}$	$.464_{\pm.034}$	$.034_{\pm.063}$	$.450_{\pm.041}$
ł	EM	$.429 \pm .030$	$255 \pm .047$	$.669 \pm .025$	$.461 \pm .029$	$.024_{\pm .054}$	$.626 \pm .029$	$.432_{\pm.029}$	$175 \pm .049$	$.569 \pm .033$	$.494 \pm .033$	$.024_{\pm.059}$	$.567_{\pm.034}$
5	SoftImpute	$.363_{\pm.030}$	$277 \pm .053$	$.445_{\pm.045}$	$.432_{\pm.031}$	$027_{\pm.060}$	$.469 \pm .043$	$.374 \pm .030$	$226 \pm .048$	$.472_{\pm.041}$	$.462 \pm .034$	$006 \pm .064$	$.567_{\pm .037}$
ŀ	kNNI	$.441_{\pm .029}$	$151_{\pm.058}$	$.749_{\pm.020}$	$.458 \pm .030$	$.033_{\pm .057}$	$.677_{\pm.024}$	$.439 \pm .029$	$100 \pm .054$	$.609 \pm .027$	$.486 \pm .033$	$.074_{\pm.061}$	$.659 \pm .031$
1	MICE	$.361_{\pm.031}$	$295_{\pm.052}$	$.732_{\pm.019}$	$.441_{\pm.031}$	$001_{\pm.055}$	$.684_{\pm.026}$	$.378 \pm .031$	$247_{\pm.052}$	$.624_{\pm.028}$	$.468 \pm .034$	$.029_{\pm.061}$	$.673_{\pm.031}$
I	missForest	$.379_{\pm.031}$	$257 \pm .049$	$.626 \pm .029$	$.447_{\pm.031}$	$038 \pm .057$	$.610_{\pm.031}$	$.389 \pm .030$	$229 \pm .050$	$.546 \pm .030$	$.475 \pm .034$	$.005_{\pm.064}$	$.609 \pm .034$
5	Sinkhorn	$.389 \pm .030$	$230_{\pm.052}$	$.542_{\pm.037}$	$.448 \pm .030$	$025 \pm .058$	$.572 \pm .033$	$.399 \pm .030$	$214_{\pm.052}$	$.539_{\pm.031}$	$.479 \pm .033$	$.034_{\pm.064}$	$.560 \pm .039$
(GAIN	$.499 \pm .027$	$073 \pm .053$	$.482_{\pm.040}$	$.525 \pm .027$	$.172_{\pm .049}$	$.585 \pm .030$	$.494_{\pm.025}$	$058 \pm .049$	$.456 \pm .035$	$.575 \pm .027$	$.237_{\pm.054}$	$.593_{\pm.035}$
1	VAEAC	$.565 \pm .024$	$.391 \pm .028$	$.693_{\pm.021}$	$.574 \pm .025$	$.421_{\pm .033}$	$.723_{\pm.019}$	$.549 \pm .025$	$.339_{\pm.033}$	$.643_{\pm.026}$	$\frac{.587}{.025}$	$.462_{\pm.032}$	$.693_{\pm.026}$
1	MIWAE	$.357_{\pm.031}$	$313_{\pm.048}$	$.669 \pm .028$	$.433_{\pm.031}$	$028 \pm .056$	$.638_{\pm.028}$	$.376 \pm .031$	$299 \pm .047$	$.583 \pm .030$	$.460 \pm .034$	$.032_{\pm.064}$	$.656 \pm .033$
I	not-MIWAE	$.355_{\pm.031}$	$290 \pm .049$	$.625_{\pm .032}$	$.420 \pm .031$	$056 \pm .057$	$.583_{\pm.031}$	$.367 \pm .030$	$298 \pm .049$	$.556 \pm .032$	$.456 \pm .034$	$020_{\pm.063}$	$.617_{\pm .033}$
1	MIRACLE	$.394_{\pm.029}$	$253 \pm .049$	$.634_{\pm.022}$	$.448 \pm .030$	$089 \pm .058$	$.567_{\pm.033}$	$.393_{\pm.028}$	$217_{\pm.051}$	$.521_{\pm.031}$	$.480 \pm .033$	$.015_{\pm .059}$	$.612_{\pm .032}$
ł	ReMasker	$.378_{\pm .032}$	$221_{\pm.052}$	$.585_{\pm.032}$	$.441_{\pm.031}$	$018 \pm .056$	$.521_{\pm .040}$	$.386_{\pm.030}$	$253_{\pm.051}$	$.509_{\pm .041}$	$.469 \pm .034$	$.048_{\pm.061}$	$.586_{\pm.036}$
I	DrIMBASE	$.539_{\pm .024}$	$.104_{\pm.051}$	$.708_{\pm .024}$	$.545_{\pm.024}$	$.231_{+0.52}$	$.684_{\pm.024}$	$.522_{\pm.022}$	$.102_{\pm .052}$	$\underline{.652}_{+ 029}$	$.583_{\pm.026}$.266±.050	$.683_{\pm.028}$
I	DrIM _{FINE}	$.588_{\pm.025}$	$.349_{+.044}$	$.748_{\pm 010}$.589 + .024	$.373 \pm 0.40$	$.734_{\pm 0.026}$	$.573_{+.024}$	$.313_{\pm 0.45}$	$.730 \pm .021$.614 + .026	$.434_{\pm 0.42}$	$.748_{+.021}$

Table 12: Machine learning utility at **0.8** missingness rate. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported. ↑ denotes higher is better. The best value is bolded, and the second best is underlined.

		MCAR			MAR			MNARL			MNARQ	
model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑
Mean	$.322_{\pm .030}$	$180_{\pm.049}$	$.247_{\pm .052}$	$.353_{\pm.031}$	$017_{\pm.056}$	$.278_{\pm .039}$	$.311_{\pm.030}$	$064_{\pm.051}$	$.294_{\pm .043}$	$.413_{\pm.034}$	$.043_{\pm.061}$	$.346_{\pm.041}$
EM	$.366_{\pm.029}$	$186_{\pm.053}$	$.381_{\pm.042}$	$.386_{\pm .029}$	$101_{\pm.060}$	$.418_{\pm .039}$	$.362_{\pm .028}$	$200_{\pm.050}$	$.345_{\pm .039}$	$.441_{\pm .033}$	$039_{\pm.061}$	$.402_{\pm.038}$
SoftImpute	$.315_{\pm.030}$	$311_{\pm.048}$	$.263_{\pm.048}$	$.362_{\pm.031}$	$077_{\pm.057}$	$.322_{\pm.040}$	$.311_{\pm .030}$	$165_{\pm.050}$	$.312_{\pm .044}$	$.415_{\pm .035}$	$.050_{\pm .060}$	$.376_{\pm.041}$
kNNI	$.396 \pm .031$	$199 \pm .055$	$.585_{\pm.030}$	$.386 \pm .032$	$120 \pm .053$	$.549 \pm .031$	$.386 \pm .031$	$061 \pm .054$	$.440_{\pm,036}$	$.431_{\pm .035}$	$026 \pm .060$	$.507_{\pm .039}$
MICE	$.292_{\pm.031}$	$331_{\pm.049}$	$.476_{\pm.030}$	$.369_{\pm .033}$	$109_{\pm.061}$	$.502_{\pm.035}$	$.295_{\pm .031}$	$260_{\pm.049}$	$.381_{\pm.040}$	$.417_{\pm .036}$	$040_{\pm .060}$	$.494_{\pm.039}$
missForest	$.315_{\pm.031}$	$306_{\pm.047}$	$.331_{\pm .038}$	$.375_{\pm .032}$	$138_{\pm.055}$	$.426_{\pm.039}$	$.314_{\pm .031}$	$215_{\pm.051}$	$.314_{\pm .042}$	$.422_{\pm .035}$	$030_{\pm .059}$	$.422_{\pm.041}$
Sinkhorn	$.330_{\pm .030}$	$211_{\pm.054}$	$.272_{\pm.040}$	$.373_{\pm.031}$	$010_{\pm .055}$	$.389_{\pm.039}$	$.324_{\pm .029}$	$099_{\pm.055}$	$.299_{\pm .039}$	$.425_{\pm .034}$	$063_{\pm.058}$	$.401_{\pm .042}$
GAIN	$.411_{\pm .026}$	$161_{\pm.054}$	$.298_{\pm .042}$	$.438_{\pm .027}$	$001_{\pm .054}$	$.364_{\pm.040}$	$.391_{\pm .026}$	$136_{\pm.052}$	$.244_{\pm.040}$	$.514_{\pm .029}$	$.155_{\pm .059}$	$.451_{\pm .041}$
VAEAC	$.505_{\pm .024}$	$.185_{\pm.039}$	$.534_{\pm,030}$	$.536_{\pm .025}$	$.316_{\pm .036}$	$.611_{\pm .026}$	$.492_{\pm .024}$	$.217_{\pm.041}$	$.488_{\pm.033}$	$.558_{\pm .026}$	$.322_{\pm .037}$	$\frac{.560}{\pm .032}$
MIWAE	$.287_{\pm.031}$	$322_{\pm.049}$	$.397_{\pm .039}$	$.364_{\pm .032}$	$116_{\pm.059}$	$.454_{\pm.036}$	$.299_{\pm .031}$	$283_{\pm.046}$	$.348_{\pm.038}$	$.409_{\pm .035}$	$032_{\pm.060}$	$.487_{\pm.038}$
not-MIWAE	$.288_{\pm.030}$	$364_{\pm.042}$	$.357_{\pm .035}$	$.347_{\pm .032}$	$146_{\pm.056}$	$.406_{\pm.039}$	$.288_{\pm .030}$	$332_{\pm.044}$	$.335_{\pm .037}$	$.405_{\pm .035}$	$024_{\pm.057}$	$.473_{\pm.033}$
MIRACLE	$.320_{\pm .028}$	$273_{\pm.049}$	$.368_{\pm .032}$	$.369_{\pm.030}$	$183_{\pm.058}$	$.367_{\pm .040}$	$.316_{\pm.028}$	$216_{\pm.050}$	$.290_{\pm .036}$	$.419_{\pm .033}$	$097_{\pm .054}$	$.420_{\pm .039}$
ReMasker	$.304_{\pm .028}$	$283_{\pm.053}$	$.299_{\pm .049}$	$.374_{\pm.031}$	$140_{\pm.055}$	$.364_{\pm .042}$	$.306_{\pm .029}$	$285_{\pm.051}$	$.286_{\pm .045}$	$.418_{\pm .035}$	$034_{\pm.058}$	$.418_{\pm .037}$
DrIM _{BASE}	$.471_{\pm.023}$	$.027_{\pm.050}$	$.272_{\pm.043}$	$.477_{\pm.023}$	$.072_{\pm .054}$	$.446_{\pm.041}$	$.449_{\pm.022}$	$.049_{\pm.051}$	$.286 \pm .043$	$.515_{\pm.026}$	$.151_{\pm.060}$	$.545_{\pm.033}$
DrIM _{FINE}	$.503_{+0.025}$.176 + 0.055	$.309 \pm .039$	$.534_{+0.24}$	$.257_{+0.47}$.604 + 0.35	$.492_{\pm.024}$	$.235_{\pm.054}$	$.287_{\pm.042}$.572 + 0.25	.281 + 0.052	$.616_{\pm.031}$

1458 A.9.3 MACHINE LEARNING UTILITY FOR EACH DATASET

Table 13: Machine learning utility for each dataset under MCAR at 0.3 missingness. The means and the standard errors of the mean across 10 repeated experiments are reported. ↑ denotes higher is better.

1463							
1464			abalone			anuran	
1465	model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑
1466	Mean	$.125_{\pm 002}$	$587_{\pm 0.59}$	$.864_{\pm 015}$	$.858 \pm 0.02$	$.172_{\pm 113}$	$.836_{\pm 012}$
1467	kNNI	$.135 \pm 0.03$	475 ± 0.009	$.983 \pm 0.015$	$.832 \pm 0.03$	$.105 \pm 106$	$.496 \pm 0.012$
1468	EM	$.128_{\pm.003}$	$505_{\pm.074}$	$.962_{\pm.012}$	$.841_{\pm.003}$	$133_{\pm.091}$	$.457_{\pm.011}$
1469	SoftImpute	$.118 \pm .004$	$523_{\pm.054}$	$.967_{\pm.010}$	$.855_{\pm.003}$	$.125 \pm .126$	$.626_{\pm .026}$
1/70	MICE	$.120_{\pm .003}$	$542_{\pm .048}$	$.974_{\pm.007}$	$.858_{\pm .004}$	$.105_{\pm.111}$	$.545_{\pm .014}$
1470	missForest	$.121_{\pm .003}$	$507_{\pm .045}$	$.976_{\pm .006}$	$.850_{\pm.003}$	$.080_{\pm.109}$	$.485_{\pm.012}$
1471	Sinkhorn	$.125_{\pm .003}$	$547_{\pm .069}$	$.967_{\pm.010}$	$.843_{\pm.003}$	$.015_{\pm .094}$	$.473_{\pm .009}$
1472	GAIN	$.196_{\pm.003}$	$.019_{\pm.150}$	$.850_{\pm.014}$	$.902_{\pm.011}$	$.452_{\pm .059}$	$.772_{\pm .032}$
1473	VAEAC	$.132_{\pm .002}$	$.322_{\pm.087}$	$.821_{\pm.013}$	$.892_{\pm.000}$	$.535_{\pm.070}$	$.872_{\pm.004}$
1474	MIWAE	$.113_{\pm.003}$	$578 \pm .047$	$.967_{\pm.016}$	$.855_{\pm.003}$	$.225_{\pm .099}$	$.517 \pm .019$
1/175	not-MIWAE	$.114_{\pm.003}$	$607_{\pm.049}$	$.957_{\pm.011}$	$.854_{\pm.003}$	$.201_{\pm.121}$	$.521_{\pm .014}$
1470	MIRACLE BoMosker	$.120 \pm .003$	$440 \pm .051$	$.907 \pm .009$	$.821 \pm .005$	$188 \pm .093$	$.038 \pm .022$
1476	Reiviaskei	$.119_{\pm.004}$	$543_{\pm.051}$	$.000 \pm .022$	$.001 \pm .003$	$.043 \pm .090$	$.479 \pm .010$
1477	DrIM _{BASE}	$.200_{\pm .002}$	$.571_{\pm .142}$	$.893_{\pm.021}$	$.926_{\pm.001}$	$.262_{\pm .092}$	$.947_{\pm.006}$
1478	DrIM _{FINE}	$.203_{\pm .003}$	$.534_{\pm.109}$	$.926_{\pm.012}$	$.970_{\pm .007}$	$.384_{\pm.112}$	$.938_{\pm .005}$
1479			banknote			breast	
1479 1480	model	$F_1 \uparrow$	banknote Model↑	Feature ↑	$F_1 \uparrow$	breast Model↑	Feature ↑
1479 1480 1481	model Mean	$F_1 \uparrow$	banknote Model↑	Feature ↑	$F_1 \uparrow$	breast Model↑	Feature ↑
1479 1480 1481 1482	model Mean kNNI	$F_1 \uparrow$.863±.006 .869±.006	banknote Model \uparrow .731 _{±.056} .641+ 005	Feature ↑ 1.000±.000 1.000+000	$F_1 \uparrow$.896±.006 .883±010	breast Model↑ .198±.119 007+ 107	Feature ↑ .872±.011 .878+ 014
1479 1480 1481 1482 1483	model Mean kNNI EM	$F_{1} \uparrow$.863±.006 .869±.006 .912+.005	banknote Model \uparrow .731 _{±.056} .641 _{±.095} .525 _{+.075}	Feature ↑ 1.000±.000 1.000±.000 1.000+000	$ F_1 \uparrow .896_{\pm.006} .883_{\pm.010} .885_{\pm.008} $	breast Model↑ .198±.119 007±.107 .004+074	Feature \uparrow .872 \pm .011 .878 \pm .014 .876 \pm .015
1479 1480 1481 1482 1483 1484	model Mean kNNI EM SoftImpute	$F_1 \uparrow \\ .863_{\pm.006} \\ .869_{\pm.006} \\ .912_{\pm.005} \\ .886_{\pm.006}$	banknote Model \uparrow .731 \pm .056 .641 \pm .095 .525 \pm .075 .438 \pm .055	Feature ↑ 1.000±.000 1.000±.000 1.000±.000 1.000+.000	$F_{1} \uparrow$.896±.006 .883±.010 .885±.008 .881+.008	breast <u>Model</u> ↑ .198±.119 007±.107 .004±.074 .147+.082	Feature \uparrow .872±.011 .878±.014 .876±.015 .865±.015
1479 1480 1481 1482 1483 1484 1485	model Mean kNNI EM SoftImpute MICE	$\begin{array}{c} \hline F_1 \uparrow \\ .863 \pm .006 \\ .869 \pm .006 \\ .912 \pm .005 \\ .886 \pm .006 \\ .906 \pm .006 \end{array}$	banknote Model↑ .731±.056 .641±.095 .525±.075 .438±.055 .493±.056	Feature ↑ 1.000±.000 1.000±.000 1.000±.000 1.000±.000	$\begin{array}{c} \hline F_{1}\uparrow\\ .896_{\pm.006}\\ .883_{\pm.010}\\ .885_{\pm.008}\\ .881_{\pm.008}\\ .888_{\pm.007} \end{array}$	breast Model↑ .198±.119 007±.107 .004±.074 .147±.082 .023±.089	Feature ↑ .872±.011 .878±.014 .876±.015 .865±.015 .873±.016
1479 1480 1481 1482 1483 1484 1485 1486	model Mean kNNI EM SoftImpute MICE missForest	$\begin{array}{c} F_1 \uparrow \\ .863 \pm .006 \\ .869 \pm .006 \\ .912 \pm .005 \\ .886 \pm .006 \\ .906 \pm .006 \\ .895 \pm .005 \end{array}$	banknote Model↑ .731±.056 .641±.095 .525±.075 .438±.055 .493±.056 .498±.047	Feature ↑ 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000	$\begin{array}{c} F_1 \uparrow \\ .896 \pm .006 \\ .883 \pm .010 \\ .885 \pm .008 \\ .881 \pm .008 \\ .888 \pm .007 \\ .880 \pm .007 \end{array}$	breast Model↑ .198±.119 007±.107 .004±.074 .147±.082 .023±.089 072±.117	Feature ↑ .872±.011 .878±.014 .876±.015 .865±.015 .873±.016 .892±.009
1479 1480 1481 1482 1483 1484 1485 1486	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn	$\begin{array}{c} F_1 \uparrow \\ .863 \pm .006 \\ .869 \pm .006 \\ .912 \pm .005 \\ .886 \pm .006 \\ .906 \pm .006 \\ .895 \pm .005 \\ .882 \pm .004 \end{array}$	$\begin{array}{c} \text{banknote} \\ \hline \text{Model} \uparrow \\ \hline .731_{\pm.056} \\ .641_{\pm.095} \\ .525_{\pm.075} \\ .438_{\pm.055} \\ .493_{\pm.056} \\ .498_{\pm.047} \\ .483_{\pm.042} \end{array}$	Feature ↑ 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000	$\begin{array}{c} F_1 \uparrow \\ .896 \pm .006 \\ .883 \pm .010 \\ .885 \pm .008 \\ .881 \pm .008 \\ .888 \pm .007 \\ .880 \pm .007 \\ .886 \pm .008 \end{array}$	$\begin{array}{c} \text{breast} \\ \hline \text{Model} \uparrow \\ .198 \pm .119 \\007 \pm .107 \\ .004 \pm .074 \\ .147 \pm .082 \\ .023 \pm .089 \\072 \pm .117 \\ .035 \pm .111 \end{array}$	Feature \uparrow .872±.011 .878±.014 .876±.015 .865±.015 .873±.016 .892±.009 .885±.014
1479 1480 1481 1482 1483 1484 1485 1486 1487	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN	$\begin{array}{c} F_1 \uparrow \\ .863 \pm .006 \\ .869 \pm .006 \\ .912 \pm .005 \\ .886 \pm .006 \\ .906 \pm .006 \\ .895 \pm .005 \\ .882 \pm .004 \\ .909 \pm .012 \end{array}$	banknote $Model \uparrow$ $.731_{\pm.056}$ $.641_{\pm.095}$ $.525_{\pm.075}$ $.438_{\pm.055}$ $.493_{\pm.056}$ $.498_{\pm.047}$ $.483_{\pm.042}$ $.577_{\pm.072}$	Feature ↑ 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000	$\begin{array}{c} F_1 \uparrow \\ .896 \pm .006 \\ .883 \pm .010 \\ .885 \pm .008 \\ .881 \pm .008 \\ .888 \pm .007 \\ .880 \pm .007 \\ .886 \pm .008 \\ .919 \pm .008 \end{array}$	$\begin{array}{c} \text{breast} \\ \hline \text{Model} \uparrow \\ .198 \pm .119 \\007 \pm .107 \\ .004 \pm .074 \\ .147 \pm .082 \\ .023 \pm .089 \\072 \pm .117 \\ .035 \pm .111 \\ .113 \pm .100 \end{array}$	Feature \uparrow .872±.011 .878±.014 .876±.015 .865±.015 .873±.016 .892±.009 .885±.014 .913±.009
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC	$\begin{array}{c} F_1 \uparrow \\ .863 \pm .006 \\ .869 \pm .006 \\ .912 \pm .005 \\ .886 \pm .006 \\ .906 \pm .006 \\ .895 \pm .005 \\ .882 \pm .004 \\ .909 \pm .012 \\ .846 \pm .003 \\ \end{array}$	banknote $Model \uparrow$ $.731_{\pm.056}$ $.641_{\pm.095}$ $.525_{\pm.075}$ $.438_{\pm.055}$ $.493_{\pm.056}$ $.498_{\pm.047}$ $.483_{\pm.042}$ $.577_{\pm.072}$ $.623_{\pm.032}$	Feature ↑ 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 .980±.020 .900±.000	$\begin{array}{c} F_1 \uparrow \\ .896 \pm .006 \\ .883 \pm .010 \\ .885 \pm .008 \\ .881 \pm .008 \\ .888 \pm .007 \\ .880 \pm .007 \\ .886 \pm .008 \\ .919 \pm .008 \\ .847 \pm .004 \end{array}$	$\begin{array}{c} \text{breast} \\ \hline \text{Model} \uparrow \\ .198 \pm .119 \\007 \pm .107 \\ .004 \pm .074 \\ .147 \pm .082 \\ .023 \pm .089 \\072 \pm .117 \\ .035 \pm .111 \\ .113 \pm .100 \\ .655 \pm .027 \end{array}$	Feature \uparrow .872±.011 .878±.014 .876±.015 .865±.015 .873±.016 .892±.009 .885±.014 .913±.009 .850±.004
1479 1480 1481 1482 1483 1484 1485 1485 1486 1487 1488 1489	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE	$\begin{array}{c} F_1 \uparrow \\ .863 \pm .006 \\ .869 \pm .006 \\ .912 \pm .005 \\ .886 \pm .006 \\ .906 \pm .006 \\ .895 \pm .005 \\ .882 \pm .004 \\ .909 \pm .012 \\ .846 \pm .003 \\ .871 \pm .008 \end{array}$	$\begin{array}{c} \text{banknote} \\ \hline \text{Model} \uparrow \\ \hline .731 \pm .056 \\ .641 \pm .095 \\ .525 \pm .075 \\ .438 \pm .055 \\ .493 \pm .056 \\ .498 \pm .047 \\ .483 \pm .042 \\ .577 \pm .072 \\ .623 \pm .032 \\ .745 \pm .060 \end{array}$	Feature ↑ 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 .980±.020 .900±.000 .980±.020	$\begin{array}{c} F_1 \uparrow \\ .896 \pm .006 \\ .883 \pm .010 \\ .885 \pm .008 \\ .881 \pm .008 \\ .888 \pm .007 \\ .880 \pm .007 \\ .886 \pm .008 \\ .919 \pm .008 \\ .847 \pm .004 \\ .888 \pm .008 \end{array}$	$\begin{array}{c} \text{breast} \\ \hline \text{Model} \uparrow \\ .198 \pm .119 \\007 \pm .107 \\ .004 \pm .074 \\ .147 \pm .082 \\ .023 \pm .089 \\072 \pm .117 \\ .035 \pm .111 \\ .113 \pm .100 \\ .655 \pm .027 \\036 \pm .089 \end{array}$	Feature \uparrow .872±.011 .878±.014 .876±.015 .865±.015 .873±.016 .892±.009 .885±.014 .913±.009 .850±.004 .901±.008
1479 1480 1481 1482 1483 1484 1485 1485 1486 1487 1488 1489 1490	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE	$\begin{array}{c} F_1 \uparrow \\ .863 \pm .006 \\ .869 \pm .006 \\ .912 \pm .005 \\ .886 \pm .006 \\ .906 \pm .006 \\ .895 \pm .005 \\ .882 \pm .004 \\ .909 \pm .012 \\ .846 \pm .003 \\ .871 \pm .008 \\ .867 \pm .007 \end{array}$	banknote $Model \uparrow$ $.731_{\pm.056}$ $.641_{\pm.095}$ $.525_{\pm.075}$ $.438_{\pm.055}$ $.493_{\pm.047}$ $.483_{\pm.042}$ $.577_{\pm.072}$ $.623_{\pm.032}$ $.745_{\pm.060}$ $.596_{\pm.073}$	$\begin{array}{c} \text{Feature} \uparrow \\ \hline 1.000 \pm .000 \\ .980 \pm .020 \\ .900 \pm .000 \\ .980 \pm .020 \\ 1.000 \pm .000 \\ \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .896 \pm .006 \\ .883 \pm .010 \\ .885 \pm .008 \\ .881 \pm .008 \\ .888 \pm .007 \\ .880 \pm .007 \\ .886 \pm .008 \\ .919 \pm .008 \\ .847 \pm .004 \\ .888 \pm .008 \\ .883 \pm .009 \\ .809 \\ .809 \\ .809 \\ .800 \\ .$	$\begin{array}{r} \text{breast} \\ \hline \text{Model} \uparrow \\ .198 \pm .119 \\007 \pm .107 \\ .004 \pm .074 \\ .147 \pm .082 \\ .023 \pm .089 \\072 \pm .117 \\ .035 \pm .111 \\ .113 \pm .100 \\ .655 \pm .027 \\036 \pm .089 \\ .017 \pm .139 \end{array}$	Feature \uparrow .872±.011 .878±.014 .876±.015 .865±.015 .873±.016 .892±.009 .885±.014 .913±.009 .850±.004 .901±.008
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE	$\begin{array}{c} F_1 \uparrow \\ .863 \pm .006 \\ .869 \pm .006 \\ .912 \pm .005 \\ .886 \pm .006 \\ .906 \pm .006 \\ .895 \pm .005 \\ .882 \pm .004 \\ .909 \pm .012 \\ .846 \pm .003 \\ .871 \pm .008 \\ .867 \pm .007 \\ .902 \pm .007 \end{array}$	banknote $Model \uparrow$ $.731_{\pm.056}$ $.641_{\pm.095}$ $.525_{\pm.075}$ $.438_{\pm.055}$ $.493_{\pm.047}$ $.483_{\pm.042}$ $.577_{\pm.072}$ $.623_{\pm.032}$ $.745_{\pm.060}$ $.596_{\pm.073}$ $.525_{\pm.069}$	Feature ↑ 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 .980±.020 .900±.000 .980±.020 1.000±.000 1.000±.000	$\begin{array}{c} F_1 \uparrow \\ .896 \pm .006 \\ .883 \pm .010 \\ .885 \pm .008 \\ .881 \pm .008 \\ .888 \pm .007 \\ .880 \pm .007 \\ .886 \pm .008 \\ .919 \pm .008 \\ .847 \pm .004 \\ .888 \pm .008 \\ .883 \pm .009 \\ .783 \pm .022 \\ .005 \end{array}$	breast Model ↑ $.198_{\pm.119}$ $007_{\pm.107}$ $.004_{\pm.074}$ $.147_{\pm.082}$ $.023_{\pm.089}$ $072_{\pm.117}$ $.035_{\pm.111}$ $.113_{\pm.100}$ $.655_{\pm.027}$ $036_{\pm.089}$ $.017_{\pm.139}$ $096_{\pm.093}$	Feature \uparrow .872±.011 .878±.014 .876±.015 .865±.015 .873±.016 .892±.009 .885±.014 .913±.009 .850±.004 .901±.008 .901±.010 .832±.020
1479 1480 1481 1482 1483 1484 1485 1485 1486 1487 1488 1489 1490 1491	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE ReMasker	$\begin{array}{c} F_1 \uparrow \\ .863 \pm .006 \\ .869 \pm .006 \\ .912 \pm .005 \\ .886 \pm .006 \\ .906 \pm .006 \\ .895 \pm .005 \\ .882 \pm .004 \\ .909 \pm .012 \\ .846 \pm .003 \\ .871 \pm .008 \\ .867 \pm .007 \\ .902 \pm .007 \\ .901 \pm .006 \end{array}$	$\begin{array}{c} \text{banknote} \\ \hline \text{Model} \uparrow \\ .731 \pm .056 \\ .641 \pm .095 \\ .525 \pm .075 \\ .438 \pm .055 \\ .493 \pm .056 \\ .498 \pm .047 \\ .483 \pm .042 \\ .577 \pm .072 \\ .623 \pm .032 \\ .745 \pm .060 \\ .596 \pm .073 \\ .525 \pm .069 \\ .497 \pm .044 \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ 1.000 \pm .000 \\ .980 \pm .020 \\ .900 \pm .000 \\ .980 \pm .020 \\ 1.000 \pm .000 \\ 1.000 \pm .000 \\ 1.000 \pm .000 \\ 1.000 \pm .000 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .896 \pm .006 \\ .883 \pm .010 \\ .885 \pm .008 \\ .881 \pm .008 \\ .888 \pm .007 \\ .880 \pm .007 \\ .886 \pm .008 \\ .919 \pm .008 \\ .847 \pm .004 \\ .888 \pm .008 \\ .883 \pm .009 \\ .783 \pm .022 \\ .905 \pm .008 \end{array}$	$\begin{array}{r} \text{breast} \\ \hline \text{Model} \uparrow \\ .198 \pm .119 \\007 \pm .107 \\ .004 \pm .074 \\ .147 \pm .082 \\ .023 \pm .089 \\072 \pm .117 \\ .035 \pm .111 \\ .113 \pm .100 \\ .655 \pm .027 \\036 \pm .089 \\ .017 \pm .139 \\096 \pm .093 \\ .405 \pm .125 \end{array}$	Feature \uparrow .872±.011 .878±.014 .876±.015 .865±.015 .873±.016 .892±.009 .885±.014 .913±.009 .850±.004 .901±.008 .901±.010 .832±.020 .849±.019
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE ReMasker DrIM _{BASE}	$\begin{array}{c} F_1 \uparrow \\ .863 \pm .006 \\ .869 \pm .006 \\ .912 \pm .005 \\ .886 \pm .006 \\ .906 \pm .006 \\ .895 \pm .005 \\ .882 \pm .004 \\ .909 \pm .012 \\ .846 \pm .003 \\ .871 \pm .008 \\ .867 \pm .007 \\ .902 \pm .007 \\ .911 \pm .006 \\ .879 \pm .004 \end{array}$	banknote $Model \uparrow$ $.731_{\pm.056}$ $.641_{\pm.095}$ $.525_{\pm.075}$ $.438_{\pm.055}$ $.493_{\pm.056}$ $.498_{\pm.047}$ $.483_{\pm.042}$ $.577_{\pm.072}$ $.623_{\pm.032}$ $.745_{\pm.060}$ $.596_{\pm.073}$ $.525_{\pm.069}$ $.497_{\pm.044}$	$\begin{array}{c} \text{Feature} \uparrow \\ 1.000 \pm .000 \\ .980 \pm .020 \\ .900 \pm .000 \\ .980 \pm .020 \\ 1.000 \pm .000 \\ \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .896 \pm .006 \\ .883 \pm .010 \\ .885 \pm .008 \\ .881 \pm .008 \\ .888 \pm .007 \\ .880 \pm .007 \\ .880 \pm .007 \\ .886 \pm .008 \\ .919 \pm .008 \\ .847 \pm .004 \\ .888 \pm .008 \\ .883 \pm .009 \\ .783 \pm .022 \\ .905 \pm .008 \\ .887 \pm .008 \end{array}$	$\begin{array}{r} \text{breast} \\ \hline \text{Model} \uparrow \\ .198 \pm .119 \\007 \pm .107 \\ .004 \pm .074 \\ .147 \pm .082 \\ .023 \pm .089 \\072 \pm .117 \\ .035 \pm .111 \\ .113 \pm .100 \\ .655 \pm .027 \\036 \pm .089 \\ .017 \pm .139 \\096 \pm .093 \\ .405 \pm .125 \\ .171 \pm .166 \end{array}$	Feature \uparrow .872±.011 .878±.014 .876±.015 .865±.015 .873±.016 .892±.009 .885±.014 .913±.009 .850±.004 .901±.008 .901±.010 .832±.020 .849±.019 .824±.012
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE ReMasker DrIM _{BASE} DrIM _{FINE}	$\begin{array}{c} F_1 \uparrow \\ .863 \pm .006 \\ .869 \pm .006 \\ .912 \pm .005 \\ .886 \pm .006 \\ .906 \pm .006 \\ .895 \pm .005 \\ .882 \pm .004 \\ .909 \pm .012 \\ .846 \pm .003 \\ .871 \pm .008 \\ .867 \pm .007 \\ .902 \pm .007 \\ .911 \pm .006 \\ .879 \pm .004 \\ .867 \pm .007 \end{array}$	$\begin{array}{c} \text{banknote} \\ \hline \text{Model} \uparrow \\ \hline .731_{\pm.056} \\ .641_{\pm.095} \\ .525_{\pm.075} \\ .438_{\pm.055} \\ .493_{\pm.056} \\ .498_{\pm.047} \\ .483_{\pm.042} \\ .577_{\pm.072} \\ .623_{\pm.032} \\ .745_{\pm.060} \\ .596_{\pm.073} \\ .525_{\pm.069} \\ .497_{\pm.044} \\ \hline .723_{\pm.083} \\ .674_{\pm.075} \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ 1.000 \pm .000 \\ .980 \pm .020 \\ .900 \pm .000 \\ .980 \pm .020 \\ 1.000 \pm .000 \\ 1.000 \pm .000 \\ 1.000 \pm .000 \\ 1.000 \pm .000 \\ .980 \pm .020 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .896 \pm .006 \\ .883 \pm .010 \\ .885 \pm .008 \\ .881 \pm .008 \\ .888 \pm .007 \\ .880 \pm .007 \\ .886 \pm .008 \\ .919 \pm .008 \\ .847 \pm .004 \\ .888 \pm .008 \\ .883 \pm .009 \\ .783 \pm .022 \\ .905 \pm .008 \\ .887 \pm .008 \\ .932 \pm .004 \end{array}$	$\begin{array}{r} \text{breast} \\ \hline \text{Model} \uparrow \\ .198 \pm .119 \\007 \pm .107 \\ .004 \pm .074 \\ .147 \pm .082 \\ .023 \pm .089 \\072 \pm .117 \\ .035 \pm .111 \\ .113 \pm .100 \\ .655 \pm .027 \\036 \pm .089 \\ .017 \pm .139 \\096 \pm .093 \\ .405 \pm .125 \\ .171 \pm .166 \\ .556 \pm .138 \end{array}$	Feature \uparrow .872±.011 .878±.014 .876±.015 .865±.015 .873±.016 .892±.009 .885±.014 .913±.009 .850±.004 .901±.008 .901±.010 .832±.020 .849±.019 .824±.012 .891±.011

1515 1516 concrete kings 1517 $F_1 \uparrow$ $F_1 \uparrow$ Model ↑ Feature ↑ Model ↑ model Feature ↑ 1518 $.326_{\pm .009}$ $.175_{\pm .126}$ $.945_{\pm .007}$ $.440_{\pm .005}$ $.507_{\pm .053}$ $.978_{\pm .002}$ Mean 1519 $.349_{\pm .007}$ $.940_{\pm .013}$ $.972_{\pm .001}$ $.460_{\pm .004}$ **kNNI** $.346_{\pm .156}$ $.410_{\pm .064}$ 1520 $.372_{\pm .006}$ $.419_{\pm .210}$ $.952_{\pm .014}$ $.459_{\pm .003}$ $.270_{\pm .047}$ $.945_{\pm .002}$ EM 1521 SoftImpute $.328_{\pm .008}$ $.209_{\pm .187}$ $.945_{\pm.010}$ $.445_{\pm .004}$ $.310_{\pm .010}$ $.941_{\pm .004}$ $.960_{\pm .009}$ $.962_{\pm .001}$ $.455_{\pm .004}$ $.290_{\pm .043}$ MICE $.341_{\pm .147}$ 1522 $.345_{\pm.008}$ $.952_{\pm .012}$ missForest $.340_{\pm .006}$ $.304_{\pm .130}$ $.449_{\pm .005}$ $.470_{\pm .058}$ $.946_{\pm.002}$ 1523 Sinkhorn $.341_{\pm .006}$ $.513_{\pm .115}$ $.933_{\pm .021}$ $.450_{\pm .004}$ $.490_{\pm .059}$ $.976_{\pm .002}$ 1524 $.430_{\pm .011}$ $.952_{\pm .004}$ $.491_{\pm .074}$ $.810_{\pm .035}$ GAIN $.929_{\pm .011}$ $.491_{\pm .004}$ 1525 $.363_{\pm .007}$ $.553_{\pm .062}$ $.771_{\pm .015}$ $.513_{\pm .002}$ $.750_{\pm .017}$ VAEAC $.862_{\pm .002}$ 1526 MIWAE $.294_{\pm .010}$ $.095_{\pm .210}$ $.926_{\pm .018}$ $.437_{\pm .005}$ $.450_{\pm .056}$ $.960_{\pm .004}$ not-MIWAE $.313_{\pm .009}$ $.137_{\pm .186}$ $.955_{\pm .014}$ $.470_{\pm .047}$ $.970_{\pm .003}$ $.441_{\pm .003}$ 1527 $.283_{\pm .011}$ $.280_{\pm .055}$ $-.214_{\pm.177}$ $.924_{\pm .014}$ $.463_{\pm .004}$ $.946_{\pm .001}$ MIRACLE 1528 ReMasker $.269_{+.014}$ $.111_{+.111}$ $.921_{+.015}$ $.437_{+.012}$ $.390_{ + .108}$ $.929_{+.006}$ 1529 $.910_{\pm .010}$ DrIM_{BASE} $.426_{\pm .108}$ $.498_{\pm .008}$ $.964_{\pm .004}$ $.407_{\pm .006}$ $.931_{\pm .011}$ 1530 DrIM_{FINE} $.504_{\pm .098}$ $.540_{\pm .004}$ $.950_{\pm .017}$ $.962_{\pm .003}$ $.397_{\pm .010}$ $.936_{\pm .022}$ 1531 letter loan 1532 1533 model $F_1 \uparrow$ Model ↑ Feature ↑ $F_1 \uparrow$ Model ↑ Feature ↑ 1534 $.707_{\pm .033}$ Mean $.584_{\pm.002}$ $.700_{\pm.000}$ $.500_{\pm.015}$ $.916_{\pm.001}$ $.895_{\pm.007}$ 1535 kNNI $.674 \pm .002$ $.800 \pm .000$ $.948_{\pm .002}$ $.918 \pm .001$ $.783_{\pm .047}$ $.902 \pm .008$ $.800_{\pm .000}$ $.697_{\pm .037}$ $.878_{\pm .017}$ EM $.656_{\pm .002}$ $.955 \pm .003$ $.919_{\pm .001}$ 1536 $.690_{\pm .038}$ SoftImpute $.594_{\pm .002}$ $.668 \pm .015$ $.915_{\pm .001}$ $.724_{\pm .046}$ $.874_{\pm.008}$ 1537 MICE $.621_{\pm .002}$ $.860_{\pm .027}$ $.920_{\pm .005}$ $.918_{\pm .001}$ $.733_{\pm .047}$ $.865_{\pm .014}$ 1538 $.742_{\pm .016}$ $.787_{\pm .054}$ missForest $.614_{\pm .001}$ $.660_{\pm .031}$ $.917_{\pm .001}$ $.858_{\pm.016}$ 1539 $.625_{\pm .001}$ $.789_{\pm .011}$ $.917_{\pm .001}$ $.880_{\pm .007}$ $.646_{\pm .043}$ Sinkhorn $.620_{\pm .033}$ 1540 GAIN .599 + .007.640 + .033 $.575 \pm .022$ $.915 \pm .002$ $.597_{\pm .039}$ $.846 \pm .010$ VAEAC $.849_{\pm.011}$ $.712_{\pm .002}$ $.780_{\pm .013}$ $.884_{\pm.002}$ $.827_{\pm .002}$ $.652 \pm .040$ 1541 MIWAE $.914_{\pm.001}$ $.720_{\pm .033}$ $.872_{\pm .007}$ $.573_{\pm .003}$ $.812_{\pm .031}$ $.705_{\pm .017}$ 1542 $.876_{\pm .010}$ $.599_{\pm .002}$ $.620_{\pm .013}$ $.689_{\pm .013}$ $.916_{\pm .000}$ $.692_{\pm .032}$ not-MIWAE 1543 MIRACLE $.648_{\pm.006}$ $.790_{\pm.023}$ $.940_{\pm.004}$ $.919_{\pm.001}$ $.730_{\pm.054}$ $.882_{\pm.014}$ 1544 $.887_{\pm .016}$ ReMasker $.645 \pm .002$ $.740_{\pm.031}$ $.931_{\pm.004}$ $.918_{\pm.001}$ $.727_{\pm .040}$ $.647_{\pm .030}$ **DrIM**BASE $.661 \pm .003$ $.790_{\pm.023}$ $.952_{\pm.003}$ $.910_{\pm.001}$ $.878_{\pm.006}$ 1546 **DrIM**_{FINE} $.716_{\pm .004}$ $1.000 \pm .000$ $.967_{\pm .002}$ $.912_{\pm .001}$ $.690 \pm .038$ $.874 \pm .006$ 1547 redwine whitewine 1548 $F_1 \uparrow$ Model ↑ Feature ↑ $F_1 \uparrow$ Model ↑ Feature ↑ model 1549 $.426_{\pm .007}$ $.905_{\pm .014}$ $.373_{\pm .005}$ $.593_{\pm .048}$ $.086_{\pm .122}$ Mean $.206_{\pm .090}$ 1550 kNNI $.440 \pm .006$ $.171_{\pm.137}$ $.909 \pm .021$ $.386 \pm .004$ $.150 \pm .079$ $.917_{\pm.008}$ 1551 $.102_{\pm .144}$ $.892_{\pm .017}$ $.809_{\pm .023}$ ΕM $.435_{\pm .006}$ $.384_{\pm .004}$ $.260_{\pm .056}$ 1552 $.430_{\pm .007}$ $.869_{\pm .018}$ $.377_{\pm .005}$ $.906 \pm .026$ SoftImpute $.047_{\pm .124}$ $.160 \pm .083$ $.388_{\pm .005}$ 1553 MICE $.428_{\pm .006}$ $-.022_{\pm.133}$ $.895_{\pm .020}$ $.190_{\pm .066}$ $.921_{\pm .021}$ $.434_{\pm .005}$ $.859_{\pm .023}$ $.383_{\pm .004}$ $.070_{\pm .088}$ missForest $.001_{\pm .131}$ $.871_{\pm.009}$ 1554 $.435_{\pm .005}$ $.044_{\pm.123}$ $.884_{\pm.018}$ $.120_{\pm .059}$ $.894_{\pm .013}$ Sinkhorn $.386_{\pm .005}$ 1555 $.509_{\pm .007}$ $.404_{\pm .110}$ $.425 \pm .007$ $.630_{\pm .072}$ $.846 \pm .028$ GAIN $.897_{\pm .014}$ 1556 $.483_{\pm .005}$ $.263_{\pm .046}$ $.423_{\pm .004}$ $.450_{\pm .017}$ $.722_{\pm .025}$ $.785_{\pm .019}$ VAEAC 1557 MIWAE $.444_{\pm .007}$ $-.038 \pm .140$ $.883 \pm .017$ $.380_{\pm .004}$ $.240 \pm .090$ $.925_{\pm .007}$ $.432_{\pm .007}$ not-MIWAE $.384_{\pm .004}$ $.061_{\pm .151}$ $.909_{\pm .011}$ $.150_{\pm .092}$ $.914_{\pm .022}$ 1558 $.430 \pm .007$ $.001_{\pm .085}$ $.877_{\pm .020}$ $.379_{\pm .006}$ $.290 \pm .050$ MIRACLE $.855 _{\pm .018}$ 1559 ReMasker $.415 \pm .013$ $-.030 \pm .099$ $.785 \pm .028$ $.370 \pm .008$ $-.050 \pm .120$ $.563 \pm .048$ 1560 $.532_{\pm .006}$ $.353_{\pm.110}$ $.476_{\pm .005}$ $.321_{\pm .057}$ **DrIM**BASE $.911_{\pm .014}$ $.902_{\pm.017}$ 1561 **DrIM**_{FINE} $.536 \pm .008$ $.448 \pm .062$ $.892 \pm .016$ $.487 \pm .006$ $.417 \pm .047$ $.840 \pm .020$ 1562 1563

1564

1565

Table 14: Machine learning utility for each dataset under MAR at 0.3 missingness. The means and the standard errors of the mean across 10 repeated experiments are reported. ↑ denotes higher is better.

		abalone			anuran	
model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑
Mean	$.163_{\pm.014}$	$.147_{\pm.163}$	$.836_{\pm.021}$	$.830_{\pm.018}$	$046_{\pm.150}$	$.552_{\pm.059}$
kNNI	$.167_{+.013}$	$.142_{+.177}$	$.938_{\pm.016}$	$.816_{+.019}$	$061_{+.149}$	$.683_{+.040}$
EM	$.164_{\pm.013}$	$.182_{\pm.140}$	$.902_{\pm.037}$	$.825_{\pm.018}$	$152_{\pm.159}$	$.658_{\pm.044}$
SoftImpute	$.161_{\pm.012}$	$.211_{\pm .133}$	$.926_{\pm.010}$	$.827_{\pm.018}$	$.005_{\pm.134}$	$.671_{\pm.050}$
MICE	$.161_{\pm .013}$	$.283_{\pm.149}$	$.962_{\pm.012}$	$.831_{\pm.017}$	$051_{\pm .145}$	$.699_{\pm .046}$
missForest	$.161_{\pm .013}$	$.313_{\pm.159}$	$.869 \pm .041$	$.831_{\pm .017}$	$015 \pm .157$	$.650 \pm .043$
Sinkhorn	$.164_{\pm .013}$	$.044_{\pm .202}$	$.960_{\pm .010}$	$.825_{\pm.018}$	$.055_{\pm.131}$	$.668_{\pm .045}$
GAIN	$.206 \pm .006$	$.415_{\pm .171}$	$.905 \pm .015$	$.863 \pm .023$	$.451_{\pm .066}$	$.808_{\pm .051}$
VAEAC	$.131_{\pm .005}$	$.497_{\pm .043}$	$.824_{\pm.015}$	$.891_{\pm .001}$	$.565_{\pm .076}$	$.871_{\pm .003}$
MIWAE	$.160 \pm .013$	$013_{\pm.194}$	$.931_{\pm .010}$	$.825 \pm .018$	$096 \pm .162$	$.631_{\pm .045}$
not-MIWAE	$.164_{\pm .013}$	$.055_{\pm .157}$	$.914_{\pm .019}$	$.825_{\pm.018}$	$065_{\pm .147}$	$.681_{\pm .043}$
MIRACLE	$.163 \pm .013$	$.146 \pm .146$	$.900_{\pm .035}$	$.822_{\pm.018}$	$113_{\pm.144}$	$.701_{\pm .046}$
ReMasker	$.169_{\pm .012}$	$.283_{\pm .173}$	$.888_{\pm .043}$	$.815_{\pm.019}$	$183_{\pm.170}$	$.668_{\pm .041}$
DrIM _{BASE}	$.202_{\pm .007}$	$.688_{\pm.058}$	$.917_{\pm .017}$	$.897_{\pm.012}$	$188_{\pm.197}$	$.904_{\pm.012}$
DrIM _{FINE}	$.197_{\pm .009}$	$.606_{\pm.118}$	$.879_{\pm .025}$	$.971_{\pm .005}$	$.210_{\pm .125}$	$.929_{\pm.012}$
		banknote			breast	
		Dammocce			220400	
model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑
model Mean	$F_1 \uparrow$.861±.020	$\frac{\text{Model}\uparrow}{.786_{\pm.065}}$	Feature ↑ .800±.073	$F_1 \uparrow$.921±.013	$\frac{\text{Model}\uparrow}{.586_{\pm.098}}$	Feature ↑ .810±.038
model Mean kNNI	$ F_1 \uparrow .861_{\pm.020} .876_{\pm.015} $	$\frac{\text{Model}\uparrow}{.786_{\pm.065}}_{.633_{\pm.074}}$	Feature ↑ .800±.073 .940±.031	$F_{1} \uparrow \\ .921_{\pm.013} \\ .911_{\pm.019}$	$\frac{\text{Model}\uparrow}{.586_{\pm.098}}_{.462_{\pm.124}}$	Feature ↑ .810±.038 .898±.021
model Mean kNNI EM	$ F_1 \uparrow .861_{\pm.020} .876_{\pm.015} .884_{\pm.015} $	$\begin{array}{c} \text{Model}\uparrow\\ .786_{\pm.065}\\ .633_{\pm.074}\\ .726_{\pm.058}\end{array}$	Feature ↑ .800±.073 .940±.031 .940±.031		$\begin{array}{r} \hline \text{Model} \uparrow \\ \hline .586_{\pm .098} \\ .462_{\pm .124} \\ .432_{\pm .141} \\ \hline \end{array}$	Feature ↑ .810±.038 .898±.021 .861±.024
model Mean kNNI EM SoftImpute		Model ↑ .786 \pm .065 .633 \pm .074 .726 \pm .058 .673 \pm .053	Feature ↑ .800±.073 .940±.031 .940±.031 .960±.027	$\begin{array}{c} \hline F_1 \uparrow \\ \hline .921_{\pm.013} \\ .911_{\pm.019} \\ .909_{\pm.020} \\ .912_{\pm.018} \end{array}$	$\begin{array}{r} \text{Model} \uparrow \\ \hline .586_{\pm.098} \\ .462_{\pm.124} \\ .432_{\pm.141} \\ .536_{\pm.122} \end{array}$	Feature \uparrow .810±.038 .898±.021 .861±.024 .903±.021
model Mean kNNI EM SoftImpute MICE	$F_1 \uparrow$.861±.020 .876±.015 .884±.015 .868±.020 .881±.020	$\begin{array}{c} \text{Model} \uparrow \\ \hline .786_{\pm.065} \\ .633_{\pm.074} \\ .726_{\pm.058} \\ .673_{\pm.053} \\ .673_{\pm.078} \end{array}$	$\begin{array}{c} Feature \uparrow \\ .800 \pm .073 \\ .940 \pm .031 \\ .940 \pm .031 \\ .960 \pm .027 \\ .940 \pm .031 \end{array}$	$\begin{array}{c} \hline F_1 \uparrow \\ .921_{\pm.013} \\ .911_{\pm.019} \\ .909_{\pm.020} \\ .912_{\pm.018} \\ .910_{\pm.021} \end{array}$	$\begin{array}{c} \text{Model} \uparrow \\ \hline \\ .586 \pm .098 \\ .462 \pm .124 \\ .432 \pm .141 \\ .536 \pm .122 \\ .475 \pm .182 \end{array}$	Feature \uparrow .810 \pm .038 .898 \pm .021 .861 \pm .024 .903 \pm .021 .912 \pm .018
model Mean kNNI EM SoftImpute MICE missForest	$\begin{array}{c} F_1 \uparrow \\ .861 \pm .020 \\ .876 \pm .015 \\ .884 \pm .015 \\ .868 \pm .020 \\ .881 \pm .020 \\ .889 \pm .017 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .786\pm.065\\ .633\pm.074\\ .726\pm.058\\ .673\pm.053\\ .673\pm.078\\ .623\pm.093 \end{array}$	Feature \uparrow .800±.073 .940±.031 .940±.031 .960±.027 .940±.031 .960±.027 .940±.031	$\begin{array}{c} \hline F_1 \uparrow \\ .921 \pm .013 \\ .911 \pm .019 \\ .909 \pm .020 \\ .912 \pm .018 \\ .910 \pm .021 \\ .910 \pm .019 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .586\pm.098\\ .462\pm.124\\ .432\pm.141\\ .536\pm.122\\ .475\pm.182\\ .375\pm.181\end{array}$	Feature \uparrow .810±.038 .898±.021 .861±.024 .903±.021 .912±.018 .910±.020
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn	$\begin{array}{c} F_1 \uparrow \\ .861 \pm .020 \\ .876 \pm .015 \\ .884 \pm .015 \\ .868 \pm .020 \\ .881 \pm .020 \\ .889 \pm .017 \\ .873 \pm .020 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .786\pm.065\\ .633\pm.074\\ .726\pm.058\\ .673\pm.053\\ .673\pm.078\\ .623\pm.093\\ .658\pm.066\end{array}$	Feature \uparrow .800±.073 .940±.031 .940±.031 .960±.027 .940±.031 .960±.027 .960±.027 .960±.027 .960±.027 .960±.027 .960±.027	$\begin{array}{c} \hline F_1 \uparrow \\ .921 \pm .013 \\ .911 \pm .019 \\ .909 \pm .020 \\ .912 \pm .018 \\ .910 \pm .021 \\ .910 \pm .019 \\ .917 \pm .015 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .586\pm.098\\ .462\pm.124\\ .432\pm.141\\ .536\pm.122\\ .475\pm.182\\ .375\pm.181\\ .497\pm.125\\ \end{array}$	Feature \uparrow .810±.038 .898±.021 .861±.024 .903±.021 .912±.018 .910±.020 .905±.020
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN	$\begin{array}{c} F_1 \uparrow \\ .861 \pm .020 \\ .876 \pm .015 \\ .884 \pm .015 \\ .868 \pm .020 \\ .881 \pm .020 \\ .889 \pm .017 \\ .873 \pm .020 \\ .934 \pm .005 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .786\pm.065\\ .633\pm.074\\ .726\pm.058\\ .673\pm.053\\ .673\pm.078\\ .623\pm.093\\ .658\pm.066\\ .729\pm.044 \end{array}$	$Feature \uparrow$ $.800 \pm .073$ $.940 \pm .031$ $.940 \pm .031$ $.960 \pm .027$ $.940 \pm .031$ $.960 \pm .027$ $.960 \pm .027$ $1.000 \pm .000$	$\begin{array}{c} F_1 \uparrow \\ \hline \\ .921 \pm .013 \\ .911 \pm .019 \\ .909 \pm .020 \\ .912 \pm .018 \\ .910 \pm .021 \\ .910 \pm .019 \\ .917 \pm .015 \\ .923 \pm .013 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .586\pm.098\\ .462\pm.124\\ .432\pm.141\\ .536\pm.122\\ .475\pm.182\\ .375\pm.181\\ .497\pm.125\\ .674\pm.097\end{array}$	Feature \uparrow .810±.038 .898±.021 .861±.024 .903±.021 .912±.018 .910±.020 .905±.020 .914±.018
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC	$\begin{array}{c} F_1 \uparrow \\ .861 \pm .020 \\ .876 \pm .015 \\ .884 \pm .015 \\ .868 \pm .020 \\ .881 \pm .020 \\ .889 \pm .017 \\ .873 \pm .020 \\ .934 \pm .005 \\ .849 \pm .004 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .786\pm.065\\ .633\pm.074\\ .726\pm.058\\ .673\pm.053\\ .673\pm.078\\ .623\pm.093\\ .658\pm.066\\ .729\pm.044\\ .678\pm.036\end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ \hline .800 \pm .073 \\ .940 \pm .031 \\ .940 \pm .031 \\ .960 \pm .027 \\ .940 \pm .031 \\ .960 \pm .027 \\ .960 \pm .027 \\ 1.000 \pm .000 \\ .860 \pm .027 \end{array}$	$\begin{array}{c} \hline F_1 \uparrow \\ .921 \pm .013 \\ .911 \pm .019 \\ .909 \pm .020 \\ .912 \pm .018 \\ .910 \pm .021 \\ .910 \pm .019 \\ .917 \pm .015 \\ .923 \pm .013 \\ .848 \pm .003 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .586\pm.098\\ .462\pm.124\\ .432\pm.141\\ .536\pm.122\\ .475\pm.182\\ .375\pm.181\\ .497\pm.125\\ .674\pm.097\\ .622\pm.042\\ \end{array}$	Feature \uparrow .810±.038 .898±.021 .861±.024 .903±.021 .912±.018 .910±.020 .905±.020 .914±.018 .853±.005
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE	$\begin{array}{c} F_1 \uparrow \\ .861 \pm .020 \\ .876 \pm .015 \\ .884 \pm .015 \\ .868 \pm .020 \\ .881 \pm .020 \\ .889 \pm .017 \\ .873 \pm .020 \\ .934 \pm .005 \\ .849 \pm .004 \\ .865 \pm .020 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .786\pm.065\\ .633\pm.074\\ .726\pm.058\\ .673\pm.053\\ .673\pm.078\\ .623\pm.093\\ .658\pm.066\\ .729\pm.044\\ .678\pm.036\\ .840\pm.069\\ \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ \hline .800 \pm .073 \\ .940 \pm .031 \\ .960 \pm .027 \\ .940 \pm .031 \\ .960 \pm .027 \\ .960 \pm .027 \\ .960 \pm .027 \\ 1.000 \pm .000 \\ .860 \pm .027 \\ .900 \pm .033 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ \hline \\ .921 \pm .013 \\ .911 \pm .019 \\ .909 \pm .020 \\ .912 \pm .018 \\ .910 \pm .021 \\ .910 \pm .019 \\ .917 \pm .015 \\ .923 \pm .013 \\ .848 \pm .003 \\ .908 \pm .022 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .586\pm.098\\ .462\pm.124\\ .432\pm.141\\ .536\pm.122\\ .475\pm.182\\ .375\pm.181\\ .497\pm.125\\ .674\pm.097\\ .622\pm.042\\ .436\pm.163\\ \end{array}$	Feature \uparrow .810±.038 .898±.021 .861±.024 .903±.021 .912±.018 .910±.020 .905±.020 .914±.018 .853±.005 .904±.023
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE	$\begin{array}{c} F_1 \uparrow \\ .861 \pm .020 \\ .876 \pm .015 \\ .884 \pm .015 \\ .868 \pm .020 \\ .881 \pm .020 \\ .889 \pm .017 \\ .873 \pm .020 \\ .934 \pm .005 \\ .849 \pm .004 \\ .865 \pm .020 \\ .863 \pm .020 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .786\pm.065\\ .633\pm.074\\ .726\pm.058\\ .673\pm.053\\ .673\pm.078\\ .623\pm.093\\ .658\pm.066\\ .729\pm.044\\ .678\pm.036\\ .840\pm.069\\ .570\pm.097\\ \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ \hline .800 \pm .073 \\ .940 \pm .031 \\ .960 \pm .027 \\ .940 \pm .031 \\ .960 \pm .027 \\ .960 \pm .027 \\ .960 \pm .027 \\ 1.000 \pm .000 \\ .860 \pm .027 \\ .900 \pm .033 \\ .880 \pm .033 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .921 \pm .013 \\ .911 \pm .019 \\ .909 \pm .020 \\ .912 \pm .018 \\ .910 \pm .021 \\ .910 \pm .019 \\ .917 \pm .015 \\ .923 \pm .013 \\ .848 \pm .003 \\ .908 \pm .022 \\ .909 \pm .019 \end{array}$	$\begin{array}{r} \text{Model}\uparrow\\ \hline\\ .586\pm.098\\ .462\pm.124\\ .432\pm.141\\ .536\pm.122\\ .475\pm.182\\ .375\pm.181\\ .497\pm.125\\ .674\pm.097\\ .622\pm.042\\ .436\pm.163\\ .550\pm.150\\ \end{array}$	Feature \uparrow .810±.038 .898±.021 .861±.024 .903±.021 .912±.018 .910±.020 .905±.020 .914±.018 .853±.005 .904±.023 .895±.024
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE	$\begin{array}{c} F_1 \uparrow \\ .861 \pm .020 \\ .876 \pm .015 \\ .884 \pm .015 \\ .868 \pm .020 \\ .881 \pm .020 \\ .889 \pm .017 \\ .873 \pm .020 \\ .934 \pm .005 \\ .849 \pm .004 \\ .865 \pm .020 \\ .863 \pm .020 \\ .889 \pm .015 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .786\pm.065\\ .633\pm.074\\ .726\pm.058\\ .673\pm.053\\ .673\pm.078\\ .623\pm.093\\ .658\pm.066\\ .729\pm.044\\ .678\pm.036\\ .840\pm.069\\ .570\pm.097\\ .709\pm.055\\ \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ \hline .800 \pm .073 \\ .940 \pm .031 \\ .940 \pm .031 \\ .960 \pm .027 \\ .940 \pm .031 \\ .960 \pm .027 \\ .960 \pm .027 \\ 1.000 \pm .000 \\ .860 \pm .027 \\ .900 \pm .033 \\ .880 \pm .033 \\ .960 \pm .027 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ \hline \\ .921 \pm .013 \\ .911 \pm .019 \\ .909 \pm .020 \\ .912 \pm .018 \\ .910 \pm .021 \\ .910 \pm .019 \\ .917 \pm .015 \\ .923 \pm .013 \\ .848 \pm .003 \\ .908 \pm .022 \\ .909 \pm .019 \\ .883 \pm .021 \end{array}$	$\begin{array}{r} \text{Model}\uparrow\\ \hline\\ .586\pm.098\\ .462\pm.124\\ .432\pm.141\\ .536\pm.122\\ .475\pm.182\\ .375\pm.181\\ .497\pm.125\\ .674\pm.097\\ .622\pm.042\\ .436\pm.163\\ .550\pm.150\\ .250\pm.169\\ \end{array}$	Feature \uparrow .810±.038 .898±.021 .861±.024 .903±.021 .912±.018 .910±.020 .905±.020 .914±.018 .853±.005 .904±.023 .895±.024 .770±.027
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE ReMasker	$\begin{array}{c} F_1 \uparrow \\ .861 \pm .020 \\ .876 \pm .015 \\ .884 \pm .015 \\ .868 \pm .020 \\ .881 \pm .020 \\ .889 \pm .017 \\ .873 \pm .020 \\ .934 \pm .005 \\ .849 \pm .004 \\ .865 \pm .020 \\ .863 \pm .020 \\ .889 \pm .015 \\ .887 \pm .018 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .786\pm.065\\ .633\pm.074\\ .726\pm.058\\ .673\pm.053\\ .673\pm.078\\ .623\pm.093\\ .658\pm.066\\ .729\pm.044\\ .678\pm.036\\ .840\pm.069\\ .570\pm.097\\ .709\pm.055\\ .740\pm.045\\ \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ \hline .800 \pm .073 \\ .940 \pm .031 \\ .940 \pm .031 \\ .960 \pm .027 \\ .940 \pm .031 \\ .960 \pm .027 \\ .960 \pm .027 \\ 1.000 \pm .000 \\ .860 \pm .027 \\ .900 \pm .033 \\ .880 \pm .033 \\ .960 \pm .027 \\ .940 \pm .031 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .921 \pm .013 \\ .911 \pm .019 \\ .909 \pm .020 \\ .912 \pm .018 \\ .910 \pm .021 \\ .910 \pm .019 \\ .917 \pm .015 \\ .923 \pm .013 \\ .848 \pm .003 \\ .908 \pm .022 \\ .909 \pm .019 \\ .883 \pm .021 \\ .905 \pm .017 \end{array}$	$\begin{array}{r} \text{Model}\uparrow\\ \hline\\ .586\pm.098\\ .462\pm.124\\ .432\pm.141\\ .536\pm.122\\ .475\pm.182\\ .375\pm.181\\ .497\pm.125\\ .674\pm.097\\ .622\pm.042\\ .436\pm.163\\ .550\pm.150\\ .250\pm.169\\ .316\pm.183\\ \end{array}$	Feature \uparrow .810±.038 .898±.021 .861±.024 .903±.021 .912±.018 .910±.020 .905±.020 .914±.018 .853±.005 .904±.023 .895±.024 .770±.027 .816±.022
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE ReMasker DrIM _{BASE}	$\begin{array}{c} F_1 \uparrow \\ .861 \pm .020 \\ .876 \pm .015 \\ .884 \pm .015 \\ .868 \pm .020 \\ .881 \pm .020 \\ .889 \pm .017 \\ .873 \pm .020 \\ .934 \pm .005 \\ .849 \pm .004 \\ .865 \pm .020 \\ .863 \pm .020 \\ .889 \pm .015 \\ .887 \pm .018 \\ .906 \pm .008 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .786\pm.065\\ .633\pm.074\\ .726\pm.058\\ .673\pm.053\\ .673\pm.078\\ .623\pm.093\\ .658\pm.066\\ .729\pm.044\\ .678\pm.036\\ .840\pm.069\\ .570\pm.097\\ .709\pm.055\\ .740\pm.045\\ .776\pm.072\\ \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ .800 \pm .073 \\ .940 \pm .031 \\ .940 \pm .031 \\ .960 \pm .027 \\ .940 \pm .031 \\ .960 \pm .027 \\ .960 \pm .027 \\ 1.000 \pm .000 \\ .860 \pm .027 \\ .900 \pm .033 \\ .880 \pm .033 \\ .960 \pm .027 \\ .940 \pm .031 \\ .960 \pm .027 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .921 \pm .013 \\ .911 \pm .019 \\ .909 \pm .020 \\ .912 \pm .018 \\ .910 \pm .021 \\ .910 \pm .019 \\ .917 \pm .015 \\ .923 \pm .013 \\ .848 \pm .003 \\ .908 \pm .022 \\ .909 \pm .019 \\ .883 \pm .021 \\ .905 \pm .017 \\ .877 \pm .023 \end{array}$	$\begin{array}{c} Model \uparrow \\ \hline \\ .586 \pm .098 \\ .462 \pm .124 \\ .432 \pm .141 \\ .536 \pm .122 \\ .475 \pm .182 \\ .375 \pm .181 \\ .497 \pm .125 \\ .674 \pm .097 \\ .622 \pm .042 \\ .436 \pm .163 \\ .550 \pm .150 \\ .250 \pm .169 \\ .316 \pm .183 \\ .485 \pm .157 \end{array}$	Feature \uparrow .810±.038 .898±.021 .861±.024 .903±.021 .912±.018 .910±.020 .905±.020 .914±.018 .853±.005 .904±.023 .895±.024 .770±.027 .816±.022 .777±.057
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE ReMasker DrIM _{BASE} DrIM _{FINE}	$\begin{array}{c} F_1 \uparrow \\ .861 \pm .020 \\ .876 \pm .015 \\ .884 \pm .015 \\ .868 \pm .020 \\ .881 \pm .020 \\ .889 \pm .017 \\ .873 \pm .020 \\ .934 \pm .005 \\ .849 \pm .004 \\ .865 \pm .020 \\ .863 \pm .020 \\ .889 \pm .015 \\ .887 \pm .018 \\ .906 \pm .008 \\ .879 \pm .014 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .786\pm.065\\ .633\pm.074\\ .726\pm.058\\ .673\pm.053\\ .673\pm.078\\ .623\pm.093\\ .658\pm.066\\ .729\pm.044\\ .678\pm.036\\ .840\pm.069\\ .570\pm.097\\ .709\pm.055\\ .740\pm.045\\ .776\pm.072\\ .711\pm.081\\ \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ .800 \pm .073 \\ .940 \pm .031 \\ .940 \pm .031 \\ .960 \pm .027 \\ .940 \pm .031 \\ .960 \pm .027 \\ .960 \pm .027 \\ 1.000 \pm .000 \\ .860 \pm .027 \\ .900 \pm .033 \\ .880 \pm .033 \\ .880 \pm .033 \\ .960 \pm .027 \\ .940 \pm .031 \\ \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .921 \pm .013 \\ .911 \pm .019 \\ .909 \pm .020 \\ .912 \pm .018 \\ .910 \pm .021 \\ .910 \pm .019 \\ .917 \pm .015 \\ .923 \pm .013 \\ .848 \pm .003 \\ .908 \pm .022 \\ .909 \pm .019 \\ .833 \pm .021 \\ .905 \pm .017 \\ .877 \pm .023 \\ .931 \pm .008 \end{array}$	$\begin{array}{c} Model \uparrow \\ \hline \\ .586 \pm .098 \\ .462 \pm .124 \\ .432 \pm .141 \\ .536 \pm .122 \\ .475 \pm .182 \\ .375 \pm .181 \\ .497 \pm .125 \\ .674 \pm .097 \\ .622 \pm .042 \\ .436 \pm .163 \\ .550 \pm .150 \\ .250 \pm .169 \\ .316 \pm .183 \\ .485 \pm .157 \\ .672 \pm .085 \end{array}$	Feature \uparrow .810±.038 .898±.021 .861±.024 .903±.021 .912±.018 .910±.020 .905±.020 .914±.018 .853±.005 .904±.023 .895±.024 .770±.027 .816±.022 .777±.057 .893±.018

1623 concrete kings 1624 $F_1 \uparrow$ Model ↑ Feature ↑ $F_1 \uparrow$ Model ↑ 1625 model Feature ↑ 1626 $.421_{\pm .009}$ $.678_{\pm .083}$ $.511_{\pm .100}$ $.881_{\pm .028}$ $.900_{\pm .017}$ $.350_{\pm .025}$ Mean $.372_{\pm .024}$ $.432 \pm .009$ $.656 \pm .084$ 1627 **kNNI** $.769 \pm .098$ $.929 \pm .013$ $.957_{\pm .005}$ EM $.391_{\pm.024}$ $.733_{\pm .043}$ $.845_{\pm.037}$ $.423 _{\pm .010}$ $.689_{\pm.065}$ $.913_{\pm .012}$ 1628 $.620_{\pm .101}$ SoftImpute $.938 \pm .006$ $.349_{\pm.023}$ $.879 \pm .026$ $.419 \pm .010$ $.600_{\pm .091}$ 1629 $.370_{\pm .027}$ MICE $.423_{\pm .010}$ $.942_{\pm .007}$ $.549_{\pm .132}$ $.886_{\pm .029}$ $.562 \pm .089$ 1630 $.601_{\pm .149}$ $.428 \pm .010$ $.353_{\pm .022}$ $.826 \pm .033$ $.700 \pm .087$ missForest $.948 \pm .005$ 1631 $.595_{\pm .164}$ $.860_{\pm .020}$ $.423 _{\pm .009}$ $.725_{\pm .070}$ Sinkhorn $.370_{\pm.023}$ $.966_{\pm.004}$ 1632 GAIN $.421 \pm .013$ $.624 \pm .080$ $.869 \pm .022$ $.500 \pm .011$ $.760 \pm .048$ $.959_{\pm .008}$ $.770_{\pm .015}$ $.860_{\pm .006}$ VAEAC $.357_{\pm .007}$ $.649_{\pm .051}$ $.721_{\pm .027}$ $.514_{\pm .001}$ 1633 $.389_{\pm .111}$ $.416_{\pm .010}$ $.949_{\pm .006}$ $.335_{\pm .023}$ $.845_{\pm .038}$ MIWAE $.644_{\pm .078}$ 1634 not-MIWAE $.338_{\pm .023}$ $.602_{\pm .089}$ $.690_{\pm .078}$ $.949_{\pm .006}$ $.879_{\pm .026}$ $.423_{\pm .008}$ 1635 MIRACLE $.339_{\pm .025}$ $.247_{\pm .147}$ $.893_{\pm .019}$ $.436_{\pm .009}$ $.578_{\pm .074}$ $.950_{\pm .010}$ 1636 ReMasker $.332 \pm .025$ $.263 \pm .084$ $.893 \pm .019$ $.423 \pm .014$ $.935 \scriptstyle \pm .006$ $.533_{\pm .078}$ 1637 DrIM_{BASE} $.415_{\pm .011}$ $.666_{\pm .080}$ $.900_{\pm .019}$ $.512_{\pm .008}$ $.890_{\pm .035}$ $.948_{\pm .009}$ 1638 **DrIM**_{FINE} $.409 \pm .009$ $.690 \pm .069$ $.879 \pm .025$ $.548 \pm .009$ $.960_{\pm .016}$ $.966 \pm .003$ 1639 letter loan 1640 model $F_1 \uparrow$ Model ↑ Feature ↑ $F_1 \uparrow$ Model ↑ Feature ↑ 1641 $.621_{\pm .028}$ 1642 Mean $.840_{+.050}$ $.715_{+.032}$ $.915_{\pm .003}$ $.670_{\pm .063}$ $.898_{+.020}$ 1643 kNNI $.664_{\pm .028}$ $.832_{\pm .029}$ $.936_{\pm .012}$ $.919_{\pm .002}$ $.804_{\pm .047}$ $.935_{\pm .019}$ $.952 \pm .006$ $.893_{\pm .022}$ ΕM $.666_{\pm .025}$ $.840 \pm .027$ $.732 \pm .048$ $.910_{\pm .021}$ 1644 $.880_{\pm .025}$ $.916_{\pm .003}$ $.781_{\pm .023}$ $.673_{\pm .042}$ $.910_{\pm .021}$ SoftImpute $.627_{\pm .029}$ 1645 $.890_{\pm .023}$ $.759_{\pm .052}$ $.908 \pm .027$ MICE $.646 \pm .028$ $.894_{\pm.014}$ $.917_{\pm .002}$ 1646 missForest $.637_{\pm .027}$ $.857_{\pm.040}$ $.803_{\pm.027}$ $.918_{\pm.002}$ $.761_{\pm.045}$ $.902_{\pm.026}$ 1647 Sinkhorn $.646 \pm .027$ $.840_{\pm .045}$ $.843_{\pm .020}$ $.915_{\pm .003}$ $.731_{\pm .039}$ $.912_{\pm .021}$ $.810_{\pm .038}$ $.645_{\pm .027}$ $.794_{\pm .017}$ $.888_{\pm .020}$ GAIN $.572_{\pm .059}$ $.915_{\pm .003}$ 1648 VAEAC $.724_{\pm .002}$ $.800 \pm .000$ $.640_{\pm .054}$ $.890_{\pm .002}$ $.827_{\pm .001}$ $.821_{\pm .020}$ 1649 MIWAE $.616_{\pm .029}$ $.880_{\pm.025}$ $.809_{\pm.010}$ $.916_{\pm .003}$ $.802_{\pm.052}$ $.891_{\pm.023}$ 1650 $.897_{\pm .021}$ not-MIWAE $.629 \pm .028$ $.805 \pm .020$ $.916 \pm .003$ $.744_{\pm .048}$ $.908 \pm .021$ 1651 MIRACLE $.840_{\pm .027}$ $.951_{\pm .009}$ $.671_{\pm .027}$ $.920_{\pm .002}$ $.834_{\pm .040}$ $.931_{\pm .025}$ $.659_{\pm .027}$ 1652 ReMasker $.840_{\pm .027}$ $.947_{\pm .008}$ $.919_{\pm .002}$ $.803_{\pm .048}$ $.910_{\pm .026}$ 1653 $.915 \pm .003$ DrIM_{BASE} $.659_{\pm .025}$ $.780_{\pm .047}$ $.947_{\pm .006}$ $.730_{\pm.040}$ $.902 \pm .021$ 1654 $.880_{\pm .019}$ $.940_{\pm .022}$ DrIM_{FINE} $.691_{\pm .020}$ $.954_{\pm .007}$ $.915_{\pm .003}$ $.757_{\pm .041}$ 1655 redwine whitewine 1656 $F_1 \uparrow$ Model ↑ Feature ↑ $F_1 \uparrow$ Model ↑ Feature ↑ model 1657 $.428_{\pm .027}$ $.525_{\pm .071}$ Mean $.673_{\pm .092}$ $.543_{\pm .085}$ $.386_{\pm .021}$ $.647_{\pm .096}$ 1658 $.395_{\pm .021}$ **kNNI** $.437_{\pm .027}$ $.697_{\pm .115}$ $.757_{\pm .056}$ $.716_{\pm .064}$ $.675_{\pm .044}$ 1659 $.502_{\pm .122}$ $.699_{\pm .053}$ $.398_{\pm .022}$ $.660_{\pm .096}$ ΕM $.436_{\pm .024}$ $.667_{\pm .078}$ $.571_{\pm .116}$ $.689 \pm .067$ $.387_{\pm .023}$ $.777_{\pm .078}$ SoftImpute $.421 \pm .026$ $.806 \pm .038$ 1661 MICE $.430_{\pm .026}$ $.633_{\pm .103}$ $.686_{\pm .058}$ $.390_{\pm .024}$ $.660_{\pm .081}$ $.769_{\pm .054}$ $.387_{\pm .023}$ 1662 missForest $.426 \pm .026$ $.597_{\pm .108}$ $.717_{\pm .061}$ $.687_{\pm .093}$ $.753_{\pm .049}$ $.679_{\pm .109}$ $.686_{\pm .056}$ $.389_{\pm .022}$ $.660_{\pm .086}$ $.714_{\pm .043}$ $.431_{\pm .025}$ Sinkhorn 1663 GAIN $.526 \pm .009$ $.382_{\pm .078}$ $.812_{\pm .028}$ $.600 \pm .074$ $.822_{\pm .062}$ $.467 \pm .013$ 1664 VAEAC $.485_{\pm.004}$ $.403_{\pm .053}$ $.808 \pm .018$ $.431_{\pm.002}$ $.500_{\pm .037}$ $.757_{\pm.025}$ 1665 $.389_{\pm .023}$ MIWAE $.602 \pm .094$ $.676 \pm .057$ $.431_{\pm .026}$ $.720_{\pm .074}$ $.814 \pm .035$ 1666 $.622_{\pm .118}$ $.387_{\pm .022}$ $.773_{\pm .044}$ not-MIWAE $.420_{\pm .027}$ $.704_{\pm .057}$ $.740_{\pm .048}$ $.487_{\pm .125}$ $.731_{\pm .057}$ $.435_{\pm .024}$ $.731_{\pm .045}$ 1667 MIRACLE $.393_{\pm .022}$ $.760 \pm .070$ ReMasker $.415_{\pm .029}$ $.603_{\pm .092}$ $.567_{\pm .074}$ $.381_{\pm.022}$ $.605_{\pm.104}$ $.615_{\pm .086}$ 1668 1669 $.539_{\pm .010}$ $.634_{\pm .078}$ $.853_{\pm .036}$ $.707_{\pm .062}$ $.835_{\pm .030}$ DrIM_{BASE} $.471_{\pm .009}$ **DrIM**_{FINE} $.555 \pm .009$ $.451 \pm .095$ $.878 \pm .015$ $.498 \pm .004$ $.580_{\pm .066}$ $.858_{\pm .023}$ 1670 1671

1672

1620 1621 1622

Table 15: Machine learning utility for each dataset under MNARL at 0.3 missingness. The means and the standard errors of the mean across 10 repeated experiments are reported. ↑ denotes higher is better.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			abalone			anuran	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean	$.131_{\pm.005}$	$206 \pm .080$	$.895_{\pm.018}$	$.817_{\pm.010}$	$.035_{\pm.100}$	$.683_{\pm .039}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	kNNI	$.140_{\pm .004}$	$220_{\pm.133}$	$.924_{\pm.017}$	$.788_{\pm.007}$	$233_{\pm.126}$	$.513_{\pm .029}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EM	$.133_{\pm .005}$	$238_{\pm.125}$	$.926 \pm .013$	$.801_{\pm.006}$	$313_{\pm.113}$	$.519_{\pm .038}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SoftImpute	$.125_{\pm .005}$	$297_{\pm.137}$	$.914_{\pm.016}$	$.811_{\pm .007}$	$090_{\pm.123}$	$.576_{\pm .047}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MICE	$.126 \pm .005$	$457 \pm .070$	$.955_{\pm .013}$	$.813_{\pm.007}$	$237_{\pm.131}$	$.577_{\pm .044}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	missForest	$.129_{\pm .005}$	$282_{\pm.104}$	$.893_{\pm.023}$	$.810_{\pm .007}$	$166_{\pm.139}$	$.518_{\pm .032}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sinkhorn	$.133_{\pm .004}$	$374_{\pm.093}$	$.940_{\pm.010}$	$.803_{\pm.008}$	$172_{\pm.125}$	$.505 \pm .032$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GAIN	$.187_{\pm.005}$	$008_{\pm.180}$	$.898_{\pm.027}$	$.875_{\pm.020}$	$.088_{\pm.117}$	$.751_{\pm .043}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VAEAC	$.109_{\pm .023}$	$.369_{\pm .081}$	$.740_{\pm .095}$	$.890_{\pm.001}$	$.538 \pm .081$	$.870_{\pm .004}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MIWAE	$.121_{\pm .005}$	$417_{\pm.074}$	$.921_{\pm .017}$	$.811_{\pm .007}$	$133_{\pm.142}$	$.522_{\pm .032}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	not-MIWAE	$.126_{\pm.005}$	$387_{\pm.100}$	$.933_{\pm.019}$	$.809_{\pm.008}$	$141_{\pm.156}$	$.547_{\pm .038}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MIRACLE	$.129_{\pm.005}$	$276_{\pm.076}$	$.914_{\pm.012}$	$.787_{\pm.009}$	$304_{\pm.104}$	$.589_{\pm.035}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ReMasker	$.122_{\pm.006}$	$417_{\pm .090}$	$.910_{\pm .025}$	$.789_{\pm.007}$	$283_{\pm.135}$	$.494_{\pm.036}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DrIM _{BASE}	$.196_{\pm .004}$	$.639_{\pm .074}$	$.940_{\pm.011}$	$.891_{\pm.007}$	$272_{\pm.168}$	$.907_{\pm .007}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DrIM _{FINE}	$.191_{\pm .007}$	$.394_{\pm.138}$	$.890_{\pm .029}$	$.960_{\pm .005}$	$044_{\pm.117}$	$.933_{\pm .005}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			banknote			breast.	
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$	model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	model Mean	$F_1 \uparrow$.839±.015	Model ↑ .677 _{±.084}	Feature ↑ .860±.060	$\overline{F_1\uparrow}$.903±.009	$\frac{\text{Model}\uparrow}{.529_{\pm.116}}$	Feature ↑ .783±.027
$\begin{array}{llllllllllllllllllllllllllllllllllll$	model Mean kNNI		$\frac{\text{Model}\uparrow}{.677_{\pm.084}}$.701_{\pm.089}	Feature ↑ .860±.060 .940±.031			Feature ↑ .783±.027 .866±.021
$\begin{array}{llllllllllllllllllllllllllllllllllll$	model Mean kNNI EM		$\begin{array}{c} \text{Model} \uparrow \\ \hline .677 _{\pm .084} \\ .701 _{\pm .089} \\ .690 _{\pm .040} \end{array}$	Feature \uparrow .860 \pm .060 .940 \pm .031 .940 \pm .031		$\begin{array}{c} \text{Model} \uparrow \\ \hline .529_{\pm.116} \\ .175_{\pm.115} \\ .047_{\pm.127} \end{array}$	Feature \uparrow .783 \pm .027 .866 \pm .021 .861 \pm .023
$\begin{array}{llllllllllllllllllllllllllllllllllll$	model Mean kNNI EM SoftImpute	$\begin{array}{r} \hline F_1 \uparrow \\ \hline .839 _{\pm .015} \\ .846 _{\pm .014} \\ .886 _{\pm .013} \\ .859 _{\pm .014} \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .677_{\pm.084}\\ .701_{\pm.089}\\ .690_{\pm.040}\\ .503_{\pm.060}\end{array}$	$Feature \uparrow \\ .860 {\scriptstyle \pm .060} \\ .940 {\scriptstyle \pm .031} \\ .940 {\scriptstyle \pm .031} \\ .920 {\scriptstyle \pm .033} \\ \end{cases}$	$\begin{array}{c} F_1\uparrow\\ .903_{\pm.009}\\ .890_{\pm.014}\\ .889_{\pm.017}\\ .890_{\pm.015}\end{array}$	$\begin{array}{c} \textbf{Model} \uparrow \\ \hline \\ .529_{\pm.116} \\ .175_{\pm.115} \\ .047_{\pm.127} \\ .185_{\pm.123} \end{array}$	Feature \uparrow .783 \pm .027 .866 \pm .021 .861 \pm .023 .849 \pm .022
$\begin{array}{llllllllllllllllllllllllllllllllllll$	model Mean kNNI EM SoftImpute MICE	$\begin{array}{c} \hline F_1 \uparrow \\ \hline \\ .839 \pm .015 \\ .846 \pm .014 \\ .886 \pm .013 \\ .859 \pm .014 \\ .879 \pm .016 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .677_{\pm.084}\\ .701_{\pm.089}\\ .690_{\pm.040}\\ .503_{\pm.060}\\ .627_{\pm.060}\\ \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ .860 {\scriptstyle \pm .060} \\ .940 {\scriptstyle \pm .031} \\ .940 {\scriptstyle \pm .031} \\ .920 {\scriptstyle \pm .033} \\ .940 {\scriptstyle \pm .031} \end{array}$	$\begin{array}{c} F_1\uparrow\\ .903_{\pm.009}\\ .890_{\pm.014}\\ .889_{\pm.017}\\ .890_{\pm.015}\\ .889_{\pm.018}\end{array}$	$\begin{array}{c} \textbf{Model} \uparrow \\ \hline .529_{\pm.116} \\ .175_{\pm.115} \\ .047_{\pm.127} \\ .185_{\pm.123} \\ .161_{\pm.139} \end{array}$	Feature \uparrow .783 \pm .027 .866 \pm .021 .861 \pm .023 .849 \pm .022 .865 \pm .024
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	model Mean kNNI EM SoftImpute MICE missForest	$\begin{array}{c} \hline F_1 \uparrow \\ \hline \\ .839 \pm .015 \\ .846 \pm .014 \\ .886 \pm .013 \\ .859 \pm .014 \\ .879 \pm .016 \\ .879 \pm .014 \end{array}$	$\begin{array}{c} \textbf{Model} \uparrow \\ \hline .677 \pm .084 \\ .701 \pm .089 \\ .690 \pm .040 \\ .503 \pm .060 \\ .627 \pm .060 \\ .583 \pm .093 \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ .860 \pm .060 \\ .940 \pm .031 \\ .940 \pm .031 \\ .920 \pm .033 \\ .940 \pm .031 \\ .940 \pm .031 \end{array}$	$\begin{array}{c} F_1\uparrow\\ .903{\scriptstyle\pm.009}\\ .890{\scriptstyle\pm.014}\\ .889{\scriptstyle\pm.017}\\ .890{\scriptstyle\pm.015}\\ .889{\scriptstyle\pm.018}\\ .889{\scriptstyle\pm.016} \end{array}$	$\begin{array}{c} \text{Model} \uparrow \\ \hline .529_{\pm.116} \\ .175_{\pm.115} \\ .047_{\pm.127} \\ .185_{\pm.123} \\ .161_{\pm.139} \\ .119_{\pm.156} \end{array}$	Feature \uparrow .783 \pm .027 .866 \pm .021 .861 \pm .023 .849 \pm .022 .865 \pm .024 .861 \pm .026
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn	$\begin{array}{c} \hline F_1 \uparrow \\ \hline .839 \pm .015 \\ .846 \pm .014 \\ .886 \pm .013 \\ .859 \pm .014 \\ .879 \pm .016 \\ .879 \pm .014 \\ .857 \pm .014 \end{array}$	$\begin{array}{c} & \text{Model} \uparrow \\ \hline .677 \pm .084 \\ .701 \pm .089 \\ .690 \pm .040 \\ .503 \pm .060 \\ .627 \pm .060 \\ .583 \pm .093 \\ .658 \pm .073 \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ .860 \pm .060 \\ .940 \pm .031 \\ .940 \pm .031 \\ .920 \pm .033 \\ .940 \pm .031 \\ .940 \pm .031 \\ .940 \pm .031 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .903 \pm .009 \\ .890 \pm .014 \\ .889 \pm .017 \\ .890 \pm .015 \\ .889 \pm .018 \\ .889 \pm .016 \\ .898 \pm .012 \end{array}$	$\begin{array}{c} \text{Model} \uparrow \\ \hline .529 \pm .116 \\ .175 \pm .115 \\ .047 \pm .127 \\ .185 \pm .123 \\ .161 \pm .139 \\ .119 \pm .156 \\ .201 \pm .138 \end{array}$	Feature \uparrow .783±.027 .866±.021 .861±.023 .849±.022 .865±.024 .861±.026 .871±.022
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN	$\begin{array}{c} \hline F_1 \uparrow \\ \hline \\ .839 \pm .015 \\ .846 \pm .014 \\ .886 \pm .013 \\ .859 \pm .014 \\ .879 \pm .016 \\ .879 \pm .014 \\ .857 \pm .014 \\ .901 \pm .011 \\ \end{array}$	$\begin{array}{c} \textbf{Model}\uparrow\\ \hline\\ .677 \pm .084\\ .701 \pm .089\\ .690 \pm .040\\ .503 \pm .060\\ .627 \pm .060\\ .583 \pm .093\\ .658 \pm .073\\ .587 \pm .059\\ \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ .860 \pm .060 \\ .940 \pm .031 \\ .940 \pm .031 \\ .920 \pm .033 \\ .940 \pm .031 \\ .940 \pm .031 \\ .940 \pm .031 \\ .980 \pm .020 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .903 \pm .009 \\ .890 \pm .014 \\ .889 \pm .017 \\ .890 \pm .015 \\ .889 \pm .018 \\ .889 \pm .016 \\ .898 \pm .012 \\ .922 \pm .006 \end{array}$	$\begin{array}{c} \text{Model} \uparrow \\ \hline \\ .529 \pm .116 \\ .175 \pm .115 \\ .047 \pm .127 \\ .185 \pm .123 \\ .161 \pm .139 \\ .119 \pm .156 \\ .201 \pm .138 \\ .525 \pm .158 \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ .783 \pm .027 \\ .866 \pm .021 \\ .861 \pm .023 \\ .849 \pm .022 \\ .865 \pm .024 \\ .861 \pm .026 \\ .871 \pm .022 \\ .865 \pm .031 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC	$\begin{array}{c} \hline F_1 \uparrow \\ \hline \\ .839 \pm .015 \\ .846 \pm .014 \\ .886 \pm .013 \\ .859 \pm .014 \\ .879 \pm .016 \\ .879 \pm .014 \\ .857 \pm .014 \\ .901 \pm .011 \\ .845 \pm .003 \\ \end{array}$	$\begin{array}{c} \textbf{Model}\uparrow\\ \hline\\ .677 \pm .084\\ .701 \pm .089\\ .690 \pm .040\\ .503 \pm .060\\ .627 \pm .060\\ .583 \pm .093\\ .658 \pm .073\\ .587 \pm .059\\ .612 \pm .047\\ \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ .860 \pm .060 \\ .940 \pm .031 \\ .920 \pm .033 \\ .940 \pm .031 \\ .940 \pm .031 \\ .940 \pm .031 \\ .980 \pm .020 \\ .900 \pm .000 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .903 \pm .009 \\ .890 \pm .014 \\ .889 \pm .017 \\ .890 \pm .015 \\ .889 \pm .018 \\ .889 \pm .016 \\ .898 \pm .012 \\ .922 \pm .006 \\ .843 \pm .003 \end{array}$	$\begin{array}{c} \text{Model} \uparrow \\ \hline \\ .529 \pm .116 \\ .175 \pm .115 \\ .047 \pm .127 \\ .185 \pm .123 \\ .161 \pm .139 \\ .119 \pm .156 \\ .201 \pm .138 \\ .525 \pm .158 \\ .644 \pm .047 \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ \hline .783 \pm .027 \\ .866 \pm .021 \\ .861 \pm .023 \\ .849 \pm .022 \\ .865 \pm .024 \\ .861 \pm .026 \\ .871 \pm .022 \\ .865 \pm .031 \\ .841 \pm .004 \end{array}$
$\begin{array}{cccccccc} \text{MIRACLE} & .878_{\pm.014} & .577_{\pm.050} & .920_{\pm.061} & .818_{\pm.017} &140_{\pm.162} & .755_{\pm.033} \\ \text{ReMasker} & .874_{\pm.014} & .580_{\pm.094} & .960_{\pm.027} & .901_{\pm.007} & .274_{\pm.113} & .759_{\pm.034} \\ \text{DrIM}_{\text{BASE}} & .877_{\pm.010} & .767_{\pm.060} & .920_{\pm.033} & .858_{\pm.018} & .293_{\pm.131} & .737_{\pm.034} \\ \text{DrIM}_{\text{FINE}} & .877_{\pm.008} & .704_{\pm.091} & .960_{\pm.027} & .928_{\pm.007} & .727_{\pm.082} & .884_{\pm.013} \end{array}$	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE	$\begin{array}{c} \hline F_1 \uparrow \\ \hline \\ .839 \pm .015 \\ .846 \pm .014 \\ .886 \pm .013 \\ .859 \pm .014 \\ .879 \pm .016 \\ .879 \pm .014 \\ .857 \pm .014 \\ .901 \pm .011 \\ .845 \pm .003 \\ .848 \pm .016 \\ \hline \end{array}$	$\begin{array}{c} \textbf{Model}\uparrow\\ \hline\\ .677\pm.084\\ .701\pm.089\\ .690\pm.040\\ .503\pm.060\\ .627\pm.060\\ .583\pm.093\\ .658\pm.073\\ .587\pm.059\\ .612\pm.047\\ .713\pm.077\\ \end{array}$	Feature \uparrow .860±.060 .940±.031 .940±.031 .920±.033 .940±.031 .940±.031 .940±.031 .980±.020 .900±.000 .940±.031	$\begin{array}{c} F_1 \uparrow \\ .903 \pm .009 \\ .890 \pm .014 \\ .889 \pm .017 \\ .890 \pm .015 \\ .889 \pm .018 \\ .889 \pm .016 \\ .898 \pm .012 \\ .922 \pm .006 \\ .843 \pm .003 \\ .889 \pm .018 \end{array}$	$\begin{array}{c} \text{Model} \uparrow \\ \hline \\ .529 \pm .116 \\ .175 \pm .115 \\ .047 \pm .127 \\ .185 \pm .123 \\ .161 \pm .139 \\ .119 \pm .156 \\ .201 \pm .138 \\ .525 \pm .158 \\ .644 \pm .047 \\ .088 \pm .165 \end{array}$	Feature \uparrow .783±.027 .866±.021 .861±.023 .849±.022 .865±.024 .861±.026 .871±.022 .865±.031 .841±.004 .872±.020
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE	$\begin{array}{c} \hline F_1 \uparrow \\ \hline \\ .839 \pm .015 \\ .846 \pm .014 \\ .886 \pm .013 \\ .859 \pm .014 \\ .879 \pm .016 \\ .879 \pm .014 \\ .857 \pm .014 \\ .901 \pm .011 \\ .845 \pm .003 \\ .848 \pm .016 \\ .840 \pm .014 \\ \hline \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .677 \pm .084\\ .701 \pm .089\\ .690 \pm .040\\ .503 \pm .060\\ .627 \pm .060\\ .583 \pm .093\\ .658 \pm .073\\ .587 \pm .059\\ .612 \pm .047\\ .713 \pm .077\\ .685 \pm .046\\ \end{array}$	$\begin{array}{c} \hline \text{Feature} \uparrow \\ .860 \pm .060 \\ .940 \pm .031 \\ .940 \pm .031 \\ .920 \pm .033 \\ .940 \pm .031 \\ .940 \pm .031 \\ .940 \pm .031 \\ .980 \pm .020 \\ .900 \pm .000 \\ .940 \pm .031 \\ 1.000 \pm .000 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .903 \pm .009 \\ .890 \pm .014 \\ .889 \pm .017 \\ .890 \pm .015 \\ .889 \pm .018 \\ .889 \pm .016 \\ .898 \pm .012 \\ .922 \pm .006 \\ .843 \pm .003 \\ .889 \pm .018 \\ .891 \pm .017 \end{array}$	$\begin{array}{r} \text{Model} \uparrow \\ \hline \\ .529 \pm .116 \\ .175 \pm .115 \\ .047 \pm .127 \\ .185 \pm .123 \\ .161 \pm .139 \\ .119 \pm .156 \\ .201 \pm .138 \\ .525 \pm .158 \\ .644 \pm .047 \\ .088 \pm .165 \\ .162 \pm .149 \end{array}$	Feature \uparrow .783±.027 .866±.021 .861±.023 .849±.022 .865±.024 .861±.026 .871±.022 .865±.031 .841±.004 .872±.020 .879±.020
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE	$\begin{array}{c} \hline F_1 \uparrow \\ \hline \\ .839 \pm .015 \\ .846 \pm .014 \\ .886 \pm .013 \\ .859 \pm .014 \\ .879 \pm .016 \\ .879 \pm .014 \\ .857 \pm .014 \\ .901 \pm .011 \\ .845 \pm .003 \\ .848 \pm .016 \\ .840 \pm .014 \\ .878 \pm .014 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .677\pm.084\\ .701\pm.089\\ .690\pm.040\\ .503\pm.060\\ .627\pm.060\\ .583\pm.093\\ .658\pm.073\\ .587\pm.059\\ .612\pm.047\\ .713\pm.077\\ .685\pm.046\\ .577\pm.050\\ \end{array}$	$\begin{array}{c} \hline \text{Feature} \uparrow \\ .860 \pm .060 \\ .940 \pm .031 \\ .920 \pm .033 \\ .940 \pm .031 \\ .940 \pm .031 \\ .940 \pm .031 \\ .940 \pm .031 \\ .980 \pm .020 \\ .900 \pm .000 \\ .940 \pm .031 \\ 1.000 \pm .000 \\ .920 \pm .061 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .903 \pm .009 \\ .890 \pm .014 \\ .889 \pm .017 \\ .890 \pm .015 \\ .889 \pm .018 \\ .889 \pm .016 \\ .898 \pm .012 \\ .922 \pm .006 \\ .843 \pm .003 \\ .889 \pm .018 \\ .891 \pm .017 \\ .818 \pm .017 \end{array}$	$\begin{array}{r} \text{Model} \uparrow \\ \hline \\ .529 \pm .116 \\ .175 \pm .115 \\ .047 \pm .127 \\ .185 \pm .123 \\ .161 \pm .139 \\ .119 \pm .156 \\ .201 \pm .138 \\ .525 \pm .158 \\ .644 \pm .047 \\ .088 \pm .165 \\ .162 \pm .149 \\140 \pm .162 \end{array}$	Feature \uparrow .783±.027 .866±.021 .861±.023 .849±.022 .865±.024 .861±.026 .871±.022 .865±.031 .841±.004 .872±.020 .879±.020
$DrIM_{FINE} \qquad .877_{\pm .008} \qquad .704_{\pm .091} \qquad .960_{\pm .027} \qquad .928_{\pm .007} \qquad .727_{\pm .082} \qquad .884_{\pm .013}$	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE ReMasker	$\begin{array}{c} F_1 \uparrow \\ .839 \pm .015 \\ .846 \pm .014 \\ .886 \pm .013 \\ .859 \pm .014 \\ .879 \pm .016 \\ .879 \pm .014 \\ .877 \pm .014 \\ .901 \pm .011 \\ .845 \pm .003 \\ .848 \pm .016 \\ .840 \pm .014 \\ .878 \pm .014 \\ .874 \pm .014 \end{array}$	$\begin{array}{r} \text{Model}\uparrow\\ \hline\\ .677 \pm .084\\ .701 \pm .089\\ .690 \pm .040\\ .503 \pm .060\\ .627 \pm .060\\ .583 \pm .093\\ .658 \pm .073\\ .587 \pm .059\\ .612 \pm .047\\ .713 \pm .077\\ .685 \pm .046\\ .577 \pm .050\\ .580 \pm .094\\ \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ .860 \pm .060 \\ .940 \pm .031 \\ .940 \pm .031 \\ .920 \pm .033 \\ .940 \pm .031 \\ .940 \pm .031 \\ .940 \pm .031 \\ .980 \pm .020 \\ .900 \pm .000 \\ .900 \pm .000 \\ .940 \pm .031 \\ 1.000 \pm .000 \\ .920 \pm .061 \\ .960 \pm .027 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .903 \pm .009 \\ .890 \pm .014 \\ .889 \pm .017 \\ .890 \pm .015 \\ .889 \pm .018 \\ .889 \pm .016 \\ .898 \pm .012 \\ .922 \pm .006 \\ .843 \pm .003 \\ .889 \pm .018 \\ .891 \pm .017 \\ .818 \pm .017 \\ .901 \pm .007 \\ \end{array}$	$\begin{array}{c} \text{Model} \uparrow \\ \hline .529 \pm .116 \\ .175 \pm .115 \\ .047 \pm .127 \\ .185 \pm .123 \\ .161 \pm .139 \\ .119 \pm .156 \\ .201 \pm .138 \\ .525 \pm .158 \\ .644 \pm .047 \\ .088 \pm .165 \\ .162 \pm .149 \\140 \pm .162 \\ .274 \pm .113 \end{array}$	Feature \uparrow .783±.027 .866±.021 .861±.023 .849±.022 .865±.024 .861±.026 .871±.022 .865±.031 .841±.004 .872±.020 .879±.020 .755±.033 .759±.035
	model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE ReMasker DrIM _{BASE}	$\begin{array}{c} F_1 \uparrow \\ .839 \pm .015 \\ .846 \pm .014 \\ .886 \pm .013 \\ .859 \pm .014 \\ .879 \pm .016 \\ .879 \pm .014 \\ .877 \pm .014 \\ .901 \pm .011 \\ .845 \pm .003 \\ .848 \pm .016 \\ .840 \pm .014 \\ .878 \pm .014 \\ .874 \pm .014 \\ .877 \pm .010 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .677\pm.084\\ .701\pm.089\\ .690\pm.040\\ .503\pm.060\\ .627\pm.060\\ .583\pm.093\\ .658\pm.073\\ .587\pm.059\\ .612\pm.047\\ .713\pm.077\\ .685\pm.046\\ .577\pm.050\\ .580\pm.094\\ .767\pm.060\\ \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ .860 \pm .060 \\ .940 \pm .031 \\ .940 \pm .031 \\ .920 \pm .033 \\ .940 \pm .031 \\ .940 \pm .031 \\ .940 \pm .031 \\ .980 \pm .020 \\ .900 \pm .000 \\ .900 \pm .000 \\ .920 \pm .061 \\ .960 \pm .027 \\ \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .903 \pm .009 \\ .890 \pm .014 \\ .889 \pm .017 \\ .890 \pm .015 \\ .889 \pm .018 \\ .889 \pm .016 \\ .898 \pm .012 \\ .922 \pm .006 \\ .843 \pm .003 \\ .889 \pm .018 \\ .891 \pm .017 \\ .818 \pm .017 \\ .901 \pm .007 \\ .858 \pm .018 \end{array}$	$\begin{array}{c} \text{Model} \uparrow \\ \hline \\ .529 \pm .116 \\ .175 \pm .115 \\ .047 \pm .127 \\ .185 \pm .123 \\ .161 \pm .139 \\ .119 \pm .156 \\ .201 \pm .138 \\ .525 \pm .158 \\ .525 \pm .158 \\ .644 \pm .047 \\ .088 \pm .165 \\ .162 \pm .149 \\140 \pm .162 \\ .274 \pm .113 \\ .293 \pm .131 \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ .783 \pm .027 \\ .866 \pm .021 \\ .861 \pm .023 \\ .849 \pm .022 \\ .865 \pm .024 \\ .861 \pm .026 \\ .871 \pm .022 \\ .865 \pm .031 \\ .841 \pm .004 \\ .872 \pm .020 \\ .755 \pm .033 \\ .759 \pm .035 \\ .737 \pm .034 \end{array}$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			concrete			kings
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean	$.307_{\pm .013}$	$.184_{\pm.110}$	$.917_{\pm .020}$	$.413_{\pm.010}$	$.730_{\pm .065}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	kNNI	$.328_{\pm .009}$	$.534_{\pm .093}$	$.869_{\pm .028}$	$.432_{\pm.010}$	$.640_{\pm .095}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EM	$.359_{\pm .013}$	$.654_{\pm.080}$	$.707_{\pm .070}$	$.432_{\pm .009}$	$.540_{\pm .083}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SoftImpute	$.307_{\pm .013}$	$.184_{\pm.110}$	$.917_{\pm .020}$	$.416_{\pm .009}$	$.500_{\pm .099}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MICE	$.322_{\pm.012}$	$.433_{\pm.104}$	$.740_{\pm .075}$	$.430_{\pm .009}$	$.390_{\pm .073}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	missForest	$.317_{\pm.010}$	$.227_{\pm .090}$	$.788_{\pm .055}$	$.423_{\pm .009}$	$.680_{\pm .07}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sinkhorn	$.324_{\pm.010}$	$.393_{\pm.139}$	$.762_{\pm .061}$	$.422_{\pm.008}$	$.730_{\pm .063}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GAIN	$.414_{\pm .009}$	$.371_{\pm.153}$	$.900_{\pm .017}$	$.488_{\pm.008}$	$.770_{\pm .03}$
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	VAEAC	$.347_{\pm.010}$	$.472_{\pm .056}$	$.743_{\pm .036}$	$.510_{\pm .002}$	$.760_{\pm .01}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MIWAE	$.276_{\pm.012}$	$.095_{\pm .167}$	$.843_{\pm .041}$	$.415_{\pm .008}$	$.730_{\pm .07}$
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	not-MIWAE	$.290_{\pm .010}$	$.441_{\pm .145}$	$.831_{\pm .041}$	$.410_{\pm .010}$	$.682_{\pm .07}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MIRACLE	$.289_{\pm .019}$	$064_{\pm.121}$	$.860_{\pm .032}$	$.437_{\pm .007}$	$.460_{\pm .09}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	eMasker	$.273_{\pm .018}$	$.141_{\pm .141}$	$.905_{\pm .019}$	$.428_{\pm .012}$	$.430_{\pm .092}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DrIM _{BASE}	$.401_{\pm .007}$	$.386_{\pm .144}$	$.924_{\pm.016}$	$.490_{\pm .010}$	$.920_{\pm .029}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DrIM _{FINE}	$.408_{\pm .008}$	$.489_{\pm .091}$	$.929_{\pm .014}$	$.530_{\pm .007}$	$.940_{\pm.010}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			letter			loan
$\begin{array}{llllllllllllllllllllllllllllllllllll$	model	$F_1 \uparrow$	Model ↑	Feature †	$F_1 \uparrow$	Model ↑
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Mean	$.561_{\pm .005}$	$.740_{\pm .048}$	$.665 \pm .030$	$.912_{\pm .002}$	$.630_{\pm .065}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	kNNI	$.651_{\pm .007}$	$.800_{\pm .000}$	$.950_{\pm .005}$	$.916_{\pm .002}$	$.740_{\pm .027}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EM	$.632_{\pm .004}$	$.810_{\pm .028}$	$.953_{\pm .005}$	$.916_{\pm.001}$	$.697_{\pm .033}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SoftImpute	$.569_{\pm.005}$	$.777_{\pm.051}$	$.749_{\pm.026}$	$.913_{\pm.002}$	$.702_{\pm.040}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MICE	$.595_{\pm.006}$	$.840_{\pm.027}$	$.906_{\pm.012}$	$.917_{\pm.002}$	$.714_{\pm.04}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	missForest	$.586_{+.005}$	$.740_{+.052}$	$.796_{+.022}$	$.914_{+.002}$	$.750_{+.052}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sinkhorn	$.599_{+.006}$	$.730_{\pm.050}$	$.856_{+.016}$	$.912_{+.003}$	$.688 \pm .052$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GAIN	$.580_{\pm 010}$	$.620_{\pm 0.42}$	$.690_{\pm 0.037}$	$.911_{\pm 0.02}$	$.587_{\pm 012}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	VAEAC	$.712_{+.002}$	$.800 \pm .000$	$.887_{+.002}$	$.825_{+.001}$	$.620_{+.042}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MIWAE	$.549_{\pm 0.05}$	$.860 \pm 0.022$	$.772_{\pm 0.025}$	$.914_{\pm 002}$	$.713_{+059}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	not-MIWAE	$.573 \pm 0.05$	$.740 \pm 0.50$	$.760 \pm 0.28$	$.912_{\pm 0.02}$	$.710 \pm 0.31$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MIRACLE	$.620 \pm 0.09$	$.820_{\pm 013}$	$.932_{\pm 007}$	$.918_{\pm 002}$	$.783_{\pm 040}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ReMasker	$.624_{\pm.005}$	$.780_{\pm.020}$	$.942_{\pm.007}$	$.918_{\pm .002}$	$.760_{\pm .041}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	DrIM _{BASE}	.631+.004	$.760_{+.027}$	$.940_{+.005}$	$.911_{+.003}$	$.626_{+.045}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DrIM _{FINE}	$.691_{\pm .008}$	$.950_{\pm .027}$	$.957_{\pm .006}$	$.910_{\pm .002}$	$.720_{\pm .042}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			redwine		,	whitewir
$\begin{array}{llllllllllllllllllllllllllllllllllll$	model	$F_1 \uparrow$	Model ↑	Feature †	$F_1 \uparrow$	Model 1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Mean	$.375_{\pm .009}$	$.422_{\pm.114}$	$.682_{\pm .072}$	$.344_{\pm.007}$	$.540_{\pm.117}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	kNNI	$.400 \pm .010$	$.477_{\pm.161}$	$.705 \pm .049$	$.357_{\pm .008}$	$.577_{\pm .11}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	EM	$.395_{\pm .009}$	$.529_{\pm.121}$	$.666_{\pm .052}$	$.360_{\pm .008}$	$.656_{\pm .09}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SoftImpute	$.386_{\pm.010}$	$.426_{\pm.113}$	$.671_{\pm .050}$	$.342_{\pm.007}$	$.530_{\pm.12}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MICE	$.390_{\pm 012}$	$.467_{+.148}$	$.677_{+.052}$	$.349_{+.009}$	$.450_{\pm 13}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	missForest	$.390_{+.011}$	$.402 \pm .142$	$.712_{\pm .050}$	$.350 \pm .007$.606+.10
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Sinkhorn	$.389_{\pm 011}$	$.454_{+135}$	$.720_{\pm 0.52}$	$.352 \pm 0.06$.465+ 14
$\begin{array}{rllllllllllllllllllllllllllllllllllll$	GAIN	$.506 \pm 0.07$	$.382 \pm 110$	$.796 \pm 0.032$	$.427 \pm 0.000$.537+ 07
$\begin{array}{llllllllllllllllllllllllllllllllllll$	VAEAC	$.472 \pm 0.05$	$.266 \pm 115$	$.785 \pm 0.016$	$.423 \pm 0.04$.450+ 02
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MIWAE	$.392 \pm 0.00$	$.506 \pm 121$.715+ 060	.347+ 008	.537+ 12
$\begin{array}{llllllllllllllllllllllllllllllllllll$	not-MIWAE	$.383 \pm 0.11$	$.479_{\pm 116}$.662± 055	$.346 \pm .003$	$.575_{\pm 11}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	MIRACLE	$.399 \pm 000$.309.1 145	.699±056	$.360 \pm .007$	$.470_{\pm .11}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ReMasker	$.388 \pm .009$	$.185 \pm .145$	$.534 \pm .056$	$.339 \pm 0.005$	$.342 \pm 10$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D.D.(.100±.098	.00 ±±.000	1000±.010	··· -= ±.16
Dr1M _{FINE} $.544_{\pm.005}$ $.105_{\pm.072}$ $.902_{\pm.013}$ $.490_{\pm.005}$ $.541_{\pm.080}$	DrIM _{BASE}	$.525_{\pm .008}$	$.334_{\pm .098}$	$.839_{\pm.021}$	$.470_{\pm .006}$	$.510_{\pm .072}$
	DrIM _{FINE}	$.544_{\pm.005}$	$.105 \pm .072$	$.902_{\pm.013}$	$.490_{\pm .005}$	$.541_{\pm .080}$

Table 16: Machine learning utility for each dataset under MNARQ at 0.3 missingness.. The means and the standard errors of the mean across 10 repeated experiments are reported. ↑ denotes higher is better.

		abalone			anuran		
model	$F_1 \uparrow$	Model ↑	Feature ↑	$F_1 \uparrow$	Model ↑	Feature ↑	
Mean	$.143_{+.015}$	$292_{+.211}$	$.774_{\pm.035}$	$.921_{+.021}$	$.278_{+.118}$	$.549_{+.075}$	
kNNI	$.146_{\pm.013}$	$284_{\pm.198}$	$.926_{\pm.021}$	$.914_{\pm.023}$	$.333_{\pm.128}$	$.700_{\pm.052}$	
EM	$.142_{\pm.013}$	$317_{\pm .173}$	$.855 \pm .033$	$.911_{\pm .021}$	$.223_{\pm.120}$	$.648_{\pm .052}$	
SoftImpute	$.141_{\pm.014}$	$262_{\pm.199}$	$.924_{\pm.023}$	$.918 \pm .022$	$.300 \pm .118$	$.717_{\pm .063}$	
MICE	$.143_{\pm .015}$	$213_{\pm.194}$	$.950_{\pm .017}$	$.920_{\pm .021}$	$.344_{\pm.120}$	$.738 \pm .052$	
missForest	$.145 \pm .014$	$262_{\pm.205}$	$.919_{\pm .024}$	$.919_{\pm .022}$	$.325 \pm .125$	$.687_{\pm .050}$	
Sinkhorn	$.143_{\pm.013}$	$154_{\pm.172}$	$.929_{\pm .020}$	$.917_{\pm .022}$	$.316_{\pm.121}$	$.702 \pm .053$	
GAIN	$.182_{\pm.012}$	$.021_{\pm .198}$	$.907_{\pm .019}$	$.951_{\pm .014}$	$.490 \pm .100$	$.831_{\pm.028}$	
VAEAC	$.136_{\pm.004}$	$.538_{\pm .049}$	$.829 \pm .011$	$.893_{\pm.001}$	$.613_{\pm .082}$	$.871_{\pm.003}$	
MIWAE	$.138_{\pm.016}$	$307_{\pm.202}$	$.948_{\pm.010}$	$.921_{\pm .021}$	$.364 \pm .128$	$.700_{\pm .058}$	
not-MIWAE	$.141_{\pm .014}$	$217_{\pm .197}$	$.950_{\pm .015}$	$.919_{\pm .022}$	$.356 \pm .122$	$.726_{\pm.053}$	
MIRACLE	$.146_{\pm.014}$	$224_{\pm.185}$	$.924_{\pm .025}$	$.917_{\pm .022}$	$.288_{\pm.126}$	$.726_{\pm .052}$	
ReMasker	$.148_{\pm.013}$	$197_{\pm.154}$	$.798_{\pm .037}$	$.913_{\pm .024}$	$.267_{\pm.112}$	$.697_{\pm .050}$	
DrIM _{BASE}	$.209_{\pm .005}$	$.827_{\pm.051}$	$.876 \pm .022$	$.953_{\pm .012}$	$.631_{\pm .069}$	$.936_{\pm.013}$	
DrIM _{FINE}	$.202_{\pm .006}$	$.524_{\pm .126}$	$.817_{\pm .028}$	$.975_{\pm .007}$	$.571_{\pm .162}$	$.928_{\pm.010}$	
		banknote			breast		
model	$F_1 \uparrow$	banknote Model↑	Feature ↑	$F_1 \uparrow$	breast Model↑	Feature ↑	
model Mean	$\overline{F_1\uparrow}$	banknote Model \uparrow $.832_{\pm.053}$	Feature ↑ .800±.052	$\overline{F_1\uparrow}$	breast Model \uparrow .469 \pm .164	Feature ↑ .841±.032	
model Mean kNNI		banknote <u>Model</u> ↑ .832 _{±.053} .680 _{±.075}	Feature ↑ .800±.052 1.000±.000	$F_{1} \uparrow \\ .915_{\pm.011} \\ .915_{\pm.011}$	breast Model \uparrow .469 $_{\pm.164}$.513 $_{\pm.176}$	Feature ↑ .841±.032 .923±.016	
model Mean kNNI EM	$ F_1 \uparrow \\ .904_{\pm.012} \\ .916_{\pm.011} \\ .922_{\pm.007} $	banknote Model↑ .832±.053 .680±.075 .753±.071	Feature ↑ .800±.052 1.000±.000 .960±.027	$\begin{array}{c} F_{1}\uparrow\\ .915_{\pm.011}\\ .915_{\pm.011}\\ .915_{\pm.012}\end{array}$	breast Model↑ .469±.164 .513±.176 .333±.205	Feature ↑ .841±.032 .923±.016 .884±.019	
model Mean kNNI EM SoftImpute	$\begin{array}{c} \hline F_1 \uparrow \\ .904_{\pm.012} \\ .916_{\pm.011} \\ .922_{\pm.007} \\ .911_{\pm.011} \end{array}$	banknote Model↑ .832±.053 .680±.075 .753±.071 .604±.087	Feature \uparrow $.800_{\pm.052}$ $1.000_{\pm.000}$ $.960_{\pm.027}$ $1.000_{\pm.000}$	$\begin{array}{c} \hline F_1 \uparrow \\ .915_{\pm.011} \\ .915_{\pm.012} \\ .915_{\pm.012} \\ .915_{\pm.010} \end{array}$	breast Model↑ .469±.164 .513±.176 .333±.205 .406±.202	Feature \uparrow .841±.032 .923±.016 .884±.019 .915±.018	
model Mean kNNI EM SoftImpute MICE	$\begin{array}{c} F_1 \uparrow \\ .904 \pm .012 \\ .916 \pm .011 \\ .922 \pm .007 \\ .911 \pm .011 \\ .922 \pm .010 \end{array}$	$\begin{array}{c} \text{banknote} \\ \hline \text{Model} \uparrow \\ .832_{\pm.053} \\ .680_{\pm.075} \\ .753_{\pm.071} \\ .604_{\pm.087} \\ .711_{\pm.070} \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ .800 \pm .052 \\ 1.000 \pm .000 \\ .960 \pm .027 \\ 1.000 \pm .000 \\ 1.000 \pm .000 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .915_{\pm.011} \\ .915_{\pm.011} \\ .915_{\pm.012} \\ .915_{\pm.010} \\ .918_{\pm.013} \end{array}$	breast Model↑ .469±.164 .513±.176 .333±.205 .406±.202 .231±.216	Feature \uparrow .841±.032 .923±.016 .884±.019 .915±.018 .906±.025	
model Mean kNNI EM SoftImpute MICE missForest	$\begin{array}{c} F_1 \uparrow \\ .904 \pm .012 \\ .916 \pm .011 \\ .922 \pm .007 \\ .911 \pm .011 \\ .922 \pm .010 \\ .920 \pm .010 \end{array}$	$\begin{array}{c} \text{Model}\uparrow\\ \hline\\ .832_{\pm.053}\\ .680_{\pm.075}\\ .753_{\pm.071}\\ .604_{\pm.087}\\ .711_{\pm.070}\\ .600_{\pm.066}\end{array}$	Feature ↑ .800±.052 1.000±.000 .960±.027 1.000±.000 1.000±.000	$\begin{array}{c} F_1 \uparrow \\ .915_{\pm.011} \\ .915_{\pm.011} \\ .915_{\pm.012} \\ .915_{\pm.010} \\ .918_{\pm.013} \\ .915_{\pm.012} \end{array}$	breast Model↑ .469±.164 .513±.176 .333±.205 .406±.202 .231±.216 .380±.175	Feature \uparrow .841±.032 .923±.016 .884±.019 .915±.018 .906±.025 .927±.013	
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn	$\begin{array}{c} F_1 \uparrow \\ .904 \pm .012 \\ .916 \pm .011 \\ .922 \pm .007 \\ .911 \pm .011 \\ .922 \pm .010 \\ .920 \pm .010 \\ .912 \pm .011 \end{array}$	banknote Model \uparrow .832 \pm .053 .680 \pm .075 .753 \pm .071 .604 \pm .087 .711 \pm .070 .600 \pm .066 .670 \pm .073	$\begin{array}{c} \text{Feature} \uparrow \\ .800 \pm .052 \\ 1.000 \pm .000 \\ .960 \pm .027 \\ 1.000 \pm .000 \\ 1.000 \pm .000 \\ 1.000 \pm .000 \\ 1.000 \pm .000 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .915 \pm .011 \\ .915 \pm .011 \\ .915 \pm .012 \\ .915 \pm .010 \\ .918 \pm .013 \\ .915 \pm .012 \\ .920 \pm .011 \end{array}$	breast Model \uparrow .469 \pm .164 .513 \pm .176 .333 \pm .205 .406 \pm .202 .231 \pm .216 .380 \pm .175 .409 \pm .195	Feature \uparrow .841±.032 .923±.016 .884±.019 .915±.018 .906±.025 .927±.013 .919±.022	
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN	$\begin{array}{c} F_1 \uparrow \\ .904 \pm .012 \\ .916 \pm .011 \\ .922 \pm .007 \\ .911 \pm .011 \\ .922 \pm .010 \\ .920 \pm .010 \\ .912 \pm .011 \\ .943 \pm .004 \end{array}$	banknote Model \uparrow .832 \pm .053 .680 \pm .075 .753 \pm .071 .604 \pm .087 .711 \pm .070 .600 \pm .066 .670 \pm .073 .720 \pm .043	$\begin{array}{c} \text{Feature} \uparrow \\ .800 \pm .052 \\ 1.000 \pm .000 \\ .960 \pm .027 \\ 1.000 \pm .000 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .915 \pm .011 \\ .915 \pm .012 \\ .915 \pm .012 \\ .915 \pm .010 \\ .918 \pm .013 \\ .915 \pm .012 \\ .920 \pm .011 \\ .929 \pm .009 \end{array}$	breast Model \uparrow .469 \pm .164 .513 \pm .176 .333 \pm .205 .406 \pm .202 .231 \pm .216 .380 \pm .175 .409 \pm .195 .424 \pm .161	Feature \uparrow .841±.032 .923±.016 .884±.019 .915±.018 .906±.025 .927±.013 .919±.022 .925±.020	
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC	$\begin{array}{c} F_1 \uparrow \\ .904_{\pm.012} \\ .916_{\pm.011} \\ .922_{\pm.007} \\ .911_{\pm.011} \\ .922_{\pm.010} \\ .920_{\pm.010} \\ .912_{\pm.011} \\ .943_{\pm.004} \\ .854_{\pm.003} \end{array}$	$\begin{array}{c} \text{banknote} \\ \hline \text{Model} \uparrow \\ \hline .832 \pm .053 \\ .680 \pm .075 \\ .753 \pm .071 \\ .604 \pm .087 \\ .711 \pm .070 \\ .600 \pm .066 \\ .670 \pm .073 \\ .720 \pm .043 \\ .625 \pm .035 \end{array}$	$\begin{array}{c} \hline \text{Feature} \uparrow \\ .800 \pm .052 \\ 1.000 \pm .000 \\ .960 \pm .027 \\ 1.000 \pm .000 \\ .900 \pm .000 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .915 \pm .011 \\ .915 \pm .012 \\ .915 \pm .010 \\ .918 \pm .013 \\ .915 \pm .012 \\ .920 \pm .011 \\ .929 \pm .009 \\ .850 \pm .003 \end{array}$	breast Model \uparrow .469±.164 .513±.176 .333±.205 .406±.202 .231±.216 .380±.175 .409±.195 .424±.161 .624±.044	Feature \uparrow .841±.032 .923±.016 .884±.019 .915±.018 .906±.025 .927±.013 .919±.022 .925±.020 .850±.005	
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE	$\begin{array}{c} F_1 \uparrow \\ .904_{\pm.012} \\ .916_{\pm.011} \\ .922_{\pm.007} \\ .911_{\pm.011} \\ .922_{\pm.010} \\ .920_{\pm.010} \\ .912_{\pm.011} \\ .943_{\pm.004} \\ .854_{\pm.003} \\ .904_{\pm.013} \end{array}$	$\begin{array}{c} \text{banknote} \\ \hline \text{Model} \uparrow \\ \hline .832 \pm .053 \\ .680 \pm .075 \\ .753 \pm .071 \\ .604 \pm .087 \\ .711 \pm .070 \\ .600 \pm .066 \\ .670 \pm .073 \\ .720 \pm .043 \\ .625 \pm .035 \\ .774 \pm .050 \end{array}$	$\begin{array}{c} \hline \text{Feature} \uparrow \\ .800 \pm .052 \\ 1.000 \pm .000 \\ .960 \pm .027 \\ 1.000 \pm .000 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .915 \pm .011 \\ .915 \pm .012 \\ .915 \pm .012 \\ .915 \pm .013 \\ .915 \pm .013 \\ .920 \pm .011 \\ .929 \pm .009 \\ .850 \pm .003 \\ .919 \pm .011 \end{array}$	breast Model \uparrow .469±.164 .513±.176 .333±.205 .406±.202 .231±.216 .380±.175 .409±.195 .424±.161 .624±.044 .412±.195	Feature \uparrow .841±.032 .923±.016 .884±.019 .915±.018 .906±.025 .927±.013 .919±.022 .925±.020 .850±.005 .900±.027	
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE	$\begin{array}{c} F_1 \uparrow \\ .904_{\pm.012} \\ .916_{\pm.011} \\ .922_{\pm.007} \\ .911_{\pm.011} \\ .922_{\pm.010} \\ .920_{\pm.010} \\ .912_{\pm.011} \\ .943_{\pm.004} \\ .854_{\pm.003} \\ .904_{\pm.013} \\ .902_{\pm.012} \end{array}$	banknote Model \uparrow .832±.053 .680±.075 .753±.071 .604±.087 .711±.070 .600±.066 .670±.073 .720±.043 .625±.035 .774±.050 .819±.045	$\begin{array}{c} \hline \text{Feature} \uparrow \\ .800 \pm .052 \\ 1.000 \pm .000 \\ .960 \pm .027 \\ 1.000 \pm .000 \\ .900 \pm .000 \\ 1.000 \pm .000 \\ .980 \pm .020 \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .915 \pm .011 \\ .915 \pm .012 \\ .915 \pm .012 \\ .915 \pm .010 \\ .918 \pm .013 \\ .915 \pm .012 \\ .920 \pm .011 \\ .929 \pm .009 \\ .850 \pm .003 \\ .919 \pm .011 \\ .915 \pm .012 \end{array}$	breast Model \uparrow .469±.164 .513±.176 .333±.205 .406±.202 .231±.216 .380±.175 .409±.195 .424±.161 .624±.044 .412±.195 .474±.171	Feature \uparrow .841±.032 .923±.016 .884±.019 .915±.018 .906±.025 .927±.013 .919±.022 .925±.020 .850±.005 .900±.027 .912±.021	
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE	$\begin{array}{c} F_1 \uparrow \\ .904_{\pm.012} \\ .916_{\pm.011} \\ .922_{\pm.007} \\ .911_{\pm.011} \\ .922_{\pm.010} \\ .920_{\pm.010} \\ .912_{\pm.011} \\ .943_{\pm.004} \\ .854_{\pm.003} \\ .904_{\pm.013} \\ .902_{\pm.012} \\ .919_{\pm.013} \end{array}$	$\begin{array}{r} \text{banknote} \\ \hline \text{Model} \uparrow \\ .832 \pm .053 \\ .680 \pm .075 \\ .753 \pm .071 \\ .604 \pm .087 \\ .711 \pm .070 \\ .600 \pm .066 \\ .670 \pm .073 \\ .720 \pm .043 \\ .625 \pm .035 \\ .774 \pm .050 \\ .819 \pm .045 \\ .739 \pm .056 \end{array}$	$\begin{array}{c} \hline \text{Feature} \uparrow \\ .800 \pm .052 \\ 1.000 \pm .000 \\ .960 \pm .027 \\ 1.000 \pm .000 \\ 1.000 \pm .000 \\ 1.000 \pm .000 \\ 1.000 \pm .000 \\ .900 \pm .000 \\ 1.000 \pm .000 \\ \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .915 \pm .011 \\ .915 \pm .012 \\ .915 \pm .012 \\ .915 \pm .010 \\ .918 \pm .013 \\ .920 \pm .011 \\ .929 \pm .009 \\ .850 \pm .003 \\ .919 \pm .011 \\ .915 \pm .012 \\ .894 \pm .017 \end{array}$	breast Model \uparrow .469±.164 .513±.176 .333±.205 .406±.202 .231±.216 .380±.175 .409±.195 .424±.161 .624±.044 .412±.195 .474±.171 .088±.174	Feature \uparrow .841±.032 .923±.016 .884±.019 .915±.018 .906±.025 .927±.013 .919±.022 .925±.020 .850±.005 .900±.027 .912±.021 .788±.038	
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE ReMasker	$\begin{array}{c} F_1 \uparrow \\ .904_{\pm.012} \\ .916_{\pm.011} \\ .922_{\pm.007} \\ .911_{\pm.011} \\ .922_{\pm.010} \\ .920_{\pm.010} \\ .912_{\pm.011} \\ .943_{\pm.004} \\ .854_{\pm.003} \\ .904_{\pm.013} \\ .902_{\pm.012} \\ .919_{\pm.013} \\ .918_{\pm.010} \end{array}$	$\begin{array}{c} \text{banknote} \\ \hline \text{Model} \uparrow \\ .832 \pm .053 \\ .680 \pm .075 \\ .753 \pm .071 \\ .604 \pm .087 \\ .711 \pm .070 \\ .600 \pm .066 \\ .670 \pm .073 \\ .720 \pm .043 \\ .625 \pm .035 \\ .774 \pm .050 \\ .819 \pm .045 \\ .739 \pm .056 \\ .663 \pm .076 \end{array}$	$\begin{array}{c} \text{Feature} \uparrow \\ .800 \pm .052 \\ 1.000 \pm .000 \\ .960 \pm .027 \\ 1.000 \pm .000 \\ .900 \pm .000 \\ 1.000 \pm .000 \\ \end{array}$	$\begin{array}{c} F_1 \uparrow \\ .915 \pm .011 \\ .915 \pm .012 \\ .915 \pm .012 \\ .915 \pm .010 \\ .918 \pm .013 \\ .915 \pm .012 \\ .920 \pm .011 \\ .929 \pm .009 \\ .850 \pm .003 \\ .919 \pm .011 \\ .915 \pm .012 \\ .894 \pm .017 \\ .911 \pm .009 \end{array}$	breast Model \uparrow .469±.164 .513±.176 .333±.205 .406±.202 .231±.216 .380±.175 .409±.195 .424±.161 .624±.044 .412±.195 .474±.171 .088±.174 .194±.181	$\begin{array}{c} \hline \text{Feature} \uparrow \\ .841 \pm .032 \\ .923 \pm .016 \\ .884 \pm .019 \\ .915 \pm .018 \\ .906 \pm .025 \\ .927 \pm .013 \\ .919 \pm .022 \\ .925 \pm .020 \\ .850 \pm .005 \\ .900 \pm .027 \\ .912 \pm .021 \\ .788 \pm .038 \\ .846 \pm .028 \end{array}$	
model Mean kNNI EM SoftImpute MICE missForest Sinkhorn GAIN VAEAC MIWAE not-MIWAE MIRACLE ReMasker DrIM _{BASE}	$\begin{array}{c} F_1 \uparrow \\ .904 \pm .012 \\ .916 \pm .011 \\ .922 \pm .007 \\ .911 \pm .011 \\ .922 \pm .010 \\ .920 \pm .010 \\ .920 \pm .010 \\ .912 \pm .011 \\ .943 \pm .004 \\ .854 \pm .003 \\ .904 \pm .013 \\ .902 \pm .012 \\ .919 \pm .013 \\ .918 \pm .010 \\ .919 \pm .009 \end{array}$	banknote Model \uparrow .832±.053 .680±.075 .753±.071 .604±.087 .711±.070 .600±.066 .670±.073 .720±.043 .625±.035 .774±.050 .819±.045 .739±.056 .663±.076 .770±.048	Feature ↑ .800±.052 1.000±.000 .960±.027 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000 1.000±.000	$\begin{array}{c} F_1 \uparrow \\ .915 \pm .011 \\ .915 \pm .012 \\ .915 \pm .012 \\ .915 \pm .010 \\ .918 \pm .013 \\ .915 \pm .012 \\ .920 \pm .011 \\ .929 \pm .009 \\ .850 \pm .003 \\ .919 \pm .011 \\ .915 \pm .012 \\ .894 \pm .017 \\ .911 \pm .009 \\ .909 \pm .013 \end{array}$	breast Model \uparrow .469±.164 .513±.176 .333±.205 .406±.202 .231±.216 .380±.175 .409±.195 .424±.161 .624±.044 .412±.195 .474±.171 .088±.174 .194±.181 .366±.155	Feature \uparrow .841±.032 .923±.016 .884±.019 .915±.018 .906±.025 .927±.013 .919±.022 .925±.020 .850±.005 .900±.027 .912±.021 .788±.038 .846±.028	

1838 concrete 1840 kings 1841 $F_1 \uparrow$ Model ↑ Feature ↑ $F_1 \uparrow$ Model ↑ model Feature ↑ $.223_{\pm .175}$ $.945_{\pm .009}$ $.521_{\pm .024}$ $.952_{\pm .006}$ Mean $.351_{\pm .021}$ $.610_{\pm .119}$ $.976_{\pm .001}$ 1843 $.634_{\pm .091}$ $.819_{\pm .032}$ $.580_{\pm .125}$ **kNNI** $.535_{\pm .025}$ $.370_{\pm .020}$ $.381_{\pm .019}$ $.965_{\pm .006}$ EM $.562_{\pm .112}$ $.660_{\pm .067}$ $.506_{\pm .027}$ $.529_{\pm .122}$ 1844 SoftImpute $.351_{\pm.020}$ $.386_{\pm.123}$ $.807_{\pm .057}$ $.525_{\pm.025}$ $.580_{\pm.131}$ $.962_{\pm.003}$ 1845 $.717_{\pm .067}$ $.532_{\pm .024}$ MICE $.367_{\pm .022}$ $.535_{\pm .124}$ $.418_{\pm .152}$ $.961_{\pm.006}$ 1846 $.360_{\pm .021}$ $.344_{\pm .134}$ $.705_{\pm .069}$ $.526_{\pm .024}$ $.660_{\pm .109}$ $.963_{\pm .005}$ missForest 1847 $.360_{\pm .021}$ $.638_{\pm .074}$ $.529_{\pm .024}$ $.630_{\pm .122}$ Sinkhorn $.639_{\pm .094}$ $.982_{\pm.001}$ 1848 $.435_{\pm .012}$ $.623_{\pm .051}$ $.731_{\pm .072}$ $.558_{\pm .018}$ $.830_{\pm .038}$ $.973_{\pm .005}$ GAIN $.370_{\pm .011}$ $.552_{\pm .065}$ $.557_{\pm .069}$ $.519_{\pm .002}$ $.760_{\pm .016}$ $.872_{\pm .004}$ VAEAC 1849 $.330_{\pm .021}$ $.871_{\pm .029}$ $.520_{\pm .025}$ $.600_{\pm .134}$ $.967_{\pm .002}$ MIWAE $.170_{\pm .154}$ 1850 not-MIWAE $.350_{\pm .020}$ $.334_{\pm .155}$ $.838_{\pm .040}$ $.527_{\pm .025}$ $.630_{\pm .122}$ $.974_{\pm.003}$ 1851 $-.174_{\pm.132}$ $.968_{\pm .006}$ MIRACLE $.829_{\pm .044}$ $.336_{\pm .020}$ $.536_{\pm .025}$ $.550_{\pm .123}$ $.949_{\pm .007}$ 1852 ReMasker $.309_{\pm.021}$ $.146_{\pm.143}$ $.886_{\pm.020}$ $.518_{\pm.022}$ $.620_{\pm .119}$ 1853 $.976_{\pm .003}$ DrIM_{BASE} $.416 \pm .011$ $.550_{\pm .118}$ $.869 \pm .027$ $.563_{\pm .012}$ $.890_{\pm .043}$ 1854 $.586_{\pm .007}$ **DrIM**_{FINE} $.416 \pm .012$ $.680 \pm .087$ $.907_{\pm .015}$ $.947_{\pm .016}$ $.976 \pm .003$ 1855 letter loan 1856 $F_1 \uparrow$ $F_1 \uparrow$ model Model ↑ Feature ↑ Model ↑ Feature ↑ 1857 $.829_{\pm .048}$ $.926_{\pm .008}$ Mean $.646_{\pm .025}$ $.800_{\pm .042}$ $.651_{\pm .048}$ $.921_{\pm .002}$ 1858 $.923_{\pm .001}$ $.947_{\pm .010}$ **kNNI** $.680_{\pm .025}$ $.720_{\pm .053}$ $.911_{\pm .014}$ $.867_{\pm .047}$ 1859 ΕM $.687_{\pm .022}$ $.800_{\pm .042}$ $.951_{\pm .004}$ $.893_{\pm .024}$ $.847_{\pm .051}$ $.927_{\pm .007}$ 1860 $.922_{\pm .001}$ $.780_{\pm .049}$ $.764_{\pm .028}$ $.847_{\pm .049}$ $.933_{\pm .007}$ SoftImpute $.652_{\pm .025}$ 1861 $.668_{\pm .024}$ $.850_{\pm .037}$ $.922_{\pm .002}$ $.852_{\pm .037}$ MICE $.913_{\pm .007}$ $.944_{\pm .009}$ $.806_{\pm .026}$ $.919_{\pm .013}$ 1862 $.663_{\pm .024}$ $.780_{\pm .049}$ $.923_{\pm .001}$ $.770_{\pm .045}$ missForest Sinkhorn $.670 \pm .024$ $.720 \pm .053$ $.819_{\pm .021}$ $.922_{\pm .002}$ $.783 \pm .047$ $.938 \pm .010$ 1863 $.680_{\pm .022}$ $.764_{\pm .030}$ $.660_{\pm .064}$ $.922_{\pm .017}$ GAIN $.740_{\pm .047}$ $.919_{\pm .002}$ 1864 VAEAC $.727_{\pm .002}$ $.800 \pm .000$ $.891_{\pm .002}$ $.828 \pm .002$ $.627 \pm .046$ $.850_{\pm .015}$ 1865 $.890_{\pm .028}$ $.835_{\pm .046}$ $.890_{\pm .010}$ MIWAE $.641_{\pm .025}$ $.802_{\pm .019}$ $.920_{\pm .001}$ 1866 not-MIWAE $.657_{\pm .025}$ $.780_{\pm .051}$ $.781_{\pm .026}$ $.922_{\pm .002}$ $.807_{\pm .052}$ $.937_{\pm .009}$ $.820_{\pm .036}$ $.923_{\pm .001}$ $.820_{\pm .043}$ 1867 MIRACLE $.691_{\pm .024}$ $.941_{\pm .008}$ $.939_{\pm .010}$ ReMasker $.677_{\pm .025}$ $.760 \pm .050$ $.931_{\pm .010}$ $.923_{\pm .001}$ $.787_{\pm .037}$ $.930_{\pm .013}$ 1868 $.776_{\pm .048}$ DrIM_{BASE} $.687_{+.020}$ $.760_{+.050}$ $.937_{+.006}$ $.919_{+.002}$ $.898_{+.010}$ DrIM_{FINE} $.719_{\pm .016}$ $.892_{\pm .031}$ $.942_{\pm .008}$ $.920_{\pm .002}$ $.787_{\pm .047}$ $.907_{\pm .009}$ 1870 1871 redwine whitewine 1872 model $F_1 \uparrow$ Model ↑ Feature ↑ $F_1 \uparrow$ Model ↑ Feature ↑ 1873 $.466 \pm .018$ $.130_{\pm .127}$ $.787 \pm .036$ $.416 \pm .018$ $.290 \pm .097$ $.485 \pm .080$ Mean 1874 $.423_{\pm .017}$ $.730_{\pm .056}$ kNNI $.295_{\pm .090}$ $.469_{\pm .020}$ $.145_{\pm .114}$ $.843_{\pm .024}$ 1875 $.420_{\pm .019}$ $.083_{\pm .126}$ $.859_{\pm .025}$ $.320_{\pm .083}$ $.655_{\pm .086}$ EM $.469 \pm .021$ 1876 $.060_{\pm .149}$ $.874_{\pm .023}$ $.330_{\pm .082}$ $.811_{\pm .040}$ SoftImpute $.467_{\pm .020}$ $.416_{\pm .018}$ $.104_{\pm .137}$ $.858_{\pm .023}$ $.270_{\pm .068}$ $.470_{\pm .020}$ $.417_{\pm .019}$ 1877 MICE $.777_{\pm .049}$ $.280_{\pm .083}$ missForest $.465_{\pm .021}$ $.129_{\pm .135}$ $.879_{\pm .022}$ $.417_{\pm .018}$ $.770_{\pm .038}$ 1878 $.468_{\pm .020}$ $.170_{\pm .110}$ Sinkhorn $.838_{\pm .020}$ $.419 _{ \pm .019 }$ $.300_{\pm.095}$ $.639_{\pm.103}$ 1879 $.529_{\pm .009}$ $.458 \pm .088$ $.460_{\pm .013}$ $.895_{\pm .012}$ GAIN $.710_{\pm .048}$ $.800 \pm .040$ 1880 $.285_{\pm .062}$ VAEAC $.490_{\pm .005}$ $.803_{\pm .013}$ $.804_{\pm .009}$ $.435_{\pm .004}$ $.510_{\pm .043}$ 1881 MIWAE $.463 \pm .021$ $.005 \pm .139$ $.813 \pm .037$ $.420 \pm .018$ $.305 \pm .081$ $.741_{\pm .067}$ $.463_{\pm .019}$ $.062_{\pm .125}$ $.770_{\pm .067}$ 1882 $.875_{\pm .017}$ $.419 _{ \pm .018 }$ $.330_{\pm .090}$ not-MIWAE $.420_{\pm .019}$ MIRACLE $.340_{\pm .093}$ $.671_{\pm .087}$ $.467 \pm .023$ $.086 \pm .151$ $.864 \pm .030$ 1883 $.449_{\pm .023}$ $.039_{\pm .138}$ $.572_{\pm .054}$ ReMasker $.745_{\pm .033}$ $.405 \pm .019$ $.117_{\pm .148}$ 1884 $.886_{\pm .021}$ $.542_{\pm .007}$ $.503_{\pm .064}$ $.462 \pm .010$ $.870_{\pm .047}$ $.872 \pm .024$ 1885 DrIM_{BASE} $.825_{\pm .034}$ $.564_{\pm .005}$ $.411_{\pm .082}$ $.491_{\pm .007}$ **DrIM**_{FINE} $.877_{\pm.012}$ $.577_{\pm .066}$ 1886 1887

1888

1836 1837

1890 A.9.4 EFFECT OF CONSTRATIVE LEARNING

Table 17: Effect of constrastive learning under MCAR. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported. \uparrow denotes higher is better. Values in parentheses indicate the performance difference compared to DrIM_{BASE}, and the red highlights the positive improvement.

-	Rate	model	$F_1 \uparrow$	Model ↑	Feature ↑
-	0.2	DrIM _{BASE} DrIM _{FINE}	$.665_{\pm.025}$ $.678_{\pm.025}$ (+1.95%)	.692 _{±.026} .690 _{±.029} (−0.29%)	.949 _{±.004} .948 _{±.004} (−0.11%)
-	0.4	DrIM _{BASE} DrIM _{FINE}	$.602_{\pm.024}$ $.632_{\pm.025}$ (+4.98%)	$.301_{\pm.048}$ $.503_{\pm.038}$ (+67.11%)	.853 _{±.012} .889 _{±.011} (+4.29%)
-	0.6	DrIM _{BASE} DrIM _{FINE}	.539 _{±.024} .588 _{±.025} (+8.85%)	$.104_{\pm.051}$ $.349_{\pm.044}$ (+233.65%)	.708 _{±.024} .748 _{±.019} (+5.64%)
-	0.8	DrIM _{BASE} DrIM _{FINE}	.471 _{±.023} .503 _{±.025} (+6.81%)	.027 _{±.050} .176 _{±.055} (+651.85%)	$.272_{\pm.043}$ $.309_{\pm.039}$ (+13.59%)

Table 18: Effect of constrastive learning under **MNARL**. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported. \uparrow denotes higher is better. Values in parentheses indicate the performance difference compared to DrIM_{BASE}, and the red highlights the positive improvement.

Rate	model	$F_1 \uparrow$	Model ↑	Feature ↑
0.2	DrIM _{BASE}	.660 _{±.024}	$.658_{\pm.031}$	$.925_{\pm.007}$
	DrIM _{FINE}	.673 _{±.025} (+1.97%)	$.711_{\pm.026}$ (+8.05%)	$.938_{\pm.006}$ (+1.42%)
0.4	DrIM _{BASE}	$.591_{\pm .023}$	$.326_{\pm.048}$.832 _{±.014}
	DrIM _{FINE}	$.625_{\pm .024}$ (+5.75%)	$.481_{\pm.042}$ (+47.55%)	.864 _{±.010} (+3.85%)
0.6	DrIM _{BASE}	.522 _{±.022}	$.102_{\pm.052}$	$.652_{\pm .029}$
	DrIM _{FINE}	.573 _{±.024} (+9.78%)	$.313_{\pm.045}$ (+205.88%)	$.730_{\pm .021}$ (+12.00%)
0.8	DrIM _{BASE}	.449 _{±.022}	$.049_{\pm.051}$.286 _{±.043}
	DrIM _{FINE}	.492 _{±.024} (+9.57%)	$.235_{\pm.054}$ (+379.59%)	.287 _{±.042} (+0.35%)

Table 19: Effect of constrastive learning under **MNARQ**. The means and the standard errors of the mean across 10 datasets and 10 repeated experiments are reported. \uparrow denotes higher is better. Values in parentheses indicate the performance difference compared to DrIM_{BASE}, and the red highlights the positive improvement.

Rate	model	$F_1 \uparrow$	Model ↑	Feature ↑
0.2	DrIM _{BASE}	$.682_{\pm .025}$	$.771_{\pm.026}$.945 _{±.005}
	DrIM _{FINE}	$.689_{\pm .025}$ (+1.03%)	$.784_{\pm.021}$ (+1.68%)	.948 _{±.004} (+0.32%)
0.4	DrIM _{BASE}	$.629_{\pm.025}$	$.534_{\pm.037}$.850 _{±.012}
	DrIM _{FINE}	$.655_{\pm.025}$ (+4.14%)	$.618_{\pm.033}$ (+15.36%)	.853 _{±.012} (+0.35%)
0.6	DrIM _{BASE}	$.583_{\pm.026}$	$.266_{\pm.050}$.683 _{±.028}
	DrIM _{FINE}	$.614_{\pm.026}$ (+5.32%)	$.434_{\pm.042}$ (+163.27%)	.748 _{±.021} (+9.96%)
0.8	DrIM _{BASE}	$.515_{\pm.026}$	$.151_{\pm.060}$	$.545_{\pm.033}$
	DrIM _{FINE}	$.572_{\pm.025}$ (+11.07%)	$.281_{\pm.052}$ (+86.75%)	$.616_{\pm.031}$ (+13.19%)

A.9.5 SENSITIVITY ANALYSIS FOR MISSINGNESS RATES

Figure 8: Sensitivity analysis for missingness rates. The results MCAR, MAR, MNARL, and MNARQ are shown, with the first row representing classification performance (F_1 score), and the last two rows displaying model selection and feature selection performance. The means of the average across 10 datasets and 10 repeated experiments are reported.