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Abstract

Progress in a research field can be hard to assess, in particular when many con-
current methods are proposed in a short period of time. This is the case in digital
pathology, where many foundation models have been released recently to serve
as feature extractors for tile-level images, being used in a variety of downstream
tasks, both for tile- and slide-level problems. Benchmarking available methods
then becomes paramount to get a clearer view of the research landscape. In par-
ticular, in critical domains such as healthcare, a benchmark should not only focus
on evaluating downstream performance, but also provide insights about the main
differences between methods, and importantly, further consider uncertainty and
robustness to ensure a reliable usage of proposed models. For these reasons, we
introduce THUNDER, a tile-level benchmark for digital pathology foundation
models, allowing for efficient comparison of many models on diverse datasets
with a series of downstream tasks, studying their feature spaces and assessing the
robustness and uncertainty of predictions informed by their embeddings. THUN-
DER is a fast, easy-to-use, dynamic benchmark that can already support a large
variety of state-of-the-art foundation, as well as local user-defined models for
direct tile-based comparison. In this paper, we provide a comprehensive com-
parison of 23 foundation models on 16 different datasets covering diverse tasks,
feature analysis, and robustness. The code for THUNDER is publicly available at
https://github.com/MICS-Lab/thunder,

1 Introduction

Histopathology is the gold standard for assessing the structure, cellular phenotypes, and cell-to-cell
interactions in tissue samples. It is extensively used in cancer care as it can provide important
insights at the level of the tumor microenvironment, allowing for triage, diagnosis, disease sub-typing,
or treatment decisions. Digital pathology emerged recently as a research topic aiming to develop
automated tools for the processing and analysis of histopathology images that can streamline clinical
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Figure 1: THUNDER: We propose a benchmark to compare and study foundation models across
three axes: (i) downstream task performance, (ii) feature space comparisons, and (iii) uncertainty
and robustness. Our current version integrates 23 foundation models, vision-only, vision-language,
trained on pathology or natural images, on 16 datasets covering different magnifications and organs.
THUNDER also supports the evaluation of new user-defined models for direct comparisons.

practices, making them more robust and efficient, while providing a standardization across various
centers and protocols. Large strides have been taken towards this direction lately, especially with
the introduction of very large deep learning models trained using self-supervised learning on large
curated datasets (i.e., foundation models). Such models trained specifically on domain-specific data
stand out thanks to their representative power and versatility 10, 73} [83] [33]
[82], 29, 27, [78]]. However, their growing number blurs the landscape of current pre-trained vision
encoders for digital pathology. Taking also into consideration other general-purpose foundation
models [57, [14] 58] that have been trained on even larger and more diverse datasets, assessing their
capabilities and understanding better their differences is not a trivial yet crucial step.

There are already a number of published benchmark results on pre-trained models in digital pathol-
ogy [77, 34, 55| 25| 2 22 [7, 45|, 52, [T, [O]. However, most of them do not come with an
open-source implementation, whereas some compare older backbones that are not considered the
state-of-the-art today. More importantly, they often focus on reporting downstream performance
in specific settings, such as slide-level multiple-instance learning (MIL) training or linear probing,
risking to draw conclusions specific to the chosen task. Such evaluation tasks can be time-consuming,
and the final performance might be influenced by other factors than the foundation model itself, e.g.,
the embedding aggregation step in MIL settings. Last, these benchmarks completely disregard the
feature space properties of compared models, and often omit a study of uncertainty estimation and
robustness, which are, however, crucial, especially for healthcare applications.

Inspired by these observations, we introduce THUNDER (Figure [I)), a benchmark to compare
foundation models on different downstream tasks, but also study their feature spaces and evaluate
their robustness and uncertainty when used in challenging settings. We gather 16 diverse recognized
datasets spanning different cancer types, magnifications, image and sample sizes, and propose a series
of tasks. Importantly, this benchmark is patch/tile-level, meaning that we compare the representations
of foundation models for a patch, isolating its representative power from other aggregation processes
at the slide level, e.g., MIL, that might blur the possible conclusions to be drawn. Our benchmark
currently supports 23 recent state-of-the-art models and shows that we can draw many different
conclusions from the diverse evaluation settings considered. We provide this benchmark to the
community as a tool to efficiently compare foundation models, making it easy to integrate new ones
in an automatic way and compare them.



2 Related work

Foundation models in histopathology — are presented as general feature extractors, to be leveraged
in diverse downstream settings. These models are pretrained using different self-supervised strategies
and/or different data modalities. A variety of vision-only [10, (73} 83,161} 17, 18}, 154} 135\ [71} 174} [79],
as well as vision-language [48],13],182] 29} 27178, 162]] models have been proposed in the last years,
each claiming different advantages. Most of them are trained on pathology tiles [10, (73| 183} 61,
17, 1181154} 135,148\ 182}, 29} 27, [78]], and even if some are slide-level models [13| 71} 74, (79| 62] they
all rely on a patch-level foundation model to extract tile features to be aggregated. Most recent
vision encoders are variants of the Vision Transformer (ViT) [14] and are trained in a self-supervised
manner, mainly leveraging DINOv2 [57] or iBOT [81]] training objectives for vision-only models
and CLIP [58]-like loss functions for vision models trained together with a text encoder. One of
the main differences between foundation models comes from the training data source, i.e., whether
it comes from public [70, 12} [15} [29] or private databases, size, i.e., number of tiles and/or slides,
magnification, organs represented. Indeed, models share similar architectures and training objectives,
and the main differences rely on how datasets are compiled and pre-processed.

As many foundation models have been released recently, getting a clear understanding of their
differences, strengths, and weaknesses thus becomes primordial. This motivates the introduction of
a benchmark like THUNDER. Importantly, even if it already supports the most recent foundation
models, it is not restricted to them, and can be used to evaluate any model, such as new backbones, or
lighter CNN-based models [[L1]].

Benchmarking pathology models — has already been studied in previous work [[77}, 134, 55 25|
2,122} 1321 1711450152, [11 180, |9} 150]. Existing benchmarks mainly focus on downstream performance,
mostly on slide-level tasks. As the majority of foundation models are trained on patch-level images,
a common approach is to train an aggregator, e.g. with a MIL method [30, 49, 63]], to provide
a prediction from features extracted using pre-trained models for different slide regions. While
relevant from a clinical point of view, such a setting adds complexity, both from a computational
point of view, but also experimentally, as features from foundation models are not compared directly
but through their aggregation from a specific method. Moreover, while predictive performance is
important, most benchmarks disregard the uncertainty and robustness of foundation models, which
is essential for many medical imaging applications. Finally, very few benchmarks come with an
open-source implementation. Exceptions to this are eva [22]] and Patho-bench [80], which both
propose public benchmark implementations. However, both put a focus on downstream performance,
with Patho-bench targeting slide-level only, and eva both a patch-level and slide-level tasks. HEST-
Benchmark [32]] and PathBench [50] are also to be considered even if they are less directly comparable.
We provide a more detailed comparison to open-source benchmarks in appendix (C).

In this study, we propose a benchmark to assess and compare the downstream performance of diverse
foundation models, and more than this, also study the differences in their feature spaces and their
robustness and uncertainty estimation. By focusing on comparing the performance of foundation
models and studying their feature spaces on patch-level datasets, we remove the additional feature
aggregation step and thus isolate their own representative power. Finally, we provide an open-source
implementation, allowing for efficient comparison of foundation models on tile-level tasks, being
complementary to existing slide-level benchmarks.

3 Benchmarking foundation models for tile-level digital pathology

THUNDER is characterized by the variety of considered datasets and foundation models, the diverse
downstream tasks spanning different applicative needs, the study of feature spaces, and of the
uncertainty and robustness of pre-trained backbones. By coming with an open-source and easy-to-use
implementation, THUNDER aims to be the next available tool for a wide benchmark of models on
different tasks and analyses.

3.1 Models and datasets

THUNDER currently supports 23 foundation models. We consider vision encoders from vision-
only [10, 73,183 l61L 17, 18] 154} 1351 71} 74} [79], but also from vision-language [48| [13 82} [29, [2'7, [78|
62] models, and study both recent histopathology-specific models as well as backbones pre-trained



Table 1: Tile-level datasets included in THUNDER: Overview of the 16 datasets currently supported,
spanning different tasks, numbers of classes and samples, organs, input sizes, magnifications.

Name Short name Labels Nb. cls. Organ(s) Im. size Magnif. Nb. im.
BACH [4] bach Classif. 4 Breast 1,536 x 2,048 20x 408
BRACS [6] bracs Classif. 7 Breast Variable 40x 4,539
BreakHis [[66]] break-h  Classif. 8 Breast 700 x 460 40% 1,995
Camelyon17 WILDS [38] wilds Classif. 2 Breast 96 x 96 10x 302,436
Patch Camelyon [72] pcam Classif. 2 Breast 96 x 96 10x 327,680
CRC-100k [37]] cre Classif. 9 CRC 224 x 224 20x 107,180
MHIST [76] mhist Classif. 2 CRC 224 x 224 5% 3,152
TCGA CRC-MSI [36] tcga-crc  Classif. 2 CRC 512 x 512 20 % 51,918
CCRCC [8]] ceree Classif. 3 Renal 300 x 300 40x 52,713
ESCA [69] esca Classif. 11 Oeso. 256 x 256 10x 367,229
TCGA TILS [33]] tcga-tils  Classif. 2 Multi 100 x 100 20x 304,097
TCGA Uniform [41}42]] tcga-unif Classif. 32 Multi 256 x 256 20x 271,170
Ocelot [60] ocelot Segm. 2 Multi 256 x 256 40x 10, 608
PanNuke [20, 21]] pannuke  Segm. 6 Multi 256 x 256 40x 7,901
SegPath Epithelial [39,43] segp-ep Segm. 2 Multi 256 x 256 40x 238,581
SegPath Lymphocytes [40,43]  segp-ly ~ Segm. 2 Multi 256 x 256 40x 110,457

on natural images and text. Details about their architecture, number of parameters, training strategy,
as well as sources for training data are presented in Table[ST]in appendix. Moreover, Table | presents
the 16 public datasets currently considered in our benchmark [4} 6] 66} 38} 8}, 137,169\ (76} (72136, 41,
42,1331 131160, 20, 211,139} 140} 43]]. They cover both classification and segmentation with a different
number of classes, diverse cancer types, magnifications, as well as image and sample sizes.

3.2 Evaluation protocols

Feature space study — Understanding the differences between foundation models requires going
beyond mere performance evaluation and comparing their representation spaces. We thus consider a
series of tasks to assess the alignment of their feature spaces, both original ones and after adaptation,
the main patterns they detect relying on image retrieval, and the characteristics in input images they
are invariant to. This way, we position each model in the current landscape of models, highlighting
their differences and similarities. For all the tasks, we use cosine similarity as the distance to evaluate
performance.

(i) Feature space alignment is a way to compare the embedding spaces of different foundation
models. Following [28]], we consider different alignment metrics, and in particular the introduced
Mutual knn, which computes the size of the intersection of nearest neighbor sets of two foundation
models for similar query samples. The larger the intersection, the more aligned the models will
be considered, providing a proxy for embedding spaces being similar. (ii) LoORA adaptation [26]
modulates the embedding space of a pre-trained model. We thus study how the alignment between
foundation models evolves when they are adapted. If they tend to align more, provided enough data to
perform such adaptation, is the choice of the initial backbone of any importance? On the other hand,
if they diverge, could it provide us information about the starting point, i.e., original feature spaces
being significantly different? (iii) Image retrieval provides a qualitative assessment of differences in
model feature spaces. Comparing the top-k closest images to a query in embedding space helps us
better understand the information contained in the extracted embeddings, and in particular, the main
characteristics extracted for an image, e.g., either style or morphological features. (iv) Invariance
to image transformations is an important indicator of the information contained in the extracted
embeddings. For instance, if the output embedding does not change when altering the contrast or
saturation of the input image, then it means that photometric information is not captured by the
model. By studying the invariance of foundation models to different image transformations, we can
then refine our understanding of the information they store. More than this, we can also evaluate
their robustness to certain transforms, providing a proxy to their ability to generalize to specific
domain shifts. We thus compute the distance between embedding representations for the original and
perturbed images for all models.



Table 2: Benchmark task runtimes and computational requirements to evaluate one model
(averaged across supported models). T denotes tasks using pre-computed embeddings. Emb. comp.
runtimes are computed on the 12 classification datasets.

Runtime Emb. comp.  Knn' Few-shot! Lin. prob. + calib.!  Segm.”  Adv. attack
Min. 00h08 00h27 00h27 00h15 05h08 00h01
Max. 02h57 01h13 11h32 18h39 12h11 01h05
Avg. 0l1h14 00h37 02h12 03h21 09h10 00h37
Cumulative 14h48 07h22 26h21 40h16 36h39 07h20
(Nb. datasets) (12) (12) (12) (12) 4) (12)
Hardware x1 V100 x32 CPUs x32 CPUs x1 V100 x1VI00 x1V100

Downstream tasks — One of the common ways to evaluate the power and capabilities for general
performance of foundation models is to challenge them on a variety of tasks and datasets. Such an
analysis is usually presented in the original papers proposing foundation models, but since datasets
and metrics tend to vary between them, there is a need for a standard benchmark to fairly compare
models. In this study, we used different metrics including accuracy, balanced accuracy and F1-score
for classification, and Dice (F1) score, and Jaccard index for segmentation. Specifically, we challenge
the models in the following settings.

(i) knn classification provides a direct signal of the predictive power of a feature space. For
each test sample, we perform a majority voting among the k£ — the k value being validated on a
validation set — training nearest neighbors based on cosine similarity distance measure. (ii) Linear
probing is another important task to consider. Indeed, it is a standard choice when evaluating
pre-trained models as it is parameter-efficient, accommodating black-box adaptation and does not
require large computational resources. (iii) Few-shot classification is a more challenging setting, as,
unlike in knn classification and linear probing, where we have access to the entire dataset, few-shot
learning methods can only use a few support samples per class (1, 2, 4, 8, or 16). We leverage the
SimpleShot [75] method to perform few-shot classification from support embeddings extracted with
the foundation models. (iv) Semantic segmentation evaluates the spatial information contained in
the embeddings from pre-trained models. We extract 2D spatial embeddings from the models and
train a Segmenter [67] decoder head to perform semantic segmentation by minimizing a Dice loss.
The same setting is considered as in linear probing: validating hyperparameters on a validation set
and testing performance on an independent test set. (v) LoRA adaptation is a specific setting we
study mainly for classification in this paper, as it is representative of current practices when applying
pre-trained models on a downstream task. To this end, we train LoRA adapters [26], as they are
lightweight and computationally efficient. In addition to studying its impact on the feature space as
presented in the previous sub-section, we also evaluate the performance gains it can bring.

Uncertainty estimation and robustness — Lastly, in addition to downstream performance, we
are also interested in building robust and reliable predictors based on foundation models. We thus
evaluate how well-calibrated linear probes trained on pre-trained features are and how such foundation
models are robust to adversarial attacks in image space. We consider standard calibration metrics,
i.e., Expected Calibration Error (ECE), Maximum Calibration Error (MCE), Adaptive Calibration
Error (ACE), Threshold Adaptive Calibration Error (TACE) 24, 156], and assess the robustness
to adversarial attacks by measuring the performance drop on the test set between the original and
adversarially perturbed images.

(i) Calibration is an important property of neural models [24} 56]]. In any downstream task, but
even more in sensitive contexts such as medical imaging, providing an accurate estimation of the
prediction uncertainty is important. We thus compare the calibration of linear classifiers trained on
top of embeddings from foundation models, to see whether different feature spaces lead to more or
less calibrated classifiers. (ii) Robustness to adversarial attacks is a critical consideration before
deploying foundation models in high-impact applications [19} 23] [31} |68} 47, 53]]. To assess this,
we evaluate the robustness of different backbones to additive adversarial noise in input images by
applying the Projected Gradient Descent (PGD) attack [51]] for different perturbation budget €.

Main design choices and runtime — To foster a fair comparison between models and reproducibility
of results, we produce a fixed set of data splits for each considered dataset. We follow the standard
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Figure 2: Classification: Performance comparison heatmaps for (a) knn classification and (b) linear
probing — (c) Distribution of average F1-scores across datasets per model for different tasks and
stratified according to magnifications and organs — Few-shot F1-score as a function of shots for (d)
all models and (e) a set of selected models.

train/val/test split when available, and otherwise split the train set into a train and validation sets, and
consider publicly available samples outside of the official train set as a test set. The validation sets are
used to perform automatic hyperparameter search (k value for knn, learning rate, and weight decay
for linear probing and segmentation) to ensure a fair comparison of foundation models as general
feature extractors. We also want to emphasize the importance of the computational efficiency of a
benchmark and focus on this in our implementation. Table 2] shows the runtime for each downstream
and uncertainty/robustness task to evaluate one model. For all tasks different from embedding
pre-computing itself, we consider that image embeddings have been extracted a priori as THUNDER
allows to do it (emb. pre-comp. task). The cumulative time is the average total time to run a model
across all datasets for a given task. As can be seen, some tasks (knn, few-shot) can be run on CPU
only, and others only require a single V100 GPU for a reasonable amount of time. Note that the
cumulative time represents the worst-case scenario where a model is evaluated sequentially on all
datasets. However, THUNDER allows evaluating a model on different datasets in parallel (separate
jobs), reducing the cumulative time to the max time if more resources are available. Additional details
about runtimes of feature space study tasks and design choices are provided in appendix (B} [E).
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3.3 Benchmarking at the tile level

Most foundation models for digital pathology are trained at the tile level, and even slide-level encoders
leverage a pre-trained patch-level model. To perform predictions at the level of the slide, the latter
must be divided into patches to extract patch-specific features, that will then be aggregated. Evaluating
them on tiles allows us to isolate the predictive power of vision models independently of aggregation
strategies, leading to a more direct evaluation of their representations.

Additionally, working at the tile level allows one to avoid the heavy slide processing which can be
compute-demanding. Indeed, as an example, extracting features with virchow?2 [83] at the standard
20X magnification consumes around 514 V100 GPU hours across the 7 following well-studied
datasets: BLCA (437 WSIs, 63h), BRCA (1100, 106h), CAMELYON16 (400, 42h), KIRC (511,
83h), LUAD (456, 69h), LUSC (505, 66h) and UCEC (504, 85h) a total of around 4000 WSIs.
Repeating this for each of the 23 foundation models pushes the bill to more than 10000 GPU hours
before any slide-level training is done. By contrast, our benchmark covers all 16 datasets with around
2 million pre-extracted patches; the same 23-model ensemble finishes feature extraction in less than
500 GPU hours, while providing richer supervision (around 2M patch-level labels vs. around 4k
slide-level labels). After feature extraction, a Multiple Instance Learning (MIL) aggregator must be
trained to aggregate patch-level features to perform a prediction at the level of the slide. Common
methods such as Abmil ([30] ~ 1M parameters) or Transmil ([63] ~ 3M parameters) require training
more parameters than simple linear probes as used in THUNDER.

We believe that slide-level benchmarks are important, and rather propose THUNDER as a com-
plementary tile-level alternative allowing for faster and more direct evaluation on many different
datasets requiring fewer resources. Additionally, using patch-level data enables us to provide a
fully reproducible benchmark, which is much more challenging for slide-level tasks due to required
pre-processing steps.

4 Experiments

We present aggregated performance for the different benchmark tasks, comparing the currently sup-
ported 23 recent foundation models to showcase the insights that can be drawn from our benchmark.
Importantly, our open-source implementation allows one to benchmark any other pre-trained vision
encoder. Detailed results for all datasets and models independently, along with confidence intervals,
additional visualizations, and implementation details, are presented in appendix (E] [H).

Classification-related downstream tasks — are evaluated in Figure (a) and (b) report the
proportion of classification datasets where a model (row) significantly outperforms another (column)
on knn classification and linear probing respectively, in terms of per-sample accuracy. We perform
a per-dataset Binomial test on per-sample binary accuracies with Benjamini-Hochberg p-value
correction [3] for all model pairs. Histopathology models often outperform natural-image models, and
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Figure 5: Feature space study: (a) Evolution of pair-wise alignment between models during LoRA
adaptation — (b) Average alignment between models across all datasets visualized as a graph — (c)
Image retrieval samples for uni2h on wilds — Cosine similarity between embeddings extracted from
original and augmented images, (d) averaged across all considered augmentations or (e) only for the
histopathology-specific HED transform.

a few models, e.g. uni2h, virchow2, midnight, hoptl, keep are superior to many others. Interestingly,
gaps between models tend to decrease when transitioning from knn to linear probing. Figure 2|c)
presents the average Fl-score for the different models on knn classification, linear probing and
few-shot classification (16 shots) stratified according to magnification and organs. Performance
trends seem to be quite similar between tasks, with vision-language models showing particularly
good performance in the few-shot setting. Performance also varies for different magnifications and
organs. For instance, the gap between histopathology and natural models widens at 20 x, which could
be explained by the predominance of 20x slides in pre-training datasets. Finally, Figure 2(d) and
(e), focus on the few-shot classification. As expected, performance increases with more shots, but
more importantly, confirming findings in (c), the strongest vision-language models (fifan and keep)
showcase higher performance on low-shot (e.g. 1-shot) settings as well.

Segmentation downstream task — Figure [3] presents the average Dice score of Segmenter de-
coders [67] trained on embeddings extracted from the different foundation models. virchow2 show-
cases superior performance, while plip and quilt, unlike other histopathology VLMs, do not appear
to extract relevant spatial information. Figure [] provides qualitative examples of segmentation
predictions from virchow2 embeddings.

Feature space study — results are presented in Figure [5} First, (a) and (b) illustrate feature
space alignment. (a) shows the evolution of model pair-wise alignment (Mutual knn) during LoRA
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Figure 6: Uncertainty estimation and robustness: Distribution of average ECE for (a) all models
and (b) sample calibration curves on 2 datasets (bracs and tcga-unif) for selected models — (¢) Drop
in Fl-score as a function of adversarial attack strength for all models and (d) for selected models.

adaptation averaged across the bracs and mhist datasets. There is a clear overall trend for feature
space alignment to decrease while training with adapters, even for methods which are initially well
aligned. (b) is a graph visualization of the average alignment (Mutual knn) between pairs of models
on all 12 classification datasets. Natural-image models seem to be far from pathology models.
Among the latter, vision-language and vision-only models tend to have stronger connections between
models within respective groups, while this is not true for all of them (e.g. musk, titan). Figure[5[c)
presents 3 queries and top-1 samples when performing image retrieval on the wilds dataset with
uni2h embeddings. The spatial distribution of cells seems to be captured in uni2h embedding as
queries and top-1 images showcase large similarities. Finally, Figure[5{d) presents the average cosine
similarity between embeddings of original and augmented images considering a series of photometric,
geometric, morphological transformations (see Table[S3]in appendix), while (e) focuses explicitly
on the histopathology-specific HED transform [16]]. Natural models appear to be more invariant
in general, and vision-language pathology models more invariant than vision pathology models.
However, the gap is lower when considering the HED transform.

Uncertainty estimation and robustness — are illustrated in Figure[6] (a) presents the distribution
of average ECE for the different models and (b) specifically visualizes calibration curves for 4 models
on the bracs (left) and fcga-unif (right) datasets. Interestingly, discriminative performance does not
seem to correlate with better calibrated estimates for some models, e.g., uni2h. From (b) we can
also see that some datasets are more challenging from a calibration point of view. It is important to
note that calibration is probe-dependent, and the presented differences in performance and ranking
are thus conditioned on the chosen classifier, in our case a linear classifier. We indeed present a
difference in calibration performance when choosing a linear classifier or an MLP with the same
hidden size (256) for all models in appendix (Table[S6). However, we believe the linear probe remains
a relevant reference point, as it is the only head predicting classes directly from the feature space (no
intermediate representations) and requires no hyper-parameter selection (e.g., architecture choices),
thereby providing a clearer view of the impact of the embedding space on calibration. Figure [fc)
and (d) focus on the robustness to adversarial attacks for all models and only a set of selected ones
respectively. The drop in F1-score increases with the strength of the performed attack. € = 35 - 1073
leads to a strong drop in performance, while the noisy image is indistinguishable from the original
one, showing that foundation models can be strongly influenced by such attacks, which is concerning
when considering how sensitive healthcare applications are. With a smaller € value, we can observe
more diverse performance between models, with vision-language being more affected, and pathology
vision models performing generally better.



Table 4: Rank-sum overall performance comparison: for each task and model, we report the
score along with the rank between parentheses — Vision and  Vision-Language models.

Task Histopathology models Natural-image models
hiboub hiboul hoptO hoptl midnight phikon phikon2 uni uni2h virchow virchow2 conch titan keep musk plip quilt‘dinoh dinol vitb vitl ¢lipb clipl
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Calib. | - 55 47 - 6.4 46 43 45 55 4.6 43 49 47 45 49 70|55 53 50 55
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Global ranking of foundation models — We propose a global ranking of studied foundation models
by aggregating the quantitative results from different tasks. To this end, we rank the models for each
of them independently, and sum task-specific rankings to obtain a final global ranking. We consider:
(i) average knn F1-score, (ii) average linear probing F1-score, (iii) average 16-shot F1-score, (iv)
average ECE after linear probing, and (v) average adversarial attack F1-score drop (e = 1.5.1073).
As shown in Table[d] ranks vary between tasks, with however certain models showing consistent
strong performance across them, leading to a top-5 composed of uni2h, virchow2, midnight, uni,
and hoptl/keep. In particular, uni2h performs very well on a majority of tasks. Interestingly, no
vision-language model is present in the top-4, but the best vision-language model, i.e. keep, reaches
5" rank (same rank as hoptl). We provide a more detailed discussion on quantitative results in
appendix (D): we present how our results are aligned with findings from previous studies, how to
leverage them to improve models in the long run and look more closely into intra-group discrepancies.

5 Conclusion

We present THUNDER, an efficient tile-level benchmark to compare foundation models for digital
pathology. It currently includes 16 well-known datasets and 23 foundation models. Importantly, it
comes with an open-source implementation allowing the evaluation of new foundation models. It
also implements tasks for uncertainty estimation and robustness of backbone models, and a way to
study their feature spaces to provide more interpretability. Lastly, we present a comprehensive study
of the most recent state-of-the-art foundation models for histopathology leveraging all benchmark
tasks to draw a clearer picture of their strengths, weaknesses, and differences.

Limitations — Currently THUNDER only includes H&E stained data, but it could be extended to
support other staining protocols (e.g., IHC). Additionally, the datasets considered in this benchmark
can introduce biases that are inherent to the gathering protocol. We have included well-studied
datasets in the field that have been utilized by many studies dealing with evaluating pathology
foundation models as they are the best quality patch-level datasets currently available. While they
can still bring an interesting signal about differences between existing foundation models, they have
been extensively studied and used which could lead to performance saturation. THUNDER is thought
of as an evolving benchmark, adapting to the direction the digital pathology community goes toward,
and we will keep integrating new relevant datasets when they will be released in the future. Lastly,
while the benchmark currently allows gaining insights about the feature spaces of models, we do not
study how to combine them to improve performance further.

Broader impact — A deep learning benchmark in digital pathology can accelerate research by
highlighting state-of-the-art methods and identifying performance gaps, ultimately improving clinical
decision-making and patient outcomes. However, introducing such tools into clinical practice requires
careful validation, regulatory approval, and consideration of ethical challenges to ensure safety.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims are the introduction of a diverse and efficient benchmark for
foundation models in digital pathology, along with a study of such models based on the
proposed benchmark. This is reflected in the sections presenting the benchmark (Section [3)
and the study results (Section [4).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: A paragraph about limitations is included in the conclusion (Section [5).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16



Answer: [NA]
Justification: We do not provide any theoretical result.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The considered datasets and tasks are presented in Section[d] All experiment
details can be found in Section 4] and the Appendix. We also provide an open-source
implementation to reproduce all our results.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide an open-source documented implementation to reproduce all steps
in our experiments, from dataset download, to model training and evaluation.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy]) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details are presented in Sections [ (strategy to perform data
splits), [ (high-level experimental choices) and in the Supplementary Material (fine-grained
details about hyperparameters). Moreover, our open source implementation provides all the
information.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: A part of the results presented in Section @]include statistical tests (Binomial
test with p-value correction), and performance for all models, datasets and considered tasks
are presented in the Supplementary along with 95% bootstrap confidence intervals.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Table 2] provides the runtime and required hardware to run the different
benchmark tasks. We also provide additional details in the Supplementary Material.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The conducted research follows NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader impact is discussed in Section 5}
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We provide guidelines to properly use our released implementation code.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All covered datasets are referenced, either through published papers or
database-related citations (e.g. Zenodo).

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Our benchmark comes with a fully-documented implementation.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not perform experiments involving human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not perform experiments involving human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs are not used in our paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Included foundation models

Following [46], Table [ST| presents the different foundation models currently supported by THUNDER
and studied in the main paper. A detailed comparison including the main architecture used, the
number of parameters and the training strategy as well as details about the training data are highlighted
for each model. Importantly, our benchmark is not restricted to these models, as any custom model
can be evaluated easily.

B Additional runtimes

Runtime of feature space study tasks — Table[S2|presents the runtime of feature space study tasks.
As can be seen, such runtimes are fairly low, and thus allow to efficiently and easily study the feature
space of a foundation model.

Per-model embedding pre-computing runtimes — are provided in Table As can be seen,
differences are large between models, mainly depending on their size, but also diverse transformations
applied to input images and implementation choices could explain some variations. Most tasks on
the benchmark are performed from pre-computed embeddings, and variations between models thus
become smaller, which is why we do not provide per-model runtimes for them.

C Comparison with existing benchmarks

As presented in our related work, several papers addressed the benchmarking of foundation models
for histopathology. However, only a small subset of them comes with an open-source implementation.
We can consider the four following open-source benchmarks as comparison points on which our
main differences can be summarized as follows: (i) eva [22] includes both tile and slide level
tasks, and evaluates models on linear probing (classification) and semantic segmentation. The eva
benchmark provides less datasets, but also much less tasks and metrics (only focusing on balanced
accuracy for linear probing and dice score for segmentation) than we do. (ii) PathoBench [80]]
focuses on slide-level classification and regression tasks (Morphological subtyping, Tumor grading,
Molecular subtyping, Mutation prediction, Treatment response and assessment, Survival prediction).
PathoBench is a slide-level benchmark, also focusing only on downstream performance, to which
we are complementary as we propose a faster and more direct evaluation directly at the level of
tiles. (iii) HEST-Benchmark [32] targets gene expression regression at the tile level. While being
interesting and relevant, this is more specific than the diverse tasks we propose in THUNDER. (iv)
PathBench [50] presents the slide-level performance of foundation models for diverse classification
and regression (DFS, DSS, OS prediction) tasks, but does not come with an open-source tool to
evaluate a new custom model (only an online open-source leaderboard is provided).

The added value of our benchmark is 3-fold: (i) an open-source easy-to-use implementation to
seamlessly download datasets, models, generate common train/val/test splits and run any downstream
task with automatic hyperparameter search and report performance along with bootstrap confidence
intervals on an independent test set, (ii) a breadth of tasks going beyond downstream performance
only, also providing tools to compare representation spaces of models and study their robustness,
(iii) a patch-level framework allowing fast evaluation on many diverse datasets decoupling model
embeddings from slide-level aggregation techniques. It also enables full reproducibility of the
benchmark, which is challenging at the slide level due to required pre-processing steps.

D Extended discussion on quantitative results

Alignment with previous findings — The conclusions drawn from our benchmark align with
previous studies: (i) Better performance of pathology-specific pretrained models. First, we show
that models pre-trained on pathology images outperform the ones trained on natural images, which
had been shown in previous work [9]. (ii) Strong performance of recent vision-only models. The
high performance of recent vision-only models such as uni, uni2h, virchow, virchow2, hoptimus0,
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Table S1: Foundation models already included in THUNDER are presented and grouped depending
on their pretraining scheme. Training data — TC: Tile-Caption pairs, WR: WSI-Report pairs, TT: Text
tokens, C: captions.

Name Short  Vision Params. Training Training data

name arch. method #Slides #Tiles Text Magn. Source

Vision-only, histopathology pretrained
HIBOU-B [54] hiboub ViT-B/14 86M DINOv2 1.1IM 512M-1.2B — 20 % Private
HIBOU-L [54] hiboul VIiT-L/14 307M DINOv2 1.1IM 512M-1.2B — 20 % Private
H-OPTIMUS-O0 [61] hopt0 ViT-G/14 1.1B DINOv2 500K — — — Private
H-OPTIMUS-1 hoptl  ViT-G/14 1.1B DINOv2 M — — - Private
MIDNIGHT [35]  midnight ViT-G/14 1.1B DINOv2 12K — — - TCGA
PHIKON [I7] phikon ViT-B/16 86M iBOT 6.1K 43.4M - 20% TCGA
PHIKON?2 [18] phikon2 ViT-L/16 307M DINOv2 60K 456M - 20 % TCGA, GTEx, Private
UNI [10] uni ViT-L/16 307M DINOv2 100K 100M — 20% GTEX, Private
UNI2-H [10] uni2h  ViT-H/14 681M DINOv2 350K 200M - 20% Private
VIRCHOW [73] virchow ViT-H/14 632M DINOv2 1.5M 2B — 20% Private
VIRCHOW?2 [83]  virchow2 ViT-H/14 632M DINOv2 3.1M 2B — 5—40X% Private
Vision-language, histopathology pretrained
CONCH 48] conch ViT-B/16 86M  CoCa,iBOT | 21K 16M 1.I7M TC 20 % PMC OA, Private
CONCH 1.5 [13) titan  ViT-L/16 307M CoCa 336K — 423K TC, 183K WR 20X GTEX, Private
KEEP [82] keep  VIT-L/16 307M CLIP — — 143K TC — Quilt1M, OpenPath
MUSK [78] musk  V-FFN  202M CoCa, BEIT-3| — 50M 1B TT, IMTC 10—40x PMC OA, TCGA, QuiltlM, PathCap
PLIP [27] plip ViT-B/32 86M CLIP — — 208K TC - Twitter, PathLAION
QUILTNET [29] quilt  ViT-B/32  86M CLIP — 438K 802K C 10—40x QuiltIM
Vision-only, natural image pretrained
DINOV2-B [57] dinob  ViT-B/14 86M DINOv2 — — — — —
DINOv2-L [57) dinol ~ ViTL/14 307M DINOv2 — — — — —
ViT-B/16 [14] vitb  ViT-B/16 86M Imagenet — — — — —
VIiT-L/16 [14] vitl  ViT-L/16  307M Imagenet — — — — —
Vision-language, natural image pretrained

CLIP-B/32 58] clipp  ViT-B/32 86M CLIP — — — — —
CLIP-L/14 [58] clipl  ViT-L/14 307M CLIP — - - - —

Table S2: Runtime of feature space study tasks. T denotes tasks using pre-computed embeddings.

Runtime Feature space alignment’ Image retrieval’ Transformation invariance
Min. 00h01 00h07 00h07

Max. 00h10 00h57 00h27

Avg. 00h07 00h20 00h11
Cumulative 01h20 04h00 02h18

(Nb. datasets) (12) (12) (11)

Hardware x32 CPUs x32 CPUs x1 V100

hoptimus] models trained with a DiNOV?2 training objective was showcased in previous experimental
studies [22] 132} 150] both at tile and slide levels. We also confirm this, in particular showing that newer
versions of these models (e.g. uni2h or virchow2) outperform previous versions. (iii) Competitive
performance of VLM models. VLMs such as conch and titan (conchl.5) were also highlighted
in previous work [55]], which is also the case in our work, along with the newer keep model that
performs well on many different tasks.

In addition to confirming findings in previous work, we also go one step further by considering
very recent models (e.g. the competitive midnight and keep) that were not included in previous
benchmarks, and also new tasks (feature space alignment, calibration, robustness).

Explaining differences in performance and how to improve models — We provide additional
insights into differences between foundation models that are currently included in the benchmark:
Impact of SSL methods. Among vision-only models, it appears that the only model trained with iBot
(phikon) performs worse than all others trained with DINOv2. This might indicate the superiority
of DINOV2 as SSL pretraining strategy, which could be confirmed by its large adoption across
most foundation models. However, it should be noted that this could also be partly explained by
differences in training data. Impact of datasets. Indeed, generally, models trained from large and
diverse datasets such as uni2h or virchow2 have higher performance. Interestingly, on the other hand,
midnight appears as an exception because it reaches strong performance while being trained on the
smaller TCGA dataset only. Going forward into analyzing the impact of different characteristics of
pre-training data on final performance is quite difficult since most models (e.g. uni2h or virchow?2)
are partly trained on private data. Impact of number of parameters of the models. The number of
model parameters can also play a role in final performance: the trend is a bit clearer within VLMs
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Table S3: Embedding pre-computing runtimes on the 12 classification datasets.

Model Avg. Cumulative

dinob  00m23  04h32
vitb 00h24  04h49
quiltnet  00h25  04h57
phikon  00h25  04h58
plip 00h25  05h00
clipp ~ 00n27  05h25
hiboub ~ 00h27  05h27

vitl 00h36 07h10
phikon2  00h37 07h19
uni 00h37 07h20

keep 00h40 07h54
dinol 00h44 08h45
hiboul 00h47 09h20
clipl 00h47 09h28
conch 00h47 09h29
virchow 01h22 16h25
virchow2 01h24 16h44
uniZh 01h25 17h00
hoptl 02h05 24h58
titan 02h12 26h22
midnight 02h15 26h56
hopt0 03h05 37h01
musk 06h45 81h04

where models with more parameters, i.e. keep and titan (conchl.5), seem to outperform others on
downstream task performance (knn, linear probing, few-shot).

These insights can serve as pointers for the development of future foundation models, and we hope
THUNDER can be used as a tool to strengthen such conclusions provided more models and datasets
in the future. Moreover, an interesting finding is the potential gain a simple LoRA adaptation can
bring to tasks with small datasets, even for strong foundation models, as shown in Table E} Efficient
adaptation of foundation models thus appears as a relevant direction. Improving foundation models
also requires a better understanding of their inner mechanisms. We believe in the power of alignment
metrics such as Mutual knn and hope to provide a common framework for researchers to extend our
study. Indeed, the alignment graphs we could build along with the evolution of alignment during
LoRA adaptation are quite intriguing and deserve more studies in future work.

E Implementation details

knn classification — Distance is measured using cosine similarity and the best &k value is validated
among {1, 3, 5, 10, 20, 30, 40, 50} on a validation set.

Linear probing — hyperparameters are summarized in Table

Few-shot classification — leverages the SimpleShot [[75] method. More specifically, we consider
access to a support (train) set composed, for each class ¢ € C where C is the set of all classes, of
N, samples. The goal is then to predict the class of each sample within a query (test) set. We first
center all support and query embeddings by subtracting the support set embedding mean. Then,
a prototype embedding is computed for each class by taking the mean of class-specific centered
embeddings. Finally, for a given query embedding, the predicted class is the one associated with the
closest centroid. In our experiments, we consider the following numbers of shots Ny: {1,2, 4,8, 16}.

Semantic segmentation — hyperparameters are summarized in Table [S4 We perform different
numbers of epochs depending on the size of the datasets: 200 epochs for ocelot and pannuke,
respectively 9 and 21 for segp-ep and segp-ly as those two datasets are much larger. We leverage the
Segmenter [67] decoder as our segmentation probe. It is a Transformer-based decoder fed with token
embeddings from the vision encoder and one learned token for each class. The final segmentation is
performed by computing a scalar product between spatial token representations and token embeddings.
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Table S4: Training-based downstream task hyperparameters

Hyperparameter Linear probing Linear probing + LoRA Segmentation
Optimizer Adam Adam Adam

Loss Cross Entropy Cross Entropy Dice

Batch size 64 2 32

Epochs 200 20 <200
Searched learning rates  {1072,1074,107°}  {1073,107%,10=°}  {1073,107%,1075}
Searched weight decays  {0,1073, 1074} {0,1073,107%} {0,1073,104}
Probe Linear Linear Segmenter [67]]

This is followed by a bilinear interpolation to reach the required segmentation mask size. In terms of
hyperparameters, we use 2 Transformer layers, with 8 attention heads, and an internal representation
size of 768. The reported test performance is averaged across test patches, with a reduced weight for
the ones containing only background pixels.

Feature space alignment — THUNDER supports different feature alignment metrics ([65} 159 44]],
and additional knn-based metrics introduced by [28]). The main one we focus on in this paper
is Mutual knn [28]], which measures the average size of the intersection of nearest-neighbors sets
for different query samples between two foundation models. Following notations from [28], let us
consider two models f and g. Provided an input z;, ¢; = f(z;) and ¢; = g(z;) are the respected
extracted embeddings. ® and W are the sets of all embeddings of a set of samples {x;};—_[1... n7, and
dynn 18 the function returning the set of indices of k-nearest neighbors of an embedding as follows,

dknn (¢ia (I)\QSZ) =S (¢L) )

dknn (wlv \Ij\wl) =S (wl) .

The Mutual knn function my,, is then defined as,

Minn (i, i) = % IS (¢i) NS (i)l -

In our experiments, we pick k£ = 10.

Image retrieval — We sort all training samples based on their cosine similarity with query test
samples. We compute top-1, top-3, top-5, top-10 classification metrics (F1-score, balanced accuracy),
but more importantly, provide qualitative visualizations of top-10 retrieved samples to compare
foundation model feature spaces.

Invariance to image transformations — We consider a set of images {x;};—[1,... n]. For each
image z;, we sample a stochastic transformation 7 described in Table compute the embeddings
z; = fo(w;) and 2§ = fy(7(x;)), and measure their agreement with cosine similarity. In our
experiments, we pick /N = 1000 as the number of images sampled from each dataset.

LoRA adaptation — LoRA [26] is a parameter-efficient finetuning (PEFT) method, which con-
sists in freezing the whole pretrained Transformer model and introducing small trainable modules.
Specifically, the LoRA adapters are introduced in parallel to the query and value branches of the
multi-head attention of each Transformer encoder layer. With a feature dimension d € N and a rank
r < d € N}, the only trainable modules are A € R"*? and B € R?*". The forward pass through
the linear layer for computing the query and value components is transformed from h = Wyx to
h = Wox + 2WpraX, for a scaling hyperparameter o € R with,

AWL(,RAX = BAx.

We use o = 16 and r = 16, other hyperparameters are summarized in Table [S4]

Calibration — metrics are computed on classifiers trained during linear probing experiments. For
all metrics, predictions are divided into 53 bins based on their confidence. Let us denote y;, ; and p;
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Table S5: Stochastic image transformations used to compute embedding transformation invariance.

Transformation Description Sampling range
Crop Crop randomly from 4 corners or center ~ Crop side size : min(H, W) /2
Elastic Elastic deformation Amplitude o« = 250, smoothing o = 6
Dilation Morphological dilation Square kernel & € {3,5}
Erosion Morphological erosion Square kernel &k € {3,5}
Opening Erosion then dilation Same k as above
Closing Dilation then erosion Same k as above
Blur Gaussian blur Fixed 15 x 15 kernel
Jitter Brightness/contrast/saturation/hue jitter b, ¢, s ~ U[0.5,1.5], h ~ U[—0.35, 0.35]
Translate Random affine shift/scale/shear |[Az| < W/5; |Ay| < H/5;scale € [0.8,1.2]; shear € [—1, 1]
Cutout Random square mask of zeros Square side size : w ~ U[0.1, 0.5] min(H, W)
HED i—:)i;é(;lﬁgﬁyl colour perturbation in HED
Unified stain normalization and augmen-
RandStain tation that normalizes and perturbs stain -
appearance [64]
Flip Horizontal or vertical flip Probability 0.5 each
Rotate Rigid rotation Angle € {90°,180°,270°}
Gamma Power-law intensity transform v ~ U[0.5,1.5]

as the respective class prediction, class ground-truth and confidence for a sample x;. For each bin By,
we can then compute the average confidence and accuracy of samples within it as,

Acc(By) = = 3" 1(3 = 1)

|Bb‘ i€ By,

1
Conf(By) = Bl Z Di
i€By

Calibration metrics are then defined as follows,

* ECE : It measures the average discrepancy between confidence and accuracy. Each bins
contribution is weighted by the number of samples in that bin.

B
B
ECE=)_ LNl" |Acc(By) — Conf(By)|
b=1

* MCE : It captures the worst-case mis-calibration. Unlike ECE, which takes an average,
MCE focuses on the largest deviation between accuracy and confidence across all bins.

MCE = max |Acc(By) — Conf(By)]

* SCE : It is similar to Expected Calibration Error (ECE) but treats all bins equally. This
makes SCE more robust to class imbalance and ensures a fair contribution from all bins.

B
1
SCE = bz:; |Acc(By) — Conf(By)|

* ACE : It is an extension of ECE that uses adaptive binning. Instead of using fixed confidence
intervals, ACE ensures that each bin has an equal number of samples.

B
1
ACE = bz:; |Acc(By,) — Conf(By)|

* TACE : It is a modification of ACE that focuses only on high-confidence predictions.
Predictions with confidence scores below a certain threshold are ignored. We thus only
consider the B* bins associated with highest confidence. This is useful in high-stakes
applications where only confident predictions are acted upon, e.g., medical imaging.

1
TACE = - b;;* |Acc(By) — Conf(By)|
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Table S6: Impact of the architecture of the classifier on calibration performance (ECE): linear
classifier vs MLP — Vision and | Vision-Language models.

Decoder Histopathology models Natural-image models
hiboub hiboul hopt0 hoptl midnight phikon phikon2 uni uni2h virchow virchow?2 [conch titan keep musk plip quilt‘dinob dinol vitb vitl clipb clipl
Lincar 55 47 6.4 46 43 45 55 4.6 43 49 47 45 49 70|55 53 50 55 [42
18) (13) 22 L dn (D @®) (0 10)  1(6) (14) (12) (9) (15) 23)| 21 (A7) (16) (19) [(5)
MLP 6.8 6.8 6.2 74 90 70 6.5 73 6.3 73 6.7 72 95|92 72 11.1103 102 9.8
© a0 G a6 A7) Ah (D d5) (6) (14) @) (12) (19)| (18) (13) (23) (22) 21) (20)

We also generate reliability diagrams that visually represent how predicted probabilities align with
actual correctness by plotting bin average accuracies as a function of bin average confidences. A
perfectly calibrated model follows the y=x line. If the curve is below the diagonal, the model is
overconfident. Conversely, if the curve is above the diagonal, the model is under-confident.

Robustness to adversarial attacks — To assess the vulnerability of each frozen backbone fy(-) and
its linear probe W to additive adversarial noise, we employ a Projected Gradient Descent (PGD)
attack constrained in £.onorm [51} 53] 19} 23]]. Let x be a normalized image and y € {1,..., K} its
label. Image classification is performed as follows,

c(x) = W(fo(x)) € R¥.

PGD iteratively constructs a perturbation §, that maximizes the cross-entropy loss ,C(c(x + dy), y)
while remaining inside the £, ball ||6]|o < e:

Orp1 = M5 <e (6t + « sign(Vxﬁ(c(x—l— d¢), y)))

where « is the step size and 115 _ <. projects back onto the intersection of the £, ball.

We perform num_steps = 5 gradient steps and keep the network in eval () mode so that only input
gradients are computed. We use three perturbation budgets ¢ € {0.25x1073, 1.5x 1073, 35x 1073}
and record the average F1-score drop:

AF1(€) = Flcleam - FladV(E)

Here, F1gjean denotes the Fl-score obtained on clean (i.e., unperturbed) test samples, while F1,4, ()
denotes the F1-score computed on the same samples after being perturbed by the PGD attack with
budget €.

To ensure a fair comparison and efficient evaluation, both scores are computed over the same set of
up to (depending on each dataset test set size) 10,000 randomly selected test samples.

F Impact of the choice of probe on calibration performance

Table [S6] shows the difference in calibration of two different classification heads, i.e. a linear
classifier which is our default choice in this paper and an MLP with a single hidden layer with a
fixed 256-dim, trained on top of embeddings from the different considered foundation models. As
can be seen, calibration is probe-dependent, rankings vary when changing the nature of the trained
classifier. However, we believe the linear classifier is the best default choice as it has no intermediate
representation and thus less expressive power, which makes it a good candidate to assess the impact
of extracted embeddings themselves on calibration.

G Different pre-processing for the bracs dataset

Images from the bracs dataset vary in size and are on average quite large compared with other datasets.
We thus provide an alternative pre-processing method for this specific dataset: instead of extracting
embeddings from the full image as input, we divide it into 512 x 512 patches (as the magnification is
40x), extract one embedding per patch and aggregate them with a mean pooling operation to obtain
a final embedding. Table[S7|presents the difference in knn performance when using the full image as
input vs dividing into patches with mean pooling. We provide the latter as an alternative variant in
the benchmark but keep the standard approach, i.e. using the full image, as done for other datasets, in
all our experiments.
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Table S7: Comparison between image pre-processing options for the bracs dataset on the knn task
(F1-score).

Pre-proc‘hiboub hiboul hoptO hopt1 midnight phikon phikon2 uni uni2h virchow virchow2 conch titan keep musk plip quiltnet dinob dinol vitb vitl clipb clipl

Full img.‘ 569 562 522 550 502 50.0 459 556 56.1 513 549 569 59.453.0 57.8 48.2 50.7 43.7 46.8 45.446.9 42.5 46.6

Patches
+ pool.

541 50.1 542 550 456 431 438 532 524 497 52.1 521 55.053.3 489 43.6 44.1 369 39.2 44.642.7 353 41.5

Table S8: Additional experimental results: Detailed results per task, model, dataset and overall are
presented in the following material.

Task Aggregated Per-dataset
knn Fig.[S a) and[S5|a) , Tab.[ST1]and Tab.[S36|and [S37
Linear probing Fig.[S4(b) and[S5(b), Tab. Eﬂ and W Tab. and
Few-shot classification Fig.|S6[ Tab. Tab. [S40RS
Segmentation Tab.
Calibration Tab. Fig.|S7| Tab. \SR‘
Robustness to adversarial attacks Tab. wlw ab.[S57}[S62
Image retrieval — Fig.|SOIS19
Feature space alignment — Fig.|S20
Transformation invariance Tab. Tab.

LoRA adaptation — Fig.

H Additional experimental results

We provide additional results to complement those presented in the main paper. Table [S8] refers
to the different tables and figures that can be found below. Importantly, all tables present average
performance (for different metrics specified in caption), and Tables w also report 95%
bootstrap confidence intervals (metric score [95% CI]) computed using the percentile method with
3000 resamples.
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Figure S1: Transformation invariance: Visualization of transformations across datasets. One
representative patch per dataset (bach, ccrcc, cre, esca, tcga-unif, and pcam) is shown under various
transformations.
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Figure S2: Robustness to adversarial attacks: Visualization of adversarial samples for the bach,
ccree, cre, and esca datasets. Three different perturbation budgets (e = 0.00025, 0.0015, and 0.035)
and two foundation models (keep and uni2h) are considered. Despite the increasing perturbation
magnitude, no perceptually distinguishable differences are observable between the original and
adversarial samples under visual inspection.
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Figure S4: Performance comparison hierarchical clustering: Hierarchical clustering of perfor-
mance comparison heatmaps (Figure Eka) and (b)) for knn and linear probing tasks.
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Figure S5: Gain heatmaps: Heatmaps showing the difference between the average F1-score of row
(s;-) and column (s.) models (s, — s.) for the knn and linear probing tasks.
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Figure S6: Few-shot performance comparison heatmaps: Heatmaps for different numbers of
shots (1, 2, 4, 8, 16). Each cell shows the proportion of classification datasets where the row model
is significantly better than the column model. This is assessed by performing a Binomial test on
per-sample binary accuracies, followed by a Benjamini-Hochberg p-value correction for each pair of
models.
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Figure S8: Pair-wise alignment evolution: Evolution of pair-wise alignment (Mutual knn) between
models during LoRA adaptation for the bracs and mhist datasets.

Table S9: Transformation invariance: Cosine similarity between original embeddings and em-
beddings of the transformed image, averaged across classification datasets (with per-model and
per-transform means)

Model  Crop Elastic Dilation Erosion Opening Closing Gaussian Jitter Translate Cutout HED RandStain Flip Rotate Gamma|Mean
hopt0 0.53 038 041 0.37 0.50 0.43 052 083 0.84 089 090 0.87 097 096 097 |0.69
hoptl 0.56 0.40 045 0.39 0.53 0.46 063 0.84 0.88 095 092 0.89 098 097 097 |0.72
phikon2 0.61 049  0.53 0.52 0.61 0.57 060 0.76 0.82 094 080 076 095 090 095 |0.72
midnight 0.55 031 0.44 0.47 0.61 0.53 0.63 0.86 0.82 094 091 0.87 099 098 097 |0.73
uni 053 041 053 0.52 0.64 0.59 065 0.78 0.81 092 084 0.81 095 093 097 |0.73
uni2h 0.61 040 0.3 0.48 0.65 0.57 069 0.87 0.84 093 092 090 092 0.89 098 |0.75
virchow 0.73 046  0.55 0.57 0.65 0.62 065 0.84 0.79 088 092 090 098 096 097 |0.76
virchow2 0.61 045 0.54 0.48 0.63 0.56 063 091 0.86 097 095 093 099 099 099 |0.77
hiboub  0.55 0.54  0.60 0.59 0.68 0.65 0.69 0.79 0.69 084 096 096 098 098 098 |0.77
musk 082 045 054 0.55 0.60 0.60 075 0.85 0.87 093 096 094 099 098 098 |0.79
hiboul ~ 0.58 0.61  0.58 0.56 0.67 0.63 072 078 0.84 092 096 097 100 099 098 |0.79
keep 0.68 052 058 0.59 0.72 0.66 073 0.77 0.86 096 092 0.89 098 096 098 |0.79
phikon  0.66 0.60  0.65 0.66 0.74 0.71 070  0.77 0.88 096 083 0.80 097 094 096 |0.79
conch 0.75 058  0.65 0.61 0.73 0.68 0.65 0.79 0.86 087 096 094 099 098 099 |0.80
titan 0.79 0.65 0.73 0.74 0.79 0.78 071 077 0.88 089 094 092 097 097 099 |0.84
vitb 082 0.66 0.77 0.79 0.83 0.82 083 0.68 0.90 094 092 090 098 096 099 |0.85
vitl 085 072 0.82 0.84 0.86 0.87 083 071 091 092 091 090 098 097 099 |0.87
dinob 0.88 053 0.75 0.84 0.80 0.85 086 0.96 0.96 098 099 098 099 098 1.00 |0.89
clipl 0.89 0.71  0.81 0.86 0.85 0.86 0.83 090 0091 091 097 095 099 098 099 |0.89
dinol 092 049 077 0.85 0.83 0.86 088 096 097 098 099 098 099 099 1.00 |0.90
quilt 0.88 086  0.87 0.87 0.89 0.89 086 0.83 094 099 093 091 099 098 098 | 091
plip 0.89 085 0.88 0.88 0.89 0.90 085 0.83 094 097 094 092 099 098 099 |091
clipb 092 086 0.88 0.91 0.88 0.92 0.84 092 0.96 097 098 098 099 098 0.99 | 093
Mean 0.72 0.56  0.65 0.65 0.72 0.70 073 0.83 0.87 093 093 091 098 096 098 |0.81
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Table S10: Transformation invariance: Per-dataset cosine similarity between original embeddings
and embeddings of the transformed image, averaged across transforms.

Model bach ccrcc crc esca pcam tcga-crc tcga-unif tcga-tils wilds mhist break-his | Mean
hoptO 090 0.70 0.64 0.67 0.62 0.80 0.68 054 057 0.74 0.76 0.69
hopt1 090 0.73 0.68 0.72 0.62 0.81 0.71 058 0.62 0.78 0.78 0.72
phikon2 090 0.73 0.69 0.73 0.62 0.82 0.74 054 0.61 0.74 0.79 0.72
midnight 0.92 0.80 0.70 0.78 0.59 0.83 0.69 059 0.61 0.72 0.77 0.73
uni 0.90 0.75 0.70 0.73 0.57 0.83 0.74 0.61 061 0.73 0.81 0.73
uniZh 094 0.78 0.67 0.75 0.60 0.85 0.75 0.67 0.61 0.77 0.81 0.75
virchow 0.88 0.85 0.74 0.79 0.65 0.79 0.79 0.68 0.67 0.77 0.79 0.76
virchow2 0.95 0.78 0.74 0.76 0.63  0.88 0.78 0.67 0.69 0.71 0.84 0.77
hiboub 093 0.84 0.76 0.75 0.58  0.89 0.78 0.70  0.66 0.72 0.82 0.77
musk 094 0.80 0.79 0.75 0.74 0.80 0.75 0.77 0.76 NaN  NaN 0.79
hiboul 096 0.86 0.78 0.77 0.58 0091 0.80 0.70  0.66 0.78 0.85 0.79
keep 096 0.80 0.77 0.80 0.67 0.89 0.79 072 071 0.72 0.83 0.79
phikon 092 0.80 0.76 0.82 0.71  0.87 0.81 063 073 0.78 0.85 0.79
conch 093 0.84 0.79 0.79 0.74 0.83 0.80 082 077 0.71 0.80 0.80
titan 094 0.86 0.83 0.82 0.79 0.86 0.83 085 0.83 0.78 0.79 0.84
vitb 093 0.89 0.82 0.87 0.76 0.93 0.89 0.80 0.80 0.82 0.89 0.85
vitl 093 091 0.85 0.89 0.79 0.93 0.90 083 0.84 0.84 0.89 0.87
dinob 098 092 0.89 091 0.78 0.96 0.92 0.81 0.80 0.88 0.93 0.89
clipl 098 092 090 0.87 0.80 0.93 0.88 087 0.86 0.87 0.94 0.89
dinol 099 093 0.89 092 0.79 097 0.92 0.82 0.80 091 0.95 0.90
quilt 097 095 094 0.85 087 0091 0.87 094 091 0.87 0.95 0.91
plip 096 093 092 0.88 0.88 0.92 0.90 092 090 0.88 0.94 0.91
clipb 098 095 094 093 086 0.96 0.94 091 090 0.89 0.97 0.93
Mean 094 0.84 0.79 0.81 0.71 0.88 0.81 074 0.74 0.79 0.85 0.81

Table S11: Aggregated quantitative performance
(Balanced accuracy) on knn classification.

Table S12: Aggregated quantitative performance
(F1-score) on knn classification.

Model all  nb classes magnif. cancer type

2 >2 |>40x <40x <20x |breast crc multi

>20%

hiboub 76.7|80.7 73.9| 66.4 77.5 83.5 |78.3 74.2 73.0
hiboul  76.2|81.1 72.7| 66.6 76.7 82.8 |75.8 78.0 73.8
hopt0  80.1|83.4 77.7| 75.8 77.7 86.2 |78.1 78.8 79.7
hopt1 81.2(84.179.1| 76.0 79.5 87.2(79.179.281.3
midnight 78.6(80.7 77.1| 67.0 81.8 83.4 |75.8 76.181.7
phikon 73.5|77.7 70.4| 67.2 71.3 80.8 |69.8 74.0 72.3
phikon2 70.8|75.8 67.3| 59.3 70.9 79.3 |65.4 73.0 73.3
uni 79.6(82.4 77.6| 74.7 77.6 85.7|79.3 77.177.2
uni2h  82.2(83.6 81.3| 75.3 82.8 86.8 |82.6 78.0 81.0
virchow 74.7(81.9 69.5| 64.3 72.8 84.8 |70.0 76.2 74.3
virchow2 81.7(83.2 80.6| 76.0 80.7 87.3|81.5 79.1 78.2
conch  78.0(79.9 76.6| 71.3 78.4 82.6 |78.4 76.5 72.0
titan 79.0(81.0 77.7| 75.0 78.1 83.3 |80.3 77.0 73.6
keep 80.6|82.0 79.5| 74.8 80.3 85.2 |80.9 75.7 77.6
musk 76.3(80.5 73.3| 73.8 73.0 82.3 |77.7 76.4 69.2
plip 68.3|76.8 62.2| 57.1 69.7 75.0 |68.1 72.0 63.5
quilt 69.2|77.7 63.1| 60.6 69.2 75.7 |70.4 73.4 63.8
dinob  68.8|77.7 62.5| 61.6 66.6 77.0 |68.0 75.5 58.6
dinol 70.2|79.2 63.7| 63.3 67.1 79.2 |70.1 76.7 59.2
vitb 65.174.6 58.3| 56.5 64.0 72.9 |65.0 72.1 57.1
vitl 68.3|76.8 62.2| 61.9 66.4 75.5 |68.4 74.3 59.8
clipb 62.7|73.5 55.1| 55.8 59.6 71.9 |62.7 69.5 53.7
clipl 64.8|74.3 58.0| 55.7 63.4 73.5|65.4 69.3 57.4

Model all  nb classes magnif. cancer type

2 >2 |>40x <40x <20x |breast crc multi

>20%

hiboub  75.8|80.5 72.5| 65.2 76.8 82.5 |77.7 72.8 75.0
hiboul  75.2|80.8 71.1| 64.7 75.9 82.1 |75.1 76.4 76.0
hopt0  79.2|82.4 76.9| 74.9 76.7 85.6 |77.4 76.2 81.2
hopt1 80.5/83.278.6/75.9 78.1 87.1|78.5 77.282.8
midnight 78.2(80.3 76.7| 66.6 81.1 83.4|75.1 75.1 82.5
phikon 72.8(77.3 69.6| 65.6 71.1 80.3 |69.3 72.7 74.2
phikon2 70.1|75.4 66.4| 58.2 70.4 78.8 |64.8 71.7 74.9
uni 78.8/81.9 76.6| 73.5 76.9 85.2|78.5 75.6 79.0
uni2h  81.7|83.180.7| 75.5 81.7 86.3 |82.4 76.6 82.1
virchow 74.2|81.3 69.1| 63.8 72.2 84.4 |70.0 74.2 75.7
virchow2 81.2(83.0 79.9| 75.4 80.2 86.9 |80.8 77.879.8
conch  77.3|79.8 75.5| 70.4 77.4 82.3|77.0 75.3 73.7
titan 78.6(80.7 77.2| 74.5 77.3 83.5|79.7 75.6 75.3
keep 79.7|81.6 78.4| 73.3 79.7 84.7 |79.9 74.7 78.5
musk 75.6/80.3 72.2| 72.5 72.2 82.1 |76.5 75.2 71.2
plip 67.8/76.4 61.7| 55.5 69.5 74.9 |67.8 70.4 65.4
quilt 68.3]77.3 62.0| 59.2 68.5 75.0 |69.5 71.8 65.7
dinob  67.9(/76.9 61.5| 60.3 64.7 77.7 |67.0 73.8 59.5
dinol 69.5|78.6 63.1| 62.0 66.0 79.7 [69.4 74.9 60.8
vitb 64.4|74.4 57.3| 54.8 63.3 73.0 |64.1 71.0 58.9
vitl 67.5/76.0 61.4| 60.5 65.0 76.0 |67.1 72.3 61.5
clipb 61.9]73.3 53.7| 54.0 58.7 71.8 |61.8 67.5 56.0
clipl 64.2|74.1 57.2| 54.5 62.6 73.6 |64.5 68.0 59.7
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Table S13: Aggregated quantitative performance
(Balanced accuracy) on linear probing.

Table S14: Aggregated quantitative performance
(F1-score) on linear probing.

Model all  nb classes magnif. cancer type

2 >2 |>40x <40Xx <20 |breast crc multi

>20x%

hiboub 78.5(85.1 73.8| 68.1 78.6 86.2 |75.8 80.4 78.5
hiboul 81.9(87.4 77.9| 73.1 82.2 88.0 |80.2 83.4 81.4
hopt0  81.5|87.6 77.1| 71.5 81.1 89.5 |77.2 83.5 83.8
hoptl 83.8|87.5 81.2| 77.3 83.0 89.8 |81.5 83.7 84.8
midnight 83.1({86.2 80.8| 70.0 85.9 89.3 |80.1 81.787.1
phikon 79.3(85.0 75.3| 69.8 79.2 86.7 |75.7 79.9 82.2
phikon2 77.5(84.1 72.8| 64.5 78.3 86.4 |73.4 78.7 83.2
uni 81.6|86.6 78.0| 73.4 80.3 89.3 |78.9 82.4 81.2
unizh  84.5|87.082.6| 77.5 84.6 89.5 |84.582.1 83.6
virchow 80.6(86.9 76.0| 70.9 78.9 89.8 |75.8 82.5 81.4
virchow2 83.0(86.4 80.5| 75.9 82.5 88.9 |79.0 84.083.5
conch  80.6(84.4 77.9| 71.9 80.5 87.3 |80.2 81.1 76.1
titan 81.9(85.3 79.4| 75.4 80.8 88.0 |81.8 81.6 78.7
keep 81.7|85.3 79.2| 73.2 81.7 88.1 |79.7 81.0 79.8
musk 79.2|84.0 75.9| 74.1 77.0 85.9 |79.5 79.4 75.8
plip 71.4|80.9 64.6| 59.2 71.0 81.0 |68.6 76.6 69.9
quilt 71.2|81.1 64.2| 59.9 71.3 79.7 |71.6 76.8 69.3
dinob  75.3|81.8 70.6| 69.7 72.1 83.4 |74.7 79.6 68.5
dinol 75.8(82.1 71.4| 69.7 73.6 83.2|75.0 80.4 69.3
vitb 72.7/80.4 67.3| 66.8 70.5 80.0 |71.3 77.9 67.8
vitl 73.4|81.2 67.8| 66.3 70.8 81.8 |71.6 78.3 70.0
clipb 66.8|77.1 59.4| 54.9 66.0 76.8 |62.3 75.4 64.2
clipl 72.0/80.1 66.2| 62.5 69.9 81.6 |70.7 75.7 68.0

Model all  nb classes magnif. cancer type

2 >2 |>240x <40x <20x|breast crc multi

>20x%

hiboub 78.0(84.6 73.3| 68.5 77.1 86.1|75.5 78.9 79.9
hiboul 81.2(86.2 77.5| 73.5 80.6 87.6 |80.0 80.8 82.8
hopt0  81.4|86.6 77.7| 72.6 80.2 89.5 |77.7 81.2 85.2
hoptl 83.3(86.5 81.0| 77.3 81.4 90.1(80.9 81.5 86.0
midnight 82.9(85.7 80.9| 70.4 85.1 89.5 [80.0 80.5 88.1
phikon 78.5(84.0 74.5| 68.9 78.2 85.9 |75.0 77.8 83.3
phikon2 76.5(83.6 71.4| 62.6 77.3 85.8 |72.5 77.4 84.3
uni 81.3/85.9 78.0| 73.6 79.5 89.2|78.8 80.5 82.7
uni2h  83.9(86.0 82.4| 77.8 82.9 89.7 |84.579.8 84.6
virchow 80.2(85.9 76.2| 71.4 78.2 89.4 |76.0 80.5 82.8
virchow2 82.7(85.4 80.8| 76.2 81.7 88.8 |78.8 82.184.7
conch  80.2(84.0 77.5| 72.3 79.7 86.9 |80.2 79.2 78.0
titan 80.8(84.3 78.3| 75.0 78.4 88.0(80.5 79.1 79.7
keep 81.1(84.3 78.8| 73.8 79.8 88.2(79.0 78.8 81.3
musk 79.0|83.6 75.7| 75.4 75.9 85.5|79.2 78.1 77.7
plip 71.0|79.7 64.8| 60.2 70.0 80.3 [68.9 74.2 71.0
quilt 71.0/80.4 64.3| 61.3 70.3 79.3 |71.8 75.2 70.5
dinob  74.8|80.8 70.5| 70.1 70.7 83.3 |74.4 77.2 70.2
dinol 75.3|81.0 71.2| 70.2 72.2 83.0 |75.1 77.4 71.1
vitb 71.9|79.7 66.3| 66.7 69.2 79.0 |70.8 75.8 69.6
vitl 72.8/80.5 67.4| 66.1 70.0 81.5|71.3 76.5 71.7
clipb 65.8/75.3 59.1| 55.4 63.8 76.2 (61.9 71.3 65.8
clipl 71.3]79.1 65.8| 62.3 68.6 81.5|70.6 73.3 69.5

Table S15: Aggregated quantitative performance
(Balanced accuracy) on 1-shot classification.

Table S16: Aggregated quantitative performance
(F1-score) on 1-shot classification.

Model all  nb classes magnif. cancer type

2 >2 |>40x <40x <20xX|breast crc multi

>20x

hiboub 73.6|73.4 73.7| 69.8 72.9 77.3 |74.7 71.3 67.8
hiboul 71.0(72.2 70.1| 68.6 70.8 73.1|70.5 66.3 71.2
hopt0  72.4|71.4 73.2| 69.5 74.5 72.1|65.1 71.677.0
hoptl 69.5|61.7 75.0/ 69.0 71.9 66.8 |62.3 72.8 64.8
midnight 72.5|73.4 71.8| 59.4 75.5 78.6 |67.2 72.7 72.0
phikon 73.4|75.9 71.6| 69.1 71.6 78.8 |71.2 72.7 68.1
phikon2 69.3|67.6 70.4| 66.6 64.2 77.5 |68.0 67.8 58.0
uni 76.2|76.1 76.3| 73.6 74.3 80.4 |76.6 72.7 71.2
uni2h  75.3|71.378.1| 71.1 73.6 80.5 |76.3 73.962.0
virchow 68.1(/69.9 66.8| 62.5 63.5 78.0 [63.5 71.6 56.7
virchow2 72.8(72.2 73.3| 65.2 75.2 75.5 |71.1 68.5 73.0
conch  74.5|74.7 74.4| 68.1 73.8 80.2 |75.6 70.5 66.0
titan 75.0{74.7 75.2| 70.8 72.2 81.7 |77.272.2 62.5
keep 77.0|78.276.1| 69.8 76.6 83.0|76.4 72.4 72.4
musk 70.0({68.9 70.8| 68.0 69.1 72.8 |69.3 70.1 60.6
plip 65.0/68.2 62.7| 62.5 63.7 68.5 |62.9 67.7 57.9
quilt 67.7|72.2 64.5| 66.4 64.8 72.4 |67.4 70.6 58.7
dinob  61.9(63.8 60.6| 62.2 56.9 67.9 |61.2 68.7 44.0
dinol 60.7|63.4 58.8| 58.9 57.2 66.6 |60.1 68.9 44.8
vitb 59.2|64.5 55.4| 55.0 56.8 65.3 |59.6 64.0 48.0
vitl 59.0(63.3 55.9| 55.0 55.5 66.3 |57.5 65.9 43.8
clipb 54.7|59.7 51.1| 51.6 54.0 57.8 |51.9 61.3 47.9
clipl 57.6|60.9 55.3| 52.6 55.5 64.0 |56.2 63.5 45.3

Model all  nb classes magnif. cancer type

2 >2 |>40x <40x <20 |breast crc multi

>20%

hiboub  66.3|65.9 66.6| 65.8 65.0 68.5 |71.4 64.5 54.9
hiboul  64.0|63.9 64.0| 65.7 63.1 63.8 |66.6 58.8 60.1
hopt0  66.8(/65.2 67.9] 65.3 69.7 64.2 |61.8 66.466.4
hoptl1 60.3]48.1 68.9| 64.0 61.8 55.6 |55.1 64.9 45.9
midnight 69.2|71.1 67.9| 57.8 72.1 74.2 |65.3 71.565.2
phikon  66.3|67.3 65.7| 66.0 63.4 70.2 |68.9 64.0 55.3
phikon2 59.9|54.4 63.8| 63.3 50.8 68.7 |64.8 57.5 35.8
uni 69.8/69.1 70.2| 71.0 67.0 72.4|74.266.9 57.7
uni2h  67.4]/60.2 72.5| 68.6 62.5 72.5|73.1 66.2 41.7
virchow 61.7|62.0 61.4| 58.7 55.6 71.4 |60.7 67.2 39.8
virchow2 67.5(66.4 68.2| 63.6 70.0 67.2 |68.8 63.1 62.3
conch  68.7|69.3 68.3| 65.2 68.0 72.2 |72.7 65.9 54.1
titan 68.8/67.9 69.5| 67.7 64.6 74.9|74.0 67.7 47.8
keep 72.2|73.970.9| 66.4 71.8 76.9|73.9 69.4 61.9
musk 62.9(61.5 63.9| 64.0 61.3 64.0 |{65.9 63.8 46.2
plip 58.7161.0 57.0| 58.4 57.3 60.6 |{60.1 61.4 45.5
quilt 61.5/66.1 58.2| 63.3 57.9 64.6 |64.8 65.0 46.7
dinob  54.3|54.2 54.5| 59.5 46.7 60.1 |57.0 63.5 26.2
dinol 52.9153.9 52.2| 55.0 47.8 57.8 |54.5 65.0 27.7
vitb 51.8/56.8 48.2| 49.1 48.9 57.4 |54.3 58.1 35.9
vitl 50.7|53.9 48.4| 49.1 44.5 59.6 |51.7 58.8 27.2
clipb 46.5(48.8 44.9| 48.5 45.6 46.2 |45.3 54.0 34.3
clipl 48.9]49.7 48.3| 48.1 44.7 54.8 |51.3 55.0 28.2
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Table S17: Aggregated quantitative performance
(Balanced accuracy) on 2-shot classification.

Table S18: Aggregated quantitative performance
(F1-score) on 2-shot classification.

Model all  nb classes magnif. cancer type

2 >2 |>40x <40Xx <20 |breast crc multi

>20x%

hiboub 76.6|78.8 75.1| 71.8 74.9 82.4 |77.6 73.8 71.7
hiboul  73.2(74.5 72.2| 70.1 73.3 75.4 |72.0 70.5 72.6
hopt0  76.3|81.0 73.0| 68.7 75.7 82.9 |71.3 75.280.2
hoptl 74.6|72.6 76.1| 69.5 76.1 76.7 |69.2 75.9 73.3
midnight 72.7|74.8 71.1| 56.7 76.1 80.3 |68.6 72.3 73.4
phikon 74.9(79.7 71.4| 68.9 73.3 81.3 |70.9 73.8 74.4
phikon2 72.1{73.5 71.2| 65.4 70.2 79.6 |69.2 69.8 68.2
uni 79.3/82.277.3|75.0 77.0 85.5|78.5 75.7 77.5
uni2h  78.7|77.979.3| 711.9 77.6 85.2 |79.576.969.5
virchow 71.0(77.4 66.5| 61.1 67.1 83.4 |66.2 73.1 64.8
virchow2 75.0(77.7 73.2| 64.5 77.1 80.4 |73.4 72.5 75.7
conch  76.2|78.1 74.9| 68.6 75.8 82.5|76.5 74.0 68.9
titan 77.5179.4 76.2| 71.2 76.4 83.6 |78.5 75.0 70.1
keep 78.1(79.9 76.8| 70.6 78.0 83.8 |77.5 72.9 75.2
musk 73.3|76.4 71.1| 69.3 71.0 79.2 |73.2 72.0 66.6
plip 66.8(73.8 61.8| 61.4 64.0 74.2 |64.9 70.0 60.0
quilt 69.575.6 65.1| 67.4 65.8 75.6 |69.5 72.1 61.0
dinob  63.4|67.2 60.6| 62.2 58.7 70.1 |62.3 69.4 48.6
dinol 62.7|67.3 59.3| 58.9 58.8 70.3 |61.9 70.2 47.7
vitb 61.2]68.5 55.9| 55.2 58.4 69.1 |62.1 65.8 50.7
vitl 60.5(67.2 55.7| 54.4 57.5 68.7 |58.2 67.8 48.7
clipb 56.5|63.2 51.8| 53.3 55.2 60.7 |54.0 63.5 50.5
clipl 61.1/69.2 55.3| 52.8 57.8 71.5 |60.2 66.6 50.7

Model all  nb classes magnif. cancer type

2 >2 |>240x <40x <20x|breast crc multi

>20x%

hiboub 71.0{73.7 69.1| 68.8 68.8 75.5|75.0 69.0 61.6
hiboul  67.9|68.9 67.2| 67.9 67.5 68.5|69.0 65.7 63.5
hopt0  72.1|77.3 68.4| 65.7 71.7 77.5|69.0 70.8 73.5
hoptl 68.3164.9 70.8| 64.9 68.7 70.4 |65.0 70.3 60.1
midnight 70.0|73.0 68.0| 55.8 73.0 77.0 |66.9 71.3 67.9
phikon 69.3|74.3 65.7| 65.3 68.0 73.9 |68.4 67.6 66.1
phikon2 65.3|65.4 65.2| 62.4 62.0 71.5|66.4 62.9 53.8
uni 74.4|77.772.0/72.6 71.4 79.3|76.3 71.1 68.5
uni2h  72.6/69.8 74.6| 69.8 68.8 79.5|77.0 70.5 55.0
virchow 65.7|71.6 61.4| 57.6 60.6 78.1 |63.6 68.8 53.0
virchow2 70.8|73.5 68.9]| 63.2 72.6 74.4|71.6 68.0 67.8
conch 71.5|74.2 69.6| 66.6 70.7 76.2|74.2 70.3 59.5
titan 72.6|74.6 71.2| 68.9 70.4 78.2|76.0 71.2 59.5
keep 74.2|77.0 72.2| 67.8 74.2 79.0 |75.5 70.6 67.5
musk 67.5|71.0 64.9| 66.2 64.7 71.8 |70.6 66.2 56.0
plip 61.7|69.0 56.4| 57.9 59.1 67.7 |62.7 65.4 50.5
quilt 64.1|70.9 59.3| 64.6 59.8 69.2 |67.2 67.1 51.5
dinob  56.9|60.3 54.5| 59.3 50.5 63.2 |58.4 65.7 34.2
dinol 55.9(60.1 53.0| 55.4 50.8 62.8 |57.2 67.1 33.2
vitb 55.1/62.9 49.6| 50.2 52.1 62.6 |58.6 61.1 40.1
vitl 53.9/60.8 49.0| 49.1 49.3 63.2 |53.2 62.9 36.0
clipb 49.8|55.4 45.9] 50.7 48.6 50.8 |48.6 58.3 39.2
clipl 54.3]62.1 48.8| 48.5 49.4 64.9 |56.8 59.9 37.8

Table S19: Aggregated quantitative performance
(Balanced accuracy) on 4-shot classification.

Table S20: Aggregated quantitative performance
(F1-score) on 4-shot classification.

Model all  nb classes magnif. cancer type

2 >2 |>40x <40x <20xX|breast crc multi

>20x

hiboub 77.7|81.2 75.3| 71.7 75.8 84.7 |78.7 74.9 73.3
hiboul 73.8(75.8 72.3| 69.3 74.1 76.7 |72.3 71.3 73.8
hopt0  76.8|81.8 73.2| 68.0 76.2 84.0 |72.0 76.1 80.8
hoptl 76.7|77.6 76.2| 70.2 78.3 79.7 |70.8 77.4 80.4
midnight 72.9|75.1 71.4| 56.3 76.9 80.3 |69.5 72.3 73.9
phikon 75.6|81.0 71.7| 70.1 73.4 82.5 |71.0 75.2 76.0
phikon2 74.0(77.3 71.6| 66.1 73.7 80.2 |69.3 71.3 76.7
uni 79.8/83.377.2|74.3 77.7 86.5|78.2 77.3 78.8
unizch  80.5|81.779.7| 71.8 81.1 86.4 |79.878.077.7
virchow 71.9|78.8 67.0| 61.3 68.7 84.0 |66.5 73.1 68.5
virchow2 75.9(79.4 73.5| 64.3 77.5 82.8 |74.4 75.1 75.4
conch  76.5|78.8 74.8| 68.6 76.2 82.6 |76.2 74.7 70.0
titan 78.0(80.1 76.5| 71.2 77.4 83.7 |78.7 75.4 72.2
keep 78.8(80.2 77.8| 71.8 78.8 84.0 |78.5 73.7 75.9
musk 74.178.2 71.2| 70.0 71.1 81.0|73.9 73.3 67.9
plip 67.6|75.5 62.0| 62.0 64.0 76.3 |65.9 71.6 60.1
quilt 69.8|76.9 64.7| 67.1 65.3 77.4|69.5 73.1 61.1
dinob  64.8|70.9 60.5| 61.5 59.9 73.5 |64.1 70.5 51.6
dinol 63.7|70.1 59.1| 58.7 58.9 73.3 |63.5 70.7 49.1
vitb 62.2|70.8 56.0| 54.9 59.1 71.5 |63.2 67.3 52.1
vitl 60.9]68.7 55.4| 53.3 58.4 69.8 |57.8 68.7 51.1
clipb 57.7|66.3 51.5| 52.8 55.7 63.8 |55.1 65.7 51.1
clipl 62.6|72.6 55.5| 53.3 58.2 75.2 |62.6 67.8 52.1

Model all  nb classes magnif. cancer type

2 >2 |>40x <40x <20 |breast crc multi

>20%

hiboub 72.9|76.9 70.0| 69.7 70.2 78.5|76.5 70.3 65.2
hiboul  69.4|71.2 68.1] 68.1 69.0 70.8 |70.2 66.4 66.8
hopt0  73.2|78.7 69.3| 66.1 72.6 79.2|70.2 71.776.0
hoptl 71.9]72.1 71.8| 67.2 72.6 74.6 |67.8 72.4 71.3
midnight 70.6|73.2 68.8| 56.2 73.8 77.5|68.4 71.1 68.7
phikon  71.0|76.7 66.9| 67.7 69.0 75.9 [69.4 69.3 69.8
phikon2 68.5|71.8 66.2| 63.7 67.8 73.0 |67.1 65.4 67.3
uni 75.6(79.8 72.6/72.8 73.0 81.1|76.672.572.5
unizh  75.6|75.775.5[ 69.9 74.2 81.5|77.872.4 67.3
virchow 67.3|74.0 62.5| 58.4 63.1 79.3 |64.4 68.9 58.8
virchow2 72.2|75.7 69.7| 63.6 72.9 77.8|73.0 71.3 68.0
conch 72.1{75.1 70.0| 66.9 71.4 77.0 |74.4 70.7 61.8
titan 73.7|76.0 72.0| 69.4 72.0 79.1|76.6 71.9 63.5
keep 75.2|77.5 73.6/ 69.5 75.1 79.7|76.9 70.9 69.3
musk 68.9]73.5 65.6| 67.6 65.4 74.2|71.8 67.7 59.0
plip 62.9(71.0 57.2| 59.5 58.9 70.4 |64.2 67.0 51.5
quilt 65.172.7 59.7| 65.5 59.7 71.5|67.9 68.2 52.8
dinob  59.2|65.3 54.9] 59.2 52.4 67.8 |61.2 66.9 39.1
dinol 57.8/63.9 53.3| 55.7 51.5 67.1(59.9 67.8 36.0
vitb 56.7166.1 50.1| 50.4 53.1 66.0 {60.2 63.0 43.0
vitl 55.1/63.2 49.3| 49.1 50.7 65.1 |53.6 64.1 40.0
clipb 51.8/59.7 46.1| 50.6 49.0 56.1 |51.3 60.5 40.4
clipl 56.6/66.5 49.5| 49.3 50.8 69.2 |59.9 61.8 40.8
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Table S21: Aggregated quantitative performance
(Balanced accuracy) on 8-shot classification.

Table S22: Aggregated quantitative performance
(F1-score) on 8-shot classification.

Model all  nb classes magnif. cancer type

2 >2 |>40x <40Xx <20 |breast crc multi

>20x%

hiboub 78.3(|81.9 75.7| 72.4 76.2 85.2|79.4 75.8 73.8
hiboul 73.8(76.1 72.1| 68.6 74.3 76.9 |72.3 71.8 74.0
hopt0  76.5|81.7 72.8| 67.2 76.2 83.9 |71.4 77.0 80.7
hoptl 78.180.5 76.4| 70.2 79.5 82.4|72.7 78.6 82.3
midnight 72.6(75.3 70.6| 54.5 77.4 80.1 |68.9 72.7 74.2
phikon 76.1|81.5 72.2| 71.0 73.4 83.2 |71.7 76.0 75.8
phikon2 74.7(78.2 72.1| 67.1 74.2 80.9 |70.1 72.0 77.9
uni 79.8/83.777.0|74.4 T77.4 86.9 |78.1 78.3 78.8
unizh  81.5|83.380.3| 72.3 82.6 87.1|80.679.180.2
virchow 72.3(79.5 67.2| 61.8 69.5 83.8 |66.8 73.2 70.1
virchow2 75.9(79.5 73.4| 63.8 77.6 82.9 |74.7 75.7 74.8
conch  76.8(/79.0 75.2| 69.4 76.7 82.6 |77.0 74.9 70.3
titan 78.2180.3 76.7| 71.7 77.9 83.3 |78.8 75.3 73.5
keep 78.8(80.3 77.8| 71.8 78.9 84.1|78.4 73.9 76.1
musk 74.4|78.6 71.5| 70.0 71.6 81.3 |74.1 73.9 68.6
plip 67.7/75.9 61.9| 61.3 64.3 76.8 |66.1 71.9 60.4
quilt 70.0|77.2 64.8| 66.9 65.6 77.8 [69.7 73.1 61.4
dinob  65.6|72.6 60.7| 60.4 61.7 74.4 |64.9 71.5 53.6
dinol 64.1|71.2 59.1| 58.8 59.1 74.4 |64.0 70.9 50.1
vitb 62.7|71.7 56.3| 55.4 59.3 72.4 |63.5 68.4 52.9
vitl 61.5|69.9 55.5| 53.5 59.3 70.3 |58.2 69.5 53.1
clipb 58.1|67.8 51.2| 52.6 55.6 65.4 |56.0 66.0 51.6
clipl 63.1|73.5 55.7| 53.4 59.0 75.6 |63.3 68.1 53.6

Model all  nb classes magnif. cancer type

2 >2 |>240x <40x <20x|breast crc multi

>20x%

hiboub 73.9(78.1 70.9| 70.7 71.3 79.6 |77.4 71.2 67.2
hiboul  69.9|71.9 68.5| 68.0 69.7 71.5|70.7 66.9 67.8
hopt0  73.3|79.1 69.1| 65.7 72.8 79.5|69.7 72.877.0
hoptl 74.176.5 72.4| 67.6 74.9 78.0(70.2 74.2 75.9
midnight 70.4|73.3 68.3| 54.7 74.1 77.5 |68.0 71.3 69.2
phikon 71.8|77.8 67.6| 68.5 69.6 77.1|70.2 70.5 70.8
phikon2 70.0({74.1 67.0| 64.8 69.6 74.4 |67.9 67.0 71.2
uni 76.2/80.8 73.0/73.1 73.4 82.1|76.7 73.9 74.0
uni2h  77.5/78.776.7| 71.1 77.0 82.9(79.074.372.7
virchow 68.2|75.4 63.1| 59.3 64.4 79.7 [64.9 69.5 61.9
virchow2 72.4(76.1 69.8| 63.3 73.1 78.4|73.3 72.1 68.1
conch 72.9|75.7 71.0| 68.3 72.0 77.5|75.5 71.1 63.1
titan 74.5|76.9 72.7| 70.3 73.1 79.3 |77.1 72.2 66.3
keep 75.6|77.9 74.0| 70.1 75.4 80.0|77.1 71.3 70.4
musk 69.7|74.4 66.3| 68.1 66.5 75.0 |72.4 68.4 61.2
plip 63.5|71.8 57.5| 59.2 59.9 71.2 |64.7 67.4 53.0
quilt 65.6/73.3 60.1| 65.4 60.4 72.2 |68.3 68.3 54.2
dinob  60.5|67.7 55.3| 58.4 54.8 69.2 |62.2 67.6 43.2
dinol 58.9(65.8 54.0| 56.4 52.5 68.7 |[61.1 67.9 38.6
vitb 57.6/67.7 50.5| 51.1 53.7 67.4 |60.7 64.5 44.8
vitl 56.2|65.4 49.7| 49.3 52.6 66.0 |54.2 65.2 44.1
clipb 52.9(62.2 46.2| 51.0 49.4 58.7 |53.1 60.9 42.2
clipl 57.6168.2 50.1| 49.7 52.6 69.9 |60.8 62.3 44.2

Table S23: Aggregated quantitative performance
(Balanced accuracy) on 16-shot classification.

Table S24: Aggregated quantitative performance
(F1-score) on 16-shot classification.

Model all  nb classes magnif. cancer type

2 >2 |>40x <40x <20xX|breast crc multi

>20x

hiboub 78.2|81.9 75.5| 71.6 76.5 85.3 |79.1 76.0 74.2
hiboul 74.1|76.4 72.4| 68.4 74.8 77.3 |72.7 71.8 74.7
hopt0  76.4|81.5 72.8| 67.1 75.9 84.0 |71.3 77.1 80.7
hoptl 78.4|81.3 76.3| 70.2 79.3 83.3 |73.5 77.983.0
midnight 72.6|75.2 70.8| 54.5 77.5 80.0 |69.2 72.2 74.5
phikon 76.1|81.3 72.4| 71.4 73.1 83.4 |72.1 75.7 75.9
phikon2 74.4|78.1 71.8| 67.1 73.7 80.8 |69.5 72.0 77.9
uni 79.7|83.7 76.9| 74.0 77.3 87.0 |77.8 78.5 78.9
unich  81.9|83.780.5| 72.6 83.1 87.3 |80.879.281.5
virchow 72.4|79.6 67.3| 61.8 69.7 83.8 |66.8 73.0 71.0
virchow2 75.8(79.5 73.3| 63.6 77.7 82.7 |74.3 75.8 75.3
conch  76.8|79.3 75.1| 68.9 76.8 82.8 |76.7 75.3 70.7
titan 78.2180.2 76.8| 71.6 78.1 83.3 |78.7 75.4 74.0
keep 78.8(80.1 77.9| 71.7 79.0 83.9 |78.3 73.8 76.3
musk 74.4|78.4 71.6| 70.3 71.5 81.2|74.2 73.7 68.7
plip 67.6|75.8 61.7| 61.2 64.1 76.7 |65.8 71.9 60.4
quilt 69.8|77.1 64.7| 66.9 65.3 77.6 |69.3 73.4 61.2
dinob  65.8|72.8 60.8| 60.6 62.0 74.4 |64.9 71.6 54.5
dinol 64.1|71.7 58.7| 57.9 59.3 74.7 |63.9 71.0 50.5
vitb 62.5|71.8 56.0| 55.3 59.0 72.4 |62.9 68.8 53.0
vitl 61.4|70.2 55.1| 53.1 59.3 70.3 |57.4 70.0 53.8
clipb 58.2|68.0 51.3| 52.4 55.8 65.6 |56.0 66.2 52.0
clipl 63.5|73.8 56.2| 54.5 59.2 75.8 |63.8 68.4 54.1

Model all  nb classes magnif. cancer type

2 >2 |>40x <40x <20 |breast crc multi

>20%

hiboub 74.2|78.4 71.2| 70.4 71.8 80.0 |77.5 71.3 68.4
hiboul  70.4|72.3 69.1| 68.0 70.6 72.1|71.4 67.0 69.3
hopt0  73.4|79.0 69.3| 65.9 72.7 79.8 |69.7 72.7 77.7
hoptl1 74.8|78.0 72.6| 68.1 75.2 79.4|71.3 73.678.4
midnight 70.6|73.3 68.7| 55.1 74.4 77.5|68.6 70.7 69.8
phikon  72.2|77.9 68.1] 69.2 69.7 77.4|70.7 70.4 71.5
phikon2 70.1|74.6 66.9| 64.7 69.8 74.5 |67.4 67.1 72.9
uni 76.4/80.973.1|73.1 73.5 82.4(76.6 74.0 74.9
unizh  78.4{79.977.3| 71.7 78.4 83.4|79.674.675.8
virchow 68.5(|75.8 63.3| 59.6 64.9 79.7 |65.0 69.2 63.9
virchow2 72.5|76.3 69.9| 63.3 73.5 78.3 |73.1 72.1 69.5
conch  73.1|76.0 71.1| 68.3 72.2 77.9 |75.5 71.4 63.9
titan 74.6|77.0 73.0| 70.4 73.4 79.3 |77.1 72.167.6
keep 75.8|77.9 74.3| 70.4 75.6 80.0 |77.2 71.271.2
musk 70.0{74.4 66.8| 68.7 66.7 75.0 |72.7 68.2 62.2
plip 63.4]71.8 57.5| 59.4 59.7 71.1 |64.5 67.4 53.6
quilt 65.773.3 60.2| 65.9 60.3 72.3 |68.1 68.6 54.7
dinob  61.0(68.3 55.8| 59.0 55.7 69.2 |62.6 67.7 45.4
dinol 59.2166.6 54.0| 55.9 53.2 69.3 |61.4 67.9 40.2
vitb 57.8/68.0 50.6| 51.3 54.0 67.5|60.6 65.0 45.6
vitl 56.5/66.0 49.7| 49.2 53.3 66.1 |53.8 65.9 45.8
clipb 53.3]62.7 46.6| 51.2 49.9 59.0 |53.4 61.0 43.5
clipl 58.2]68.8 50.7| 50.7 53.2 70.2 |61.5 62.6 45.9
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Table S25: Aggregated quantitative performance Table S26: Aggregated quantitative performance

plip 4.9 . . plip 12.5(4.2 18.4| 16.7 14.1 7.4 |14.2 8.9 5.9
quilt 7.0 10.4| 13.2 6.5 7.4 3.6 quilt 17.8/3.5 28.0 18.9 13.4 22.4(10.811.1 7.4
dinob 5.5 8.3|11.9 4.9 9.6 1.9 dinob  16.8/ 3.6 26.2| 34.6 13.7 7.2 |26.410.5 2.6
dinol 5.3 6.7 7.0 4.5 5.3 4.4 dinol 16.5/ 5.5 24.3| 30.3 13.6 9.6 |18.718.0 9.2
vitb 3.9 52| 6.2 2.8 4.6 2.8 vitb 9.1/4.2 12,6/ 18.2 6.3 59 [12.2 7.4
vitl 5.0 7.2 4.7 8.1 2.4 vitl 12.0|3.3 18.3| 16.3 13.0 7.7 |16.2 8.2

clipb 13.8/10.216.4| 10.3 13.5 16.8 [10.5 16.2
clipl 9.7/3.5 14.1| 13.3 11.9 4.3 | 7.5 13.5

clipb 5.5
clipl 4.2

(ECE) on linear probing. (MCE) on linear probing.

Model  all nb classes magnif. cancer type Model all nb classes magnif. cancer type

2 >2 |>40x <40x <20x|breast crc multi 2 >2 |>240x <40x <20X |breast crc multi

>20x >20x%

hiboub 3.7(1.7 5.1| 3.7 4.8 2.2 |53 2.6 2.2 hiboub 9.8 (2.8 14.8| 6.0 13.7 7.8 |8.2 14.1 4.7
hiboul 5.5|2.3 7.7|12.0 3.7 2.7 |7.1 4.1 1.4 hiboul 12.9/4.1 19.2| 26.2 8.7 8.2 |15.011.2 3.6
hopt0  4.7|2.0 6.7 | 7.9 48 23 |7.1 29 1.8 hopt0  11.9|5.7 16.3| 14.3 14.2 7.2 |12.215.1 6.6
hoptl  4.1|3.0 49| 7.8 24 34 |55 49 1.1 hoptl  17.7|/9.8 23.4| 37.1 7.5 15.9|18.813.9 3.7
midnight 3.2|1.2 4.6 6.0 3.4 0.9 (4.3 2.3 29 midnight 12.1 3.0 18.7| 12.7 19.6 2.4 |15.014.710.8
phikon 6.4(2.5 9.3|12.1 5.6 3.1 |[10.3 4.3 2.5 phikon 15.114.6 22.6| 22.8 17.7 6.1 [21.315.0 5.9
phikon2 4.6|1.3 7.0| 12.3 2.6 7.1 2.8 0.9 phikon2 11.6{2.6 18.0| 24.9 7.5 6.8 [14.7 9.0 2.2
uni 4.3]11.8 6.1 9.5 2.9 6.8 2.8 1.8 uni 10.4/3.6 15.3] 19.6 8.4 6.0 |10.8 8.7 4.7
uni2h 4.5(3.0 5.5| 7.1 4.4 4.8 5.3 2.4 uni2h 15.8/6.1 22.8/ 21.7 18.9 7.7 [19.218.0 5.9
virchow 5.5/1.8 8.1| 8.9 6.7 9.4 3.3 3.3 virchow 23.0(3.3 37.2| 22.6 23.4 22.9|25.315.2 6.6
virchow24.6(3.5 5.4 | 5.4 5.3 6.6 3.4 3.8 virchow217.7| 7.8 24.7| 28.6 15.5 12.3 |18.2 14.810.2
conch 4.3|12.0 5.9 | 83 3.7 6.3 3.6 1.7 conch 11.3/4.6 16.1| 14.2 14.7 4.9 [12.416.3 4.3
titan 4.9(1.7 7.2 | 8.6 5.7 7.3 3.5 2.8 titan 12.1/2.4 19.0| 19.5 15.0 2.8 |17.8 9.4 5.5
keep 4.71.1 7.3 | 5.8 7.0 8.3 1.9 23 keep 12.2|3.0 18.9/11.3 17.6 6.3 |[11.114.6 6.2
musk 4.5|3.1 5.5| 5.0 4.6 1.5 musk 9.6(5.6 12.4/ 9.2 11.5 7.4 (14.2 7.8 3.3

1.9 3.2

2.1 4.1
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Table S27: Aggregated quantitative performance Table S28: Aggregated quantitative performance

(ACE) on linear probing. (TACE) on linear probing.
Model  all nb classes magnif. cancer type Model  all nb classes magnif. cancer type
2 >2 |>40x <40x <20 x|breast crc multi 2 >2 |>40x <40x <20 X |breast crc multi
>20x >20x
hiboub 3.8(1.7 5.3| 4.4 4.8 2.2 |57 2.7 2.2 hiboub 3.8|1.7 5.3 | 4.4 4.8 2.2 |57 2.7 2.2
hiboul 5.3|2.3 7.5|11.7 3.6 2.7 |6.8 4.1 1.4 hiboul 5.3|2.3 7.5| 11.7 3.6 2.7 |6.8 4.1 1.4
hopt0  4.6(1.8 6.7| 7.8 4.8 2.1 |7.1 2.6 1.7 hopt0  4.6/1.8 6.7| 7.8 48 2.1 |7.1 2.6 1.7
hoptl 3.9(3.04.7| 7.1 24 3.5 |51 4.7 1.1 hoptl1 3.9(3.04.7| 7.1 24 35 |51 47 1.1
midnight 3.4|1.3 4.8 | 6.5 3.5 0.9 | 4.6 2.5 2.7 midnight 3.4|1.3 4.8 | 6.5 3.5 0.9 |4.6 2.5 2.7
phikon 6.2(2.6 8.9|12.2 5.1 3.2 |9.8 4.3 2.5 phikon 6.2|2.6 8.9|12.2 5.1 3.2 |9.8 4.3 25
phikon2 4.6(1.2 7.1|12.4 2.5 14 |7.1 2.6 0.8 phikon2 4.6/1.2 7.1| 124 25 1.4 |7.1 2.6 0.8
uni 4.3|]1.6 6.3| 9.7 29 2.1 [6.9 2.6 1.8 uni 4.3(1.6 6.3| 9.7 2.9 2.1 [6.9 2.6 1.8
uni2h  4.6(3.1 5.7| 7.3 4.4 2.8 |49 53 24 uni2h  4.6|3.1 5.7 7.3 4.4 28 |49 5324
virchow 5.3|1.8 7.7| 85 6.3 1.6 |8.8 3.3 3.3 virchow 5.3|1.8 7.7| 8.5 6.3 1.6 |8.8 3.3 3.3
virchow2 5.0(3.7 5.8 | 5.5 5.8 3.4 | 7.1 3.6 3.9 virchow2 5.0(3.7 5.8 | 5.5 5.8 3.4 |7.1 3.6 3.9
conch 4.0{1.9 54| 79 34 1.8 |57 3.4 1.7 conch 4.0{1.9 54| 7.9 34 1.8 |57 3.4 1.7
titan 5.0(2.1 70| 87 55 1.5 | 7.1 4.1 2.8 titan 5.0{2.1 7.0| 87 55 1.5 |7.1 4.1 2.8
keep 4.8/1.3 74| 5.6 7.1 1.4 |83 2123 keep 4.8{1.3 74| 56 7.1 1.4 |83 2123
musk  4.6/3.0 5.7| 54 4.7 3.8 |6.5 43 1.5 musk  4.6/3.0 5.7| 54 4.7 3.8 |6.5 4.3 1.5
plip 5.0(1.8 73| 86 4.7 26 |6.5 3.4 3.2 plip 5.0{1.8 7.3| 86 4.7 26 |6.5 3.4 3.2
quilt 7.1|2.110.6/ 13.2 6.7 3.0 | 7.6 3.7 4.0 quilt 7.1{2.110.6| 13.2 6.7 3.0 | 7.6 3.7 4.0
dinob 5.5[1.9 8.0 11.8 4.5 1.9 |9.2 2.4 1.6 dinob 5.5[1.9 8.0|11.8 45 1.9 |9.2 24 1.6
dinol 5.1(3.2 6.5| 6.9 4.3 4.8 |50 4.4 5.5 dinol 5.113.2 6.5 6.9 4.3 4.8 |50 4.4 5.5
vitb 3.9(2.2 51| 59 2.8 3.8 |45 3.129 vitb 3.9/2.2 5.1 59 2.8 3.8 |45 3.1 29
vitl 5.0(2.1 71| 9.2 47 23 |81 25 1.3 vitl 5.02.1 71| 9.2 4.7 23 |81 2.5 1.3
clipb 5.6/4.1 6.7| 6.4 5.7 5.0 |7.7 5.1 1.3 clipb 5.6/4.1 6.7| 6.4 5.7 5.0 |7.7 5.1 1.3
clipl 4.4(1.7 6.2| 7.5 44 1.9 |4.1 40 3.5 clipl 4.4(1.7 6.2| 7.5 4.4 1.9 |4.1 4.0 3.5
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Table S29: Aggregated quantitative performance (SCE) on linear probing.

Model  all nb classes magnif. cancer type
2 >2 [>40x <40x <20X |breast crc multi
>20x
hiboub 4.0(1.2 6.0 2.7 6.0 2.4 |4.1 4.8 2.5
hiboul 5.6(1.8 8.4|11.2 4.2 3.2 |6.8 4.7 2.0
hoptO 5.4|2.2 7.7| 7.1 6.5 2.7 | 5.8 6.1 3.5
hoptl  6.0{3.0 8.1 |11.3 3.1 5.6 |6.2 4.7 1.8
midnight 4.6|1.1 7.1 | 5.5 7.0 0.9 |5.1 4.8 6.2
phikon 6.9(1.6 10.7| 10.5 84 2.4 |9.3 7.6 2.8
phikon2 4.4/0.9 6.9|10.2 2.6 2.2 |6.2 2.41.1
uni 4.6/1.3 70| 9.8 29 3.0 |56 2.8 2.2
uni2h  6.4(2.3 9.3| 86 7.5 3.3 |69 7.5 3.2
virchow 8.3|1.213.4| 9.8 9.7 5.4 |10.6 5.6 4.3
virchow2 6.6(2.9 9.2| 9.0 6.4 4.9 |7.1 3.9 6.2
conch 4.6/1.6 6.7| 6.8 53 2.0 |52 5.724
titan 5.4/1.0 85| 87 6.8 1.1 | 7.7 44 3.2
keep 5.110.9 81| 5.7 69 24 |52 44 3.9
musk 4.1/12.0 56| 42 51 29 |59 3.4 1.9
plip 5.2(1.3 80| 80 54 29 |6.1 3.1 3.6
quilt 7.4(1.311.71 9.4 6.6 6.9 |54 4.2 4.4
dinob  6.5|1.210.2| 14.2 5.3 2.0 |10.6 3.3 1.6
dinol 6.5[2.0 9.6 10.9 5.6 4.2 |6.5 5.7 5.7
vitb 3.71.453| 69 25 2.7 |45 2529
vitl 5.2(1.3 81| 83 54 2.7 |7.1 3.0 1.6
clipb 5.6(3.2 73| 5.3 56 5.8 |54 5.3 1.5
clipl 4412 6.7 6.8 5.1 1.7 |3.3 5.2 3.5

Table S30: Aggregated quantitative performance Table S31: Aggregated quantitative performance

(Drop in Balanced accuracy) on adversarial attack (Drop in Fl-score) on adversarial attack (e

(€=0.25-1073).

Model all nb classes magnif. cancer type

2 >21025 0.5 1.0 |breast crc multi
hiboub 7.1|7.2 7.1/6.7 84 59|58 9.2 9.6
hiboul 5.5|5.6 5.5[/6.3 5.1 5.5|5.3 7.0 6.2
hopt0 5.4(6.2 4.7/5.3 5.0 5.8|5.6 5.7 6.2
hopt1 9.8112.9 7.6 9.2 7.6 13.0/11.1 13.2 8.2
midnight 5.7 5.4 6.0(8.5 3.9 59|6.4 7.4 3.9
phikon 5.0(5.4 4.7|4.8 5.4 4.7|4.8 6.6 5.2
phikon2 6.2|7.0 5.6[6.0 5.7 7.0| 5.5 9.2 5.7
uni 5.2(5.9 4.7/50 5.5 49|4.6 6.5 6.7
uniZh 4.3(5.1 3.8/4.7 3.9 45|3.2 7.0 5.1
virchow 5.3 (5.4 5.2(5.7 5.4 4.8[4.8 7.4 5.8
virchow2 3.94.3 3.7(3.1 4.3 4.0| 4.0 3.7 5.5
conch 85[9.4 7.8/7.3 82 9.7|8.1 10.0 9.6
titan 12.4/14.211.1]11.012.313.6| 9.0 16.916.6
keep 5.2(6.4 4446 5.5 5.3|4.0 7.3 7.7
musk 13.9|15.912.5|11.414.714.8/11.5 17.720.1
plip 15.119.212.2/9.9 15.618.5[13.3 20.317.3
quilt 13.4{15.412.0{10.313.116.2(11.6 15.918.4
dinob 11.8|12.111.512.312.710.2|11.5 12.413.4
dinol 11.0/12.010.3| 8.5 13.110.2| 9.9 14.112.7
vitb 69|66 7.1|/6.8 7.3 6.5|6.0 84 7.7
vitl 6.6/59 7.1|7.8 6.6 5.9|6.3 81 7.0
clipb 22.8|27.819.2(15.424.626.0[18.6 26.928.2
clipl 25.1|26.324.2(21.427.624.8{24.5 27.927.8

0.25-1073).

Model all nb classes magnif. cancer type

2 >21025 0.5 1.0 [breast crc multi
hiboub 7.7|7.7 7.7|7.3 88 6.8]| 6.6 9.3 10.2
hiboul 5.8|6.1 5.6|6.3 5.3 6.2| 5.7 7.2 6.3
hopt0 5.9(7.2 5.0[5.3 5.2 7.2|/6.5 58 6.3
hoptl 10.3|13.4 8.0|9.5 7.7 14.0/11.9 13.2 8.3
midnight 5.85.2 6.2(8.9 3.9 6.0/ 6.1 7.5 4.0
phikon 5.1|5.7 4.7|4.7 54 5.1|5.0 6.5 5.4
phikon2 6.4|7.2 5.8|6.1 5.8 7.2|5.5 9.2 5.9
uni 5.4(6.3 4.8[(4.8 5.7 55(4.9 6.5 6.9
uni2h 4755 4.1|49 42 5.1|3.5 7.3 5.3
virchow 5.3 (5.5 5.2|5.6 54 5.1|4.8 7.1 6.1
virchow2 4.0(4.6 3.6(3.1 4.4 4.2| 4.1 3.8 5.7
conch 8.8(9.9 8.0|7.5 84 10.2| 85 10.0 9.9
titan 12.8(14.411.7|]11.712.414.1| 9.6 16.617.3
keep 5.3|16.2 4645 5.9 5.2(4.0 7.3 8.1
musk 14.1|116.012.8/11.515.014.9{11.2 18.220.9
plip 15.5/18.813.2(10.915.718.8/13.9 19.318.8
quilt 14.516.413.2(11.314.017.6/12.7 15.8 20.6
dinob 11.811.911.7|]12.212.810.2{11.2 11.914.5
dinol 11.2|112.210.5/ 8.4 13.310.8/10.2 13.6 14.0
vitb 7.0(6.8 7.2|6.9 7.3 6.8 6.2 8.3 8.2
vitl 6.8/6.0 74|77 6.9 6.1|6.5 80 7.5
clipb 23.7|129.019.9(16.425.527.1/19.8 26.7 31.1
clipl 25.6(26.325.1(22.727.625.3/25.0 26.8 29.9
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Table S32: Aggregated quantitative performance Table S33: Aggregated quantitative performance
(Drop in Balanced accuracy) on adversarial attack (Drop in Fl-score) on adversarial attack (e

(e=15-107%). 1.5-1073).

Model all  nb classes magnif. cancer type Model all  nb classes magnif. cancer type

2 >2 1025 0.5 1.0 |breast crc multi 2 >2 1025 0.5 1.0 |breast crc multi
hiboub  53.0(62.5 46.3({40.8 56.4 58.1|54.3 58.0 57.9 hiboub  52.8(60.4 47.3|42.7 54.5 58.2|54.4 55.3 58.7
hiboul  39.9|41.1 39.1{39.1 39.9 40.5[40.2 45.8 42.4 hiboul ~ 40.0{40.8 39.4|39.1 39.9 40.8|39.8 44.4 44.3
hopt0  44.4|55.7 36.3|34.4 41.8 55.1|48.4 45.4 46.6 hopt0  44.2(55.0 36.4|35.0 41.1 54.9(48.7 43.1 47.6
hopt1 58.4|71.2 49.2|51.8 52.4 70.8|69.4 59.0 54.9 hopt1 58.0|70.5 49.0|51.6 51.0 71.4|69.5 56.4 55.6
midnight 35.7(37.2 34.5(37.9 29.4 41.9/40.5 39.1 26.4 midnight 36.4|37.4 35.6|38.7 29.9 42.6|40.6 39.0 28.1
phikon 34.9|41.1 30.6|31.4 35.8 36.6|35.1 40.6 39.3 phikon  34.4{40.0 30.5|30.5 35.4 36.1|34.5 38.3 41.4
phikon2 46.0|54.9 39.6(34.9 43.8 57.0{49.5 51.8 42.2 phikon2 45.6(54.0 39.7[35.9 43.1 56.2|48.8 49.6 44.0
uni 42.9156.9 32.9(31.3 42.7 51.8]45.5 45.4 51.1 uni 42.8(56.0 33.4(31.6 41.7 52.5|45.7 43.5 51.5
uni2h  33.7(39.7 29.4|30.7 33.7 35.9(32.3 42.0 39.1 uni2h  34.3|40.0 30.3|31.1 34.4 36.7|32.7 41.5 40.7
virchow 41.5(49.5 35.8(36.4 39.1 48.2|45.6 45.5 42.3 virchow 41.1{48.3 35.9(36.9 38.6 47.2|45.0 43.4 44.0
virchow2 33.2|44.1 25.3(26.1 31.5 40.5|36.4 32.4 42.0 virchow2 33.6(45.0 25.6|25.6 31.6 42.3|37.5 31.0 43.2
conch  55.9(60.7 52.5|53.8 53.7 60.1|52.4 62.6 57.2 conch  55.0(58.7 52.3|54.2 52.4 58.8(52.2 59.5 57.8
titan 77.0182.9 72.8|71.5 74.6 84.0|76.7 79.1 74.5 titan 75.380.6 71.5(70.9 72.1 82.6|74.9 76.5 74.2
keep 44.3]53.2 37.9|38.7 44.4 48.2|46.0 46.6 52.0 keep 44.7(52.9 38.8(38.0 45.0 49.3|47.0 45.4 53.1
musk 70.2|81.7 62.0{60.7 69.2 78.6|68.3 76.1 74.9 musk 69.3/80.1 61.6/61.5 67.9 76.8|/67.0 74.1 76.2
plip 56.6(66.2 49.7(40.7 60.6 63.5|50.7 68.3 61.2 plip 56.9(65.0 51.0(43.3 58.9 64.5|52.8 64.9 61.0
quilt 51.9(58.2 47.4|40.9 55.4 55.9|51.2 56.9 58.8 quilt 52.7(57.2 49.5(44.7 55.4 55.5/52.2 55.0 60.9
dinob  66.7|74.6 61.1|63.1 65.5 71.0/67.2 70.2 64.0 dinob  65.8(72.9 60.7(63.3 63.1 71.2|66.4 66.7 64.5
dinol 65.6(74.2 59.5|59.2 65.9 70.0/65.3 70.4 64.1 dinol 64.5|72.2 59.1(60.0 63.2 69.6|65.5 66.1 64.1
vitb 48.0(53.4 44.2|43.9 45.8 54.0|49.6 52.2 43.5 vitb 46.8(52.1 43.1]43.9 43.9 52.8|48.2 49.7 45.2
vitl 44.1|47.6 41.7|39.3 42.8 49.5(48.0 45.6 40.3 vitl 44.0(47.1 41.9(39.7 42.2 49.7|47.5 44.9 42.4
clipb 61.8(72.9 53.8|48.4 61.9 71.6|58.4 67.6 61.6 clipb 60.4(70.3 53.4]49.0 59.9 69.6|57.3 63.2 63.5
clipl 68.9|77.6 62.7|59.2 66.2 79.6/67.6 72.1 65.8 clipl 67.8]75.7 62.1]59.2 63.9 78.9|67.1 68.7 66.4

Table S34: Aggregated quantitative performance Table S35: Aggregated quantitative performance
(Drop in Balanced accuracy) on adversarial attack (Drop in Fl-score) on adversarial attack (e

(€=35-10"%). 35-1073).

Model all  nb classes magnif. cancer type Model all  nb classes magnif. cancer type

2 >21025 05 1.0 |breast crc multi 2 >2 (025 0.5 1.0 |breast crc multi
hiboub 78.8|86.1 73.6|67.6 78.5 87.5|76.9 79.9 78.6 hiboub  78.2{85.5 73.1|68.1 77.0 87.4|76.6 78.3 80.2
hiboul 76.1|83.3 70.9|68.2 76.1 81.9|77.4 77.7 76.1 hiboul 75.0{81.6 70.2|69.3 73.7 80.8|77.0 74.6 76.2
hopt0  79.0|87.5 72.9|68.4 78.2 87.8|77.5 80.1 80.9 hopt0  78.4|85.9 73.1(69.4 76.7 87.3|77.8 77.6 81.2
hopt1 81.9(88.4 77.3|75.7 81.1 87.6/82.7 81.5 83.5 hoptl 81.1|87.2 76.8|75.6 79.3 87.6(82.1 79.3 84.2
midnight 67.6|72.8 63.9|56.8 64.6 79.4|72.5 69.859.5 midnight 67.7|72.3 64.4|57.8 64.3 79.4|72.4 68.760.6
phikon 73.6|81.9 67.7|63.0 75.4 79.3|71.5 74.7 80.7 phikon 72.9(80.5 67.4|62.6 74.3 78.8|70.6 72.7 81.2
phikon2 75.5|83.7 69.7|62.1 76.3 84.7|73.1 76.8 81.3 phikon2 74.1(82.5 68.1]60.3 75.1 83.2|71.5 75.3 82.1
uni 78.4|87.4 72.0(69.2 77.5 86.5|78.5 78.3 80.2 uni 77.886.5 71.6(69.2 76.2 86.2|78.3 75.8 81.6
uni2h  77.5|86.6 71.0|68.0 78.7 83.1|81.6 76.9 81.2 unizh  76.7|85.2 70.6(68.1 77.0 82.8(81.0 75.0 81.3
virchow 74.6|83.4 68.3|65.4 73.4 83.0|73.9 76.6 76.7 virchow 73.8(81.6 68.2|65.5 72.1 82.1|73.7 74.7 76.3
virchow2 73.8(83.7 66.8(65.4 76.1 77.3|75.8 75.1 79.5 virchow2 72.8(82.0 66.2|64.8 74.8 76.2|75.0 72.7 79.6
conch  80.6(84.6 77.7|71.8 79.9 88.0/80.8 80.6 75.1 conch  79.8|83.6 77.1|72.2 78.9 86.7|80.3 78.6 77.0
titan 82.0(86.0 79.2|75.4 80.3 89.2|82.7 81.4 77.7 titan 80.7|84.5 78.0(75.0 77.9 88.5|81.1 78.9 78.6
keep 78.9(85.1 74.5|69.8 79.7 84.8|79.0 79.7 78.9 keep 78.0(83.6 74.1|70.2 77.9 84.2|78.2 77.1 80.1
musk 78.7(83.6 75.2|73.9 76.3 85.2|78.4 79.4 75.8 musk 77.9(82.1 74.8|75.1 75.0 83.4|77.1 77.9 77.6
plip 70.7(80.9 63.5|57.4 70.3 81.2|67.9 76.0 68.9 plip 69.9(78.7 63.7[58.5 69.2 79.4|67.5 73.3 70.0
quilt 68.9(78.1 62.3|57.3 69.8 76.5/68.5 73.9 68.5 quilt 68.4|77.0 62.3]58.8 68.3 75.7/68.5 71.3 69.7
dinob  75.6|82.6 70.5(69.7 71.7 84.8|75.9 79.1 67.8 dinob  74.9|81.3 70.2{70.1 70.0 84.5|75.4 76.4 69.3
dinol 75.8(82.4 71.1|69.7 73.2 83.7|75.6 79.8 68.8 dinol 75.181.2 70.8|70.1 71.5 83.5|75.8 76.3 70.4
vitb 71.0(78.7 65.6|65.2 68.7 78.4|69.5 75.7 66.8 vitb 69.6|77.1 64.2(64.9 66.8 76.5|67.9 72.7 68.5
vitl 71.6|79.9 65.7|63.9 68.6 81.2|70.9 74.4 68.3 vitl 70.4|77.8 65.0(63.5 67.1 79.6/69.5 71.4 69.7
clipb 67.0/78.159.1/54.8 65.6 78.1|63.7 74.8 63.4 clipb 65.6|75.3 58.7/55.363.3 76.3(62.5 70.4 65.0
clipl 71.8|79.6 66.2|62.5 69.7 81.2|70.3 75.3 67.8 clipl 70.8]78.1 65.6/62.2 68.1 80.7|70.0 72.5 69.2
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(a) uni2h

Query 0. . . 0.69

(b) keep

Figure S9: Image retrieval: Qualitative samples (query + top-10 with cosine similarity) on bach.
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(b) keep

Figure S10: Image retrieval: Qualitative samples (query + top-10 with cosine similarity) on bracs.
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0.796

(b) keep

Figure S11: Image retrieval: Qualitative samples (query + top-10 with cosine similarity) on break-h.
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(a) uni2h

el
0.807

Figure S12: Image retrieval: Qualitative samples (query + top-10 with cosine similarity) on crc.
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Figure S13: Image retrieval: Qualitative samples (query + top-10 with cosine similarity) on ccrcc.
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0.889

(b) keep

Figure S14: Image retrieval: Qualitative samples (query + top-10 with cosine similarity) on esca.
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(b) keep

Figure S15: Image retrieval: Qualitative samples (query + top-10 with cosine similarity) on mhist.
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(b) keep

Figure S16: Image retrieval: Qualitative samples (query + top-10 with cosine similarity) on tcga-crc.
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Figure S17: Image retrieval: Qualitative samples (query + top-10 with cosine similarity) on tcga-tils.
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(b) keep

Figure S18: Image retrieval: Qualitative samples (query + top-10 with cosine similarity) on fcga-
unif.
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(a) uni2h
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<

(b) keep

Figure S19: Image retrieval: Qualitative samples (query + top-10 with cosine similarity) on wilds.
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Figure S20: Alignment scoring (Mutual knn) on bach.
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Figure S21: Alignment scoring (Mutual knn) on bracs.
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Figure S22: Alignment scoring (Mutual knn) on break his.
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Figure S23: Alignment scoring (Mutual knn) on ccrcc.
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Figure S24: Alignment scoring (Mutual knn) on crc.
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Figure S25: Alignment scoring (Mutual knn) on esca.
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Figure S26: Alignment scoring (Mutual knn) on mhist.
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0.0

Figure S27: Alignment scoring (Mutual knn) on patch camelyon.
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Figure S28: Alignment scoring (Mutual knn) on tcga crc msi.
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Figure S29: Alignment scoring (Mutual knn) on tcga tils.

65



midnight
phikon
virchow?2
conch
titan
inob

virchow
keep

hiboub
hiboul
hopt0
hoptl
phikon2
uni
uni2h
rr}_usk
pli
3uﬂt
dinol
vitb

vitl
clipb
clipl

hiboub
hiboul
o
op
midnight 0.4
hikon
phikon2
uni
uni2h
virchow
virchow?2
conch
titan
kee 0.2
muls_
pli
quiﬁ
dinob
dinol 0.1
vitb
vitl
clipb
clipl

0.0

Figure S30: Alignment scoring (Mutual knn) on tcga uniform.
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Figure S31: Alignment scoring (Mutual knn) on wilds.
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Table S36: Quantitative performance (Balanced accuracy) on knn classification.

Model

hiboub

hiboul

hopt0

hopt1

midnight

phikon

phikon2

uni

uni2h

virchow

virchow2

conch

titan

keep

musk

plip

quilt

dinob

dinol

vitb

vitl

clipb

clipl

bach
82.9
[77.1,
88.3]
76.4
[69.7,
83.1]
67.0
[59.3,
74.6]
1.7
[64.5,
78.8]
86.3
[80.7,
91.5]
57.2
[48.5,
65.8]
54.8
[45.8,
63.7]
72.9
[65.5,
79.8]
87.7
[83.0,
92.4]
55.7
[46.7,
64.4]

72.2]
67.4
[59.5,
75.0]
57.6
[49.0,
65.8]
59.4
[51.6,
67.1]
48.5
[40.1,
56.6]
56.2
[48.1,
64.0]

bracs
58.8
[55.1,
62.3]
57.6
[53.7,
61.2]
54.4
[51.0,
57.9]
57.2
[53.8,
60.8]
52.9
[49.4,
56.2]
50.6
[46.7,
54.3]
49.1
[45.6,
52.6]
57.3
[53.6,
60.8]
57.1
[53.7,
60.6]
52.7
[48.9,
56.3]
57.6
[54.1,

[56.3,

[54.1,
60.3]
59.1
[55.6,
62.5)
49.7
[46.2,
53.2]
53.4
[50.1,
56.9]

[43.3,
50.2]
50.4
[47.0,
53.6]
49.0
[45.5,
52.4]
49.3
[45.8,
52.9]
45.7
[42.2,
49.1]
49.1
[45.5,
52.6]

break-h
60.4
[55.1,
65.6)
65.7
[60.1,
71.3]
82.0
[77.1,
86.8]
T
[72.0,
83.1]
56.7
[50.5,
62.9]
64.5
[59.1,
69.8]
49.7
[44.1,
55.7]
78.6
[73.4,
83.6]
76.7
[71.1,
82.1]
54.1
[48.9,
59.3]

[68.0,
79.2]
80.1
[75.0,
85.0]

66.8]
61.7
[56.6,
67.0]
53.3
[47.9,
58.7]
64.1
[58.0,
70.1]
52.6
146.7,
58.8]
50.2
[44.9,
55.9]

ccree
80.0
[79.1,
80.8]
76.5
[75.6,
77.4]
91.1
[90.5,
91.8]
93.0
[92.4,
93.6]
91.3
[90.6,
92.0]
86.4
185.7,
87.2]
79.2
[78.2,
80.1]
88.2
[87.4,
88.8]
92.2
[91.6,
92.8]
86.2
[85.4,
87.0]

[90.9,

[87.3,
88.8]
93.6
[93.0,
94.1]
82.3
[81.4,
83.2]
76.0
[75.0,
77.0]
73.3
[72.3,
74.4]

[76.3,
78.1]
7.7
[76.7,
78.6]
67.1
[65.9,
68.2]
72.2
[71.1,
73.3]
69.2
[68.1,
70.2]
67.9
[66.7,
69.0]

cre
93.4
[92.7,
94.0]
91.6
[90.9,
92.3]
93.3
[92.7,
94.0]
92.6
[91.9,
93.3]
94.3
[93.7,
94.9)
93.3
[92.7,
94.0]
92.3
[91.6,
92.9]
93.8
[93.1,
94.4]
95.3
[94.8,
95.9]
93.6
[93.0,
94.2]
94.7
[94.1,
95.3]
94.4
[93.7,
94.9]
93.3
[92.7,
93.9]
92.2
[91.4,
92.9]
93.1
[92.4,
93.7]
92.7
[92.0,
93.3]
92.6
[92.0,
93.3]
87.6
[86.8,
88.4]
87.0
[86.2,
87.8]
88.6
[87.9,
89.5]
90.0
[89.2,
90.8]
83.6
[82.7,
84.4]
86.6
[85.8,
87.6]

esca

80.4
[79.9,
80.9]
77.1
[76.6,
77.6)
83.6
[83.1,
84.0]
85.2
[84.8,
85.6]
81.4
[81.0,
81.8]
79.3
[78.9,
79.8]
77.6
[77.1,
78.0]
84.3
[83.9,
84.7]
85.5
[85.1,
85.9]
82.7
[82.3,
83.1]
87.9
[87.5,
88.4]
80.9
[80.4,
81.3]
80.8
[80.3,
81.3]
86.2
[85.8,
86.7]
77.4
[76.9,
77.9)
59.7
[59.3,
60.2]
57.5
[57.1,
57.9]
65.0
[64.5,
65.5]
65.1
[64.6,
65.7]
58.5
[58.0,
59.0]
62.8
[62.4,
63.3]
54.0
[53.6,
54.5]
60.0
[59.5,
60.5]

mbhist
63.8
[60.7,
66.9]
74.9
[72.1,
77.7)
74.1
[71.3,
77.0]
74.7
[71.7,
77.6]
69.2
[66.1,
72.2]
67.1
[64.2,
70.1]
66.1
[63.0,
69.1]
71.0
[68.1,
73.8]
70.1
[67.2,
72.9]
68.9
[65.9,
72.0]

[71.0,

[67.7,

[64.6,
70.5]
70.8
[67.8,
73.6)
62.1
[59.0,

(77.7,
83.2]
68.2
(65.2,
71.1]
69.7
[66.6,
72.6)
66.6
[63.6,
69.6]
62.2
[59.2,
65.4]

pcam
91.9
[91.6,
92.1]
91.1
[90.8,
91.4]
89.3
[89.0,
89.6]
90.7
[90.4,
91.0]
88.1
[87.8,
88.4]
87.5
[87.2,
87.9]
82.6
[82.2,
83.0]
89.8
[89.5,
90.1]
93.4
[93.1,
93.7]
90.0
[89.6,
90.3]

[89.5,

[87.4,
88.1]
90.2
[89.9,
90.5]
85.6
85.2,
85.9]

[83.6,

78.9]
79.1
[78.7,
79.6]
78.6
[78.2,
79.0]
81.1
[80.7,
81.5]

tcga-cre
65.5
[64.8,
66.2]
67.6
[66.9,
68.3]
69.0
[68.3,
69.7]
70.4
[69.7,
71.1]
64.9
[64.2,
65.6)
61.6
[60.8,
62.3]
60.6
[59.8,
61.3]
66.6
[65.9,
67.3]
68.7
[68.0,
69.4]
66.0
[65.2,
66.7]
68.6
[67.9,
69.3]
66.5
[65.8,
67.2]
67.1
[66.4,
67.8]
67.4
[66.8,
68.1]
65.2
[64.5,
66.0)
61.3
[60.5,
62.0]
61.1
[60.4,
61.7]
63.6
[62.9,
64.3)
62.7
[62.0,
63.5]
59.5
[58.8,
60.3]
63.2
[62.5,
63.9]
58.4
[57.7,
59.2]
59.2
[58.5,
59.9]

tega-tils tcga-unif wilds

84.8
(84.4,
85.3]
83.4
(82.9,
83.8]
86.8
(86.4,
87.2]
86.1
85.6,
86.5]
86.4
(86.0,
86.8]
82.8
(82.3,
83.3]
78.5
[78.0,
79.0]
86.6
86.1,
87.0]
87.6
87.2,
88.0]
87.1
86.7,
87.6]

80.7]
81.8
(81.4,
82.3]
75.5
[75.1,
76.0]
78.6
[78.1,
79.0]

61.1
[60.6,
61.6]
64.3
[63.8,
64.8]
72.6
[72.1,
73.0]
76.6
[76.1,
77.1]
76.9
(76.4,
77.4]
61.8
[61.3,
62.4]
68.2
[67.7,
68.7]
67.9
[67.4,
68.4]
74.5
[74.0,
75.0]
61.5
[61.0,
62.0]

(66.7,
67.7]
53.0
[52.5,
53.5]
44.6
[44.2,
45.1]

35.8]
36.4
(35.9,
36.8]
34.0
(33.6,
34.5]
37.7
(37.2,
38.2]
31.9
(31.4,
32.3]
36.2
(35.8,
36.7]

97.7
[97.6,
97.8]
88.3
[88.1,
88.5]
97.9
[97.8,
98.0]
98.4
[98.3,
98.5]
95.0
[94.8,
95.1]
89.3
[89.1,
89.5]
91.0
[90.9,
91.2]
97.8
[97.7,
97.9]
98.0
[98.0,
98.1]
97.5
[97.4,
97.6]
97.6
[97.5,
97.7]
95.1
[94.9,
95.2]
94.1
[93.9,
94.2]
97.0
[96.9,
97.1]
95.5
[95.3,
95.6]
94.0
[93.8,
94.2]
94.3
[94.1,
94.4]
87.1
[86.8,
87.3]
90.3
[90.1,
90.5]
86.6
[86.4,
86.9]
90.2
[90.0,
90.4]
88.3
[88.1,
88.6]
90.6
[90.4,
90.8]

68



Table S37: Quantitative performance (F1-score) on knn classification.

Model bach  bracs break-h ccrec  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds
79.5 56.9 62.6 76.1 929 769 63.8 91.8 61.6 87.5 62.4 97.7
hiboub [72.1, [52.8, [56.1, [75.0, [92.2, [76.6, [60.7, [91.5, [61.0, [87.1, [61.8, [97.6,

86.0] 60.6] 68.7] 77.2] 93.5] 77.3] 66.9] 92.1] 62.2] 87.9] 62.9]  97.8]
73.6 56.2 66.5 71.5 91.0 73.8 755 91.0 62.7 86.6 65.4 88.2
hiboul [66.1, [52.2, [61.0, [70.4, [90.3, [73.4, [72.7, [90.7, [62.1, [86.3, [64.9, [88.0,
80.6] 59.8] 71.7] 72.6] 91.7] 74.2] 78.3] 91.3] 63.3] 87.0] 66.0]  88.4]
65.6 52.2 81.9 90.5 93.1 82.1 73.2 89.3 62.4 89.2 73.2 97.9

hopt0 [57.0, [48.4, [77.1, [89.8, [92.4, [81.7, [70.3, [88.9, [61.8, [88.9, [72.7, [97.8,
73.6] 55.9] 86.3] 91.2] 93.8] 82.4] 76.1] 89.6] 63.0]  89.6] 73.7]  98.0]
68.3 55.0 80.3 92.3 926 84.4 749 90.6 64.1 88.1 77.4 98.4
hopt1 [59.7, [51.1, [75.0, [91.6, [91.9, [84.0, [71.9, [90.3, [63.5, [87.7, [76.9, [98.3,
75.8] 58.7) 84.9] 93.0] 93.3] 84.8] 77.7] 90.9] 64.7]  88.5] 77.8]  98.5]
84.3 50.2 58.1 91.6 94.2 81.4 69.2 88.0 61.9 87.6 77.4 95.0
midnight [77.8, [46.5, [51.6, [90.9, [93.5, [81.0, [66.1, [87.7, [61.3, [87.3, [77.0, [94.8,
89.9] 53.8] 64.0] 92.2] 94.8] 81.8] 72.1] 88.4] 62.6]  88.0] 77.9]  95.1]

56.7 50.0 63.2 837 93.1 770 67.6 874 57.3  85.1 63.4  89.2
phikon  [47.6, [46.0, [57.2, [82.7, [92.5, [76.6, [64.5, [87.0, [56.7, [84.7, [62.9, [88.9,
64.5] 53.7] 68.5] 84.6] 93.8] 77.3] 70.7] 87.7] 57.9] 85.5]  63.9] 89.4]
53.1 45.9 51.6 77.2 921 758 66.1 82.2 56.8 80.8 69.1 91.0
phikon2  [44.2, [42.4, [45.5, [76.1, [91.4, [75.5, [63.0, [81.8, [56.2, [80.4, [68.6, [90.8,
61.5] 49.3] 57.7] 78.2] 92.8] 76.2] 69.1] 82.6] 57.4] 81.3]  69.6] 91.2]
71.0 55.6 78.2 86.6 93.8 82.1 71.1 89.7 61.9 88.9 69.1 97.8
uni [62.1, [51.6, [72.9, [85.7, [93.1, [81.8, [68.1, [89.4, [61.3, [88.6, [68.6, [97.7,
78.4] 59.3] 83.0] 87.4] 94.4] 825 73.9] 90.0] 62.5] 89.3]  69.6] 97.9]
85.3 56.1 79.4 91.0 95.0 83.2 70.8 934 64.1 89.1 75.1 98.0

uni2h [79.4, [52.5, [74.1, [90.2, [94.4, [82.8, [67.8, [93.1, [63.5, [88.8, [74.6, [98.0,
90.8] 59.6] 83.9] 91.7] 95.6] 83.6] 73.7] 93.6] 64.7]  89.5] 75.6]  98.1]
55.2 51.3 56.2 83.8 92.5 81.8 68.4 899 61.8 88.7 62.7 97.5
vicchow — [46.0, [47.2, [49.7, [82.8, [91.9, [81.4, [65.4, [89.6, [61.2, [88.4, [62.1, [97.4,
63.3] 54.9] 62.2] 84.7] 93.2] 82.1] 71.4] 90.2] 62.4]  89.1] 63.2]  97.6]
81.6 54.9 80.3 91.1 94.3 86.6 73.5 &89.8 65.5 88.7 70.8 97.6
virchow2 [74.5, [51.0, [75.4, [90.4, [93.7, [86.2, [70.7, [89.4, [64.9, [88.3, [70.3, [97.5,
87.8] 58.5] 84.8] 91.8] 94.9] 87.0] 76.1] 90.1] 66.2]  89.0] 71.3]  97.7]
82.4 56.9 64.9 89.5 93.7 80.1 68.6 85.6 63.6 86.3 61.1 95.1
conch [76.1, [52.9, [59.4, [88.7, [93.1, [79.7, [65.6, [85.2, [62.9, [85.9, [60.6, [94.9,

88.1] 60.5] 69.9] 90.3] 94.3] 80.5] 71.7] 86.0] 64.2] 86.7]  61.6] 95.2]
80.5 59.4 76.9 87.2 929 80.7 71.4 87.6 625 87.8 62.8 94.1

titan [73.5, [55.4, [71.4, [86.4, [92.3, [80.2, [68.4, [87.3, [61.9, [87.4, [62.3, [93.9,
86.6] 62.9] 81.4] 88.0] 93.6] 81.1] 74.2] 88.0] 63.1]  88.1] 63.4]  94.2]
85.5 53.0 73.8 93.0 92.5 83.6 67.9 90.1 63.6 89.5 67.4 97.0
keep [79.3, [49.4, [68.1, [92.4, [91.8, [83.3, [64.9, [89.8, [63.0, [89.2, [66.9, [96.8,
91.2] 56.6] 78.7] 93.6] 93.2] 83.9] 70.9] 90.4] 64.2]  89.9] 67.9]  97.1]
64.3 57.8 79.4 80.2 92.8 764 71.3 854 61.6 87.9 54.4 95.4
musk [55.6, [53.9, [74.3, [79.2, [92.1, [76.0, [68.3, [85.0, [61.0, [87.5, [53.9, [95.3,

72.0] 61.3] 83.9] 81.2] 93.5] 76.8] 74.2] 85.8] 62.2] 88.2]  54.9]  95.6]
67.8 48.2 45.3 73.0 92.1 59.5 62.2 839 57.0 84.9 45.9 94.0
plip [59.4, [44.5, [40.2, [71.8, [91.4, [59.0, [59.0, [83.5, [56.4, [84.5, [45.4, [93.8,
75.5] 51.6] 49.8] 74.1] 92.8] 60.1] 65.2] 84.3] 57.6] 85.3]  46.4] 94.2]
62.2 50.7 56.5 70.5 92.1 55.3 66.4 84.0 56.9 84.8 46.5 94.3
quilt [53.2, [46.9, [50.7, [69.3, [91.4, [54.9, [63.4, [83.6, [56.4, [84.4, [45.9, [94.1,
69.9] 54.4] 62.3] 71.7] 92.8] 55.8] 69.5] 84.4] 57.5] 85.2]  47.0] 94.4]
59.7 43.7 64.1 73.1 86.7 66.7 76.4 80.6 58.2 82.5 36.5 86.9
dinob [51.4, [39.9, [58.1, [72.0, [85.9, [66.1, [73.5, [80.2, [57.6, [82.1, [36.0, [86.7,
67.2] 47.2] 69.7] 74.2] 87.6] 67.2] 79.2] 81.1] 58.7] 829  37.1] 87.2]
64.0 46.8 65.0 74.1 86.3 67.2 80.5 80.8 58.0 83.6 38.0 90.3

dinol [55.7, [43.0, [59.0, [72.9, [85.4, [66.6, [77.8, [80.4, [57.4, [83.2, [37.5, [90.1,
71.6] 50.2] 70.7] 75.2] 87.1] 67.8] 83.1] 81.2] 58.5] 84.0]  38.6] 90.5]
54.7 454 55.7 63.4 87.8 58.3 68.8 783 56.5 82.0 35.7 86.5
vitb [46.0, [41.7, [49.5, [62.2, [87.0, [57.8, [65.7, [77.9, [55.9, [81.6, [35.2, [86.3,

62.3] 49.0] 61.5] 64.6] 88.7] 58.8] 71.7] 78.8] 57.1]  82.4]  36.2] 86.8]
55.4 46.9 64.2 70.3 89.2 64.6 70.2 78.8 57.4 83.6 39.4 90.2
vitl [46.8, [42.9, [58.2, [69.1, [88.4, [64.0, [67.1, [78.4, [56.8, [83.2,  [38.8, [90.0,
63.3] 50.5] 69.7] 71.5] 90.0] 65.2] 73.2] 79.3] 58.0] 84.0]  39.9]  90.4]
45.3 42.5 54.6 65.0 &81.3 53.8 66.6 78.5 54.7 78.4 33.6 88.3

clipb [37.0, [38.9, [48.2, [63.8, [80.4, [53.3, [63.7, [78.0, [54.1, [77.9, [33.0, [88.1,
52.9] 46.0] 60.6] 66.2] 82.2] 54.4] 69.6] 78.9] 55.3] 78.9]  34.1]  88.6]
52.0 46.6 52.1 64.8 86.3 60.4 624 81.0 55.4 81.3 38.1 90.6
clipl [43.4, [42.7, [46.1, [63.6, [85.4, [59.8, [59.3, [80.6, [54.8, [80.9, [37.6, [90.4,

59.9] 50.2] 58.2] 66.0] 87.2] 60.9] 65.7] 81.5] 55.9] 81.8] 387  90.7]
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Table S38: Quantitative performance (Balanced accuracy) on linear probing.

Model

hiboub

hiboul

hopt0

hopt1

midnight

phikon

phikon2

uni

uni2h

virchow

virchow2

conch

titan

keep

musk

plip

quilt

dinob

dinol

vitb

vitl

clipb

clipl

bach
70.7
[64.2,
77.2]
79.3
[72.9,
85.6]
71.0
[62.9,
78.6)
76.1
[69.5,
82.5]
90.1
[85.4,
94.5]
70.2
[62.3,
77.8)
68.1
[60.5,
75.9]
74.7
[67.2,
81.7]
87.4
[82.3,
92.3]
67.0
[58.5,
74.8]

74.4]
71.1
[63.3,
78.7]
60.3
[51.8,
68.3]
58.4
[50.0,
66.6]
53.0
[44.6,
61.2]
66.0
[58.3,
73.7]

bracs
62.0
[58.2,
65.8]
63.0
[59.2,
66.8]
60.6
[56.7,
64.4]
65.2
[61.7,
68.8]
64.1
[60.3,
67.8]
57.5
[53.8,
61.3]
59.1
[55.5,
62.6]
59.5
[55.7,
63.4]
65.9
[62.2,
69.3]
60.1
[56.2,
64.0]
63.7
[60.2,

[56.3,

[53.3,

[47.9,
55.4]
56.9
[53.1,
60.7]
55.8
[52.0,
59.4]
52.7
[48.9,
56.6]
57.2
[53.3,
60.9]

break-h
55.8
[49.9,
61.5)
67.2
[61.8,
72.7)
62.8
[56.7,
68.6]
74.6
[68.9,
80.1]
54.3
[48.8,
59.8]
62.2
[56.6,
68.0]
53.1
[47.2,
59.1]
69.1
[63.4,
75.0]
75.4
[69.8,
80.8]
60.6
[54.8,
66.4]

81.9]
74.9
[69.5,
80.4]
63.4
[57.9,
69.3]
65.5
[59.6,
71.1]
39.1
35.1,
43.3]
51.3
[45.1,
57.2]

ccree
86.6
[85.8,
87.4]
89.2
[88.4,
89.9]
91.0
[90.3,
91.7]
92.1
[91.5,
92.8]
91.6
[90.9,
92.2]
89.7
[88.9,
90.4]
81.4
[80.7,
82.1]
91.7
[91.1,
92.4]
91.3
[90.7,
91.9]
92.1
[91.5,
92.8]

[93.2,

[87.6,
89.1]
93.4
[92.9,
94.1]
84.7
[83.8,
85.6]

[75.1,

81.1]
77.5
[76.5,
78.6]
72.8
[71.7,
74.0]
79.1
[78.1,
80.0]

cre
94.5
[93.9,
95.1]
93.8
[93.1,
94.4)
93.5
[92.8,
94.1]
94.7
[94.1,
95.3]
95.9
[95.4,
96.4]
92.9
[92.2,
93.5]
92.2
[91.5,
92.8]
93.6
[93.0,
94.3)
94.5
[93.9,
95.0]
93.5
[92.8,
94.3)
92.7
[92.0,
93.5]
94.1
[93.4,
94.7)
94.3
[93.7,
94.9)
95.0
[94.4,
95.5]
91.0
[90.2,
91.8]
88.3
[87.5,
89.1]
92.4
[91.7,
93.2]
90.3
[89.6,
91.1]
91.3
[90.5,
92.0]
91.1
[90.4,
91.9]
92.9
[92.3,
93.6)
88.4
[87.6,
89.1]
88.5
[87.8,
89.4]

esca
78.5
[77.9,
79.0]
79.3

[67.6,
68.7]

mbhist
75.8
[73.0,
78.6]
81.2
[78.6,
83.7]
83.7
[81.2,
85.9]
81.5
[79.0,
84.1]
79.6
[76.9,
82.1]
78.3
[75.7,
80.9]
79.4
[76.7,
82.1]
82.5
[79.9,
84.9]
77.9
[75.1,
80.7]
82.7
[80.2,
85.1]
84.8
(82.3,

[78.5,

[73.3,
78.9]
79.2
[76.6,
81.9]

[76.3,

79.9]
79.1
[76.4,
81.8]
77.8
[75.0,
80.4]
79.5
[76.7,
82.1]

pcam
93.4
[93.1,
93.6]
93.3
[93.1,
93.6]
93.0
[92.7,
93.3]
93.3
[93.1,
93.6]
93.6
[93.3,
93.8]
91.0
[90.7,
91.3]
90.8
[90.5,
91.1]
93.8
[93.5,
94.1]
95.0
[94.7,
95.2]
93.6
[93.4,
93.9]

[92.5,

[91.1,

[92.4,
92.9]
89.4
[89.0,
89.7]
87.9
[87.5,
88.2]
87.4
[87.0,
87.8]

[85.9,
86.7]
87.2
[86.8,
87.5]
84.7
[84.3,
85.1]
85.8
[85.4,
86.2]
82.8
[82.4,
83.2]
85.6
[85.2,
85.9]

tcga-cre
71.0
[70.3,
71.7]
75.1
[74.5,
75.8]
73.3
[72.6,
74.0]
74.9
[74.2,
75.5]
69.5
[68.7,
70.1]
68.6
[67.8,
69.3]
64.6
[63.9,
65.3]
71.0
[70.3,
71.7]
73.9
[73.2,
74.5]
71.2
[70.6,
71.9]
74.4
[73.7,
75.0]
69.1
[68.4,
69.8]
69.2
[68.5,
69.9]
71.9
[71.2,
72.5]
68.1
[67.4,
68.8]
62.4
[61.7,
63.1]
64.4
[63.7,
65.1]
66.5
[65.8,
67.2]
67.1
[66.4,
67.9]
65.5
[64.8,
66.2]
62.9
[62.1,
63.6]
60.0
[59.3,
60.6]
59.1
[58.4,
59.9]

tega-tils tcga-unif wilds

88.3
87.9,
88.7]
89.3
(88.9,
89.7]
89.5
(89.2,
89.9]
89.7
(89.3,
90.1]
89.9
(89.5,
90.3]
89.4
(89.0,
89.8]
90.1
(89.7,
90.4]
88.6
(88.2,
89.0]
89.4
(89.0,
89.8]
89.3
89.0,
89.7]

83.5]
85.6
85.1,
86.0]
81.3
(80.8,
81.7]
83.1
(82.7,
83.6]

68.7
[68.1,
69.2]
73.6
[73.1,
74.1)
78.1
(77.6,
78.5]
79.8
[79.4,
80.3]
84.2
(83.8,
84.7]
74.9
[74.4,
75.5]
76.3
[75.8,
76.7)
73.7
(73.2,
74.2)
.7
(77.2,
78.1]
73.6
[73.1,
74.1]

[76.6,

[70.9,
72.0]
64.5
(63.9,
65.1]

[53.9,
54.9]
47.1
[46.6,
47.6]
53.0
[52.5,
53.6]

97.1
[97.0,
97.2]
98.1
[98.0,
98.2]
98.7
[98.7,
098.8]
98.2
[98.1,
98.3]
98.3
[98.2,
98.3]
97.8
[97.7,
97.9]
95.8
[95.7,
95.9]
97.2
[97.1,
97.3]
98.9
[98.8,
99.0]
97.6
[97.5,
97.7]
90.1
[89.9,
90.3]
97.2
[97.1,
97.3]
96.7
[96.6,
96.8]
97.4
[97.3,
97.5]
96.0
[95.9,
96.2]
89.1
[88.9,
89.3]
94.7
[94.5,
94.8]
90.7
[90.5,
90.9]
90.3
[90.1,
90.5]
91.3
[91.1,
91.5]
92.6
[92.5,
92.8]
83.8
[83.5,
84.0]
93.2
[93.1,
93.4]
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Table S39: Quantitative performance (F1-score) on linear probing.

Model bach  bracs break-h ccrec  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds
65.6 61.7 59.6 843 939 775 765 934 66.2 89.6 70.2 97.1
hiboub [57.3, [57.8, [53.0, [83.4, [93.3, [77.0, [73.7, [93.1, [65.6, [89.3, [69.6, [97.0,

73.3] 65.5] 65.5] 85.2] 94.5] 78.1] 79.2] 93.6] 66.8]  89.9] 70.7]  97.2]
76.5 62.7 69.4 88.4 93.0 77.5 81.3 93.3 68.1 90.3 75.2 98.1
hiboul [69.1, [58.8, [63.9, [87.6, [92.3, [77.0, [78.8, [93.0, [67.5, [90.0, [74.7, [98.0,
82.9] 66.5] 74.5] 89.2] 93.7] 77.9] 83.8] 93.6] 68.7]  90.6] 75.6]  98.2]
69.7 61.1 66.0 90.8 93.5 83.5 82.8 93.0 67.3 91.0 79.3 98.7
hopt0 61.2, [57.3, [59.5, [90.1, [92.9, [83.1, [80.3, [92.7, [66.7, [90.7, [78.8, [98.7,
77.1] 64.7) 71.8] 91.5] 94.2] 84.0] 85.1] 93.3] 67.9]  91.3] 79.7]  98.8]
72.5 64.3 76.0 91.7 94.6 87.1 82.0 93.3 67.9 91.0 81.0 98.2
hopt1 [64.4, [60.6, [70.4, [91.0, [93.9, [86.7, [79.5, [93.1, [67.3, [90.7, [80.5, [98.1,

79.7] 67.9] 80.9] 92.4] 95.2] 87.5] 84.5] 93.6] 68.5] 91.3]  81.4] 98.3]
87.9 63.8 56.7 90.8 95.6 86.2 80.2 93.5 65.6 91.0 85.2 98.3
midnight [82.0, [59.9, [49.8, [90.1, [95.0, [85.7, [77.5, [93.3, [65.0, [90.7, [84.8, [98.2,
93.2] 67.4] 62.7] 91.5] 96.1] 86.6] 82.6] 93.8] 66.2] 91.3]  85.6] 98.3]
69.3 56.9 60.0 89.8 92.1 76.7 781 90.9 63.1  90.1 76.6  97.8
phikon  [61.2, [52.9, [53.8, [89.1, [91.4, [76.3, [75.4, [90.6, [62.5, [89.8, [76.1, [97.7,
76.4] 60.6] 65.5] 90.6] 92.7] 77.1] 80.7] 91.2] 63.7]  90.4] 77.1]  97.9]
64.7 58.2 53.0 76.7 92.0 77.3 79.2 90.8 61.1 91.0 7.7 95.8
phikon2  [56.3, [54.3, [46.7, [75.7, [91.3, [76.9, [76.6, [90.5, [60.5, [90.7, [77.3, [95.7,

72.4] 61.7) 59.1] 77.8] 92.7] 77.7] 81.8] 91.1] 61.7]  91.3] 78.2]  95.9]
73.0 59.4 70.8 90.7 93.1 83.4 824 9338 65.9 90.1 75.3 97.2
uni [65.1, [55.5, [65.3, [89.9, [92.5, [83.0, [79.8, [93.5, [65.3, [89.7, [74.8, [97.1,
79.7] 63.1] 75.9] 91.4] 93.8] 83.8] 84.7] 94.0] 66.5]  90.4] 75.8]  97.3]
84.7 654 784 89.5 93,9 86.4 78.6 950 66.9 90.4 78.8 98.9
uni2h [78.1, [61.5, [73.0, [88.7, [93.2, [86.0, [75.7, [94.7, [66.2, [90.0, [78.4, [98.8,
90.6] 68.8] 83.2] 90.3] 94.5] 86.8] 81.3] 95.2] 67.4]  90.7] 79.3]  99.0]
66.2 59.8 62.7 91.7 93.7 84.3 82.3 93.6 65.5 90.7 74.8 97.6
virchow  [57.4, [55.7, [56.6, [91.0, [93.0, [83.9, [79.8, [93.3, [64.9, [90.4, [74.3, [97.5,
73.9] 63.6] 68.4] 92.3] 94.4] 84.7] 84.6] 93.9] 66.1]  91.0] 75.3]  97.7]
76.5 624 725 93.6 93.0 88.9 83.6 92.8 69.6 90.9 78.4 90.0
virchow2 [69.2, [58.6, [66.8, [93.0, [92.3, [88.5, [81.2, [92.5, [69.0, [90.6, [77.9, [89.8,
83.0] 66.0] 77.6] 94.2] 93.7] 89.2] 86.0] 93.0] 70.2]  91.2] 78.8]  90.2]
84.4 60.0 68.8 88.1 93.4 80.1 79.7 90.6 64.4 88.1 68.0 97.2
conch [78.2, [56.0, [62.9, [87.3, [92.8, [79.6, [76.9, [90.3, [63.8, [87.8, [67.5, [97.1,

90.2] 63.7] 74.1] 88.9] 94.0] 80.5] 82.2] 90.9] 65.0] 88.5] 68.5]  97.3]
76.8 62.4 75.3 87.4 93.8 82.7 81.2 914 62.3 89.9 69.4 96.7
titan [70.1, [58.5, [70.4, [86.5, [93.2, [82.2, [78.5, [91.1, [61.7, [89.6, [68.9, [96.6,
83.2] 66.0] 79.9] 88.2] 94.4] 83.1] 83.7] 91.7] 62.9]  90.2] 69.9]  96.8]
77.0 62.2 65.9 93.2 947 858 76.8 92.6 649  89.9 72.7  97.4

keep [69.8, [58.4, [60.4, [92.5, [94.1, [85.5, [73.8, [92.4, [64.3, [89.6, [72.1, [97.3,
83.5] 65.9] 70.8] 93.8] 95.3] 86.2] 79.4] 92.9] 65.5]  90.3] 73.2]  97.5]
69.9 63.3 77.6 85.3 91.1 76.4 80.0 894 63.2 89.4 66.0 96.0
musk [62.0, [59.3, [71.9, [84.4, [90.4, [76.0, [77.5, [89.0, [62.6, [89.0, [65.4, [95.9,

77.5] 66.9] 82.6] 86.1] 91.9] 76.8] 82.6] 89.7] 63.8] 89.7]  66.5] 96.2]
63.9 56.5 47.2 76.9 88.2 65.7 785 87.9 56.0 87.2 54.9 89.0
plip [55.5, [52.6, [40.4, [75.8, [87.3, [65.1, [75.8, [87.5, [55.4, [86.8, [54.3, [88.8,
71.4] 60.2] 53.6] 78.0] 89.0] 66.2] 81.0] 88.2] 56.5] 87.5]  55.4] 89.2]
58.4 55.9 62.4 65.5 92,5 61.5 73.5 874 59.6 87.0 54.1 94.7
quilt [50.2, [52.0, [55.9, [64.2, [91.7, [60.9, [70.6, [87.0, [59.0, [86.6, [53.6, [94.5,
66.2] 59.8] 68.0] 66.9] 93.1] 62.0] 76.3] 87.7] 60.2] 87.3]  54.7]  94.8]
64.4 52.9 77.8 79.7 90.3 73.8 82.6 86.3 58.6 85.9 54.4 90.7
dinob [55.7, [49.1, [72.3, [78.7, [89.5, [73.3, [80.1, [85.9, [58.0, [85.6, [53.8, [90.5,
72.4] 56.4] 82.8] 80.8] 91.0] 74.3] 85.0] 86.7] 59.2]  86.3]  54.9]  90.9]
68.9 50.6 78.5 81.4 90.7 72.1 823 87.2 59.3 85.9 56.2 90.3

dinol [60.4, [46.6, [72.9, [80.4, [89.9, [71.6, [79.6, [86.8, [58.7, [85.5, [55.6, [90.1,
76.6] 54.2] 83.6] 82.4] 91.4] 72.6] 84.7] 87.5] 59.9] 86.3]  56.7]  90.5]
57.0 56.6 64.5 79.1 90.6 62.7 77.6 84.6 59.1 85.8 53.4 91.3
vitb [48.2, [52.6, [58.7, [78.0, [89.8, [62.3, [74.8, [84.2, [58.5, [85.4, [52.8, [91.1,

64.8] 60.2] 70.1] 80.1] 91.3] 63.2] 80.2] 85.0] 59.7] 86.2] 53.9]  91.4]
56.9 54.8 66.3 77.1 0 92.8 679 79.8 85.7 56.8 87.5 55.9 92.6
vitl [47.7, [50.8, [60.2, [76.1, [92.2, [67.4, [77.1, [85.3, [56.2, [87.2, [55.3, [92.4,
64.7) 58.5] 71.8] 78.2] 93.5] 68.4] 82.4] 86.1] 57.4]  87.9] 56.4]  92.8]
51.1 52.4 40.0 73.7 87.3 61.0 7T7.5 82.7 49.0 83.8 47.9 83.5

clipb [42.6, [48.6, [33.8, [72.4, [86.4, [60.5, [74.7, [82.3, [48.5, [83.4, [47.4, [83.2,
58.7] 55.9] 45.6] 74.8] 88.1] 61.6] 79.9] 83.1] 49.5]  84.2]  48.5]  83.7]
63.5 56.4 54.5 75.9 88.3 67.6 79.6 85.6 52.0 85.0 54.1 93.2
clipl [55.2, [52.5, [47.5, [74.8, [87.5, [67.1, [76.9, [85.2, [51.4, [84.6, [53.5, [93.1,

71.2] 60.1] 60.6] 76.9] 89.2] 68.2] 82.1] 85.9] 52.6] 85.4]  54.6] 93.4]
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Table S40: Quantitative performance (Balanced accuracy) on 1-shot classification.

Model

hiboub

hiboul

hopt0

hopt1

midnight

phikon

phikon2

uni

uni2h

virchow

virchow2

conch

titan

keep

musk

plip

quilt

dinob

dinol

vitb

vitl

clipb

clipl

bach
74.0
[68.6,
79.4]
71.4
[66.0,
76.7)
62.6
[54.6,
70.5]
67.3
[60.7,
73.6]
82.7
[77.4,
87.8]
63.2
[55.3,
70.5)
60.5
[53.0,
67.7]
73.0
[66.6,
79.2]
79.0
[74.5,
83.4]
51.5
[44.0,
59.1]

[78.4,
89.8]
72.0
[65.6,
78.0]

65.6]
56.5
[50.1,
62.6]
50.4
[42.7,
58.0]
57.1
[50.3,
63.6]

bracs
54.1
[51.1,
56.9]
51.6
[48.5,
54.8]
45.5
[42.4,
48.5]
48.2
[45.0,
51.4]
47.0
[43.9,
50.1]
44.1
[40.9,
47.3]
44.3
[41.1,
47.4]
52.5
[49.3,
55.7]
54.6
[52.0,
57.1]
42.1
[38.8,
45.3]
53.0
[50.1,

[50.2,

[46.8,

44.3]
43.6
[40.5,
46.6]
45.1
[42.2,
48.0]
47.0
[44.1,
49.8]
39.5
[36.8,
42.3]
43.4
[40.4,
46.4]

break-h
T
[72.7,
82.5]
73.4
[68.2,
78.5]
70.6
[64.8,
76.2]
69.5
[64.6,
74.4)
42.0
[37.1,
46.8]
71.4
[66.4,
76.4]
65.3
[59.6,
71.0]
81.0

64.8]
47.9
[42.3,
53.2]
52.9
[47.4,
58.7]
50.1
[44.6,
55.8]

ccree
.7
[76.7,
78.6]
80.7
[79.9,
81.6]
92.4
[91.7,
93.0]
89.4
[88.7,
90.2]
89.1
[88.2,
89.9]
91.7
[91.0,
92.3]
90.1
[89.3,
90.8]
87.3
[86.6,
88.0]
89.5
88.7,
90.3]
86.8
[86.0,
87.5)
84.1
[83.1,

[87.0,

[93.1,
94.2]
81.7
[80.7,
82.6]

(78.7,

61.6]
70.1
[69.0,
71.3]
62.5
[61.4,
63.6]
64.4
[63.3,
65.5]

cre
92.0
[91.2,
92.7]
74.6
[73.6,
75.5)
86.8
[85.9,
87.7]
90.9
[90.1,
91.7]
94.2
[93.6,
94.9)
91.6
[90.9,
92.4]
85.5
[84.7,
86.3]
89.6
[88.7,
90.4]
95.2
[94.6,
95.8]
89.0
[88.2,
89.8]
89.1
[88.3,
90.0]
92.4
[91.7,
93.2]
91.0
[90.2,
91.7]
90.8
[90.0,
91.6]
90.1
[89.3,
90.8]
84.9
[83.9,
85.8]
88.9
[88.1,
89.6]
76.5
[75.5,
77.5)
73.8
(72.8,
74.8]
73.1
[72.1,
74.0]
76.3
[75.3,
77.3]
68.7
[67.8,
69.7]
75.1
[74.1,
76.1)

esca

82.2
[81.9,
82.5]
78.0
[77.6,
78.3]
82.5
[82.2,
82.8]
85.1
[84.8,
85.4]
82.6
[82.2,
83.0]
78.8
[78.5,
79.1]
81.4
[81.1,
81.7]
83.3
[83.0,
83.6]
86.5
[86.1,
86.8]
85.0
[84.6,
85.3]
82.8
[82.4,
83.2]
84.2
[83.8,
84.5]
84.5
[84.1,
84.9]
86.3
[85.9,
86.7]
80.7
[80.3,
81.1]
67.0
[66.5,
67.5]
67.5
[67.1,
67.9]
65.8
[65.3,
66.3]
66.1
[65.7,
66.6]
63.8
[63.2,
64.3]
64.8
[64.2,
65.3]
54.1
[53.6,
54.5]
65.4
[64.9,
65.9]

mbhist
59.2
[57.8,
60.9]
58.4
[57.0,
60.0]
59.0
[57.4,
60.6]
55.6
[54.4,
56.9]
67.4
[64.7,
70.1]
59.5
[57.9,
61.1]
58.6
[57.0,
60.2]
61.9
[60.3,
63.7]
56.7
[65.3,
58.1]
62.1
[60.3,
64.1]

(54.7,

[59.1,
62.6]
63.5
[61.2,
65.7]
58.1
[56.7,
59.6]

[58.6,

75.0]
73.4
[70.9,
75.8]
63.4
[61.5,
65.3]
64.3
[62.4,
66.3]
60.1
[58.4,
61.8]
60.5
[58.8,
62.2]

pcam
88.4
[88.1,
88.8]
91.7
[91.4,
92.0]
71.8
[71.4,
72.3]
72.6
[72.2,
73.0]
78.1
[77.7,
78.5]
84.2
[83.8,
84.6]
80.2
[79.8,
80.6]
88.0
[87.6,
88.3]
82.4
[82.0,
82.7]
86.4
[86.0,
86.7]

[74.1,

[87.0,
87.7]
86.2
[85.8,
86.5]
74.1
[73.7,
74.6)

(73.4,

69.2]
68.2
[67.7,
68.7]
63.9
[63.5,
64.3]
63.9
[63.5,
64.3]

tcga-cre
62.8
[62.1,
63.5]
65.8
[65.1,
66.4]
69.1
[68.4,
69.8]
71.9
[71.2,
72.5]
56.4
[55.8,
57.0]
67.0
[66.4,
67.6]
59.2
[58.6,
59.8]
66.7
[65.9,
67.4]
69.9
[69.2,
70.6]
63.7
[63.0,
64.4)
60.6
[60.0,
61.3]
60.6
[59.9,
61.2]
64.8
[64.1,
65.5)
62.9
[62.2,
63.6]
62.0
[61.3,
62.8]
58.0
[57.2,
58.7]
61.0
[60.2,
61.7]
56.9
[56.2,
57.6)
59.4
[58.6,
60.1]
55.6
[54.8,
56.3]
57.0
[56.3,
57.7]
55.2
[54.5,
56.0]
54.8
[54.1,
55.5]

tega-tils tcga-unif wilds

77.2
[76.9,
77.4]
81.1
(80.7,
81.4]
82.1
(81.8,
82.4]
54.6
[54.5,
54.7]
79.0
[78.6,
79.4]
76.1
[75.8,
76.3]
50.0
[50.0,
50.0]
75.3
(75.1,
75.6)
51.4
[51.3,
51.5]
58.6
[58.4,
58.8]

56.5]
57.4
[57.2,
57.5]
69.4
(69.0,
69.7]
59.0
[58.8,
59.2]
66.5
(66.2,
66.8]
58.8
[58.6,
59.0]

58.5
[57.9,
59.0]
61.2
[60.7,
61.7]
71.9
[71.5,
72.4]
74.9
[74.5,
75.3]
65.1
[64.7,
65.6]
60.1
(59.5,
60.6]
66.0
[65.5,
66.4]
67.1
(66.6,
67.6]
72.7
[72.3,
73.2]
54.7
[54.1,
55.2]
64.7
[64.2,

(28.0,
29.0]
29.3
[28.7,
29.8]
31.8
(31.3,
32.4]

79.5
[79.3,
79.8]
64.2
[63.9,
64.4]
74.9
[74.6,
75.1]
53.9
[53.8,
54.1]
86.2
[86.0,
86.4]
92.9
[92.7,
93.1]
89.9
[89.7,
90.1]
88.4
[88.2,
88.6]
96.3
[96.2,
96.4]
78.7
[78.5,
79.0]
88.6
[88.4,
88.8]
95.0
[94.9,
95.2]
94.1
[94.0,
94.3]
95.8
[95.7,
96.0]
78.1
[77.8,
78.3]
72.9
[72.6,
73.1]
79.6
[79.3,
79.8]
68.0
[67.7,
68.2]
66.0
[65.7,
66.2]
65.4
[65.1,
65.6]
67.9
[67.6,
68.1]
53.0
[52.9,
53.1]
66.3
[66.0,
66.5]
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Table S41: Quantitative performance (F1-score) on 1-shot classification.

Model bach  bracs break-h ccrec  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds
66.7 476 75.6 74.2 92.0 61.6 450 884 56.5 61.0 48.8 78.8
hiboub [58.9, [43.9, [70.4, [73.1, [91.2, [61.3, [41.9, [88.0, [55.9, [60.6, [48.4, [78.6,
73.8] 51.0] 79.9] 75.3] 92.7] 61.9] 48.2] 88.7] 57.0]  61.4] 49.3]  79.1]
62.5 47.0 726 T77.5 76.5 60.9 43.6 91.7 56.2 69.0 51.2 59.0
hiboul [54.9, [43.4, [67.8, [76.5, [75.6, [60.5, [40.5, [91.4, [55.7, [68.6, [50.8, [58.7,
69.6] 50.6] 77.1] 78.6] 77.5] 61.2] 46.7] 92.0] 56.8]  69.4] 51.7]  59.3]
61.3 39.0 649 92.1 87.5 68.0 45.1 70.5 66.7 70.3 62.5 73.3

hopt0 [52.8, [35.4, [59.1, [91.4, [86.5, [67.7, [42.0, [70.0, [66.0, [69.8, [62.1, [73.0,
69.2] 42.7] 69.9] 92.8] 88.4] 68.2] 48.2] 71.0] 67.3] 70.7]  63.0] 73.6]
61.0 43.8 58.1 90.0 91.5 71.7 384 70.9 64.7 25.2 66.5 41.5
hopt1 [52.2, [40.1, [52.7, [89.3, [90.7, [71.4, [35.7, [70.4, [64.1, [24.9, [66.1, [41.2,

68.5] 47.4] 63.0] 90.8] 92.3] 72.0] 41.4] 71.4] 65.3] 25.5]  67.0] 41.8]
78.5 41.7 42.0 89.8 94.3 699 629 78.1 57.2 71.1 59.2 86.1
midnight [71.1, [38.4, [37.2, [89.0, [93.7, [69.6, [60.0, [77.6, [56.5, [70.7, [58.7, [85.9,
85.0] 45.0] 46.3] 90.6] 95.0] 70.3] 65.9] 78.5 57.9] 71.5]  59.7]  86.4]
60.0 39.1 68.6 90.4 92.1 587 456 83.9 543  59.9 50.8  92.8
phikon  [51.8, [35.4, [63.2, [89.7, [91.3, [58.4, [42.6, [83.5, [53.8, [59.5, [50.4, [92.7,
67.1] 42.8] 73.3] 91.2] 92.8] 59.0] 48.8] 84.3] 54.9] 60.3]  51.2]  93.0]
54.1 38.5 61.5 89.8 86 60.8 44.3 80.0 42.3 15.7 55.9 89.8
phikon2  [45.4, [34.9, [55.9, [89.0, [85.1, [60.5, [41.2, [79.6, [41.7, [15.5, [55.4, [89.6,
62.0] 41.9] 66.8] 90.5] 86.9] 61.1] 47.5] 80.5] 42.8] 16.0]  56.3]  90.0]
68.3 47.6 78.6 86.7 89. 63.7 49.5 88.0 61.4 58.4 57.0 88.3
uni [60.5, [43.8, [73.8, [85.8, [89.0, [63.4, [46.3, [87.6, [60.9, [58.0, [56.6, [88.1,
75.1] 51.2] 82.9] 87.4] 90.6] 64.0] 52.6] 88.3] 62.1] 588]  57.5] 88.5]
71.3 47.1 68.6 90.2 94. 70.8 40.9 82.1 62.9 18.7 64.7 96.3
uni2h [64.2, [43.6, [63.3, [89.5, [94.2, [70.5, [37.9, [81.7, [62.3, [18.5, [64.3, [96.2,
77.9] 50.6] 73.5] 90.9] 95.5] 71.2] 43.8] 82.5] 63.5] 19.0]  65.1]  96.4]
47.5 36.8 55.0 84.4 89. 70.6 50.7 86.4 61.8 33.1 46.4 78.0
virchow  [39.5, [33.1, [49.6, [83.5, [88.3, [70.3, [47.5, [86.0, [61.1, [32.7, [45.9, [77.7,
55.1] 40.4] 60.1] 85.3] 90.1] 70.9] 53.9] 86.7] 62.4] 33.5]  46.9] 78.2]
75.0 46.8 59.0 84.9 89. 66.8 39.1 74.6 60.7 69.3 55.3 88.5
virchow2 [67.4, [43.4, [53.3, [84.0, [88.8, [66.5, [36.1, [74.1, [60.1, [68.9, [54.9, [88.3,
67.2] 42.0] 75.1] 61.4] 69.7]  55.8] 88.7]
66.4 44.4 83.2 61.3 62.7 45.5 95.0
[66.1, [41.5, [82.8, [60.6, [62.3, [45.0, [94.9,
66.7] 47.5] 83.6] 62.0] 63.2]  45.9] 95.2]
70.2 48.2 87.3 64.3 45.6 49.9 94.1
[69.9, [45.1, [87.0, [63.7, [45.2, [49.4, [94.0,
70.4] 51.3] 87.7] 65.0] 46.0]  50.3]  94.3]
71.3 54.5 86.1 62.6 70.6 53.3 95.8
[70.9, [51.3, [85.8, [61.9, [70.2, [52.8, [95.7,
71.6] 57.7] 86.5] 63.2] 71.0]  53.7]  96.0]
61.7 43.0 73.6 59.5 53.9 38.5 77.6
[61.4, [40.0, [73.1, [58.9, [63.5, [38.1, [77.3,
62.0] 46.3] 74.1] 60.1]  54.3]  38.9]  77.9]
50.6 47.2 73.1 52.0 61.4 29.6 71.5
[50.4, [44.0, [72.6, [51.5, [61.0, [29.2, [71.2,
50.9] 50.4] 73.6] 52.6] 61.8] 29.9] 71.8]

conch [71.5, [39.5, [57.9, [88.1, [91.

titan [65.7, [44.8, [61.3, [86.3, [90.
79.4] 52.0] 72.6] 88.0] 91.
81.2 42,5 63.7 93.1 91.
keep [74.1, [39.7, [57.4, [92.5, [90.
87.3] 45.2] 69.0] 93.7] 91.
65.9 424 69.8 79.9 88.
musk [57.9, [39.3, [64.8, [78.9, [8S.
73.3] 45.4] 74.3] 80.9] 89.
58.3 43.0 54.7 T77.5 85.
plip [49.3, [39.4, [49.4, [76.5, [84.
66.2] 46.2] 59.7] 78.6] 86.

51.1 44.0 69.9 76.1 88 49.3 50.0 80.2 57.0 64.1 29.3 79.0
quilt [42.3, [40.3, [64.8, [75.0, [87.1, [49.0, [46.9, [79.7, [56.4, [63.7, [28.9, [78.7,
58.8] 47.6] 74.8] 77.2] 88 49.5] 53.1] 80.6] 57.5]  64.5] 29.7]  79.3]
57.5 35.1 66.2 772 74 46.6 67.2 60.8 48.7 28.6 23.9 65.6
dinob [49.0, [31.6, [60.7, [76.1, [73.6, [46.3, [64.3, [60.3, [48.2, [28.3, [23.5, [65.2,
65.1] 38.4] 71.1] 78.3] 75 46.8] 70.1] 61.3] 49.3]  29.0] 24.2]  65.9]
57.5 37.1 62.1 65.7 72 46.1 68.9 53.9 53.9 30.8 24.6 62.1

dinol [49.2, [33.7, [56.6, [64.4, [71.0, [45.9, [65.9, [53.3, [53.4, [30.4, [24.2, [61.8,
65.3] 40.1] 67.0] 67.0] 73. 46.3] 71.7] 54.4] 54.5] 31.2] 24.9]  62.5]
51.1 37.7 53.1 56.5 71 47.3 52,5 67.5 49.9 51.9 19.8  62.2
vitb [42.9, [34.4, [47.3, [55.3, [70.7, [47.0, [49.5, [67.0, [49.4, [51.5, [19.5, [61.9,

58.8] 40.9] 58.6] 57.7] 72.
45.7  39.8 38.8 68.7
vitl [38.7, [36.3, [33.6, [67.5, [74.
52.7] 43.2] 43.7] 69.9] 76.
44.5 31.5 50.6 63.4 64
clipb (36.4, [28.3, [45.4, [62.0, [63.

47.5] 55.6] 68.0] 50.5]  52.4] 20.1]  62.5]
50.5 54.0 68.1 47.4 34.1 20.4 65.9
[50.2, [50.8, [67.6, [46.9, [33.7, [20.1, [65.6,
50.7] 57.2] 68.6] 48.0]  34.5] 20.8]  66.2]
38.0 46.8 60.0 50.4 47.0 21.6 39.9
[37.8, [43.6, [59.4, [49.9, [46.6, [21.2, [39.6,

\,
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52.0] 34.5] 55.9] 64.7] 65.8] 38.2] 50.0] 60.5] 51.0]  47.4]  21.9]  40.1]
49.3 36,9 479 59.5 723 49.3 475 59.6 45.3 33.4 23.1 62.7
clipl [41.0, [33.4, [42.5, [58.2, [71.2, [49.0, [44.4, [59.0, [44.8, [33.0, [22.8, [62.4,

57.2] 40.4] 53.2] 60.7] 73.4] 49.5] 50.6] 60.1] 45.8] 33.8]  23.5]  63.1]
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Table S42: Quantitative performance (Balanced accuracy) on 2-shot classification.

Model

hiboub

hiboul

hopt0

hopt1

midnight

phikon

phikon2

uni

uni2h

virchow

virchow2

conch

titan

keep

musk

plip

quilt

dinob

dinol

vitb

vitl

clipb

clipl

bach
75.5
[69.4,
81.7]
74.7
[69.0,
80.4]
59.6
[51.9,
67.8]
70.6
[63.2,
77.4]
83.4
[78.0,
88.7]
59.6
[51.1,
67.4]
64.8
[57.1,
72.3]
71.6
[64.4,
78.4]
83.6
[78.8,
88.3]
52.3
[44.6,
59.6]
81.2
[75.0,

66.9]
55.0
[47.7,
61.7]
48.7
[41.3,
56.0]
52.9
[45.6,
60.3]

bracs
55.1
[52.2,
58.1]
52.7
[49.4,
55.8]
44.9
[41.9,
47.9]
46.6
[43.4,
49.7]
47.9
[44.8,
51.0]
43.2
[40.3,
46.3]
43.9
[40.7,
47.1]
52.5
[49.3,
55.8]
55.5
[52.8,
58.2]
41.6
[38.4,
44.8]
54.9
[52.1,

[52.0,

54.8
[52.5,
57.1]
52.5
[49.9,
55.1]
49.2
[46.2,
52.1]
51.2
[48.4,
53.9]

[38.5,
44.7)
44.6
[41.6,
47.7]
46.0
[42.9,
49.0]
46.8
[43.9,
49.7]
40.6
[37.8,
43.5]
43.5
[40.6,
46.5]

break-h
76.9
[71.7,
81.7]
74.0
[69.1,
78.9]
71.8
[66.1,
77.4]
73.0
[68.0,
77.7]
40.2
[35.1,
45.3]
70.3
[65.1,
75.2]
61.3
[55.5,
67.1]
80.5

63.4
[58.3,
68.6]
72.8
[68.3,
77.3]

64.6]
47.5
[41.8,
52.9]
55.6
[49.8,
61.1]
49.5
[44.4,
55.3]

ccree
83.4
[82.5,
84.2]
83.6
[82.7,
84.5)
89.4
[88.6,
90.2]
88.8
[88.0,
89.6]
82.1
[81.1,
83.1]
93.2
[92.6,
93.8]
91.0
[90.3,
91.7]
92.0
[91.3,
92.7]
90.2
[89.5,
91.0]
87.5
86.8,
88.3]

[81.0,

[86.5,
88.2]
93.5
[92.9,
94.1]
82.6
[81.6,
83.4]

(78.4,

61.9]
69.0
[67.8,
70.2]
63.7
[62.5,
64.8]
65.4
[64.3,
66.5]

cre
91.8
[91.0,
92.6]
79.9
[79.0,
80.8]
88.2
[87.4,
89.1]
91.3
[90.5,
92.1]
94.7
[94.1,
95.3]
91.8
[91.1,
92.5]
87.6
[86.8,
88.3]
91.4
[90.6,
92.2]
95.4
[94.8,
95.9]
89.5
[88.7,
90.3]
89.9
[89.2,
90.8]
92.2
[91.4,
93.0]
91.1
[90.3,
91.8]
91.0
[90.2,
91.8]
90.2
[89.4,
90.9]
85.1
[84.2,
86.0)
89.2
[88.5,
90.0]
78.0
[77.0,
78.9]
74.9
[73.9,
75.9]
74.8
[73.9,
75.8]
7.7
[76.7,
78.6)
71.3
[70.3,
72.2]
77.6
[76.6,
78.6]

esca

83.6
[83.2,
83.9]
78.0
[77.7,
78.4]
84.3
[83.9,
84.6]
86.3
[86.0,
86.6]
83.2

[82.8,
83.6]
80.8
[80.5,
81.1]
82.8
[82.5,
83.2]
85.0
[84.6,
85.3]
87.2

[86.9,
87.5]
85.0
[84.6,
85.4]
82.7
[82.3,
83.1]
84.8
[84.4,
85.2]
84.9
[84.5,
85.3]
86.9
[86.5,
87.3]
81.7
[81.2,
82.1]
67.4
[66.9,
67.9]
67.9
[67.4,
68.3]
66.4
[65.9,
66.9]
67.7
[67.2,
68.2]
63.8
[63.3,
64.4]
64.8
[64.2,
65.3]
53.1

[52.6,
53.6]
65.8
[65.3,
66.2]

mbhist
65.8
[63.8,
67.9]
65.2
[63.2,
67.2]
67.2
[65.2,
69.3]
64.6
[62.8,
66.5]
66.3
[63.2,
69.3]
63.3
[61.5,
65.2]
59.6
[58.0,
61.3]
68.9
[66.8,
71.1]
65.4
[63.4,
67.4]
65.8
[63.6,
68.0]

(62.7,

[64.9,

[61.3,
66.8]
62.1
(60.4,
63.9]

(63.2,

75.6)
75.3
[72.6,
77.7]
66.3
[64.2,
68.3]
68.0
[65.6,
70.2]
64.2
[62.3,
66.1]
65.2
[63.4,
67.2]

pcam
92.0
[91.6,
92.2]
91.4
[91.1,
91.7]
84.2
[83.8,
84.6]
84.3
(83.9,
84.7]
82.4
[82.0,
82.8]
86.9
[86.5,
87.2]
83.6
[83.2,
84.0]
91.4
[91.1,
91.7]
92.4
[92.1,
92.7]
88.2
[87.8,
88.5]

[78.6,

[86.9,
87.6]
88.3
[88.0,
88.7]
84.5
[84.1,
84.9]
82.4
[81.9,

72.8]
69.9
[69.4,
70.4]
69.5
[69.1,
69.9]
73.8
[73.4,
74.2]

tcga-cre
63.7
[62.9,
64.4]
66.5
[65.7,
67.2]
70.2
[69.5,
70.9]
71.8
[71.1,
72.4]
55.8
[55.1,
56.4]
66.2
[65.5,
66.9]
62.2
[61.5,
62.9]
66.8
[66.0,
67.5)
69.9
[69.2,
70.5]
64.0
[63.3,
64.7)
63.0
[62.3,
63.7]
64.5
[63.8,
65.2]
66.9
[66.2,
67.6)
63.7
[63.0,
64.4]
63.7
[63.0,
64.4)
59.8
[59.0,
60.5]
61.7
[61.0,
62.4]
57.0
[56.2,
57.7]
60.3
[59.6,
61.0]
56.2
[55.5,
56.9]
57.7
[57.0,
58.4]
55.1
[54.4,
55.8]
56.9
[56.2,
57.6]

tega-tils tcga-unif wilds

84.0
(83.7,
84.3]
82.6
(82.2,
83.0]
87.6
(87.2,
87.9]
70.8
[70.6,
71.1]
80.3
[79.9,
80.8]
87.6
(87.3,
87.9]
69.5
[69.2,
69.7]
87.1
(86.8,
87.4]
65.7
[65.5,
65.9]
74.4
[74.1,
74.7]

(86.8,
87.5]
83.2
(82.9,
83.5]

74.2)
68.4
(68.0,
68.7]
71.4
[71.1,
71.8]
69.0
(68.7,
69.3]

59.3
(58.8,
59.8]
62.6
[62.1,
63.1]
72.8
[72.4,
73.3]
75.8
[75.4,
76.2]
66.5
(66.0,
67.0]
61.2
(60.7,
61.8]
66.9
[66.4,
67.4]
67.9
[67.4,
68.3]
73.2
[72.7,
73.6]
55.3
[54.8,
55.8]

(28.4,
29.4]
29.5
[29.0,
30.1]
32.4
[31.8,
32.9]

88.4
[88.2,
88.6]
67.0
[66.8,
67.2]
95.8
[95.6,
95.9]
71.4
[71.2,
71.6)
89.3
[89.1,
89.5]
94.4
[94.2,
94.5]
92.5
[92.3,
92.7]
96.6
[96.5,
96.7]
95.9
[95.8,
96.1]
94.7
[94.5,
94.8]
95.4
[95.3,
95.6]
95.7
[95.5,
95.8]
95.0
[94.8,
95.1]
96.1
[96.0,
96.2]
88.5
[88.3,
88.7]
81.9
[81.6,
82.1]
85.6
[85.4,
85.8]
75.0
[74.7,
75.3]
75.9
[75.7,
76.2]
73.9
[73.6,
74.2)
72.0
[71.7,
72.2]
55.8
[55.7,
56.0]
81.2
[81.0,
81.5]
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Table S43: Quantitative performance (F1-score) on 2-shot classification.

Model bach  bracs break-h ccrec  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds
69.7 494 75.8 81.3 91.9 654 56.2 92.0 59.0 73.1 50.1 88.3
hiboub [61.6, [45.6, [71.0, [80.3, [91.1, [65.1, [53.1, [91.6, [58.4, [72.6, [49.6, [88.1,

77.1] 53.1] 79.9] 82.3] 92.6] 65.8] 59.3] 92.2] 59.6]  73.5] 50.5]  88.5]
68.3 48.3 73.8 81.6 81.1 64.3 55.1 914 61.0 73.9 53.0 63.2
hiboul [60.5, [44.6, [69.6, [80.6, [80.2, [64.0, [51.9, [91.1, [60.5, [73.6, [52.6, [62.9,

75.6] 51.8] 77.6] 82.6] 81.9] 64.7] 58.2] 91.7] 61.6] 74.4]  53.5]  63.5]
57.8 39.1 68.1 90.0 88.9 T71.1 58.7 84.2 64.7 83.2 63.9 95.8

hopt0 49.1, [35.4, [62.4, [89.2, [88.0, [70.8, [55.7, [83.8, [64.1, [82.8, [63.5, [95.6,
65.8] 42.7] 73.0] 90.7] 89.8] 71.3] 61.9] 84.6] 65.3] 83.6]  64.4] 95.9]
66.9 41.7 63.4 89.5 92.0 74.1 54.2 84.2 64.7 52.2 67.9 69.0
hopt1 [58.3, [38.2, [58.0, [88.8, [91.2, [73.8, [51.0, [83.8, [64.1, [51.8, [67.5, [68.7,

74.4] 45.1] 68.3] 90.2] 92.7] 74.4] 57.3] 84.6] 65.3] 52.6] 68.4] 69.3]
79.6 42.7 40.7 83.9 94.7 72,5 64.2 82.2 55.0 74.2 61.6 89.2
midnight [72.2, [39.4, [35.8, [82.9, [94.0, [72.2, [61.1, [81.8, [54.3, [73.7, [61.1, [89.0,
86.2] 46.0] 45.5] 84.9] 95.3] 72.9] 67.2] 82.6] 55.6] 74.6]  62.1]  89.4]
57.5 37.6 65.7 925 92.1 623 52.1 86.8 585 79.9 52.2 94.4
phikon  [49.1, [34.2, [59.9, [91.9, [91.3, [61.9, [48.8, [86.4, [57.9, [79.5, [51.8, [94.2,
65.0] 41.2] 70.8] 93.2] 92.8] 62.6] 55.4] 87.1] 59.0] 80.3]  52.7]  94.5]
59.5 38.2 58.3 90.6 88.1 64.2 46.0 83.5 54.6 50.4 57.2 92.5
phikon2  [51.1, [34.7, [52.7, [89.8, [87.2, [63.9, [42.9, [83.1, [54.0, [50.0, [56.8, [92.3,
67.1] 41.6] 63.5] 91.3] 88.9] 64.5] 49.1] 83.9] 55.1]  50.8]  57.7]  92.7]
67.7 47.9 78.0 92.0 91.5 684 61.0 914 60.9 78.8 58.2 96.6
uni [59.6, [44.0, [73.1, [91.3, [90.7, [68.1, [57.9, [91.1, [60.3, [78.4, [57.8, [96.5,
74.9] 51.5] 82.2] 92.7] 92.2] 68.7] 64.1] 91.7] 61.5] 79.2]  58.7]  96.7]
78.4 49.1 69.4 90.8 95.0 73.9 559 924 60.6 44.2 65.7 95.9

uni2h [71.0, [45.5, [64.0, [90.0, [94.4, [73.6, [52.8, [92.1, [60.0, [43.8, [65.2, [95.8,
85.0] 52.5] 74.1] 91.5] 95.6] 74.2] 59.1] 92.7] 61.1]  44.6] 66.1]  96.1]
48.0 35.9 51.3 85.5 89.7 72.2 57.4 88.1 59.3 58.6 47.3 94.7
vicchow  [39.8, [32.3, [45.7, [84.6, [88.8, [71.8, [54.2, [87.8, [58.7, [58.2, [46.8, [94.5,

55.5] 39.5] 56.5] 86.4] 90.6] 72.5] 60.4] 88.4] 59.9] 59.0]  47.8]  94.8]
77.3 49.1 57.1 83.5 90.3 69.0 54.1 79.0 59.7 79.5 56.0 95.4

virchow2 [69.9, [45.8, [51.6, [82.6, [89.6, [68.7, [51.0, [78.6, [59.1, [79.1, [55.5, [95.3,
83.7] 52.5] 62.0] 84.5] 91.1] 69.4] 57.3] 79.5] 60.3] 79.9]  56.4] 95.6]
80.0 47.1 64.0 88.6 91.8 68.8 56.3 84.0 62.7 72.2 46.9 95.7
conch [73.2, [43.4, [58.0, [87.8, [91.0, [68.4, [53.1, [83.6, [62.1, [71.8, [46.5, [95.5,

86.1] 50.6] 69.4] 89.4] 92.5] 69.1] 59.5] 84.4] 63.4]  72.7] 47.3]  95.8]
78.4 51.9 67.4 87.4 90.9 714 59.1 87.3 63.7 67.8 51.2 95.0
titan [71.6, [48.0, [61.4, [86.6, [90.1, [71.1, [56.0, [86.9, [63.1, [67.4, [50.7, [94.8,
85.0] 55.4] 72.6] 88.2] 91.6] 71.7] 62.2] 87.6] 64.3] 68.2] 51.6]  95.1]
83.2 45.6 64.5 93.3 91.4 72.8 58.8 88.3 61.5 80.5 54.4 96.1

keep [76.0, [42.5, [58.7, [92.7, [90.6, [72.5, [55.8, [88.0, [60.8, [80.1,  [53.9, [96.0,
89.4] 48.7] 69.7] 93.9] 92.2] 73.2] 62.0] 88.7] 62.1]  80.8] 54.8]  96.2]
62.9 45.4 71.9 81.4 89.1 64.0 50.1 84.5 59.5 72.5 39.6 88.5
musk [54.6, [42.0, [67.4, [80.4, [88.2, [63.7, [47.0, [84.1, [58.9, [72.1, [39.2, [88.3,

70.3] 48.6] 76.1] 82.4] 89.9] 64.3] 53.3] 84.9] 60.1] 72.9]  40.0] 88.7]
53.6 43.2 527 77.8 854 51.5 554 823 55.4 70.2 30.8 81.6
plip [44.7, [39.4, [48.1, [76.8, [84.3, [51.2, [52.3, [81.9, [54.8, [69.8, [30.4, [81.3,
61.5] 46.6] 57.3] 78.9] 86.3] 51.7] 58.5] 82.7] 55.9] 70.6] 31.1] 81.9]
51.2 444 714 779 884 516 56.4 834 56.6 72.7 30.2 85.5

quilt [42.6, [40.8, [66.0, [76.8, [87.5, [51.3, [53.2, [83.0, [56.1, [72.3, [29.8, [85.2,
58.8] 47.9] 76.2] 78.9] 89.2] 51.8] 59.6] 83.8] 57.2]  73.1] 30.6]  85.7]
55.4 34.9 65.0 78.1 76.5 47.9 68.4 62.5 52.1 44.6 23.8 74.0
dinob [47.0, [31.5, [59.4, [77.0, [75.4, [47.7, [65.4, [62.0, [51.5, [44.2, [23.4, [73.7,

63.4] 38.2] 69.8] 79.1] 77.5] 48.2] 71.2] 63.0] 52.6] 45.0]  24.1] 74.3]
57.6 38.8 58.2 69.2 74.1 485 T71.7 56.4 55.6 41.9 24.6 74.8

dinol [49.1, [35.2, [52.4, [67.9, [73.0, [48.2, [68.8, [55.9, [55.0, [41.5, [24.2, [74.5,
65.3] 42.0] 63.4] 70.4] 75.1] 48.7] 74.5] 57.0] 56.1]  42.3]  25.0] 75.1]
53.9 39.3 546 56.8 73.8 482 57.2 721 52.3 60.0 20.3 73.1
vitb [45.3, [35.9, [49.0, [55.5, [72.7, [47.9, [54.1, [71.7, [51.8, [59.6, [19.9, [72.8,

61.8] 42.8] 59.8] 58.1] 74.9] 48.5] 60.3] 72.6] 52.8]  60.5] 20.6]  73.4]
46.6 39.8 39.0 68.5 76.6 51.4 60.8 69.9 51.2 51.1 20.9 70.9
vitl [38.4, [36.3, [33.9, [67.3, [75.6, [51.1, [57.7, [69.4, [50.7, [50.7, [20.5, [70.6,
53.9] 43.2] 44.0] 69.7] 77.6] 51.7] 63.8] 70.4] 51.7]  51.5] 21.2]  71.2]
43.0 33.6 53.8 64.8 67.7 36.8 53.4 67.3 53.8 56.8 21.6 45.5

clipb [35.4, [30.2, [48.4, [63.4, [66.6, [36.6, [50.2, [66.7, [53.3, [56.4, [21.2, [45.1,
50.2] 37.0] 59.0] 66.1] 68.8] 37.0] 56.7] 67.8] 54.4] 57.2]  21.9] 45.8]
46.9 37.2 46.0 62.3 75.1 50.6 55.2 729 49.4 52.1 23.5 80.9
clipl (38.3, [33.8, [40.7, [61.0, [74.0, [50.4, [52.1, [72.4, [48.8, [51.7, [23.2, [80.6,

54.8] 40.6] 51.3] 63.5] 76.1] 50.9] 58.4] 73.3] 49.9] 52.5]  23.9] 81.1]
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Table S44: Quantitative performance (Balanced accuracy) on 4-shot classification.

Model

hiboub

hiboul

hopt0

hopt1

midnight

phikon

phikon2

uni

uni2h

virchow

virchow2

conch

titan

keep

musk

plip

quilt

dinob

dinol

vitb

vitl

clipb

clipl

bach
76.1
[69.6,
82.0]
74.7
[68.5,
80.7]
60.4
[52.5,
68.4]
67.6
[59.8,
74.8)
85.5
[80.3,
90.6]
55.5
[46.7,
63.6)
63.9
[55.5,
71.4]
71.0
[63.5,
78.0]
85.4
[80.5,
90.2]
53.3
[45.4,
61.0]

66.6]
53.1
[45.6,
60.3]
47.3
[40.0,
54.9]
51.5
[43.8,
59.3]

bracs
55.9
[52.7,
58.9]
53.3
[49.9,
56.6]
45.8
[42.6,
49.0]
48.4
[44.8,
51.8]
49.5
[46.2,
52.7]
45.4
[42.2,
48.6]
45.4
[42.1,
48.6]
53.6
[50.1,
57.0]
56.3
[53.6,
59.2]
42.6
[39.3,
45.9]
54.9
[51.9,

[52.8,

44.5)
45.2
[42.0,
48.3]
45.6
[42.4,
48.7]
48.1
[45.1,
51.1]
40.8
[37.9,
43.8]
44.1
[41.1,
47.2]

break-h
75.7
[70.4,
80.7)
71.0
[65.6,
76.2]
71.9
[66.2,
77.7)
74.7
[69.8,
79.6]
40.6
[35.5,
45.7)
71.8
[66.3,
77.1]
61.9
[56.1,
67.4]
78.1

[37.5,
48.7]
53.5
[47.9,
58.9]
51.3
[45.9,
56.9]

ccree
83.4
[82.5,
84.3]
83.7
[82.8,
84.7]
86.4
[85.6,
87.3]
87.4
[86.6,
88.2]
78.8
[77.8,
79.8]
93.0
[92.4,
93.6]
91.1
[90.4,
91.8]
91.1
[90.3,
91.8]
90.3
[89.6,
91.1]
89.1
[88.4,
89.8]

[79.0,

[85.7,
87.4]
93.2
[92.5,
93.8]
82.4
[81.4,
83.3]

(78.4,

61.2]
68.7
[67.5,
69.9]
64.1
[63.0,
65.2]
64.6
[63.4,
65.7]

cre
91.7
[90.9,
92.4]
81.8
[80.9,
82.7
89.4
[88.6,
90.3]
92.0
[91.2,
92.7]
94.8
[94.2,
95.4]
92.4
[91.7,
93.1]
88.5
[87.8,
89.2]
92.9
[92.2,
93.6)
95.6
[95.1,
96.2]
89.6
[88.8,
90.4]
90.4
[89.6,
91.2]
92.2
[91.5,
93.0]
91.4
[90.6,
92.1]
91.4
[90.6,
92.2]
90.5
[89.7,
91.2]
85.5
[84.6,
86.4]
89.6
[88.8,
90.3]
79.5
[78.5,
80.5]
76.3
[75.3,
77.4]
76.0
[75.0,
76.9]
79.1
[78.1,
80.0]
72.0
[71.0,
72.9]
78.1
[77.2,
79.1]

esca

84.3
[83.9,
84.6]
78.6
[78.2,
79.0]
85.1
[84.8,
85.4]
86.8
[86.5,
87.1]
83.5
[83.1,
83.9]
81.7
[81.3,
82.0]
83.1
[82.8,
83.5]
85.5
[85.2,
85.9]
87.6
[87.3,
88.0]
85.4
[85.0,
85.8]
83.0
[82.6,
83.4]
84.6
[84.2,
85.0]
85.0
[84.6,
85.5]
87.2
[86.8,
87.6]
82.0
[81.6,
82.4]
67.4
[66.9,
67.9]
68.0
[67.5,
68.4]
67.2
[66.7,
67.8]
67.7
[67.2,
68.2]
64.3
[63.7,
64.8]
65.1
[64.6,
65.7]
52.9
[52.4,
53.4]
66.0
[65.5,
66.5]

mbhist
68.5
(66.4,
70.7]
65.7
[63.5,
67.9]
69.2
[67.0,
71.5]
68.9
[66.7,
71.1]
65.6
[62.4,
68.6]
66.0
[64.1,
68.1]
62.5
[60.6,
64.3]
72.2
[70.1,
74.4]
69.4
[67.2,
71.6]
66.0
[63.6,
68.5]

[69.8,

[65.9,
70.9]
65.1
[62.3,
68.1]
65.4
[63.4,
67.4]

[67.1,

72.1]
69.7
[67.0,
72.1]
68.2
[66.2,
70.3]
68.4
(66.3,
70.5]

pcam
92.2
[91.9,
92.5]
91.4
[91.1,
91.7]
86.1
185.7,
86.4]
88.2
[87.9,
88.6]
82.4
[82.0,
82.8]
87.5
[87.2,
87.8]
83.2
[82.8,
83.6]
91.5
[91.2,
91.8]
92.6
[92.3,
92.9]
88.0
87.7,
88.3]

(80.1,

[86.5,

[87.5,
88.2]
84.7
[84.3,
85.1]

(82.7,

74.0]
70.6
[70.1,
71.1]
71.2
[70.8,
71.7]
76.5
[76.1,
77.0]

tcga-cre
64.6
[63.9,
65.3]
66.3
[65.6,
67.1]
69.7
[69.0,
70.3]
71.2
[70.5,
71.9]
56.6
[55.8,
57.3]
67.2
[66.6,
67.9]
62.8
[62.1,
63.6]
66.8
[66.0,
67.4]
69.1
[68.4,
69.8]
63.6
[62.8,
64.3)
62.8
[62.1,
63.5]
65.9
[65.2,
66.7]
66.5
[65.8,
67.2]
64.5
[63.7,
65.2]
64.0
[63.3,
64.7)
60.1
[59.4,
60.8]
61.3
[60.6,
62.0]
57.5
[56.8,
58.3]
59.9
[59.2,
60.7]
56.1
[55.4,
56.9]
57.4
[56.6,
58.1]
56.9
[56.1,
57.6]
57.0
[56.3,
57.7]

tega-tils tcga-unif wilds

86.9
(86.5,
87.2]
84.4
(84.1,
84.8]
88.2
87.9,
88.6]
84.6
(84.3,
84.9]
81.0
(80.6,
81.4]
89.8
(89.5,
90.1]
85.9
85.6,
86.2]
89.5
(89.2,
89.9]
81.4
(81.2,
81.7]
80.2
[79.9,
80.6]

(87.3,
88.0]
84.8
[84.4,
85.1]

70.5]
64.9
[64.6,
65.3]
76.1
(75.7,
76.5]
72.0
[71.6,
72.4]
72.2
[71.8,
72.6]
71.3
[70.9,
71.7)

59.7
[59.2,
60.2]
63.2
[62.8,
63.7]
73.4
[73.0,
73.9]
76.2
[75.8,
76.6]
66.8
(66.3,
67.3]
62.1
[61.6,
62.6]
67.4
[67.0,
67.9]
68.2
[67.8,
68.7]
73.9
[73.5,
74.4]
56.8
(56.3,
57.3]

[63.6,
64.5]
51.0
[50.5,
51.6]

28.6]
30.3
[29.7,
30.8]
30.0
[29.5,
30.6]
33.0
[32.4,
33.6]

93.7
[93.5,
93.9]
71.0
[70.8,
71.2]
95.6
[95.4,
95.7]
74.9
[74.7,
75.2]
89.7
[89.6,
89.9]
94.7
[94.6,
94.9]
92.1
[91.9,
92.2]
96.7
[96.5,
96.8]
96.1
[96.0,
96.2]
96.4
[96.3,
96.6]
95.5
[95.4,
95.7]
95.7
[95.6,
95.9]
94.6
[94.5,
94.8]
95.9
[95.7,
96.0]
92.0
[91.8,
92.1]
85.7
[85.4,
85.9]
89.5
[89.3,
89.7]
81.8
[81.6,
82.1]
84.3
[84.0,
84.5]
78.4
[78.1,
78.7]
74.0
[73.7,
74.2]
62.9
[62.6,
63.1]
89.8
[89.5,
89.9]
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Table S45: Quantitative performance (F1-score) on 4-shot classification.

Model bach  bracs break-h ccrec  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds
70.4 51.0 754 827 91.8 679 604 92.2 58.7 79.6 50.7 93.7
hiboub [62.2, [47.1, [70.5, [81.7, [91.0, [67.5, [57.4, [91.9, [58.1, [79.3, [50.2, [93.5,

77.8] 54.6] 79.6] 83.6] 92.6] 68.3] 63.6] 92.5] 59.3]  80.0] 51.1]  93.9]
69.2 50.1 71.6 82.5 82.7 66.0 57.2 914 59.4 79.2 54.3 68.6
hiboul [61.4, [46.4, [66.7, [81.5, [81.8, [65.7, [54.2, [91.1, [58.8, [78.9, [53.8, [68.3,

76.4] 53.7] 76.0] 83.5] 83.5] 66.3] 60.3] 91.7] 59.9] 79.6]  54.8]  68.9]
58.5 41.2 69.6 87.5 90.2 72.8 624 86.1 62.5 86.9 65.0 95.6

hopt0 49.8, [37.5, [64.2, [86.7, [89.3, [72.6, [59.3, [85.7, [61.9, [86.6, [64.5, [95.4,
66.4] 45.0] 74.6] 88.3] 91.0] 73.1] 65.4] 86.4] 63.0] 87.3]  65.4] 95.7]
64.2 45.5 67.7 88.4 925 754 61.3 88.2 63.4 74.0 68.7 73.5
hopt1 [55.2, [41.6, [62.4, [87.7, [91.8, [75.2, [68.3, [87.9, [62.8, [73.6, [68.2, [73.2,

71.9] 49.3] 72.6] 89.2] 93.3] 75.7] 64.4] 88.6] 64.0] 74.4]  69.1] 73.8]
82.4 46.3 41.6 80.7 94.7 74.2 63.9 82.3 54.6 75.5 61.8 89.6
midnight [75.3, [42.6, [36.5, [79.6, [94.0, [73.9, [60.7, [81.8, [54.0, [75.1, [61.3, [89.4,
88.6] 49.9] 46.7] 81.7] 95.3] 74.5] 66.8] 82.7] 55.2] 75.9]  62.3] 89.8]
54.4 41.0 69.6 92.5 92.7 64.8 56.7 87.4 585  86.2 53.4  94.7
phikon  [45.9, [37.1, [64.3, [91.8, [92.0, [64.5, [53.5, [87.1, [57.9, [85.8, [53.0, [94.5,

62.0] 44.7] 74.3] 93.1] 93.4] 65.2] 59.9] 87.8] 59.1] 86.5]  53.8] 94.8]
59.5 40.9 59.8 90.4 88.9 659 51.2 &83.1 56.1 76.5 58.2 92.0
phikon2  [50.7, [37.0, [54.2, [89.7, [88.1, [65.6, [48.1, [82.7, [565.6, [76.1, [57.7, [91.9,

67.2] 44.6] 64.9] 91.1] 89.8] 66.3] 54.3] 83.5] 56.7]  76.9] 58.6]  92.2]
67.7 50.0 76.9 91.4 928 70.6 65.6 91.5 59.2 86.0 59.1 96.7
uni [59.3, [46.0, [72.3, [90.7, [92.0, [70.3, [62.6, [91.2, [58.7, [85.7, [58.6, [96.5,
74.8] 53.8] 81.1] 92.1] 93.5] 70.9] 68.5] 91.8] 59.8]  86.4] 59.5]  96.8]
81.3 50.3 68.6 90.9 95.3 755 62.0 92.6 59.8 67.8 66.9 96.1
uni2h [74.3, [46.6, [63.2, [90.2, [94.7, [75.2, [58.9, [92.3, [59.2, [67.4, [66.4, [96.0,
87.6] 53.7] 73.4] 91.6] 95.9] 75.8] 65.0] 92.9] 60.3] 68.2] 67.3]  96.2]
50.3 37.6 49.8 87.7 89.8 73.3 59.5 88.0 57.5 68.6 49.1 96.4
virchow — [42.1, [33.9, [43.9, [86.9, [88.9, [72.9, [56.3, [87.6, [56.9, [68.2, [48.7, [96.3,
57.7] 41.3] 55.3] 88.6] 90.7] 73.6] 62.5] 88.3] 58.1]  69.0] 49.6]  96.6]
79.9 50.3 58.8 81.8 90.8 69.8 65.5 80.4 57.6 79.7 56.4 95.5

virchow2 [72.7, [47.0, [53.4, [80.8, [90.0, [69.4, [62.5, [80.0, [57.1, [79.3, [55.9, [95.4,
86.0] 53.7] 63.5] 82.8] 91.5] 70.1] 68.5] 80.9] 58.2] 80.1]  56.8] 95.7]
79.9 48.9 63.5 88.3 91.7 69.4 58.6 84.2 61.8 75.3 48.2 95.7
conch [72.7, [45.2, [57.7, [87.5, [91.0, [69.1, [55.5, [83.8, [61.2, [74.9, [47.8, [95.6,

86.4] 52.7] 68.6] 89.2] 92.5] 69.7] 61.7] 84.6] 62.4] 75.7]  48.7]  95.9]
80.1 53.7 67.5 86.9 91.2 72.0 62.8 86.9 61.6 74.1 52.9 94.6
titan [73.3, [49.8, [61.5, [86.1, [90.4, [71.7, [59.7, [86.5, [61.0, [73.7, [52.4, [94.4,
86.3] 57.4] 72.6] 87.8] 91.9] 72.2] 65.8] 87.2] 62.2] 74.5]  53.3] 94.8]
85.3 47.3 68.0 93.2 91.8 73.8 61.0 &87.9 60.0 82.7 55.9 95.9

keep [78.4, [43.8, [62.3, [92.5, [91.0, [73.4, [58.0, [87.5, [59.4, [82.3, [55.4, [95.7,
91.1] 50.7] 73.0] 93.8] 92.5] 74.1] 64.1] 88.2] 60.6]  83.0] 56.3]  96.0]
61.4 484 724 819 89.3 64.8 55.5 84.7 58.4 76.7 41.2 92.0
musk [53.1, [44.7, [67.8, [80.9, [88.4, [64.5, [52.4, [84.3, [57.8, [76.4, [40.8, [91.8,
68.9] 51.9] 76.7] 82.9] 90.1] 65.1] 58.6] 85.1] 59.0]  77.1] 41.6]  92.1]
51.9 44.2 56.1 78.3 859 519 61.2 &83.1 53.9 71.2 31.8 85.6
plip [43.0, [40.4, [50.9, [77.3, [84.9, [51.6, [58.2, [82.7, [53.3, [70.8, [31.4, [85.4,

59.7] 47.7] 61.2] 79.4] 86.8] 52.1] 64.3] 83.5] 54.4]  71.7] 32.2]  85.8]
49.1 46.7 70.8 79.0 88.8 52.2 60.9 83.6 54.8 74.5 31.1 89.5
quilt [40.6, [42.8, [65.4, [78.0, [88.0, [51.9, [57.9, [83.2, [54.2, [74.1, [30.7, [89.3,
56.8] 50.4] 75.7] 80.0] 89.6] 52.5] 64.0] 84.0] 55.3]  74.9] 31.4]  89.7]
53.9 35.6 65.5 76.4 78.5 49.5 70.7 69.1 51.5 53.5 24.7 81.8
dinob [45.5, [32.1, [59.9, [75.2, [77.5, [49.3, [67.8, [68.6, [51.0, [53.1, [24.3, [81.5,
61.9] 39.0] 70.5] 77.5] 79.5] 49.8] 73.4] 69.6] 52.0] 53.9] 25.0]  82.0]
55.2 40.4 58.1 68.7 76.1 49.7 73.0 61.5 54.3 46.7 25.2 84.1

dinol [46.8, [37.0, [52.5, [67.5, [75.0, [49.4, [70.1, [60.9, [53.7, [46.3, [24.9, [83.8,
62.9] 43.9] 63.3] 69.9] 77.1] 49.9] 75.8] 62.0] 54.8] 47.1]  25.6] 84.3]
54.0 39.7 556 55.9 75.1 489 63.3 73.5 50.6 64.7 21.2 78.3
vitb [45.4, [36.2, [50.0, [54.6, [74.0, [48.6, [60.4, [73.0, [50.1, [64.3, [20.8, [78.0,

61.8] 43.2] 60.7] 57.1] 76.2] 49.1] 66.3] 73.9] 51.2] 65.2]  21.5] 78.6]
45.5 42.0 36.5 68.7 78.3 52.0 64.5 70.6 49.5 57.9 22.2 73.4
vitl [37.2, [38.4, [31.4, [67.5, [77.2, [51.7, [61.4, [70.1, [48.9, [57.5, [21.9, [73.1,
52.9] 45.4] 41.4] 69.9] 79.3] 52.3] 67.3] 71.1] 50.0] 58.3]  22.6] 73.7]
42.3 34.6 52.1 65.2 68.9 37.0 59.7 69.8 52.8 58.4 22.4 57.8

clipb [34.6, [31.2, [46.8, [63.9, [67.9, [36.8, [56.7, [69.3, [52.2, [68.0, [22.1, [57.4,
49.3] 38.0] 57.1] 66.5] 69.9] 37.2] 62.8] 70.3] 53.3] 58.8]  22.8] 58.1]
47.5 38.1 48.1 61.6 75.9 50.8 60.2 76.2 49.2 57.3 24.2 89.7
clipl [39.1, [34.6, [42.6, [60.3, [74.8, [50.5, [57.1, [75.7, [48.6, [56.9, [23.9, [89.5,

55.2] 41.7) 53.4] 62.8] 77.0] 51.1] 63.3] 76.7] 49.7] 57.7]  24.6] 89.9]
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Table S46: Quantitative performance (Balanced accuracy) on 8-shot classification.

Model

hiboub

hiboul

hopt0

hopt1

midnight

phikon

phikon2

uni

uni2h

virchow

virchow2

conch

titan

keep

musk

plip

quilt

dinob

dinol

vitb

vitl

clipb

clipl

bach
75.5
[68.8,
82.0]
74.1
[67.3,
80.5]
58.6
[50.7,
66.3]
68.4
[60.5,
75.4]
85.0
[79.5,
90.1]
55.2
[46.4,
63.6)
63.9
[55.8,
71.5]
68.6
[60.8,
76.1]
87.0
[82.2,
91.7]
52.5
[44.2,
60.3]

65.2]
52.0
[44.3,
59.2]
45.7
(38.4,
53.5]
52.4
[44.6,
60.3]

bracs
57.3
[54.1,
60.5]
52.6
[49.2,
56.0]
46.3
[43.0,
49.8]
49.5
[45.8,
53.1]
48.6
[45.1,
52.0]
45.9
[42.6,
49.2]
46.4
[43.1,
49.8]
54.7
[51.1,
58.2]
57.6
[54.7,
60.6]
43.3
[40.0,
46.7)

[51.8,

[48.6,

45.5]
44.3
[41.0,
47.9]
45.5
[42.1,
48.7]
48.3
[45.2,
51.3]
42.1
[39.0,
45.2]
45.5
[42.3,
48.8]

break-h
77.1
[71.8,
82.1]
71.2
[65.8,
76.2]
72.0
[66.3,
77.8]
74.3
[69.2,
79.3]
38.5
[33.2,
43.8]
74.7
[69.5,
79.6)
63.9
[58.1,
69.5]
79.1
[73.8,
84.2]
69.5
[63.7,
75.1]
53.0
[46.7,
59.4]

70.6]
63.4
[57.8,
68.9]
60.9
[55.1,
66.6]
44.6
[38.7,
50.3]
51.9
[45.9,
57.7]
51.0
[45.5,
56.9]

ccree
82.8
[81.9,
83.7]
82.1
[81.2,
83.1]
83.3
[82.4,
84.2]
86.7
[85.8,
87.5]
76.5
[75.5,
77.5]
92.3
[91.7,
92.9]
91.1
[90.5,
91.8]
89.4
[88.6,
90.2]
89.8
[89.0,
90.6]
89.2
[88.5,
89.9]

[77.5,

85.2,
86.9]
92.9
[92.2,
93.5]
82.1
[81.1,
83.0]
78.8
[77.7,

(80.2,

60.8]
67.7
[66.5,
68.9]
63.8
[62.7,
65.0]
63.8
[62.6,
64.9]

cre
92.2
[91.4,
92.9]
82.3
[81.3,
83.1]
90.2
[89.4,
91.0]
92.5
[91.7,
93.2]
95.0
[94.5,
95.6)
92.3
[91.6,
93.0]
89.2
[88.5,
89.9]
93.3
[92.6,
94.0)
95.7
[95.2,
96.3]
90.0
[89.2,
90.8]
90.8
[90.0,
91.6]
92.4
[91.7,
93.1]
91.5
[90.8,
92.3]
91.6
[90.8,
92.4]
90.7
[90.0,
91.5)
85.7
[84.8,
86.6)
89.7
[89.0,
90.5)
80.2
[79.2,
81.2]
76.8
[75.8,
77.9]
76.9
[76.0,
77.9]
80.2
[79.2,
81.1]
72.4
[71.4,
73.3]
78.3
[77.4,
79.4]

esca

84.3
[83.9,
84.6]
78.3
[77.9,
78.7)
85.4
[85.0,
85.7]
87.0
[86.7,
87.3]
83.5

[83.1,
83.9]
82.0
[81.6,
82.3]
82.8
[82.4,
83.1]
85.5

[85.1,
85.8]
87.8
[87.4,
88.1]
85.1

[84.7,
85.5]
82.8
[82.3,
83.2]
84.2

[83.8,
84.6]
84.9
[84.5,
85.3]
87.2

[86.8,
87.6]
81.7
[81.3,
82.1]
67.2

[66.7,
67.7]
68.0
[67.5,
68.4]
67.6
[67.1,
68.1]
67.9
[67.4,
68.4]
64.5

[63.9,
65.0]
64.8
[64.2,
65.4]
52.5

[52.0,
53.0]
65.9
[65.4,
66.4]

mbhist
69.4
[67.3,
71.6]
65.9
[63.6,
68.2]
70.2
[68.0,
72.7]
71.3
[69.1,
73.7]
64.5
[61.3,
67.5]
68.0
[66.0,
70.1]
64.5
[62.4,
66.6]
74.3
[72.1,
76.6]
71.8
[69.2,
74.2]
64.8
[62.1,
67.5]

[69.8,

[64.5,
70.1]
65.4
[62.5,
68.4]
66.6
[64.5,
68.8]
70.2
[68.0,

78.3]
76.2
[73.5,
78.7]
72.1
(69.7,
74.5]
70.5
[67.8,
73.1]
68.9
(66.8,
71.0]
69.1
[67.0,
71.3]

pcam
92.1
[91.8,
92.4]
91.2
[90.9,
91.5]
85.9
[85.5,
86.3]
88.9
[88.5,
89.2]
82.5
[82.1,
82.9]
88.2
[87.9,
88.5]
83.8
[83.4,
84.2]
91.6
[91.4,
91.9]
92.7
[92.5,
93.0]
88.2
[87.9,
88.6]
81.4
[81.0,

[86.3,

87.3,
88.0]
84.6
[84.2,
85.0]

(82.5,

73.7]
70.4
[69.9,
70.9]
72.5
[72.1,
72.9]
77.3
[76.8,
77.7]

tcga-cre
65.9
[65.2,
66.6]
67.1
[66.4,
67.8]
70.6
[69.9,
71.3]
72.0
[71.3,
72.7]
58.5
[57.8,
59.2]
67.8
[67.1,
68.5]
62.3
[61.6,
63.1]
67.4
[66.7,
68.1]
69.7
[69.1,
70.4]
64.7
[64.0,
65.4]
63.9
[63.1,
64.5]
66.7
[66.0,
67.4]
67.1
[66.4,
67.8]
64.7
[63.9,
65.4]
64.4
[63.7,
65.1]
59.8
[59.0,
60.5]
60.9
[60.2,
61.6]
58.5
[57.8,
59.3]
59.7
[59.0,
60.5]
56.3
[55.6,
57.1]
57.8
[57.1,
58.5]
56.8
[56.1,
57.5]
57.0
[56.2,
57.7]

tega-tils tcga-unif wilds

87.1
(86.7,
87.5]
84.1
(83.7,
84.5]
87.6
(87.2,
88.0]
88.1
(87.8,
88.5]
80.9
[80.5,
81.4]
89.0
(88.7,
89.4]
88.2
(87.8,
88.5]
89.0
(88.6,
89.4]
86.1
85.8,
86.4]
82.9
(82.5,
83.3]

87.2,
88.0]
85.2
(84.8,
85.5]

77.6)
75.5
[75.0,
75.9]
73.1
[72.7,
73.5]
74.0
[73.6,
74.5)

60.5
[60.0,
61.0]
64.0
[63.5,
64.5]
73.8
[73.4,
74.2]
76.6
[76.2,
77.0]
67.4
(66.9,
67.9]
62.7
[62.2,
63.2]
67.6
[67.1,
68.0]
68.7
[68.2,
69.2]
74.4
[74.0,
74.9]
57.2
[56.7,
57.8]
64.7
[64.2,

[64.1,
65.1]
52.0
[51.4,
52.5]
41.3
[40.8,

29.1]
30.8
(30.3,
31.4]
30.2
[29.6,
30.7]
33.2
[32.7,
33.8]

94.9
[94.7,
95.0]
72.4
[72.2,
72.7)
94.2
[94.1,
94.4]
82.3
[82.1,
82.5]
89.9
[89.7,
90.1]
94.6
[94.5,
94.8]
92.3
[92.1,
92.5]
96.3
[96.2,
96.4]
96.0
[95.8,
96.1]
96.9
[96.8,
97.0]
95.1
[95.0,
95.2]
95.9
[95.7,
96.0]
94.4
[94.2,
94.5]
95.9
[95.8,
96.0]
92.3
[92.1,
92.4]
87.0
[86.8,
87.2]
90.9
[90.7,
91.1]
83.1
[82.8,
83.3]
86.7
[86.5,
86.9]
79.9
[79.7,
80.2]
75.5
[75.2,
75.8]
67.8
[67.6,
68.1]
90.1
[90.0,
90.3]
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Table S47: Quantitative performance (F1-score) on 8-shot classification.

Model bach  bracs break-h ccrec  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds
70.5 53.2 76.4 825 922 694 61.9 92.1 594 82.4 52.1 94.9
hiboub [62.5, [49.4, [71.6, [81.5, [91.5, [69.0, [58.9, [91.8, [58.8, [82.0, [51.6, [94.7,
77.9] 56.7] 80.7] 83.5] 93.0] 69.7] 65.1] 92.3] 59.9] 82.8] 52.5]  95.0]
70.0 50.0 72.1 82.0 83.1 66.3 581 91.2 59.6 80.0 55.7 70.4
hiboul [62.2, [46.3, [67.3, [81.0, [82.2, [66.0, [55.1, [90.9, [59.0, [79.6, [55.2, [70.1,
77.2] 53.6] 76.2] 82.9] 83.9] 66.6] 61.2] 91.5] 60.2]  80.4] 56.1]  70.7]
56.0 42,5 69.9 84.8 90.9 73.8 64.3 859 63.1 88.1 65.9 94.2

hopt0 [47.1, [38.6, [64.5, [83.9, [90.0, [73.5, [61.4, [85.5, [62.5, [87.8, [65.4, [94.1,
64.1] 46.2] 75.0] 85.6] 91.7] 74.0] 67.3] 86.3] 63.7] 88.5]  66.3] 94.4]
65.2 47.3 67.8 87.8 93.0 76.3 65.1 88.9 64.4 82.3 69.6 81.9
hopt1 [56.2, [43.3, [62.5, [87.1, [92.2, [76.0, [62.1, [88.5, [63.7, [81.9, [69.2, [81.6,
72.8] 51.1] 72.7) 88.6] 93.7) 76.5] 68.1] 89.2] 64.9]  82.6] 70.1]  82.1]
81.7 46.2 39.8 78.2 94.8 74.8 63.2 82.3 55.8 75.6 62.7 89.8
midnight [74.4, [42.5, [34.4, [77.1, [94.2, [74.5, [60.0, [81.9, [55.2, [75.2, [62.2, [89.6,

87.9] 49.7] 44.8] 79.4] 95.4] 75.1] 66.2] 82.8] 56.4] 76.0]  63.2]  90.0]
54.5 42.1 71.7 91.8 925 66.0 59.6 88.2 595  86.9 54.6  94.6
phikon  [45.9, [38.3, [66.5, [91.2, [91.8, [65.6, [56.4, [87.8, [59.0, [86.6, [54.2, [94.4,
62.5] 45.9] 76.5] 92.5] 93.2] 66.3] 62.8] 88.5] 60.1] 87.3]  55.0] 94.8]
59.6 42.6 61.1 90.6 89.7 66.4 55.1 83.7 56.3 83.2 59.2 92.3
phikon2  [51.0, [38.7, [55.5, [89.9, [88.8, [66.1, [52.0, [83.3, [55.7, [82.8, [58.8, [92.1,
67.4] 46.3] 66.5] 91.3] 90.5] 66.8] 58.1] 84.1] 56.9] 83.5]  59.7]  92.4]
66.1 51.8 77.6 90.0 93.1 71.8 68.7 91.6 59.8 87.5 60.4 96.3
uni [57.8, [47.8, [72.9, [89.2, [92.4, [71.5, [65.8, [91.3, [59.3, [87.1, [60.0, [96.2,
73.5] 55.7] 81.9] 90.7] 93.8] 72.1] 71.6] 91.9] 60.4] 87.8]  60.9] 96.4]
83.5 53.0 69.7 90.5 954 76.4 66.8 92.7 60.8 77.3 68.1 95.9
uni2h [77.0, [49.2, [64.5, [89.7, [94.8, [76.1, [63.9, [92.5, [60.3, [76.9, [67.7, [95.8,
89.4] 56.6] 74.5] 91.2] 96.0] 76.6] 69.6] 93.0] 61.4] 77.7]  68.5]  96.1]
49.6 38.8 51.0 88.2 90.3 73.6 59.9 88.2 58.2 73.7 50.0 96.9
virchow  [41.1, [35.0, [45.1, [87.4, [89.4, [73.2, [56.8, [87.8, [57.6, [73.3, [49.5, [96.8,
57.2] 42.5] 56.6] 89.0] 91.1] 73.9] 62.9] 88.5] 58.8] 74.1]  50.5] 97.0]
80.7 50.8 58.6 80.5 91.1 69.9 67.5 81.3 57.6 79.1 57.1 95.1
virchow2 [73.6, [47.4, [53.1, [79.5, [90.3, [69.6, [64.4, [80.9, [57.0, [78.8, [56.6, [94.9,

86.8] 54.2] 63.5] 81.5] 91.8] 70.2] 70.3] 81.7] 58.1]  79.6] 57.5]  95.2]
80.6 51.9 64.8 88.2 91.9 69.8 59.8 84.4 61.5 76.7 49.5 95.9
conch [73.5, [48.0, [59.4, [87.4, [91.1, [69.4, [56.8, [84.0, [60.9, [76.3, [49.1, [95.7,
87.1] 55.6] 70.0] 89.0] 92.6] 70.1] 62.9] 84.8] 62.1]  77.1] 49.9]  96.0]
80.0 56.6 67.7 86.6 91.3 724 63.8 86.6 61.5 78.1 54.5 94.4
titan [73.0, [52.8, [61.9, [85.7, [90.5, [72.0, [60.8, [86.3, [60.9, [77.7, [54.0, [94.2,

86.5] 60.1] 72.8] 87.4] 92.0] 72.7] 66.7] 87.0] 62.1]  78.5]  54.9]  94.5]
84.6 50.5 66.8 929 919 742 624 87.6 59.7 83.9 56.9 95.9

keep [77.6, [46.8, [61.0, [92.3, [91.1, [73.9, [59.4, [87.3, [59.1, [83.5, [56.5, [95.7,
90.4] 54.1] 72.0] 93.5] 92.7] 74.6] 65.5] 88.0] 60.3] 84.3]  57.4]  96.0]
62.6 49.2 73.3 81.9 &89.5 65.1 57.8 84.6 57.8 79.7 42.7 92.3
musk [54.2, [45.5, [68.9, [80.9, [88.6, [64.7, [54.7, [84.2, [57.2, [79.3, [42.3, [92.1,
70.4] 52.8] 77.3] 82.8] 90.3] 65.4] 61.0] 85.0] 58.4]  80.1]  43.1]  92.4]
54.0 45.1 54.5 78.1 86.0 51.7 63.0 829 53.2 73.1 33.0 87.0
plip 45.3, [41.4, [49.1, [77.1, [85.1, [51.4, [60.1, [82.4, [52.6, [72.7, [32.6, [86.8,

62.1] 48.6] 59.5] 79.2] 87.0] 51.9] 66.2] 83.3] 53.7] 73.6] 33.4] 87.2]
50.7 46.2 70.1 80.0 89.0 524 62.1 834 53.8 76.2 32.1 90.9

quilt [42.1, [42.5, [64.5, [79.0, [88.2, [52.1, [59.0, [83.0, [53.3, [75.8, [31.7, [90.7,
58.6] 49.8] 75.1] 81.0] 89.8] 52.7] 65.0] 83.8] 54.4]  76.6] 32.5]  91.1]
57.0 37.1 62.9 75.3 79.3 50.5 72.2 709 51.3 61.2 25.3 83.0
dinob [48.6, [33.6, [57.3, [74.1, [78.3, [50.2, [69.4, [70.4, [50.7, [60.7, [24.9, [82.8,

65.1] 40.5] 67.8] 76.4] 80.3] 50.7] 75.0] 71.3] 51.8] 61.6]  25.6] 83.3]
55.1 41.1 58.6 69.6 76.7 50.6 73.4 64.2 53.6 51.3 26.0 86.6

dinol [46.3, [37.3, [53.0, [68.3, [75.7, [50.4, [70.5, [63.7, [53.0, [50.9, [25.6, [86.4,
62.9] 44.7] 63.7] 70.8] 77.7] 50.9] 76.1] 64.7] 54.1] 51.8]  26.4] 86.9]
52.4 404 574 55.6 76.1 494 67.0 73.2 50.5 67.8 21.9 79.9
vitb [43.9, [36.7, [51.9, [54.3, [75.0, [49.2, [64.2, [72.7, [50.0, [67.4, [21.6, [79.7,

60.2] 44.0] 62.5] 56.8] 77.2] 49.7] 69.9] 73.7] 51.0]  68.2] 22.3]  80.2]
45.4  42.6 37.5 67.9 794 52.1 66.3 70.3 50.0 65.0 23.2 75.2
vitl [37.1, [39.0, [32.3, [66.7, [78.3, [51.8, [63.3, [69.8, [49.5, [64.6, [22.9, [74.9,
52.7] 46.2] 42.6] 69.1] 80.5] 52.4] 69.0] 70.8] 50.6]  65.4] 23.6]  75.5]
40.8 36.7 51.3 64.9 69.5 37.1 61.0 71.7 52.1 61.2 23.2 65.0

clipb [33.4, [33.2, [45.8, [63.6, [68.5, [36.9, [58.1, [71.2, [51.5, [60.8, [22.8, [64.6,
47.9] 40.3] 56.5] 66.3] 70.6] 37.3] 64.1] 72.2] 52.6] 61.6]  23.5]  65.3]
48.8 404 478 609 76.2 51.1 61.5 77.1 49.3 63.2 25.3 90.1
clipl [40.6, [36.7, [42.3, [59.6, [75.2, [50.9, [68.4, [76.6, [48.8, [62.8, [24.9, [90.0,

56.3] 43.9] 53.0] 62.1] 77.3] 51.4] 64.5] 77.6] 49.9]  63.6]  25.6] 90.3]
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Table S48: Quantitative performance (Balanced accuracy) on 16-shot classification.

Model

hiboub

hiboul

hopt0

hopt1

midnight

phikon

phikon2

uni

uni2h

virchow

virchow2

conch

titan

keep

musk

plip

quilt

dinob

dinol

vitb

vitl

clipb

clipl

bach
76.0
[69.4,
82.4]
75.9
[69.4,
82.2]
58.0
[50.2,
65.9]
66.5
[58.5,
74.0]
85.5
[80.4,
90.7]
55.2
[46.4,
63.6)
61.2
[52.7,
69.1]
67.7
[59.8,
75.4]
87.4
[82.3,
92.3]
52.7
[44.7,
60.2]

[41.5,
57.7]
46.2
[38.9,
54.0]
52.4
[44.6,
60.3]

bracs
57.5
[54.2,
60.9]
53.1
[49.6,
56.6]
46.0
[42.5,
49.6]
49.7
[46.0,
53.4]
50.6
[47.0,
54.1]
47.6
[44.2,
51.1]
46.6
[43.2,
50.2]
54.7
[51.1,
58.4]
58.4
[65.3,
61.5]
43.8
[40.3,
47.4)
54.5
[51.4,

[53.4,

[54.9,
60.5]
55.1
[52.0,
58.2]
49.6
[46.4,
52.8]
51.1
[48.0,
54.4]

[39.5,
46.1]
43.6
[40.2,
47.2]
45.3
[41.9,
48.7]
48.8
[45.7,
51.9]
41.8
[38.6,
45.2]
46.0
[42.7,
49.3]

break-h
75.1
[69.7,
80.2]
70.3
[64.9,
75.7)
72.9
[67.3,
78.4]
74.8
[69.7,
79.7]
37.1
[32.0,
42.4]
74.6
[69.4,
79.5]
64.0
[58.3,
69.5]
78.6
[73.3,
83.7]
69.5
[63.7,
75.1]
52.3
[46.0,
58.7]

64.7
[59.1,
70.4]
73.8
[69.1,
78.3]

[37.0,
48.5]
51.6
[45.7,
57.5]
53.3
[47.7,
59.5]

ccree
82.3
[81.4,
83.2]
81.8
[80.8,
82.7]
82.3
[81.4,
83.2]
86.2
[85.3,
87.0]
75.8
[74.8,
76.8]
92.1
[91.4,
92.7]
90.8
[90.1,
91.5]
88.7
[87.9,
89.5]
89.9
[89.1,
90.7]
89.2
[88.5,
89.9]

[76.8,

[84.9,

[92.1,
93.4]
82.1
[81.2,
83.1]

(77.4,

60.7]
67.7
[66.5,
68.9]
63.9
[62.7,
65.1]
64.1
[63.0,
65.2]

cre
92.4
[91.7,
93.1]
82.4
[81.5,
83.3]
90.6
[89.8,
91.5]
92.7
[92.0,
93.5]
94.9
[94.4,
95.5)
92.3
[91.6,
93.0]
89.2
[88.5,
89.9]
93.9
[93.2,
94.5)
95.9
[95.3,
96.4]
90.1
[89.3,
90.9]
91.1
[90.3,
91.8]
92.6
[91.9,
93.3]
91.7
[90.9,
92.5)
91.7
[90.9,
92.5]
90.8
[90.1,
91.5)
85.6
[84.7,
86.4]
89.9
[89.1,
90.6]
81.0
[80.0,
81.9]
77.4
[76.4,
78.4]
77.5
[76.5,
78.4]
80.8
[79.8,
81.8]
72.5
[71.6,
73.5)
78.5
[77.5,
79.5]

esca

84.4
[84.0,
84.7]
78.8
[78.4,
79.2)
85.4
[85.1,
85.8]
87.1
[86.8,
87.4]
83.6
[83.2,
84.1]
82.1
[81.7,
82.4]
82.7
[82.3,
83.1]
85.5
[85.2,
85.9]
87.8
[87.5,
88.2]
85.2
[84.8,
85.5]
82.8
[82.3,
83.2]
84.1
[83.7,
84.5]
84.9
[84.5,
85.3]
87.2
[86.8,
87.6]
81.5
[81.1,
81.9]
66.8
[66.3,
67.3]
67.7
[67.3,
68.2]
67.7
[67.1,
68.2]
67.5
[67.0,
68.1]
64.3
[63.7,
64.8]
64.7
[64.1,
65.3]
52.5
[51.9,
53.0]
65.6
[65.1,
66.1]

mbhist
69.9
[67.8,
72.2]
66.6
[64.3,
68.9]
70.9
[68.5,
73.4]
69.9
[67.4,
72.5]
63.5
[60.3,
66.5]
68.4
[66.3,
70.5]
64.5
[62.3,
66.7]
74.7
[72.5,
77.0]
72.5
[70.0,
74.9]
64.9
[62.3,
67.7)

[70.4,

[64.9,
70.6]
65.2
[62.2,
68.2]
66.5
[64.4,
68.6]

[68.5,

(73.4,
78.6]
72.4
(69.9,
74.9]
71.0
(68.3,
73.6)
69.8
(67.7,
71.9]
69.9
[67.8,
72.1]

pcam
91.9
[91.6,
92.2]
91.1
[90.8,
91.4]
85.9
[85.5,
86.3]
89.7
[89.3,
90.0]
83.0
[82.6,
83.4]
88.3
[88.0,
88.7]
83.6
[83.2,
84.0]
91.8
[91.5,
92.1]
92.9
[92.7,
93.2]
88.2
[87.9,
88.6]

[80.4,

[85.7,

[87.1,
87.8]
84.5
[84.2,
84.9]
82.5
[82.1,
82.9]
82.9
[82.5,
83.3]

[70.6,
71.5]
67.3
[66.9,
67.7)
73.1
[72.7,
73.6]
70.1
[69.6,
70.6]
72.4
[71.9,
72.8]
77.3
[76.9,
77.8]

tcga-cre
65.7
[65.0,
66.4]
66.5
[65.8,
67.2]
69.7
[69.0,
70.3]
71.1
[70.4,
71.7)
58.2
[57.5,
58.9]
66.4
[65.7,
67.1]
62.2
[61.5,
63.0]
66.9
[66.2,
67.6]
69.3
[68.7,
70.0]
63.9
[63.1,
64.6)
63.2
[62.5,
63.9]
66.6
[65.8,
67.3]
66.8
[66.1,
67.5)
64.6
[63.9,
65.4]
63.9
[63.1,
64.6)
59.5
[58.7,
60.2]
60.6
[59.9,
61.3]
58.3
[57.5,
59.0]
59.6
[58.9,
60.3]
56.4
[55.6,
57.1]
58.1
[57.4,
58.8]
56.3
[55.6,
57.0]
56.8
[56.1,
57.5]

tega-tils
87.2
[86.8,
87.6]
84.7
[84.3,
85.1]
87.3
[86.9,
87.7]
89.3
(88.9,
89.6]
81.2
[80.7,
81.6]
88.9
[88.6,
89.3]
87.8
[87.5,
88.2]
88.8
(88.4,
89.2]
88.0
(87.7,
88.4]
84.4
[84.1,
84.8]

87.1,
87.9]
84.9
(84.5,
85.3]

76.2]
67.5
[67.1,
67.9]
77.2
[76.8,
77.6)
76.3
[75.9,
76.8]
73.8
(73.4,
74.3]
74.6
[74.2,
75.1]

tcga-unif  wilds

61.1
[60.6,
61.6]
64.7
[64.2,
65.3]
74.1
(73.7,
74.6]
76.8
[76.4,
77.2]
67.8
[67.3,
68.3]
62.9
[62.4,
63.4]
68.0
[67.5,
68.4]
69.0
[68.5,
69.6]
74.9
[74.5,
75.4]
57.6
[57.1,
58.2]

29.3]
31.3
(30.8,
31.9]
30.3
[29.8,
30.8]
33.7
(33.2,
34.3]

94.9
[94.8,
95.1]
72.9
[72.6,
73.1]
93.7
[93.5,
93.8]
86.7
[86.5,
86.9]
90.0
[89.8,
90.2]
94.7
[94.5,
94.8]
92.2
[92.0,
92.4]
96.1
[95.9,
96.2]
95.9
[95.8,
96.1]
96.8
[96.7,
96.9]
94.2
[94.0,
94.3]
95.9
[95.8,
96.1]
94.4
[94.2,
94.5]
95.7
[95.6,
95.9]
92.2
[92.0,
92.4]
86.8
[86.6,
87.0]
90.3
[90.1,
90.5]
83.3
[83.0,
83.5]
87.9
[87.6,
88.1]
79.7
[79.4,
80.0]
75.3
[75.0,
75.6]
67.8
[67.5,
68.0]
90.2
[90.1,
90.4]
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Table S49: Quantitative performance (F1-score) on 16-shot classification.

Model bach  bracs break-h ccrec  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds
71.2 543 75.0 82.0 924 70.3 62.8 91.9 58.7 83.6 53.2 94.9
hiboub [63.3, [50.3, [69.9, [81.0, [91.7, [69.9, [59.8, [91.6, [58.2, [83.2, [52.7, [94.8,
78.7) 57.9] 79.3] 83.0] 93.1] 70.6] 66.0] 92.2] 59.3] 84.0] 53.6]  95.1]
72.2 51.3 714 814 832 67.2 59.1 91.0 58.8 81.7 57.0 71.0

hiboul [64.5, [47.4, [66.5, [80.4, [82.3, [66.9, [56.1, [90.7, [58.2, [81.3, [56.6, [70.7,
79.2] 54.9] 75.7] 82.3] 84.0] 67.5] 62.2] 91.3] 59.4]  82.1] 57.5]  71.3]
55.2  43.1 70.6 83.9 91.3 742 65.5 85.9 61.4 88.5 66.9 93.7
hopt0 46.3, [39.1, [65.2, [83.0, [90.5, [74.0, [62.6, [85.5, [60.8, [88.1, [66.5, [93.5,
63.4] 47.0] 75.5] 84.8] 92.0] 74.5] 68.6] 86.2] 62.0] 88.8] 67.4]  93.8]
63.4 48.4 68.5 87.4 93.2 76.6 64.9 89.6 62.8 86.3 70.5 86.6
hopt1 [54.5, [44.4, [63.2, [86.6, [92.5, [76.3, [61.8, [89.3, [62.2, [86.0, [70.0, [86.3,

71.4] 52.4] 73.3] 88.2] 93.9] 76.8] 67.9] 90.0] 63.4]  86.7] 70.9]  86.8]
82.5 49.4 38.5 77.5 94.7 75.0 62.4 82.8 55.1 76.2 63.4 89.9
midnight [75.5, [45.5, [33.1, [76.4, [94.1, [74.7, [59.3, [82.4, [54.5, [75.8, [62.9, [89.7,
88.5] 53.0] 43.7] 78.7] 95.3] 75.4] 65.4] 83.2] 55.7]  76.6] 63.9]  90.1]
54.5 44.6 71.5 91.6 92.5 66.5 60.2 88.3 584  87.7 55.4  94.7
phikon [45.9, [40.6, [66.2, [90.9, [91.8, [66.2, [57.0, [88.0, [57.9, [87.4, [55.0, [94.5,
62.5] 48.3] 76.3] 92.3] 93.2] 66.9] 63.4] 88.7] 59.0] 88.1] 55.9]  94.8]
57.3 43.2 60.9 90.1 &89.6 67.0 55.5 83.5 56.2 85.6 60.2 92.2
phikon2  [48.6, [39.4, [55.4, [89.4, [88.8, [66.7, [52.5, [83.1, [55.6, [85.2, [59.8, [92.0,
65.2] 47.0] 66.2] 90.8] 90.4] 67.3] 58.7] 83.9] 56.8]  85.9] 60.7]  92.4]
65.2 52.5 774 89.3 93.6 724 694 91.8 58.9 88.3 61.5 96.1
uni [56.6, [48.5, [72.8, [88.6, [92.9, [72.1, [66.5, [91.5, [58.3, [87.9, [61.1, [95.9,
72.7] 56.3] 81.7] 90.1] 94.3] 72.7] 72.4] 92.1] 59.4]  88.6] 62.0]  96.2]
84.7 54.7 69.9 90.6 95.5 76.7 68.1 929 60.1 82.5 69.2 95.9
uni2h [78.0, [51.0, [64.6, [89.9, [94.9, [76.4, [65.3, [92.7, [59.5, [82.1, [68.7, [95.8,
90.6] 58.3] 74.6] 91.3] 96.1] 77.0] 70.9] 93.2] 60.6]  82.9] 69.6]  96.1]
49.6 40.1 50.5 88.2 90.3 73.7 60.2 88.2 57.0 76.9 50.8 96.8
virchow  [41.1, [36.1, [44.5, [87.4, [89.4, [73.4, [57.1, [87.8, [56.4, [76.5, [50.3, [96.7,
57.1] 43.9] 55.9] 89.0] 91.1] 74.1] 63.2] 88.5] 57.5]  77.3] 51.2]  96.9]
80.7 51.4 58.5 79.9 91.3 70.0 68.5 80.7 56.4 81.6 57.4 94.2
virchow2 [73.7, [48.0, [52.9, [78.9, [90.6, [69.6, [65.3, [80.3, [55.9, [81.2, [57.0, [94.0,

86.8] 54.9] 63.7] 80.9] 92.1] 70.3] 71.3] 81.1] 57.0] 82.0]  57.9] 94.3]
80.6 53.0 63.8 88.1 92.1 699 614 84.4 60.7 77.5 50.3 95.9
conch [73.5, [49.0, [58.4, [87.3, [91.3, [69.6, [58.3, [84.0, [60.1, [77.1, [49.8, [95.8,

87.1] 56.7] 68.8] 89.0] 92.8] 70.3] 64.4] 84.7] 61.3] 77.9]  50.7]  96.1]
80.0 57.7 67.2 86.3 91.5 725 64.4 86.1 604  79.7 55.5  94.4

titan [73.0, [53.8, [61.4, [85.5, [90.7, [72.2, [61.3, [85.7, [59.8, [79.3, [55.0, [94.2,
86.5] 61.2] 72.3] 87.2] 92.2] 72.8] 67.4] 86.4] 61.0] 80.1] 55.9]  94.5]
84.6 52.1 66.2 92.8 92.0 74.3 62.7 874 59.0 84.5 57.8  95.7
keep [77.6, [48.3, [60.5, [92.2, [91.2, [74.0, [59.6, [87.1, [58.4, [84.1, [57.4, [95.6,
90.4] 55.8] 71.4] 93.4] 92.7] 74.7] 65.8] 87.8] 59.6]  84.8] 58.3]  95.9]
62.5 50.9 73.3 82.0 89.5 65.1 58.0 84.5 57.0 80.4 44.0 92.2
musk [54.2, [47.0, [69.0, [81.0, [88.7, [64.7, [54.9, [84.1, [56.4, [80.0, [43.6, [92.0,

70.3] 54.6] 77.4] 82.9] 90.3] 65.4] 61.2] 84.9] 57.5]  80.8] 44.5]  92.4]
52.8 45.3 55.0 78.0 859 514 63.7 825 52.5 73.5 33.8 86.8
plip [44.2, [41.5, [49.7, [76.9, [84.9, [51.2, [60.7, [82.1, [51.9, [73.1, [33.4, [86.6,
60.8] 48.8] 60.2] 79.1] 86.8] 51.7] 66.8] 82.9] 53.0]  74.0] 34.2]  87.0]
49.7 46.8 70.7 80.1 89.1 525 63.5 82.9 53.1 76.6 32.8 90.3
quilt [41.2, [43.0, [65.4, [79.1, [88.3, [52.2, [60.5, [82.5, [52.5, [76.2, [32.4, [90.1,
57.4] 50.6] 75.5] 81.1] 89.9] 52.8] 66.5] 83.3] 53.7]  77.0] 33.1]  90.5]
56.6 38.5 63.8 74.6 80.2 51.1 71.8 70.7 51.2 64.7 26.0 83.3

dinob [48.3, [34.8, [58.3, [73.4, [79.2, [50.9, [68.9, [70.2, [50.7, [64.3, [25.7, [83.0,
64.5] 41.9] 68.6] 75.8] 81.1] 51.4] 74.6] 71.2] 51.8]  65.1] 26.4]  83.5]
55.1 41.1 57.6 68.9 77.3 51.0 73.1 65.2 53.3 53.8 26.7 87.8
dinol 46.2, [37.4, [52.1, [67.6, [76.3, [50.7, [70.2, [64.6, [52.8, [53.4, [26.3, [87.6,
62.8] 44.8] 62.6] 70.1] 78.3] 51.2] 75.9] 65.7] 53.8] 54.2] 27.0]  88.1]
51.8 40.9 57.5 55.6 76.7 49.2 67.8 73.1 50.5 68.7 22.5 79.7
vitb [43.3, [37.2, [52.3, [54.3, [75.6, [48.9, [65.0, [72.7, [50.0, [68.3, [22.2, [79.4,
59.3] 44.4] 62.7) 56.8] 77.8] 49.5] 70.6] 73.6] 51.1]  69.1] 22.9]  80.0]
44.3  43.7 35.8 68.1 80.0 52.0 67.3 69.9 50.4 67.3 24.3 75.1
vitl [36.0, [40.0, [30.5, [66.9, [79.0, [51.7, [64.3, [69.4, [49.9, [66.9, [23.9, [74.8,

51.8] 47.3] 40.8] 69.3] 81.1] 52.3] 70.1] 70.4] 50.9] 67.7]  24.7]  75.4]
41.7 374 51.2 64.9 69.8 37.0 623 71.7 51.0 63.2 23.9 65.1

clipb [34.1, [33.8, [45.6, [63.6, [68.8, [36.8, [59.3, [71.2, [50.5, [62.8, [23.6, [64.8,
48.9] 40.9] 56.3] 66.3] 70.8] 37.3] 65.3] 72.1] 51.6] 63.7]  24.3]  65.4]
48.8 41.6 49.7 60.9 76.4 50.8 62.6 77.2 48.9 65.3 26.5 90.2
clipl [40.6, [37.8, [44.1, [59.6, [75.4, [50.5, [69.5, [76.7, [48.4, [64.9, [26.1, [90.0,

56.3] 45.2] 55.1] 62.1] 77.4] 51.0] 65.6] 77.7] 49.4] 65.8]  26.8]  90.4]
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Table S50: Quantitative performance (Dice Score) Table S51: Quantitative performance (Jaccard In-

on semantic segmentation. dex) on semantic segmentation.
Model ocelot pannuke segp-ep segp-ly Model ocelot pannuke segp-ep segp-ly
80.2  60.9 67.8  62.3 744  52.5 60.5  58.0
hiboub [79.3, [60.3, [67.5, [62.0, hiboub [73.4, [51.8, [60.2, [57.7,
81.1] 61.6] 68.0]  62.7] 75.4]  53.1]  60.7] 58.4]
79.7  62.5 69.5  62.6 73.6  53.9 62.0 58.7
hiboul [78.7, [61.9, [69.3, [62.3, hiboul [72.7, [53.3, [61.8, [58.3,
80.5] 63.2] 69.8]  63.0] 74.5]  54.5]  62.2]  59.0]
78.4 554 68.0 59.1 72.3  46.8 60.8  55.5
hopt0 [77.5, [54.8, [67.8, [58.7, hopt0 [71.3, [46.2, [60.5, [55.2,
79.4] 56.0]  68.3]  59.4] 73.3]  47.4]  61.0]  55.8]
774  53.3 68.3  59.0 71.2 455 60.8  55.4
hopt1 [76.5, [52.7, [68.1, [58.6, hopt1 [70.2, [44.9, [60.6, [55.1,
78.3] 54.0]  68.6]  59.3] 72.2]  46.1  61.0]  55.7]
79.4  62.0 71.2  62.7 73.7  53.3 63.8  58.5
midnight [78.5, [61.4, [71.0, [62.4, midnight [72.7, [52.7, [63.6, [58.2,
80.4] 62.6] 71.5] 63.1] 74.7)  53.9]  64.0]  58.8]
80.2  60.7 69.2  61.9 74.1  52.0 61.7  57.7
phikon [79.3, [60.1, [68.9, [61.5, phikon [73.1, [51.4, [61.5, [57.4,
81.0] 61.4]  69.4] 62.2] 75.0] 52.6]  62.0]  58.0]
78.7  61.0 69.1  60.9 73.1 523 61.6 57.3
phikon2  [77.7, [60.4, [68.8, [60.6, phikon2  [72.1, [51.7, [61.4, [57.0,
79.71  61.6] 69.3]  61.3] 74.1 52.9] 61.8] 57.6]
79.1 60.6 69.7 61.7 73.2 51.9 62.2 57.7
uni [78.1, [60.0, [69.5, [61.3, uni [72.2, [51.3, [62.0, [57.4,
80.0]  61.2] 70.0]  62.1] 74.2]  52.6] 62.4]  58.0]
81.1  61.7 71.0 62.1 75.6  53.0 63.5  57.8
uni2h [80.1, [61.0, [70.7, [61.8, uni2h [74.5, [52.4, [63.3, [57.5,
82.0] 62.3] 71.2]  62.5] 76.5]  53.7]  63.7]  58.1]
81.1 62.6 70.2  62.8 75.4  54.0 62.6 58.6
virchow  [80.2, [62.0, [70.0, [62.5, virchow  [74.4, [53.4, [62.4, [58.3,
82.0] 63.2] 70.5] 63.2] 76.3] 54.6]  62.9] 58.9]
80.8  62.2 71.3  63.0 75.1  53.5 63.8  58.9
virchow2 [79.8, [61.6, [71.1, [62.6, virchow2 [74.1, [52.9, [63.6, [58.5,
81.6]  62.8] 71.6]  63.4] 76.1]  54.1] 64.0]  59.2]
787  63.7 67.4  63.5 72.7  55.7 59.8  59.1
conch [77.7, [63.1, [67.2, [63.1, conch [71.7, [55.1, [59.6, [58.8,
79.70  64.4]  67.7]  63.9] 73.8]  56.4]  60.0]  59.4]
79.7  63.2 68.8 63.4 74.1 553 61.2  59.1
titan [78.7, [62.5, [68.6, [63.0, titan [73.0, [54.6, [61.0, [58.8,
80.6] 63.8]  69.1] 63.8] 75.1] 55.9]  61.4]  59.5]
80.7  60.2 69.9 614 74.6  51.5 62.4  57.6
keep [79.8, [59.6, [69.6, [61.0, keep [73.6, [50.9, [62.2, [57.3,
81.6] 60.9] 70.1]  61.8] 75.5]  52.1]  62.7]  57.9]
74.1  59.7 64.7  61.8 67.5 51.5 57.0 57.6
musk [73.1, [59.0, [64.4, [61.5, musk [66.5, [50.8, [56.8, [57.4,
75.0] 60.3]  64.9]  62.2] 68.5] 52.1] 57.2] 58.0]
68.6 46.5 62.2 56.7 61.7 38.1 54.5 53.9
plip [67.6, [45.9, [62.0, [56.4, plip [60.6, [37.6, [54.3, [53.6,
69.6] 47.1]  62.5] 57.0] 62.7] 38.7)  54.8]  54.3]
68.9 46.4 62.8 57.5 61.9 38.1 55.0  55.0
quilt [67.9, [45.8, [62.6, [57.2, quilt [60.8, [37.5, [54.8, [54.7,
69.9] 47.1]  63.0] 57.8] 62.9] 38.8] 55.2] 55.3]
72.5  46.6 63.1  57.1 65.4  38.9 56.0  54.5
dinob [71.5, [46.0, [62.8, [56.8, dinob [64.4, [38.3, [55.7, [54.2,
73.5]  47.2]  63.3]  57.4] 66.4] 39.5] 56.2] 54.8]
724  46.3 62.9  57.0 65.5  38.9 55.5  54.3
dinol [71.3, [45.6, [62.7, [56.7, dinol [64.4, [38.3, [55.3, [54.0,
73.3]  46.9]  63.2] 57.3] 66.4] 39.5]  55.8] 54.6]
69.5 54.3 61.0 59.1 62.4  46.1 53.5  55.9
vitb [68.5, [53.6, [60.8, [58.8, vitb [61.4, [45.5, [53.3, [55.6,
70.5] 54.9]  61.3]  59.5] 63.4] 46.7]  53.7] 56.2]
72.2  55.7 64.3  60.2 65.2 474 56.5  56.4
vitl [71.2, [55.0, [64.1, [59.8, vitl [64.2, [46.8, [56.3, [56.1,
73.2]  56.4]  64.6]  60.5] 66.2] 48.0] 56.8]  56.7]
63.3 43.3 60.1 57.1 56.2  36.1 52.6  54.9
clipb [62.3, [42.6, [59.8, [56.9, clipb [55.1, [35.5, [52.4, [54.6,
64.3] 43.9]  60.3] 57.4] 57.2] 36.8] 52.8] 55.2]
70.0 52.0 61.2  59.8 62.8  44.0 53.6  56.5
clipl [69.1, [51.3, [61.0, [59.5, clipl [61.8, [43.4, [53.4, [56.2,
71.0] 52.6] 61.4]  60.2] 63.8] 44.6] 53.8]  56.8]
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Table S52: Quantitative performance (ECE) on linear probing.

Model

hiboub

hiboul

hoptO

hoptl

midnight

phikon

phikon2

uni

uni2h

virchow

virchow2

conch

titan

keep

musk

plip

quilt

dinob

dinol

vitb

vitl

clipb

clipl

bach
16.1
[9.6,
23.7]
8.4
[4.2,
15.8]
13.3
[7.6,
21.2]
5.1
[3.0,
13.4]
6.0
[2.6,
11.5]
16.8
[10.2,
24.8]
5.7
[2.6,
14.2]
5.5
[3.0,
13.3]
8.4
[4.0,
14.1]
20.3
[13.5,
28.0]
9.6
[7.2,
16.8]
7.6
[3.2,
13.9]
13.2
[8.1,
19.5]
25.7
[21.1,
32.4]
13.6
[8.6,
21.1]
7.8
[3.6,
15.0]
15.2
[8.6,
22.9]
16.1
[10.5,
24.3]
3.7
[2.3,
12.1]
1.8
[2.1,
12.2]
15.0
[9.3,
23.6]
12.3
[5.8,
20.6)
3.7
[2.3,
12.5]

bracs
3.6
.7,
7.6]
18.0
[14.3,
21.7]
14.5
[11.0,
18.2]
15.3
[11.8,
18.9]
12.3
[9.2,
16.1]
12.8
[9.3,
16.3]
10.1
[7.0,
13.6]
15.3
[11.6,
18.9]
6.2
[4.1,
10.1]
11.7
8.2,
15.5]

10.0]

8.3,
15.2]

3.9,
10.8]
10.3
(7.2,
14.1]
11.6
8.1,
15.6]
11.7
8.4,
15.6]
20.5
[16.6,
24.4)
10.2
6.7,
14.0]
8.7
5.8,
12.7]
11.8
(8.3,
15.5]

5.2,
11.9]

[4.5,
11.8]

break-h
3.8
[2.7,
9.5]
6.2
(3.6,
10.9]
2.9
[1.4,
7.4]
3.6
(1.7,
7.5]
2.1
(1.5,
7.2]
17.9

[4.6,
12.4]
8.4
(5.1,
12.7]

2.9,
11.0]

(3.1,
10.9]

ccree
3.7
[3.0,
4.5]
11.9
[11.2,
12.6]
6.2
[5.6,
6.9]
4.5
3.8,
5.1]
3.5
[2.9,
4.2]
5.7
[5.1,
6.5]
9.3
8.5,
10.2]
3.8
3.2,
4.4]
8.1
[7.4,
8.8]
2.1
[1.6,

8.8]

Crc
2.8
[2.4,
3.2]
4.2
[3.7,
4.6]
4.0
[3.6,
4.5]
3.3
2.9,
3.8]
2.7
[2.3,
3.1]
5.2
[4.7,
5.7]
4.8
[4.3,
5.3]
4.2
[3.8,
4.7]
3.9
3.5,
4.4]
3.8
[3.3,
4.3]
4.1
3.7,
4.6]
3.2
[2.7,
3.6]
3.0
[2.5,
3.4]
2.5
2.1,
2.9]
4.1
[3.6,
4.6]
6.1
[5.5,
6.8]
3.0
[2.5,
3.5
3.2
[2.8,
3.8]
5.2
(4.7,
5.8]
3.5
[3.0,
4.0]
2.6
2.2,
3.0]
5.2
[4.6,
5.8]
5.2
[4.6,
5.8]

esca mhist
1.5 4.5
1.3, [2.7,
1.6]  6.8]
3.0 4.9
[2.9, [3.0,
3.1  7.1]
29 1.6
[2.8, [0.6,
3.0] 3.7
0.7 9.7
0.7, [8.1,
0.8] 12.1]
09 1.7
[0.8, [0.8,
1.0] 4.2
2.3 64
2.2, [4.7,
2.4] 9.0]
0.8 2.6
0.7, [1.4,
0.9] 5.1
1.9 3.1
[1.8, [1.6,
2.0] 5.4]
1.2 6.9
[1.1, [4.8,
1.3]  9.3]
0.5 3.5
[0.4, [1.8,
0.6] 5.8]
0.5 0.6
[0.4, [0.5,
0.6] 3.1]
3.2 3.2
[3.1, [1.6,
3.3] 5.5]
2.8 0.7
2.7, [0.5,
2.9] 3.2]
1.3 0.8
[1.2, [0.5,
1.4] 3.6]
3.3 7.0
3.2, [5.2,
3.4] 9.3
4.6 1.7
4.4, [0.7,
4.8]  4.4]
7.3 1.8
[7.1, [0.7,
7.4] 4.3]
1.1 0.6
[1.0, [0.5,
1.2]  3.1]
6.9 5.5
6.8, [3.7,
7.1  7.9]
7.5 2.2
[7.3, [1.0,
7.6] 4.8]
2.2 1.4
[2.0, [0.6,
2.3] 3.9
79 1.0
7.8, [0.5,
8.1 3.8]
5.0 1.0
4.8, [0.5,
5.1] 3.5

pcam
1.8
[1.6,
2.1]

0.8]

tcga-crc  tcga-tils

0.6
[0.4,
1.1]

[5.2,
6.2]

0.6
(0.4,
0.7]
0.7

0.3

tcga-unif wilds

3.9
(3.6,
4.2]
2.1

7.2]

1.0
[0.9,
1.1]
0.1
[0.0,

1.3]
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Table S53: Quantitative performance (MCE) on linear probing.

Model

hiboub

hiboul

hopt0

hoptl

midnight

phikon

phikon2

uni

uni2h

virchow

virchow2

conch

titan

keep

musk

plip

quilt

dinob

dinol

vitb

vitl

clipb

clipl

bach
22.1
[16.6,
32.4]
11.7
[8.5,
62.4]
15.7
[13.1,
62.5]
12.1
[6.4,
62.2]
34.1
[11.7,
47.0]
38.7
[17.2,
39.0]
9.4
[5.4,
38.9]
10.4
[6.0,
34.7]
37.0
[9.6,
37.0]
64.5
[26.8,
65.8]
15.0
[13.2,
64.0]
22.3
[7.6,
41.5)
36.7
[14.6,
38.3]
33.6
[32.2,
41.3]
35.7
[13.3,
39.2]
34.7
[32.5,
36.8]
21.2
[14.9,
39.9]
35.6
[23.7,
39.1]
4.1
[5.5,
40.2]
3.5
[4.4,
25.0]
39.0
[19.0,
39.8]
17.1
[10.4,
36.3]
10.9
[4.8,
38.0]

bracs
5.1
[3.2,
14.3]
22.9
[17.4,
37.2]
19.9
[13.9,
28.0]
17.8
[14.4,
28.5]
17.9
[13.4,
31.8]
18.3
[14.2,
28.2]
22.9
[15.0,
31.7]
18.9
[14.8,
31.0]
19.3
[8.6,
32.5]
14.0
[11.1,
21.1]
10.4
[5.8,
18.9]

[11.6,

[6.0,
18.6]
12.3
[9.8,
22.0]
15.2
[11.5,
24.4]
16.0
[11.6,
23.7]
26.0
[22.0,
32.6]
17.9
(11.4,
25.6]
15.8
[9.8,
24.7]
18.2
[11.8,
26.1]
11.9
8.3,
19.9]

[7.2,
17.8]

break-h
7.8
[5.1,
33.4]
35.0
[8.2,
35.4]
5.4
[3.8,
33.3]
43.5
[10.3,
64.5]
16.5
[4.1,
44.0]
38.7
[19.1,
38.7]
33.9
[25.2,
44.6)
16.3
[10.8,
62.1]
29.4
[7.5,
32.9]
44.1
[20.4,
66.1]
37.8
[8.3,
38.1]
11.9
[7.1,
61.9]
32.7
[12.2,
35.6]
8.3
[6.6,
38.1]
8.1
[4.5,
61.2]
13.0
[7.6,
31.6]
11.0
[8.0,
43.0]
64.6
[14.3,
64.6]
61.2
[6.9,
61.2]
35.5
[16.4,
38.2]
15.9
[8.4,
38.8]
6.8
[5.3,
19.8]
13.2
[6.9,
32.9]

ccree
5.2
3.7,
16.5]
20.6
[19.3,
22.0]
17.6
[9.3,
51.2]
50.0
[21.8,
64.0]
3.8
[3.2,
7.4]
11.4
[9.9,
21.5]
17.8
[16.2,
19.4]
23.6
[6.9,
45.4]
16.4
[15.0,
18.6]
9.7
3.0,
33.3]
37.5
[9.9,
61.6]
8.6
[2.8,
34.8]
8.2
[5.4,
30.1]
18.1
7.2,
38.5]
7.1
[3.6,
19.2]
21.8
[10.2,
34.7]

[21.0,
64.3]
13.1
[10.4,
30.3]
11.9
[10.1,
22.9]
3.2
2.0,
16.3]
14.8
[12.6,
35.5]
12.2
4.6,
24.6]
16.9
[13.2,
32.0]

cre
36.3
[15.9,
37.0]
19.8
[13.1,
32.8]
38.3
[19.6,
40.3]
15.8
[6.3,
37.4]
38.3
[5.3,
38.3]
36.4
[30.4,
42.4]
22.3
2.1,
32.9]
20.8
[9.5,
34.3]
37.8
[15.6,
37.8]
35.3
[9.1,
35.3]
35.4
[11.8,
54.3]

[12.3,
36.5]
19.5
[10.5,
38.4]
38.0
[14.0,
38.9]
11.5
[7.7,
60.9]
14.4
[11.0,
39.5]
24.0
9.7,
39.5]
20.7
8.6,
39.3]
39.2
[7.8,
39.8]
11.0
7.2,
38.3]
16.8
[5.4,
37.4]
15.0
[11.5,
20.1]
27.1
[13.8,
36.8]

esca
19.9
(2.7,
19.9]
18.5
(6.4,
18.5]
5.4
4.5,
6.3]
19.4
9.0,
19.4]
1.1
(1.0,
9.6
6.1
[3.5,

(1.2,
19.5]
19.7
[12.3,
19.7]
12.0
[11.4,
12.5]
19.1
(5.3,
19.9]
47.8
[12.6,
80.7]

[9.2,
10.6]

mbhist
5.1
[3.6,
14.4]
8.9
[4.7,
20.5]
3.5
[1.3,
12.7]
23.5
[11.7,
34.7]
1.9
[1.4,
11.6]
7.2
[5.6,
14.6]
3.1
[2.1,
11.6]
3.7
[2.4,
15.1]
8.5
[5.8,
19.2]
6.2
[2.8,
14.9]
2.5
[1.1,
11.6]
6.2
[2.4,
15.0]
0.7
[0.9,
10.0]
2.1
[0.9,

12.5]

pcam
1.9
1.7,
4.0]
4.8
2.9,
8.9]
4.2
[2.9,
8.1]
11.4
8.9,
13.8]
2.2
.1,
5.3]
3.0
2.8,
4.1]
2.1
[0.9,
3.7)
3.1
[2.4,
5.5
1.2
.1,
5.4]
2.5
[1.4,
6.0]
8.8
[7.0,
13.1]
1.8
[0.7,
3.7)
1.0
[0.3,
3.6)
1.6
[1.4,
3.8]
6.9
[5.4,
8.8]
2.1
[1.3,
4.0]
2.8
1.7,
4.1]
3.9
[3.3,
5.2]
2.6
[2.4,
4.0]
5.4
4.1,
6.6]
6.4
[5.0,
7.7
4.1
3.1,
5.2]
1.0
[0.4,
2.8]

tcga-crc  tcga-tils

0.9
[0.6,
1.8]

[4.9,
6.8]
4.2
[3.6,
4.9]
31.0
[28.5,
33.5]
9.8
8.5,
11.1]

2.2

.1,
3.9]
1.2

[0.6,
3.5
1.6

[0.5,
4.2]
2.5

[1.3,
4.2)
2.6

[1.4,
4.2
3.2

[1.0,
5.7]
1.0

[0.8,
3.1]
4.1

[2.8,
6.0]
4.2

[2.7,
5.7]
2.1

1.2,
4.8
2.5

[1.4,
5.2]
4.7
[3.4,
6.3]

1.2
[0.4,
3.0]

2.8
[0.8,
5.2]

1.4
[0.5,
3.1

0.9
[0.2,
2.9]

2.2
[0.9,
4.3

1.5
[0.9,
3.4]

2.2
1.2,
4.4]

3.4
2.2,
4.7]

0.8
[0.3,
3.0]

0.7
0.2,
2.3

0.5
[0.2,
2.4]

tega-unif  wilds

7.2
[6.4,
10.3]

6.0
[3.7,
13.2]
11.6
[6.3,
17.4]

4.9
[3.9,
16.0]
18.9

[14.4,
19.1]

8.6
[7.6,
19.0]

12.1]

4.1
[2.5,
6.5]
0.7
[0.3,
4.7]
15.7
(14.4,
17.0]
9.3
[7.7,
10.9]
4.5
[1.4,
9.0]
8.0
[6.5,

[0.6,
2.0]
1.6
1.1,
2.7]
12.5
[11.5,
13.4]
2.8
[1.6,
3.9]
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Table S54: Quantitative performance (ACE) on linear probing.

Model

hiboub

hiboul

hoptO

hoptl

midnight

phikon

phikon2

uni

uni2h

virchow

virchow2

conch

titan

keep

musk

plip

quilt

dinob

dinol

vitb

vitl

clipb

clipl

bach
16.0
[11.2,
24.5)
7.9
[4.3,
15.6]
13.4
[7.5,
21.1]
4.8
[3.9,
14.5)
5.9
[3.4,
13.0]
13.9
[9.2,
23.5)
5.4
[3.9,
16.1]
5.6
[4.5,
14.2]
8.4
[4.8,
14.8]
18.4
[11.6,
26.0]
11.8
[8.9,
18.4]
5.9
[3.2,
13.7]
12.2
[9.0,
19.5]
26.2
[22.2,
32.9]
14.0
[8.4,
22.2]
7.9
[4.3,
16.0]
16.3
[9.9,
23.4]
14.3
[9.8,
23.5]
2.7
[3.0,
14.3]
1.8
[3.2,
13.5]
15.0
[9.4,
23.6]
12.3
[6.9,
20.9]
4.1
[3.4,
14.4]

bracs
4.0
[2.6,
8.7]
18.0
[14.3,
21.7]
14.5
[10.8,
18.1]
15.1
[11.5,
18.7]
12.3
[9.0,
16.0]
12.8
[9.3,
16.4]
10.1
[7.0,
13.6]
15.3
[11.6,
18.9]
6.7
[4.0,
10.4]
11.7
8.3,
15.5]

[4.2,
10.4]

break-h
5.5
[3.9,
11.1]
5.3
(3.1,
10.1]
2.7
[2.5,
8.3]
1.8
(1.5,
7.3]
3.7
[2.5,
9.6]
18.1
[13.9,
23.0]
17.9
[13.9,
23.0]

[4.9,
13.3]

(5.2,
13.4]

3.5,
10.0]
5.4
(2.6,
9.0]
8.2
4.7,
12.6]
8.4
(5.0,
12.7]

4.5,
12.1]

3.9,
12.5]

ccree
3.7
[2.9,
4.5]
11.9
[11.2,
12.6]
6.2
[5.6,
6.9]
4.5
3.8,
5.1]
3.5
[2.8,
4.2]
5.7
[5.0,
6.4]
9.1
8.3,
10.0]
3.8
3.2,
4.5
8.0
[7.3,
8.8]
2.1
[1.5,

8.6]

Crc
2.8
[2.3,
3.2]
4.2
[3.7,
4.6]
4.0
[3.5,
4.5]
3.3
2.9,
3.8]
2.6
2.2,
3.0]
5.2
[4.7,
5.7]
4.8
[4.3,
5.3]
4.2
[3.8,
4.7]
3.9
3.5,
4.4]
3.8
[3.3,
4.3]
4.1
[3.6,
4.6]
3.2
[2.7,
3.6]
3.0
[2.5,
3.4]
2.4
2.0,
2.8]
4.1
[3.5,
4.6]
6.1
[5.5,
6.8]
3.0
[2.5,
3.5
3.2
[2.7,
3.8]
5.2
[4.6,
5.8]
3.5
[2.9,
4.0]
2.6
2.1,
3.0]
5.2
[4.5,
5.8]
5.2
[4.6,
5.8]

esca mhist
1.4 4.5
1.3, [2.7,
1.6]  6.9]
3.0 4.9
[2.9, [3.0,
3.1  7.1]
29 0.7
[2.7, [0.9,
3.0] 3.6
1.3 9.2
1.2, [6.9,
1.4] 11.3]
0.8 1.6
[0.7, [1.0,
0.9] 4.3
22 64
[2.1, [4.5,
2.4] 8.9]
1.3 2.2
[1.2, [1.4,
1.4] 4.9]
2.5 25
[2.4, [1.6,
2.6] 5.1
21 7.0
[2.0, [4.8,
2.2] 9.3]
0.8 3.5
[0.7, [1.9,
0.9] 5.7]
1.2 1.2
[1.1, [0.8,
1.3] 3.6
3.2 2.7
3.1, [1.7,
3.3] 5.5]
2.8 2.5
2.7, [1.5,
2.9] 4.9
1.8 1.5
1.7, [0.9,
1.9] 4.0
3.3 6.3
3.1, [4.7,
3.4] 8.7
46 1.2
[4.4, [0.9,
4.8]  4.1]
7.3 2.0
7.1, [1.3,
7.4] 5.1]
1.0 1.9
[0.9, [1.1,
1.2] 4.2
6.9 5.3
6.8, [3.5,
7.1 7.6
7.5 3.1
[7.3, [1.5,
7.6] 5.3
22 19
[2.0, [1.2,
2.3]  4.5]
79 1.8
7.8, [1.2,
8.1 4.7]
5.0 1.2
4.8, [0.8,
5.1]  4.1]

pcam
1.8
[1.6,
2.0]

0.8]

tcga-crc  tcga-tils

0.8
[0.5,
1.2)

[5.2,
6.2]

0.5
[0.3,
0.7]
0.7

0.5

tcga-unif wilds

3.9
(3.6,
4.2]
2.1

7.2]

1.0
[0.9,
1.1]
0.1
[0.1,

1.2]
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Table S55

: Quantitative performance (TACE) on linear probing.

Model

hiboub

hiboul

hoptO

hoptl

midnight

phikon

phikon2

uni

uni2h

virchow

virchow2

conch

titan

keep

musk

plip

quilt

dinob

dinol

vitb

vitl

clipb

clipl

bach
16.0
[11.2,
24.5)
7.9
[4.3,
15.6]
13.4
[7.5,
21.1]
4.8
[3.9,
14.5)
5.9
[3.4,
13.0]
13.9
[9.2,
23.5)
5.4
[3.9,
16.1]
5.6
[4.5,
14.2]
8.4
[4.8,
14.8]
18.4
[11.6,
26.0]
11.8
[8.9,
18.4]
5.9
[3.2,
13.7]
12.2
[9.0,
19.5]
26.2
[22.2,
32.9]
14.0
[8.4,
22.2]
7.9
[4.3,
16.0]
16.3
[9.9,
23.4]
14.3
[9.8,
23.5]
2.7
[3.0,
14.3]
1.8
[3.2,
13.5]
15.0
[9.4,
23.6]
12.3
[6.9,
20.9]
4.1
[3.4,
14.4]

bracs
4.0
[2.6,
8.7]
18.0
[14.3,
21.7]
14.5
[10.8,
18.1]
15.1
[11.5,
18.7]
12.3
[9.0,
16.0]
12.8
[9.3,
16.4]
10.1
[7.0,
13.6]
15.3
[11.6,
18.9]
6.7
[4.0,
10.4]
11.7
8.3,
15.5]

[4.2,
10.4]

break-h
5.5
[3.9,
11.1]
5.3
(3.1,
10.1]
2.7
[2.5,
8.3]
1.8
(1.5,
7.3]
3.7
[2.5,
9.6]
18.1
[13.9,
23.0]
17.9
[13.9,
23.0]

(7.2,
15.2]

3.6,
11.2]
2.6
(1.5,
6.3]
8.4
4.9,
13.3]

(5.2,
13.4]

3.5,
10.0]
5.4
(2.6,
9.0]
8.2
4.7,
12.6]
8.4
(5.0,
12.7]

4.5,
12.1]

3.9,
12.5]

ccree
3.7
[2.9,
4.5]
11.9
[11.2,
12.6]
6.2
[5.6,
6.9]
4.5
3.8,
5.1]
3.5
[2.8,
4.2]
5.7
[5.0,
6.4]
9.1
8.3,
10.0]
3.8
3.2,
4.5
8.0
[7.3,
8.8]
2.1
[1.5,

8.6]

Crc
2.8
[2.3,
3.2]
4.2
[3.7,
4.6]
4.0
[3.5,
4.5]
3.3
2.9,
3.8]
2.6
2.2,
3.0]
5.2
[4.7,
5.7]
4.8
[4.3,
5.3]
4.2
[3.8,
4.7]
3.9
3.5,
4.4]
3.8
[3.3,
4.3]
4.1
[3.6,
4.6]
3.2
[2.7,
3.6]
3.0
[2.5,
3.4]
2.4
2.0,
2.8]
4.1
[3.5,
4.6]
6.1
[5.5,
6.8]
3.0
[2.5,
3.5
3.2
[2.7,
3.8]
5.2
[4.6,
5.8]
3.5
[2.9,
4.0]
2.6
2.1,
3.0]
5.2
[4.5,
5.8]
5.2
[4.6,
5.8]

esca mhist
1.4 4.5
1.3, [2.7,
1.6]  6.9]
3.0 4.9
[2.9, [3.0,
3.1  7.1]
29 0.7
[2.7, [0.9,
3.0] 3.6
1.3 9.2
1.2, [6.9,
1.4] 11.3]
0.8 1.6
[0.7, [1.0,
0.9] 4.3
22 64
[2.1, [4.5,
2.4] 8.9]
1.3 2.2
[1.2, [1.4,
1.4] 4.9]
2.5 25
[2.4, [1.6,
2.6] 5.1
21 7.0
[2.0, [4.8,
2.2] 9.3]
0.8 3.5
[0.7, [1.9,
0.9] 5.7]
1.2 1.2
[1.1, [0.8,
1.3] 3.6
3.2 2.7
3.1, [1.7,
3.3] 5.5]
2.8 2.5
2.7, [1.5,
2.9] 4.9
1.8 1.5
1.7, [0.9,
1.9] 4.0
3.3 6.3
3.1, [4.7,
3.4] 8.7
46 1.2
[4.4, [0.9,
4.8]  4.1]
7.3 2.0
7.1, [1.3,
7.4] 5.1]
1.0 1.9
[0.9, [1.1,
1.2] 4.2
6.9 5.3
6.8, [3.5,
7.1 7.6
7.5 3.1
[7.3, [1.5,
7.6] 5.3
22 19
[2.0, [1.2,
2.3]  4.5]
79 1.8
7.8, [1.2,
8.1 4.7]
5.0 1.2
4.8, [0.8,
5.1]  4.1]

pcam
1.8
[1.6,
2.0]

0.8]

tcga-crc  tcga-tils

0.8
[0.5,
1.2)

[5.2,
6.2]

0.5
[0.3,
0.7]
0.7

0.5

tcga-unif wilds

3.9
(3.6,
4.2]
2.1

7.2]

1.0
[0.9,
1.1]
0.1
[0.1,

1.2]
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Table S56: Quantitative performance (SCE) on linear probing.

Model bach  bracs break-h ccrcc  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds
129 24 3.2 24 115 51 26 0.6 0.3 0.8 4.3 1.5
hiboub [8.0, [1.4, [2.3, [1.9, [4.7, [1.0, [1.2, [0.5, [0.2, [0.4, [4.1, [0.9,
17.3] 6.1 10.3] 5.6] 14.1] 5.5] 4.8] 1.5] 0.7] 1.3] 6.3] 2.3]
6.7 14.6 104 8.7 83 6.3 41 23 1.8 0.5 3.6 0.2
hiboul 3.5, [9.7, [2.9, [8.1, [5.1, [2.4, [2.0, [1.4, [L.5, [0.2, 2.4, [0.1,
21.8] 19.2] 14.2] 10.7] 11.6] 6.7 7.0] 3.3]  2.1] 1.0 5.1] 1.2]
8.7 9.8 3.1 84 152 20 14 22 1.7 0.6 6.4 5.2
hopt0 6.0, [7.5, [1.7, [4.9, [5.6, [1.7, [0.4, [1.3, [1.4, [0.2, [4.3, [4.4,
23.1] 14.5] 9.9] 15.1] 20.0] 2.8] 3.77 3.1] 2.0 1.2] 7.9] 6.1]
4.7 9.0 109 141 63 89 7.0 36 0.9 0.7 2.8 2.8
hopt1 3.0, [6.7, [3.8, [8.2, [2.4, [4.3, [4.8, [2.8, [0.7, [0.4, 1.8, [2.1,
17.0] 14.7) 17.7] 17.3] 12.1] 9.6] 9.9] 4.6] 1.2 1.3] 5.2] 3.5]
8.9 10.3 4.2 21 11.9 06 09 1.0 1.7 0.8 11.7 1.3
midnight 3.8, [6.7, [1.7, [1.3, [2.0, [0.5, [0.5, [0.4, [1.4, [0.5, [7.4, [0.4,
13.5] 14.2] 11.1] 3.1] 16.4] 2.5] 3.5] 1.7]  2.0] 1.4] 12.6]  2.3]
16.5 11.3 15.0 52 193 29 29 1.2 0.6 1.0 4.6 2.4
phikon 6.8, [7.9, [5.7, [4.8, [10.9, [1.7, [2.0, [0.8, [0.5, [0.5, 4.1,  [1.7,
22.8] 14.6] 18.7] 9.4] 22.0] 17.8] 5.7] 1.9]  0.9] 1.6] 8.3] 3.1]
5.1 10.0 14.2 6.5 54 55 1.3 0.5 0.6 0.5 1.6 1.4
phikon2  [2.4, [7.2, [10.0, [6.0, [4.1, [2.5, [0.8, [0.3, [0.3, [0.3, 0.8, [1.1,
13.3] 13.0] 21.0] 7.7] 10.4] 8.8] 3.7 1.2]  0.9] 1.0 2.9] 2.2]
3.6 12.9 8.8 7.7 59 75 19 1.1 0.5 1.6 2.9 1.4
uni 2.7, [9.2, [5.2, [3.7, [3.4, [6.1, [0.9, [0.8, [0.4, [1.0, [2.2, [L.0,
12.1] 16.5] 20.6] 12.2] 11.0] 10.8] 4.7] 2.2]  0.9] 2.2] 4.6) 2.3]
13.3 6.9 11.5 74 150 55 46 0.5 2.8 1.1 5.4 2.5
uni2h 3.4, [40, [3.1, [6.7, [5.0, [4.7, [2.4, [0.3, [2.5, [0.8, 4.3, [1.8,
17.5] 10.8] 16.3] 9.8] 18.7] 6.2] 7.3] 1.6]  3.1] 1.7) 8.9] 3.5]
254 8.0 18.1 3.3 131 179 23 1.0 1.3 1.0 7.7 0.5
virchow  [10.8, [5.5, [9.9, [l.4, [3.5, [1.0, [1.1, [0.5, [L.1, [0.5, 6.4, [0.3,
31.4] 11.7] 24.9] 8.4] 16.6] 18.6] 5.0] 1.8]  1.6] 1.6 10.2]  1.4]
8.6 4.5 122 104 83 89 06 4.3 2.8 1.0 11.5 5.7
virchow2 [6.2, [2.8, [3.3, [3.4, [4.0, [4.3, [0.4, [3.2, [2.5, [0.4, [7.6, [5.1,
19.8) 8.4] 16.7] 16.1] 14.4] 9.8] 3.3] 5.4]  3.1] 1.6] 12.2]  6.3]
6.7 10.5 6.7 3.1 127 3.8 22 0.7 2.2 1.6 3.1 1.5
conch 2.8, [8.8, [3.4, [l.4, [4.3, [3.1, [0.9, [0.3, [1.9, [1.1, 2.3, [0.9,
11.9] 16.7] 17.4] 8.8] 15.1] 4.8] 4.5] 1.2] 2.5 2.2] 4.3] 2.2]
15.0 8.5 14.5 3.0 94 3.1 04 04 3.4 0.3 6.1 0.3
titan 6.5, [5.8, [5.2, [2.4, [4.6, [2.8, [0.3, [0.1, [3.1, [0.1, 5.1, [0.2,
18.1] 12.7] 19.1] 8.8] 14.9] 4.7] 2.8] 1.0] 3.8] 1.0] 7.7) 1.1]
14.2 4.9 5.2 70 11.2 7.0 0.7 0.5 1.3 0.8 6.9 1.3
keep [12.3, [3.0, [3.1, [3.4, [4.2, [3.1, [0.3, [0.4, [1.1, [0.3, 5.1, [0.8,
18.1 8.9] 13.1] 11.4] 15.1] 7.8] 2.7] 1.3] 1.6] 1.3 8.9] 2.2]
143 7.3 2.5 2.9 58 3.1 32 32 1.3 0.4 3.5 2.0
musk 4.4, [4.6, [1.9, [1.4, [3.0, [2.8, [1.9, [2.5, [1.0, [0.2, 2.7, [1.6,
20.0] 11.3] 15.3] 5.5] 17.3] 3.5] 6.0] 3.8]  1.6] 1.0] 4.5) 2.8]
11.4 9.0 6.9 8.1 6.1 7.3 09 1.0 2.2 0.2 6.9 2.3
plip [8.4, [5.9, [3.3, [4.9, [5.3, [7.0, [0.5, [0.6, [2.0, [0.1, 6.2, [1.9,
16.3) 12.3] 11.8] 11.0] 14.9] 7.7 3.1] 1.5]  2.6] 0.7] 7.6) 2.7]
12.5 8.1 4.3 158 89 241 1.1 1.1 2.7 0.7 8.2 1.1
quilt [7.1, [6.0, [3.4, [10.1, [4.3, [7.6, [0.5, [0.7, [2.4, [0.3, [7.4, [0.8,
20.9] 11.8] 14.2] 23.1] 13.4] 24.4] 2.8] 1.6] 3.0] 1.1] 9.0] 1.5]
14.6 14.1 21.4 7.2 73 46 09 1.8 1.6 0.7 2.5 0.9
dinob 8.5, [10.7, [5.1, [5.2, [3.5, [0.6, [0.4, [1.4, [1.4, [0.4, [1.9, [0.6,
20.4] 18.1] 25.4] 11.5] 12.2] 5.0] 3.6] 2.3] 1.9] 1.2] 3.0] 1.3]
2.8 7.8 17.7 72 122 94 3.1 1.3 1.7 1.0 10.3 2.9
dinol [2.5, [5.1, [2.8, [5.0, [3.4, [5.1, [1.8, [0.9, [l.4, [0.6, 9.2, [2.5,
13.7) 10.7] 22.1]  9.9] 14.5] 10.0] 5.9] 1.9]  2.0] 1.5] 11.2]  3.4]
1.5 6.5 12.4 1.8 35 64 20 19 1.9 0.9 4.9 0.4
vitb [1.9, [4.4, [5.8, [1.0, [3.0, [6.0, [0.8, [1.7, [1.6, [0.6, 4.3, [0.2,
10.2] 10.0] 16.1] 4.7 11.9] 6.7] 4.2] 2.4] 2.2 1.4] 5.6 0.8]
16.0 8.7 7.8 8.3 6.0 6.7 1.3 23 1.8 0.3 2.9 0.6
vitl [7.1, [6.0, [4.0, [5.3, [2.6, [2.9, [0.4, [1.9, [1.4, [0.1, 2.3, [0.4,
21.2] 11.9] 15.0] 12.6] 11.9] 7.1] 3.4] 28] 2.2] 0.8] 3.5] 1.0]
10.0 6.4 4.8 4.7 6.2 16.3 0.7 1.7 9.0 0.2 2.7 4.3
clipb 4.9, [41, [2.5, [2.3, [5.2, [6.8, [0.4, [1.3, [8.5, [0.1, 2.2,  [4.0,
16.8]  9.4] 8.9] 7.3] 10.1] 23.1] 3.0] 2.2] 9.6] 0.7] 3.1] 4.7]
3.9 6.0 5.4 89 109 47 09 0.3 3.8 0.2 6.8 0.8
clipl [2.1, [3.5, [2.8, [6.0, [6.9, [4.2, [0.4, [0.1, [3.5, [0.1, 6.1, [0.6,
11.9] 9.3] 11.1] 12.0] 13.9] 5.2] 3.3] 0.8]  4.2] 0.6] 7.5] 1.3]
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Table S57: Quantitative performance

(Drop in Balanced accuracy) on adversarial attack (e

0.25-1073).
Model bach bracs break-h ccrcc  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds
8.1 7.4 7.7 49 42 49 128 4.0 10.5 6.5 12.7 2.0
hiboub 3.7, [5.3, [4.5, [4.4, [3.7, [3.6, [10.5, [0.0, [9.6, [5.8, (11.6, [1.7,
12.9]  9.7]  10.9] 5.5] 4.7 6.4 15.0] 10.0] 11.3] 7.2] 13.8]  2.3]
3.8 11.8 4.0 3.0 41 36 11.3 6.0 5.5 4.0 8.3 1.0
hiboul [0.8, [9.3, [1.7, [2.6, [3.7, [2.6, [9.2, [0.0, [4.9, [3.4, [7.4, [0.8,
8.0] 14.6] 6.8]  3.4] 4.5] 4.7] 13.4] 13.0] 6.2] 4.6] 9.2] 1.2]
4.3 7.2 5.3 34 22 38 85 10.0 6.3 5.4 7.0 1.0
hopt0 [1.2, [5.1, [2.9, [2.9, [1.8, [2.7, [6.9, [2.4, [5.7, (4.7, 6.3, [0.8,
8.2]  9.4] 8.1] 3.9] 26] 5.2] 10.3] 18.2] 7.0] 6.1] 7.8] 1.1]
9.0 125 122 29 3.2 3.1 27.0 183 9.3 6.3 10.0 3.6
hoptl 4.3, [9.8, [8.2, [2.5, [2.7, [2.1, [24.0, [6.2, [8.5, [5.6, [9.1,  [3.3,
14.1] 15.3] 16.4] 3.3] 3.8] 4.3] 29.9] 32.8] 10.1] 6.9] 11.0]  4.0]
4.6 12.8 9.4 3.4 2.8 3.6 15.0 4.2 4.5 2.3 5.5 0.8
midnight  [0.9, [10.1, [6.0, [3.0, [2.4, [2.4, [12.7, [0.0, [3.9, [1.9, [4.8, [0.6,
9.0 15.6] 13.2] 3.9] 3.3 4.9] 17.4] 14.3] 5.1] 2.7] 6.2 1.0]
7.8 4.2 7.2 2.9 1.6 3.1 109 4.0 7.3 4.0 6.3 0.8
phikon 3.5, [2.7, [3.8, [2.5, [1.3, [2.0, [8.9, [0.0, [6.6, [3.5, 5.5, [0.6,
13.1]  5.9] 10.9] 3.4] 2.0] 4.3] 13.1] 10.0] 8.0] 4.6) 7.1] 1.0]
7.0 6.9 7.4 3.7 3.0 42 173 20 7.3 4.0 7.3 4.4
phikon2  [2.8, [4.9, [4.0, [3.2, [2.6, [3.1, [14.8, [0.0, [6.6, [3.4, 6.6,  [4.0,
12.1] 9.0 11.2] 4.1] 3.5] 5.4] 19.8] 6.5] 8.0] 4.5] 8.1] 4.8]
5.2 3.9 8.0 3.1 2.1 3.0 10.5 4.0 7.0 5.8 7.6 2.1
uni [1.7, [2.3, [46, [2.7, [1.7, [1.9, [8.5, [0.0, [6.3, [5.1, 6.8, [L.8,
9.1] 5.6) 11.9] 3.6] 2.5] 4.3] 12.6] 10.0] 7.7] 6.5] 8.5] 2.4
1.6 6.2 5.4 2.6 2.7 23 132 2.0 5.1 4.7 5.5 0.7
uni2h [0.0, [4.3, [2.6, [2.2, [2.3, [1.4, [10.9, [0.0, [4.5, [4.1, (4.8, [0.5,
3.5] 83] 88  3.0] 3.1] 3.4 155] 6.8 5.7] 5.4] 6.3] 0.8]
59 7.2 7.0 29 23 29 127 2.0 7.1 3.6 8.0 1.7
virchow  [2.1, [5.0, [4.0, [2.5, [1.9, [1.8, [10.5, [0.0, [6.4, [3.1, [7.3,  [L.5,
10.3] 9.4] 10.4] 3.4] 2.7 4.0 15.0] 6.8] 7.8] 4.2] 8.8] 2.0]
49 6.2 1.4 1.7 1.8 3.1 53 2.0 4.0 4.5 6.5 5.5
virchow2 [1.3, [4.3, [0.1, [1.4, [1.4, [1.9, [3.9, [0.0, [3.5, [3.9, [5.8, [5.0,
9.2] 8.2 3.4] 2.0 23] 4.5] 6.8 6.8 4.6) 5.1] 7.2] 5.9]
8.1 9.2 6.7 6.0 52 6.0 16.0 14.2 8.7 5.9 13.2 2.4
conch 3.7, [7.0, [3.8, [5.4, [4.6, [4.5, [13.6, [4.2, [7.9, [5.2, (12.2, [2.1,
13.3] 11.6] 9.8] 6.6] 5.8 7.6] 18.5] 26.4] 9.4] 6.5] 14.2]  2.7]
5.2 13.4 10.0 9.5 6.8 10.2 27.7 10.2 16.2 10.9 22.4 6.2
titan [t.7, [10.7, [6.5, [8.7, [6.2, [8.2, [24.8, [1.9, [15.2, [10.0, [21.1, [5.7,
9.1] 16.2) 13.6] 10.2] 7.5] 12.4] 30.7] 21.8] 17.1]  11.8] 23.6] 6.7]
3.4 6.9 3.9 3.0 1.6 20 131 4.2 7.3 5.7 9.7 1.8
keep [1.1, [4.9, [1.8, [2.6, [1.2, [1.2, [10.9, [0.0, [6.6, [5.1, 8.8,  [L.6,
6.3] 9.0] 6.3] 35 1.9] 3.1] 15.5] 14.3] 8.0 6.4] 10.6]  2.1]
4.9 11.8 14.1 8.3 13.4 7.7 24.8 20.5 14.9 13.0 27.3 6.2
musk [1.4, [9.2, [9.7, [7.5, [12.6, [6.2, [22.0, [6.9, [14.0, [12.0, [26.0, [5.7,
9.1] 14.4] 18.6] 9.0] 14.2] 9.4] 27.7] 35.6] 15.9]  13.9] 28.6] 6.7
9.4 14.1 6.8 8.9 12.6 10.8 26.9 22.5 21.4 11.7 22.9 13.7
plip [4.5, [11.3, [3.9, [8.2, [11.8, [9.1, [24.0, [8.7, [20.3, [10.7, [21.7, [13.0,
14.9] 17.0) 10.2] 9.7] 13.4] 12.5] 29.8] 38.8] 22.6] 12.6] 24.1]  14.3]
6.2 134 105 7.1 106 11.5 25.0 20.2 12.0 12.0 24.7 7.9
quilt [2.3, [10.6, [6.9, [6.4, [9.9, [9.8, [22.1, [9.1, [11.1, [11.1, [23.5, [7.4,
10.8] 16.2] 14.3] 7.8] 11.4] 13.3] 28.0] 32.9] 13.0]  12.8] 25.8] 8.5
11.8 15.1 8.8 13.1 9.7 6.6 12.3 10.3 15.1 11.2 15.7 11.4
dinob 6.2, [12.3, [5.2, [12.2, (8.9, [5.1, [10.0, [0.0, [14.1, [10.3, [14.6, [10.8,
18.0] 18.2] 12.6] 14.0] 10.4] 8.1] 14.6] 23.6] 16.1]  12.1] 16.8]  12.1]
145 9.5 6.7 9.2 10.8 5.7 16.6 10.2 15.0 9.6 15.8 8.5
dinol 8.8, [7.2, [3.6, [8.4, [10.1, [4.6, [14.2, [1.8, [14.0, [8.7, (14.7,  [8.0,
21.0] 11.8] 10.2]) 10.0] 11.6] 6.9] 19.1] 21.6] 16.0] 10.4] 16.9] 9.1]
6.5 8.8 6.4 53 58 6.8 10.7 4.0 8.7 5.2 10.1 4.5
vitb [2.5, [6.6, [3.7, [4.7, [5.2, [5.6, [8.6, [0.0, [7.9, [4.5, [9.3, 4.1,
11.5] 11.2] 9.4] 5.9] 6.4] 8.2] 12.9] 10.4] 9.4] 5.9] 11.0] 4.8
6.9 5.6 124 53 56 48 123 2.0 6.3 4.6 9.4 4.4
vitl [3.2, [3.8, [8.3, [4.7, [5.0, [3.7, [10.1, [0.0, [5.6, [4.0, [8.6, [4.0,
11.2] 7.6] 16.8] 5.9] 6.2] 6.0] 14.7] 6.5] 6.9] 5.3 10.3] 4.8
183 206 7.7 180 16.4 24.8 326 243 31.8 28.0 28.5 223
clipb [11.8, [17.3, [4.7, [17.0, [15.5, [22.9, [29.6, [11.4, [30.6, [26.8, [27.3, [21.5,
25.8] 23.8] 11.0] 19.1] 17.4] 26.8] 35.5] 40.1] 33.0]  29.1] 29.7]  23.1]
28.1 248 21.7 17.6 23.0 22.1 29.2 30.5 31.4 23.3 32.3 17.2
clipl [20.4, [21.3, [16.7, [16.7, [22.0, [20.1, [26.2, [15.8, [30.1, [22.2, [30.9, [16.4,
36.0] 28.4] 26.8] 18.5] 23.9] 24.2] 32.1] 46.8] 32.6]  24.4] 33.7]  17.9]
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Table S58: Quantitative performance (Drop in F1-score) on adversarial attack (e = 0.25 - 1073).

Model bach  bracs break-h ccrec  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds
8.6 7.4 9.2 5.4 4.5 59 13.2 5.9 10.2 7.3 13.2 2.0
hiboub 4.2, [5.3, [5.4, [4.8, [4.0, [4.5, [10.9, [0.0, [9.5, [6.6, [12.1, [1.7,
13.6] 9.8] 13.0] 6.0] 5.0] 7.4 15.5] 15.1] 10.8] 8.0] 14.3] 2.3]
3.2 114 4.0 3.5 4.8 4.1 11.1 8.7 5.7 4.2 8.4 1.0
hiboul [0.5, [8.9, [1.8, [3.0, [4.4, [3.3, [9.1, [0.0, [5.2, [3.7, [7.5, [0.8,
6.8] 14.2]  6.8] 3.9] 53] 51] 13.2] 19.8] 6.2] 4.8] 9.3] 1.2]
4.8 6.9 5.7 3.4 2.1 4.6 8.8 14.2 6.4 5.4 7.2 1.0
hopt0 [1.4, [5.0, [3.1, [3.0, [1.8, [3.6, [7.1, [3.2, [5.9, (4.8, [6.5, [0.8,
9.1]  9.1] 8.6] 3.9] 25] 6.0] 10.6] 27.4] 6.9 6.0] 8.0] 1.2]
10.0 12.2 13.1 3.3 3.0 4.5 275 204 9.0 6.5 10.1 3.6
hopt1 [4.9, [9.6, [9.0, [2.8, [2.5, [3.5, [24.5, [8.3, [8.4, [5.9, [9.2, [3.2,
15.6] 15.0) 17.5] 3.7] 3.5] 5.6] 30.5] 36.1] 9.7 7.2 11.0] 4.0]
3.8 12.6 10.2 3.8 3.0 4.7 15.2 3.2 4.4 2.6 5.5 0.8
midnight  [0.8, [10.0, [6.2, [3.3, [2.6, [3.5, [12.9, [0.0, [3.9, [2.2, [4.9, [0.6,
7.5] 15.3] 14.6] 4.3] 3.5] 6.0] 17.6] 11.5]  4.9] 3.0] 6.2] 1.0]
7.5 4.1 7.0 2.9 1.8 3.2 109 5.5 6.8 4.3 6.6 0.8
phikon 3.5, [2.6, [3.8, [2.5, [l1.5, [2.4, [8.9, [0.0, [6.2, [3.8, [5.9, [0.6,
12.4] 5.7 10.5]  3.3] 2.2] 4.2] 12.9] 14.3] 7.3] 4.9] 7.4] 1.0
6.8 7.1 6.5 4.8 3.2 4.6 172 2.7 7.2 4.3 7.6 4.4
phikon2  [2.8, [5.1, [3.6, [4.2, [2.8, [3.8, [14.8, [0.0, [6.6, [3.8, [6.9, [4.0,
11.3]  9.2] 9.9] 5.4] 3.7 5.5] 19.7] 8.9] 7.7) 4.8] 8.3] 4.8]
5.6 3.8 7.3 3.4 2.3 3.8 10.2 5.9 6.9 6.3 7.6 2.1
uni [1.9, [2.3, [4.3, [3.0, [1.9, [2.9, [8.3, [0.0, [6.4, [5.7, [6.8, [1.8,
9.9] 5.5] 11.0] 3.9] 2.7] 4.9] 12.3] 15.1]  7.5] 6.9] 8.5] 2.4]
2.1 6.4 5.3 3.1 3.0 3.1 135 3.0 5.3 5.0 5.6 0.7
uni2h [0.0, [45, [2.7, [2.6, [2.6, [2.3, [11.2, [0.0, [4.8, [4.5, [4.9, [0.5,
4.8] 8.6] 8.5] 3.5] 3.5] 4.1] 15.9] 10.8]  5.8] 5.6 6.3] 0.8]
5.7 6.9 6.8 3.2 2.2 3.4 124 2.8 6.8 3.8 8.4 1.7
virchow [2.2, [4.8, [3.8, [2.7, [1.9, [2.5, [10.3, [0.0, [6.3, [3.3, [7.7, [1.5,
9.8] 9.0] 10.1] 3.6] 2.6] 4.2] 14.6] 9.9] 7.4] 4.3 9.2] 2.0]
4.5 6.0 1.5 1.7 1.7 3.2 5.3 2.8 4.4 4.6 6.7 5.7
virchow2 [1.4, [4.2, [0.2, [1.4, [1.4, [2.2, [3.9, [0.0, [4.0, 4.1, [6.0, [5.2,
8.5]  8.1] 3.4] 2.0] 2.1] 44] 6.8 9.7] 4.9] 5.2] 7.4] 6.1]
7.8 9.1 7.2 6.3 5.5 6.5 159 16.2 8.6 6.3 13.6 2.4
conch 3.7, [7.0, [4.2, [5.7, [5.0, [5.3, [13.6, [5.4, [8.0, [5.6, [12.7, [2.1,
12.9] 11.5]) 10.5] 6.9] 6.1 7.9] 18.4] 29.2] 9.2 7.0] 14.7] 2.7]
54 14.0 109 101 7.1 11.1 27.7 11.3 15.1 11.5 23.1 6.2
titan [1.7, [11.2, [7.4, [9.4, [6.4, [9.4, [24.8, [2.7, [14.4, [10.7, [22.0, [5.7,

9.6] 16.9] 14.6] 10.9] 7.7] 12.9] 30.8] 23.3] 15.8] 12.4]  24.3]  6.7]
4.7 6.8 3.6 3.0 1.7 26 134 3.1 6.9 6.0 10.1 1.8

keep [1.6, [4.8, [1.7, [2.6, [1.3, [L.9, [11.2, [0.0, [6.4, [5.4, [9.2, [L.6,
8.4] 89] 5.8 3.4 20] 3.5 15.8 11.1] 7.5] 6.6 11.1]  2.1]
4.2 11.7 14.7 8.1 14.5 8.7 25.6 19.3 14.4 14.4 27.5 6.2
musk [1.3, [9.1, [10.0, [7.4, [13.6, [7.4, [22.8, [7.9, [13.7, [13.5, [26.2, [5.7,

7.8] 14.3] 19.7] 8.8] 15.3] 10.1] 28.6] 33.1] 15.1] 15.3]  28.8] 6.7
9.4 13.8 9.9 9.0 13.7 12.2 26.5 21.9 17.8 13.0 24.5 14.7
plip 4.8, [11.1, [5.5, [8.3, [12.9, [10.4, [23.7, [10.2, [17.0, [12.1, [23.2, [14.0,
14.6] 16.7] 14.6] 9.8] 14.5] 14.2] 29.3] 37.3] 18.6] 13.9]  25.6] 15.4]
6.7 13.5 12.2 8.3 11.7 13.9 25.2 234 10.5 15.2 26.1 7.9

quilt [2.6, [10.7, [8.1, [7.5, [11.0, [11.8, [22.3, [10.6, [9.8, [14.4, [24.8, [7.4,
11.4] 16.3] 16.6] 9.2] 12.5] 15.9] 28.2] 37.5] 11.2] 16.1] 27.2] 8.5]
11.8 14.4 9.0 13.1 9.9 7.2 12.6 9.4 13.2 12.7 16.4 11.5
dinob 6.2, [11.7, [5.6, [12.2, [9.2, [5.9, [10.3, [0.0, [12.5, [11.8, [15.3, [10.8,
17.8] 17.3] 12.9] 14.0] 10.7] 8.6] 14.8] 21.5] 13.8] 13.6] 17.5] 12.1]
14.4 9.3 7.0 9.0 11.4 6.1 16.4 11.7 12.9 11.3 16.6 8.8
dinol 8.9, [7.0, [4.0, [8.3, [10.7, [5.0, [14.1, [2.7, [12.2, [10.4, [15.6, [8.2,
20.6] 11.7] 10.6] 9.8] 12.2] 7.2] 18.8] 24.3] 13.6] 12.1] 17.6] 9.3]
6.2 8.7 6.7 5.3 6.2 6.6 10.8 5.1 7.9 5.8 10.6 4.5
vitb [2.4, [6.5, [4.0, [4.7, [5.6, [5.5, [8.7, [0.0, [7.4, [5.2, [9.8, 4.1,
10.7] 11.1]  9.7] 5.8] 6.8] 7.7 12.9] 13.2] 8.5] 6.4] 11.5] 4.9]
7.7 5.6 12.2 5.2 6.1 5.0 12.3 2.6 5.6 5.1 10.0 4.4
vitl 3.6, [3.8, [8.2, [4.6, [5.5, [4.1, [10.2, [0.0, [5.2, [4.5, 9.1, [4.0,
12.3] 7.5] 16.5] 5.9] 6.7 6.1] 14.8] 8.3] 6.1] 5.7] 10.9] 4.8]
18.6 20.1 10.2 189 175 245 334 26.5 29.1 32.4 29.8 23.8
clipb [12.2, [16.9, [5.9, [17.9, [16.6, [22.7, [30.3, [13.5, [28.3, [31.4, [28.4, [23.0,
25.6] 23.3] 14.7] 20.0] 18.5] 26.4] 36.6] 42.2] 30.0] 33.4] 31.1]  24.7]
27.1 244 24.7 19.1 24.1 227 294 31.8 26.9 26.0 33.8 17.2
clipl [19.8, [20.9, [19.2, [18.1, [23.2, [20.5, [26.5, [17.8, [26.0, [25.0, [32.4, [16.5,

34.5] 27.9] 30.1] 20.1] 25.1] 24.9] 32.3] 47.5] 27.7] 27.0]  35.1]  18.0]
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Table S59: Quantitative performance (Drop in Balanced accuracy) on adversarial attack (e =
1.5-1073).
Model bach  bracs break-h ccrec  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds

53.5 429 36.9 42.5 54.9 32.5 61.6 92.0 57.6 54.8 61.0 46.3
hiboub [45.4, [39.1, [31.3, [41.2, [53.7, [30.1, [58.5, [84.5, [56.3, [53.5, [59.6, [45.2,

62.0] 47.0] 42.7) 43.8] 56.1] 34.8] 64.7] 98.1] 59.0]  56.1] 62.4]  47.3]
40.0 53.3 35.2 28.7 34.0 26.8 62.6 55.2 40.9 29.4 55.4 17.2
hiboul [31.9, [49.4, ([29.8, [27.6, [33.0, [24.5, [59.5, [37.6, [39.5, [28.2, [53.9, [16.5,

48.6] 57.5] 40.7] 29.8] 35.0] 29.0] 65.5] 71.8]  42.2]  30.6] 56.8]  18.0]
41.0 45.1 25.3 327 29.6 28.4 61.4 100.0 45.1 41.4 51.9 30.4

hopt0 [32.5, [41.2, [20.3, [31.5, [28.5, [26.0, [58.4, [100.0, [43.7, [40.1, [50.5, [29.5,
49.6] 49.1] 30.2] 33.9] 30.8] 30.8] 64.4] 100.0] 46.4]  42.6] 53.4]  31.2]
52.4 59.6 60.5 35.3 42.1 31.6 77.1 100.0 57.7 46.5 63.2 74.5
hoptl [43.4, [55.7, [54.5, [34.1, [41.0, [29.3, [74.3, [100.0, [56.4, [45.1, [61.9, [73.7,

60.9] 63.4] 66.3] 36.5] 43.2] 34.0] 80.0] 100.0] 59.0]  47.7] 64.7]  75.3]
37.7 49.7 345 29,5 279 26.0 61.0 57.5 28.4 16.3 36.5 23.0
midnight [29.3, [45.6, [29.3, [28.3, [26.9, [23.9, [57.8, [41.2, [27.2, [15.3, [35.1, [22.2,
45.8] 53.9] 40.1] 30.6] 28.9] 28.1] 63.9] 73.1] 29.6] 17.3] 37.8]  23.8]
37.6 335 34.8 258 194 17.7 59.3 53.3 43.2 33.5 45.1 16.1
phikon  [29.2, [29.7, [29.0, [24.7, [18.5, [15.7, [56.1, [35.5, [41.9, [32.3, [43.6, [15.4,
46.0] 37.4] 40.8] 27.0] 20.4] 19.9] 62.3] 69.9] 44.5] 34.7]  46.6]  16.8]
45.9 44.5 255 34.8 439 30.0 66.5 71.5 45.0 31.5 52.9 60.0
phikon2  [36.7, [40.5, [19.9, [33.5, [42.7, [27.5, [63.5, [54.6, [43.7, [30.2, [51.4, [59.0,
54.6] 48.7) 31.3] 36.0] 45.1] 32.4] 69.4] 86.2] 46.4]  32.7] 54.2]  61.0]
36.6 35.9 323 25.6 274 232 61.6 69.7 47.2  53.1 49.1  52.8

uni [28.2, [32.1, [26.7, [24.5, [26.4, [21.0, [58.6, [54.1, [45.9, [51.8, [47.6, [51.9,
44.8] 39.9] 37.6] 26.8] 28.5] 25.5] 64.6] 83.3] 48.6]  54.3] 50.4]  53.7]
26.3 42.7 28.1 21.4 29.3 16.9 62.1 40.8 34.6 37.3 40.9 23.7
uni2h [18.7, [38.8, [22.7, [20.4, [28.3, [15.0, [58.8, [24.3, [33.3, [36.0, [39.5, [22.9,

33.9] 46.8] 33.5] 22.3] 30.4] 18.9] 65.2] 59.3] 35.9] 38.6]  42.3]  24.5]
39.9 42.1 40.0 27.2 27.2 214 65.3 67.7 440 32.0 52.6  38.3
virchow  [31.5, [38.3, [34.2, [26.1, [26.2, [19.2, [62.3, [52.6, [42.7, [30.7, [51.1, [37.4,
48.4] 46.3] 46.0] 28.4] 28.3] 23.6] 68.2] 81.2] 45.4]  33.2] 54.0]  39.2]
19.8 33.7 24.8 19.8 21.0 15.1 43.5 59.3 32.8 40.7 43.2 44.2
virchow2 [13.0, [29.8, [19.6, [18.7, [20.0, [13.0, [40.5, [42.6, [31.6, [39.4, [41.7, [43.4,

26.5] 37.6] 30.1] 20.8] 22.0] 17.3] 46.7] 75.5] 34.1]  41.9] 44.5]  45.1]
36.7 50.0 50.7 60.8 63.3 45.4 70.6 .7 54.0 54.2 60.3 46.8
conch [28.6, [46.0, [45.0, [59.5, [62.1, [43.0, [67.7, [63.3, [52.7, [53.0, [59.1, [45.8,

44.8] 54.1] 56.5] 62.0] 64.5] 47.8] 73.5] 90.5]  55.3]  55.4] 61.6]  47.8]
64.9 58.8 73.4 824 909 71.6 782 94.0 68.3 81.8 67.3 92.3

titan [58.1, [55.1, [68.1, [81.4, [90.2, [69.4, [75.5, [86.8, [67.0, [80.8, [66.0, [91.8,
71.5] 62.8] 78.8] 83.4] 91.7] 73.9] 80.8] 100.0] 69.6]  82.8] 68.5]  92.8]
33.2 454 36.6 34.2 379 233 549 65.2 47.0 49.3 54.8 49.6
keep [25.1, [41.3, [30.9, [32.9, [36.8, [20.9, [51.7, [47.8, [45.7, [48.1, [53.4, [48.7,

41.5] 49.5] 42.6] 35.4] 39.1] 25.7] 57.9] 81.3] 48.3]  50.6] 56.2]  50.6]
44.0 51.1 64.4 66.7 86.7 56.2 76.3 88.0 65.3 84.9 64.9 93.8
musk [35.0, [47.1, [59.1, [65.5, [85.8, [53.7, [73.5, [78.8, [64.0, [83.9, [63.6, [93.3,
53.0] 55.0] 69.7] 67.9] 87.6] 58.6] 79.1] 96.0] 66.6] 85.9] 66.2]  94.3]
47.8 50.8 25.8 456 73.2 53.0 71.9 798 59.7 70.4 52.0  49.3

plip [39.1, [47.0, [20.6, [44.4, [72.1, [50.8, [69.1, [66.8, [58.3, [69.2, [50.8, [48.5,
56.7] 54.6] 31.1] 46.9] 74.3] 55.4] 74.6] 91.1] 61.0]  71.6] 53.2]  50.1]
44.2 48.5 40.1 34.1 704 449 555 77.5 44.8 67.7 49.8 45.7
quilt [35.3, [44.6, [34.4, [32.8, [69.4, [42.8, [52.4, [61.2, [43.5, [66.5, [48.5, [44.7,

53.4] 52.6] 45.9] 35.3] 71.4] 46.9] 58.6] 91.1] 46.1]  68.9] 51.0]  46.6]
58.3 50.3 64.1 75.0 77.6 51.3 69.5 73.5 63.6 76.7 51.3 89.6
dinob [50.3, [46.5, [58.1, [74.0, [76.5, [48.9, [66.4, [57.9, [62.3, [75.6, [49.9, [89.0,
66.1] 54.1] 69.6] 76.2] 78.5] 53.6] 72.6] 87.7] 64.9] 77.8] 52.6]  90.2]
62.0 42.8 614 73.5 75.1 48.0 72.1 77.5 64.0 74.6 53.6 82.6
dinol [53.7, [38.8, [55.8, [72.4, [74.0, [45.8, [69.4, [61.2, [62.7, [73.4, [52.2, [81.9,
70.1] 46.6] 66.9] 74.6] 76.1] 50.4] 74.9] 91.1] 65.3]  75.7] 55.0]  83.3]
379 414 46.3 439 53.4 40.6 52.7 75.7 50.6 41.2 45.7 46.9
vitb [29.3, [37.4, [40.3, [42.7, [52.2, [38.4, [49.7, [60.6, [49.3, [40.0, [44.3, [45.9,
46.5] 45.4] 52.1] 45.2] 54.6] 42.8] 55.8] 89.1]  52.0]  42.5]  47.0]  47.9]
41.7 35.0 46.4 36.4 51.7 36.0 45.0 67.5 40.1 36.2 44.4 49.4

vitl [33.2, [31.2, [40.4, [35.2, [50.5, [33.8, [42.1, [51.0, [38.7, [35.0, [43.0, [48.5,
50.5] 38.8] 52.5] 37.7] 52.9] 38.4] 47.9] 82.2] 41.4] 37.4]  45.6]  50.4]
47.4 50.8 29.1 65.4 80.1 58.0 63.9 90.0 58.8 77.2 46.0 74.5
clipb [38.9, [47.1, [24.9, [64.1, [79.1, [56.0, [60.9, [81.6, [57.6, [76.0, [44.8, [73.6,

55.7] 54.6] 33.9] 66.6] 81.1] 60.0] 66.8] 97.4] 60.1]  78.4]  47.3]  75.3]
58.8 55.8 48.1 73.7 82.2 67.3 75.6 83.7 58.5 78.7 52.9 91.7
clipl [50.4, [52.0, [42.5, [72.7, [81.3, [65.0, [72.7, [69.7, [67.2, [77.7, [51.5, [91.1,
67.2] 59.6] 54.3] 74.9] 83.1] 69.5] 78.4] 95.5] 59.9]  79.9] 54.2]  92.2]
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Table S60: Quantitative performance (Drop in Fl-score) on adversarial attack (e = 1.5 - 1073).

Model bach  bracs break-h ccrcc  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds
50.9 41.0 43.8 43.2 55.5 34.7 61.4 90.2 48.9 55.4 62.0 46.3
hiboub [42.5, [37.0, [37.4, [42.0, [54.3, [32.5, [58.3, ([82.2, [47.7, [54.4, [60.6, [45.3,
59.0] 45.0] 49.7] 44.5] 56.7) 36.8] 64.4] 97.4] 50.1]  56.4] 63.4]  47.3]
39.4 51.1 35.1 31.1 35.7 27.6 621 56.1 35.5 32.9 55.8 17.2
hiboul [31.3, [46.9, [29.3, [30.0, [34.6, [25.5, [59.1, [41.0, [34.5, [31.8, [54.3, [16.5,
47.7] 55.4] 41.2] 32.3] 36.8] 29.7] 65.0] 71.6] 36.5]  33.9] 57.1]  18.0]
40.8 43.7 28.0 33.3 28.9 28.6 59.9 100.0 40.5 43.4 51.8 31.0

hopt0 [32.4, [39.7, [22.4, [32.1, [27.8, [26.4, [56.9, [100.0, [39.4, [42.3, [50.4, [30.0,
49.3] 47.6] 33.3] 34.5] 30.1] 30.8] 62.8] 100.0] 41.6]  44.4] 53.2]  31.9]
51.4 57.0 62.2 357 42.0 32.1 76.8 100.0 50.5 48.5 62.7 76.7
hopt1 [42.6, [52.7, [56.4, [34.5, [40.9, [29.8, [74.0, [100.0, [49.4, [47.5, [61.3, [76.0,

59.7] 61.1] 67.5] 36.9] 43.2] 34.3] 79.6] 100.0] 51.6]  49.5] 64.1]  77.5]
37.6 47.0 38.1 31.1 29.7 28.9 61.0 57.4 26.2 19.6 36.6 23.0
midnight [29.7, [42.8, [31.8, [30.0, [28.6, [26.6, [58.0, [41.5, ([25.3, [18.7, [35.4, [22.2,
45.8] 51.1] 44.3] 32.3] 30.7] 31.1] 63.8] 72.5] 27.2]  20.5] 37.9]  23.8]
37.8 31.8 34.5 253 20.0 17.7 583 522 36.7 36.5 46.2  16.1
phikon  [29.6, [27.9, [28.6, [24.2, [19.1, [16.0, [55.2, [35.8, [35.7, [35.5, [44.7, [15.4,
45.9] 35.5] 40.4] 26.5] 21.0] 19.6] 61.2] 68.0] 37.8] 37.6]  47.6]  16.9]
43.7 42.2 27.8 37.6 44.7 29.3 65.2 69.9 38.9 35.6 52.5 60.3
phikon2  [35.2, [38.1, [21.9, [36.4, [43.5, [27.1, [62.1, [54.2, [37.7, [34.5, [51.1, [59.3,
51.8] 46.5] 33.6] 38.8] 45.9] 31.6] 68.1] 84.1] 40.0]  36.6] 53.9]  61.2]
35.8 339 343 26.6 288 24.8 60.8 68.9 41.0 53.6 49.4 55.5
uni [27.7, [30.1, [28.8, [25.5, [27.8, [22.8, [57.9, [55.4, [39.9, [52.6, [48.0, [54.6,
43.9] 37.8] 39.5] 27.8] 29.9] 26.9] 63.6] 82.2] 42.1]  54.6] 50.7]  56.5]
27.7 40.3 28,9 24.1 31.6 184 61.7 425 31.1 40.4 41.0 24.1

uni2h [20.3, [36.4, [23.6, [23.0, [30.5, [16.7, [58.5, [27.2, [30.2, [39.3, [39.6, [23.2,
35.4] 44.2] 34.5] 25.1] 32.7] 20.1] 64.7] 59.9] 32.1]  41.4] 42.3]  24.9]
38.8 40.1 41.9 28.7 28.0 20.9 64.0 65.0 38.3 34.9 53.0 39.1
virchow  [30.5, [36.2, [35.6, [27.5, [26.9, [18.9, [61.1, [49.8, [37.2, [33.7, [51.5, [38.2,

47.0] 44.2] 48.1] 29.8] 29.1] 22.8] 66.9] 78.9] 39.3]  35.9] 54.3]  40.1]
20.5 31.5 25.8 194 21.0 17.2 423 582 29.8  43.0 435  51.6

virchow2 [13.8, [27.9, [20.6, [18.4, [20.0, [15.4, [39.3, [43.0, [28.8, [42.0, [42.1, [50.7,
27.1] 35.4] 31.3] 20.4] 22.0] 19.1] 45.4] 73.6] 30.8]  44.1] 44.8]  52.6]
36.9 48.0 53.6 61.0 62.3 435 69.0 75.3 47.3 54.9 60.8 47.2
conch [29.0, [43.9, [47.8, [59.7, [61.2, [41.4, [66.2, [60.8, [46.2, [53.9, [59.5, [46.2,

44.9] 52.1] 58.9] 62.2] 63.4] 45.5] 71.9] 88.8] 48.4]  55.9] 62.0]  48.2]
60.2 56.7 73.9 82.0 90.7 69.1 77.5 91.4 61.3 80.6 67.7 92.3
titan [52.1, [52.6, [69.0, [81.0, [89.9, [67.0, [74.8, [80.6, [60.2, [79.7, [66.5, [91.7,
67.9] 60.9] 78.8] 83.0] 91.4] 71.0] 80.2] 100.0] 62.3]  81.6] 68.8]  92.8]
37.9 427 37.6 33.6 395 250 554 67.0 41.2  50.9 55.3  49.9

keep [30.1, [38.6, ([31.8, [32.4, [38.4, [22.9, [52.4, [51.2, [40.2, [50.0, [53.9, [48.9,
46.0] 46.7] 43.4] 34.8] 40.6] 27.1] 58.3] 81.3] 42.3]  52.0] 56.7]  50.9]
41.1 48.8 68.3 674 853 53.8 76.4 83.2 60.7 86.2 66.2 93.8
musk [32.6, [44.7, [62.4, [66.3, [84.4, [51.6, [73.6, [68.8, [69.6, [85.3, [64.9, [93.3,
50.0] 52.7] 73.8] 68.6] 86.3] 55.9] 79.1] 94.5] 61.7]  87.1] 67.3]  94.3]
48.3 49.2 32.5 48.2 72.3 53.2 704 75.3 52.1 68.3 53.6 58.9
plip [39.6, [45.2, [25.5, [47.0, [71.2, [50.9, [67.3, [60.5, [51.1, [67.3, [52.2, [58.1,

56.9] 53.2] 38.9] 49.4] 73.3] 55.4] 73.1] 88.7] 53.2]  69.3] 54.8]  59.6]
45.0 46.0 46.8 41.2 72.8 43.7 54.9 76.9 37.2 70.8 51.0 46.3
quilt [36.0, [41.9, [40.6, [39.9, [71.9, [41.4, [51.9, [60.8, [36.1, [69.8, [49.6, [45.3,
53.5] 50.1] 52.3] 42.6] 73.7] 45.9] 57.9] 89.5] 38.2]  71.8] 52.2]  47.3]
55.4 49.2 65.4 75.2 74.6 53.4 69.1 72.6 56.3 77.0 52.0 89.5

dinob [46.6, [45.3, [59.4, [74.1, [73.6, [51.3, [66.0, [58.2, [65.3, [76.0, [50.6, [88.9,
63.5] 52.9] 70.6] 76.3] 75.6] 55.4] 72.1] 86.5] 57.4]  78.1] 53.2]  90.1]
59.9 41.2 66.1 72.6 719 47.7 704 77.6 56.0 74.2 54.0 82.7
dinol [51.5, [37.1, [60.3, [71.4, [70.8, [45.5, [67.6, [62.8, [55.0, [73.1, [52.6, [82.0,
68.1] 45.1] 71.1] 73.7] 72.9] 50.0] 73.2] 90.2] 57.1  75.3] 55.1]  83.4]
33.8 39.8 48.7 43.2 51.3 38.2 539 72.1 44.0 43.7 46.6 46.8
vitb [25.7, [35.6, [42.6, [42.0, [50.2, [36.2, [51.0, [56.4, [43.0, [42.6, [45.1, [45.8,

41.8] 43.8] 54.3] 44.5] 52.4] 40.3] 56.8] 86.2] 45.1]  44.8]  47.9]  47.8]
41.1 33.4 49.0 36.6 524 351 49.7 644 325  39.2 45.6  49.5
vitl [32.6, [29.5, [43.0, [35.4, [51.3, [32.9, [46.9, [48.5, [31.5, [38.2, [44.2, [48.6,
49.9] 37.1] 54.8] 37.8] 53.6] 37.3] 52.3] 79.2] 33.5] 40.2]  46.9]  50.5]
45.4 49.9 30.7 66.3 79.0 55.2 62.6 85.8 48.1 80.1 47.0 74.9
clipb [36.9, [46.0, [24.7, [65.1, [77.9, [53.3, [59.6, [72.8, [47.2, [79.1, [45.6, [74.1,
53.5] 53.5] 36.6] 67.5] 80.0] 57.1] 65.5] 96.7] 49.1] 81.2]  48.3]  75.8]
55.9 54.5 51.4 71.8 79.9 66.9 75.0 82.2 51.1 78.7 54.1 91.6
clipl [47.1, [50.5, [44.9, [70.7, [79.0, [64.5, [72.1, [67.9, [50.1, [77.7, [52.6, [91.1,
64.1] 58.4] 57.5] 72.9] 80.9] 68.9] 77.8] 94.1] 52.1]  79.8] 55.3]  92.2]
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Table S61: Quantitative performance (Drop in Balanced accuracy) on adversarial attack (e =
35-1079).

Model bach  bracs break-h ccrec  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds
70.7 62.0 54.8 86.1 94.0 77.9 75.1 100.0 70.6 87.4 69.8  97.2
hiboub [64.2, [58.4, [48.9, [85.3, [93.4, [75.7, [72.2, [100.0, [69.4, [86.4, [68.6, [96.9,
77.1] 65.6] 60.9] 86.9] 94.6] 80.2] 77.9] 100.0] 71.9]  88.3] 71.2]  97.5]
745 62.8 64.1 77.8 80.2 63.1 79.2 100.0 73.7 78.2 74.0  85.4
hiboul [67.0, [59.1, [58.7, [76.7, [79.2, [60.7, [76.4, [100.0, [72.5, [77.1, [72.8, [84.7,
81.7] 66.6] 69.9] 78.9] 81.1] 65.5] 81.7] 100.0] 74.9]  79.2] 75.3]  86.0]
70.2 60.3 59.2 858 858 722 81.5 100.0 73.1 85.1 76.8  97.7

hopt0 [62.2, [56.3, [53.2, [85.0, [84.9, [70.0, [79.0, [100.0, [71.9, [84.1, [75.6, [97.4,
77.8] 64.1] 65.2] 86.7] 86.6] 74.4] 83.9] 100.0] 74.4]  86.1] 78.1]  98.0]
75.2  65.2 74.6 87.2 88.5 70.9 &8l.2 100.0 74.7 87.7 79.2 98.3
hoptl [68.5, [61.6, [68.9, [86.4, [87.7, [68.7, [78.5, [100.0, [73.5, [86.7, [78.0, [98.1,

81.8] 68.8] 80.0] 88.0] 89.3] 73.2] 83.9] 100.0] 75.9]  88.6] 80.3]  98.6]
70.9 63.6 488 58.1 75.7 62.0 76.1 94.0 57.5 50.9 68.2 85.4
midnight [63.5, [60.0, [43.4, [56.8, [74.7, [59.6, [73.3, [87.0, [56.2, [49.7, [67.0, [84.6,
7771 67.2] 54.3] 59.4] 76.7] 64.3] 78.7] 100.0] 58.8] = 52.2] 69.4]  86.0]
69.4 57.2 54.5 773 77.8 63.0 77.8 91.8 68.4 86.6 74.8 84.7
phikon  [61.3, [53.5, [48.6, [76.3, [76.7, [60.8, [75.0, [80.6, [67.1, [85.6, [73.5, [84.0,
77.3] 61.0] 60.3] 78.3] 78.8] 65.1] 80.4] 100.0] 69.7]  87.6] 76.1]  85.4]
67.3 59.1 49.3 779 874 70.2 789 94.0 64.2 86.0 76.6 95.6
phikon2  [59.5, [55.3, [43.6, [77.1, [86.5, [67.8, [76.3, [87.0, [63.0, [85.1, [75.5, [95.2,
74.9] 62.6] 55.5] 78.8] 88.2] 72.5] 81.6] 100.0] 65.5]  87.0] 77.8]  96.0]
73.1 59.2 63.0 854 827 67.4 81.3 100.0 71.0 87.3 73.2  97.3
uni [65.4, [55.5, [57.1, [84.6, [81.8, [65.0, [78.7, [100.0, [69.8, [86.4, [71.8, [96.9,
80.4] 62.8] 68.9] 86.3] 83.6] 69.7] 83.7] 100.0] 72.3]  88.3] 74.4]  97.6]
77.5 63.2 72.5 68.4 80.3 60.7 77.2 98.0 73.2 88.2 74.2 96.6
uni2h [70.3, [59.5, [67.1, [67.3, [79.4, [58.4, [74.6, [93.5, [71.9, [87.2, [73.1, [96.3,
84.3] 67.1] 78.0] 69.6] 81.2] 63.0] 80.0] 100.0] 74.4]  89.2] 75.4]  97.0]
65.4 59.2 60.0 771 77.8 65.7 81.5 96.0 70.4 80.2 73.2 88.9
virchow  [57.6, [55.5, [54.1, [76.0, [76.9, [63.6, [79.0, [90.0, [69.1, [79.2, [71.9, [88.3,
73.4] 63.0] 65.8] 78.1] 78.8] 67.7] 84.0] 100.0] 71.6]  81.3] 74.5]  89.5]
72.7 60.7 65.2 70.2 759 52.1 76.7 91.8 72.8 88.5 70.6 88.5
virchow2 [65.1, [57.1, [59.9, [69.2, [74.8, [49.8, [74.1, [80.9, [71.6, [87.6, [69.3, [87.9,
80.0] 64.4] 70.7] 71.3] 77.0] 54.3] 79.2] 100.0] 74.1]  89.4] 71.9]  89.2]
87.3 59.9 65.8 89.6 93.5 80.9 79.8 94.0 68.6 83.6 66.6 97.2
conch [82.1, [56.3, [60.4, [88.9, [92.8, [78.8, [77.1, [87.0, [67.4, [82.5, [65.4, [96.9,
92.0] 63.7] 71.4] 90.3] 94.1] 83.1] 82.4] 100.0] 69.9]  84.6] 67.9]  97.5]
83.2 63.2 74.6 88.3 94.3 83.0 81.2 96.0 68.6 87.6 67.8 96.7

titan [79.2, [59.8, [69.4, [87.6, [93.7, [80.8, [78.7, [89.6, [67.3, [86.6, [66.5, [96.4,
87.3] 66.8] 80.0] 89.1] 94.9] 85.2] 83.8] 100.0] 69.8]  88.5] 69.1]  97.1]
75.6 63.1 62.7 83.5 93.6 T71.7 74.2 96.0 71.3 86.8 71.0 97.4
keep [69.1, [59.5, [56.9, [82.7, [93.0, [69.7, [71.3, [90.0, [70.0, [85.9, [69.7, [97.1,

82.0] 66.7] 68.5] 84.4] 94.3] 73.8] 77.0] 100.0] 72.5]  87.8] 72.2]  97.8]
70.7 63.9 73.2 84.7 90.9 77.8 79.1 88.0 68.1 86.5 65.2 96.1
musk [63.5, [60.2, [68.3, [83.8, [90.1, [75.5, [76.3, [78.8, [66.8, [85.5, [63.9, [95.7,
77.7] 67.3] 78.3] 85.6] 91.7] 80.0] 81.7] 96.0] 69.4]  87.6] 66.5]  96.4]
64.3 57.3 40.1 74.8 86.9 685 784 90.0 62.7 85.2 52.6  88.0

plip [56.1, [53.6, [35.1, [73.7, [86.0, [66.4, [75.8, [81.6, [61.4, [84.2, [51.3, [87.4,
72.4] 61.0] 45.4] 75.9] 87.8] 70.7] 81.1] 97.6] 64.0] 86.2]  53.8]  88.6]
59.3 56.9 52,9 62.0 88.7 63.6 69.2 85.7 63.9 84.4 52.5 87.5
quilt [50.9, [53.3, [47.1, [60.8, [87.9, [61.6, [66.2, [71.6, [62.7, [83.4, [51.2, [86.8,

67.7] 60.5] 58.6] 63.2] 89.5] 65.4] 72.3] 96.7] 65.2]  85.5] 53.7]  88.1]
66.9 53.3 76.4 79.5 89.6 75.0 814 91.8 66.3 82.5 53.1 91.0
dinob [59.1, [49.5, [70.7, [78.5, [88.8, [72.8, [78.8, [81.2, [65.1, [81.4, [51.7, [90.4,
74.3] 56.9] 81.7] 80.6] 90.4] 77.0] 84.0] 100.0] 67.6]  83.6] 54.4]  91.5]
71.1 51.7 74.7 82.6 90.1 72.2 82.2 89.7 67.2 82.1 55.4 90.7
dinol [63.3, [47.9, [69.4, [81.7, [89.4, [70.1, [79.8, [76.7, [65.9, [80.9, [54.1, [90.1,
78.6] 55.5] 80.1] 83.6] 90.9] 74.3] 84.6] 100.0] 68.4]  83.2] 56.8]  91.3]
57.1 56.9 60.0 78.8 87.9 65.8 74.3 83.8 64.8 81.0 52.6 89.6

vitb [48.9, [53.2, [54.2, [77.8, [87.1, [63.7, [71.4, [70.8, [63.5, [79.9, [51.3, [89.0,
65.5] 60.8] 66.0] 79.8] 88.8] 67.8] 77.2] 94.2] 66.1]  82.1] 53.9]  90.2]
56.8 55.3 61.0 75.4 87.6 70.0 73.8 90.0 61.9 82.7 54.0 91.2
vitl [48.7, [51.5, [55.1, [74.3, [86.8, [67.7, [71.0, [81.5, [60.6, [81.7, [52.7, [90.6,
65.0] 58.9] 67.0] 76.5] 88.4] 72.3] 76.7] 97.5] 63.2]  83.8] 55.3]  91.7]
53.0 52.7 38.8 72.8 87.8 62.2 76.3 90.0 60.2 80.4 46.4 83.8
clipb [44.9, [49.1, [34.9, [71.7, [87.1, [60.3, [73.6, [81.6, [58.9, [79.4, [45.2, [83.1,

61.1] 56.5] 43.3] 74.0] 88.6] 64.2] 79.0] 97.4] 61.5] 81.6]  47.6]  84.5]
66.0 57.2 51.3 79.1 87.7 68.8 79.1 83.7 59.0 82.6 53.1 93.4
clipl [58.5, [53.4, [45.6, [78.2, [86.9, [66.6, [76.3, [69.7, [57.6, [81.5, [51.7, [93.0,
73.4] 61.0] 57.2] 80.0] 88.5] 71.0] 81.8] 95.5] 60.3]  83.6] 54.4]  93.9]
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Table S62: Quantitative performance (Drop in F1-score) on adversarial attack (e = 35 - 1073).

Model bach  bracs break-h ccrcc  crc esca mhist pcam tcga-crc tcga-tils tcga-unif wilds
65.6 61.7 585 84.0 935 76.7 757 100.0 65.7 88.8 71.5 97.2
hiboub [57.1, [57.9, [51.8, [83.1, [92.8, [74.5, [72.8, [100.0, [64.6, [87.9, [70.2, [96.8,
73.2] 65.4] 64.8] 85.0] 94.1] 78.6] 78.5] 100.0] 66.9] 89.6] 72.8]  97.5]
71.1 624 655 80.1 787 584 788 100.0 66.3 77.0 75.3 86.0
hiboul [62.9, [58.6, [59.9, [79.1, [77.7, [56.4, [76.1, [100.0, [65.3, [76.0, [74.1, [85.4,
78.8] 66.2] 71.0] 81.1] 79.7] 60.4] 81.4] 100.0] 67.4]  77.9] 76.5]  86.7]
68.7 60.6 62.2 854 855 71.4 80.1 100.0 67.1 84.8 77.6 97.7

hopt0 [60.2, [56.5, [55.7, [84.5, [84.6, [69.3, [77.6, [100.0, [66.1, [83.9, [76.3, [97.4,
76.5] 64.1] 68.0] 86.3] 86.4] 73.3] 82.5] 100.0] 68.2]  85.6] 78.8]  98.0]
71.7 64.3 76.0 86.5 88.7 70.4 81.6 100.0 67.6 88.4 80.1 98.3
hoptl [63.6, [60.5, [70.4, [85.7, [87.9, [68.2, [79.0, [100.0, [66.5, [87.5, [78.9, [98.1,

79.3] 68.0] 81.0] 87.4] 89.5] 72.5] 84.2] 100.0] 68.7]  89.2] 81.1]  98.6]
70.2 62,9 51.0 594 755 63.6 76.0 92.5 54.6 53.2 67.9 85.4
midnight  [63.2, [59.1, [44.2, [58.2, [74.5, [61.4, [73.1, [84.1, [53.5, [52.3, [66.7, [84.7,
77.2] 66.6] 57.3] 60.7) 76.4] 65.6] 78.6] 100.0] 55.7]  54.2] 69.0]  86.1]
68.4 56.5 51.9 79.5 78.0 61.4 77.4 90.9 62.7 86.2 76.1  85.3
phikon  [60.0, [52.5, [45.9, [78.6, [77.0, [59.8, [74.6, [79.4, [61.6, [85.4, [74.8, [84.7,
75.8] 60.1] 57.7] 80.5] 79.0] 63.0] 80.0] 100.0] 63.8]  87.1] 77.3]  86.0]
63.9 58.2 48.7 73.9 86.8 67.4 78.6 91.3 60.6 86.6 77.6 95.6
phikon2  [55.5, [54.3, [42.4, [72.7, [85.9, [65.5, [75.9, [80.6, [69.5, [85.7, [76.3, [95.2,
71.6] 61.8] 54.9] 75.0] 87.7] 69.1] 81.3] 100.0] 61.7]  87.4] 78.7]  96.0]
71.1 59.0 64.2 84.4 80.9 66.9 80.9 100.0 65.7 88.8 74.4 97.2
uni [63.4, [55.1, [58.6, [83.5, [80.0, [64.9, [78.3, [100.0, [64.6, [87.9, [73.0, [96.9,
78.6] 62.5] 69.4] 85.3] 81.9] 68.7] 83.3] 100.0] 66.8]  89.6] 75.5]  97.6]
75.0 61.2 74.5 68.6 81.3 59.2 77.7 974 66.0 88.4 74.2 96.7
uni2h [67.0, [57.2, [69.0, [67.5, [80.4, [57.0, [75.0, [92.5, [64.9, [87.6, [73.0, [96.3,
82.4] 65.1] 79.8] 69.7] 82.2] 61.2] 80.4] 100.0] 67.0]  89.3] 75.4]  97.0]
64.3 58.5 62.0 76.1 78.5 64.1 80.8 94.1 64.9 78.6 74.1 89.4
virchow  [55.9, [54.5, [55.9, [75.0, [77.5, [62.3, [78.2, [84.9, [63.8, [77.7, [72.8, [88.9,
72.1] 62.3] 67.7) 77.1] 79.4] 65.8] 83.3] 100.0] 65.9]  79.5] 75.3]  90.0]
71.4 57.8 66.5 70.2 76.2 50.8 74.4 90.9 67.5 88.9 70.2 88.5

virchow2 [63.7, [53.8, [60.6, [69.2, [75.1, [48.5, [71.7, [79.4, [66.4, [88.1, [68.9, [87.9,
78.8] 61.7] 72.1] 71.3] 77.3] 53.1] 77.0] 100.0] 68.7]  89.7] 71.4]  89.2]
84.4 59.8 68.6 88.1 924 79.0 794 91.3 63.9 86.4 67.6 97.2
conch [78.0, [56.0, [63.0, [87.3, [91.7, [77.2, [76.8, [80.2, [62.8, [85.5, [66.3, [96.9,

90.0] 63.4] 74.0] 89.0] 93.1] 80.7] 82.0] 100.0] 64.9]  87.3] 68.7]  97.5]
76.8 62.4 75.3 874 93.8 819 81.2 94.1 61.6 88.9 68.3 96.7
titan [70.0, [58.6, [70.4, [86.5, [93.1, [79.9, [78.7, [84.1, [60.5, [88.1, [67.0, [96.4,
83.1] 66.1] 80.2] 88.2] 94.4] 83.6] 83.7] 100.0] 62.6]  89.7] 69.4]  97.1]
72.1 62.2 654 829 927 71.0 743 94.1 64.3  88.1 72.1 974
keep [64.6, [58.4, [59.9, [82.0, [92.0, [69.2, [71.4, [84.9, [63.2, [87.3, [70.8, [97.1,
79.3] 65.9] 70.4] 83.8] 93.4] 72.7] 77.1] 100.0] 65.4]  89.0] 73.3]  97.7]
66.2 62.8 77.3 85.3 91.0 74.6 79.8 83.2 62.8 88.7 66.5 96.0
musk [57.9, [69.0, [71.7, [84.4, [90.2, [72.7, [77.0, [68.8, [61.7, [87.9, [65.2, [95.6,
74.2] 66.3) 82.3] 86.1] 91.7] 76.2] 82.3] 94.5] 63.9]  89.6] 67.7]  96.4]
63.9 56.5 43.4 75.7 86.3 66.1 77.8 85.8 55.9 85.8 54.1 88.0
plip [55.2, [52.7, [36.4, [74.6, [85.4, [63.8, [75.1, [72.8, [54.9, [84.9, [52.7, [87.3,
71.7] 60.1] 49.9] 76.7) 87.2] 68.1] 80.4] 96.8] 57.0]  86.7] 55.3]  88.6]
56.9 55.9 57.2 63.4 87.3 61.8 68.3 84.9 58.2 85.9 53.4 87.8
quilt [48.2, [52.1, [50.8, [62.0, [86.4, [59.5, [65.4, [70.4, [57.2, [85.0, [52.0, [87.2,
65.1] 59.5] 62.8] 64.7] 88.1] 64.0] 71.5] 96.7] 59.3]  86.8] 54.6]  88.4]
64.4 52.9 77.8 79.7 88.9 T74.0 82.1 90.9 58.1 84.7 54.0 90.9
dinob [55.9, [49.1, [72.1, [78.7, [88.1, [72.1, [79.4, [79.6, [57.1, [83.7, [52.6, [90.3,
72.3] 56.4] 82.7) 80.8] 89.8] 75.7] 84.6] 100.0] 59.2]  85.7] 55.2]  91.5]
68.9 50.6 784 814 887 714 814 90.5 58.9 84.8 56.0 90.6

dinol [60.3, [46.6, [72.7, [80.4, [87.9, [69.4, [79.0, [77.9, [57.9, [83.8, [54.6, [90.0,
76.6] 54.2] 83.4] 82.4] 89.5] 73.2] 83.8] 100.0] 59.9]  85.7] 57.2]  91.1]
53.1 56.6 60.2 77.9 85.6 62.2 74.1 80.2 58.4 83.2 53.7 89.6
vitb [44.4, [52.9, [54.2, [76.9, [84.7, [60.3, [71.1, [64.8, [57.4, [82.2, [52.3, [89.0,
61.6] 60.3] 66.1] 79.0] 86.6] 63.9] 76.9] 91.8] 59.5]  84.1] 54.9]  90.2]
55.3 54.3 61.1 75.1 85.6 68.0 73.5 85.8 55.1 83.6 55.7 91.1
vitl [46.8, [50.2, [54.9, [74.0, [84.7, [65.7, [70.6, [72.6, [54.1, [82.6, [54.3, [90.6,

63.6] 57.9] 66.8] 76.2] 86.5] 70.1] 76.3] 96.5] 56.2]  84.5] 56.9]  91.7]
51.1 524 39.7 73.7 86.7 60.0 75.7 85.8 487  82.8 47.3  83.6

clipb [43.0, [48.6, [33.7, [72.5, [85.8, [58.1, [72.8, [72.8, [47.8, [81.8, [45.9, [82.9,
58.4] 56.0] 45.7) 74.8] 87.5] 61.9] 78.3] 96.7] 49.7] 83.8]  48.6]  84.4]
63.5 56.4 54.5 75.8 86.9 68.2 79.1 82.2 51.5 84.3 54.2 93.4
clipl [55.2, [52.5, [48.0, [74.8, [86.0, [65.9, [76.4, [67.9, [50.5, [83.3, [52.7, [92.9,

71.0] 60.1] 60.6] 76.9] 87.8] 70.2] 81.9] 94.1] 52.5]  85.2] 55.5]  93.9]

93



	Introduction
	Related work
	Benchmarking foundation models for tile-level digital pathology
	Models and datasets
	Evaluation protocols
	Benchmarking at the tile level

	Experiments
	Conclusion
	Included foundation models
	Additional runtimes
	Comparison with existing benchmarks
	Extended discussion on quantitative results
	Implementation details
	Impact of the choice of probe on calibration performance
	Different pre-processing for the bracs dataset
	Additional experimental results

