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ABSTRACT

Accurate regression models are essential for scientific discovery, yet high-quality
numeric labels are scarce and expensive. In contrast, rankings (especially pair-
wise) are easier to obtain from domain experts or artificial intelligence (AI) judges.
We introduce Bayesian Enhancement with Calibrated Ranking (BAYES-ECR),
a novel plug-and-play method that improves a base regressor’s prediction for a
query by leveraging pairwise rankings between the query and reference items
with known labels. BAYES-ECR performs a Bayesian update that combines a
Gaussian likelihood from the regressor and the Bradley-Terry likelihood from the
ranker. This yields a strictly log-concave posterior with a unique maximum like-
lihood solution and fast Newton updates. We show that prior state-of-the-art is
a special case of our framework, and we identify a fundamental failure mode:
Bradley-Terry likelihoods suffer from scale mismatch and curvature dominance
when the number of reference items is large, which can degrade performance.
From this analysis, we derive a calibration method to adjust the information orig-
inating from the expert rankings. BAYES-ECR shows a stunning 97.65% me-
dian improvement across 12 datasets over previous state-of-the-art method using
a realistically-accurate ranker, and runs efficiently on a consumer-grade CPU.

1 INTRODUCTION

Regression underpins many scientific and engineering pipelines. In materials science and drug dis-
covery, for example, structure-to-property predictors (i.e., through regression) can guide inverse
molecular design loops by replacing expensive experiments and simulations with fast surrogates
(Sanchez-Lengeling & Aspuru-Guzik, 2018; Liang et al., 2021; Allen & Tkatchenko, 2022). Yet,
in many domains, collecting accurate absolute labels (e.g., molecule x is toxic at 1 nM) is slow and
expensive (Wijaya et al., 2024), leading to data scarcity and limiting the accuracy of learning-based
regressors.

An alternative to absolute labels is pairwise ranking (e.g., is molecule x more toxic than molecule
y?). Pairwise rankings can be collected from human experts or from computational models, in-
cluding general-purpose large language models (LLMs), at relatively low cost and with competitive
accuracy. For humans, pairwise ranking reduces cognitive load (Routh et al., 2023) and mitigate
scale-interpretation bias (Hoeijmakers et al., 2024) compared to directly predicting the absolute
labels. Similarly, LLMs exhibit strong pairwise ranking ability in technical domains (Guo et al.,
2023; Sun et al., 2025). This raises a central question: can we enhance a pretrained regressor
using only a handful of absolute labels plus inexpensive pairwise rankings without retraining
the regressor?

We propose Bayesian Enhancement with Calibrated Ranking (BAYES-ECR), a post-training en-
hancement method that combines a regressor’s prediction with calibrated expert rankings via
Bayesian inference. Given a pretrained regressor and an external pairwise ranker that compares
a query item to a small set of labeled references, BAYES-ECR forms a posterior over the un-
known scalar by combining (i) a Gaussian likelihood centered at the regressor’s prediction, and (ii)
a Bradley-Terry likelihood for pairwise rankings. We show that the posterior is strictly log-concave,
yielding a unique solution and enabling fast optimization.

An additional key insight is that the default Bradley-Terry model can be mismatched to the behavior
of pairwise rankers, leading to biased estimates and increased errors. BAYES-ECR addresses this
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with (i) a learned temperature that calibrates the sigmoid slope of the Bradley-Terry model, and (ii)
an accuracy-aware soft gate that regulates the influence of the ranker.

Specifically, our contributions are:

1. We introduce BAYES-ECR which combines a regressor likelihood with a calibrated ranker
likelihood to enhance predictions without retraining. We prove that the state-of-the-art,
RankRefine (Wijaya et al., 2025), is a special case under the Gaussian assumption.

2. We show how an uncalibrated Bradley-Terry model can bias the estimates when ranker
likelihood dominates, and we provide a temperature calibration with accuracy-aware soft
gating mechanism to mitigate the issue.

3. Across 12 cross-domain datasets (including real-world molecular datasets), BAYES-ECR
significantly improves over existing post-training enhancement methods (Wijaya et al.
(2025); Yan et al. (2024), and 3 other baselines) and remains effective when using imperfect
LLM rankers. Specifically, BAYES-ECR achieves 19.33% median MAE reduction relying
on 30 reference samples and a ranker with 65% accuracy, which translates to a stunning
97.65% relative improvement compared to RankRefine’s 9.78% median MAE reduction.

Together, these results position BAYES-ECR as a practical and principled way to leverage readily-
available pairwise information to enhance scalar regressor in data-scarce domains. Source code will
be made public upon publication.

2 BACKGROUND

Pairwise Comparison Models. In pairwise (binary) comparisons, the probability of item xi is
preferred to xj is often modeled as P (xi ≻ xj) = F (yi − yj), where y are latent scores and F
is a cumulative distribution function (Cattelan, 2012). Classic pairwise comparison models include
Thurstone-Mosteller with a Gaussian link function (Thurstone, 1927; Mosteller, 1951) and Bradley-
Terry with a logistic link function (Bradley & Terry, 1952). These models provide a one-dimensional
likelihood for the unknown scalar label that can be estimated using MAP or MLE estimation.

LLM-as-a-judge. General-purpose LLMs have demonstrated strong performance on relative com-
parisons across various domains (Qin et al., 2024; Wu et al., 2024; Guo et al., 2023), with evidence
of better performance in pairwise comparison compared to score prediction (Zheng et al., 2023).
With widely available web APIs (OpenAI, 2025; Anthropic, 2025; Google, 2025), collecting com-
parisons at scale is increasingly easy, making LLMs a convenient external ranker when numeric
absolute labels are scarce.

Regression Refinement using Pairwise Rankings. Two representative approaches in this area are
the Projection method (Yan et al., 2024) and RankRefine (Wijaya et al., 2025). Projection constrains
the regressor’s prediction to a feasible interval implied by non-contradictory pairwise outcomes.
Meanwhile, RankRefine fuses the regressor’s output with a rank-only estimate via inverse variance
weighting. Our proposed method introduces a different paradigm: it reframes fusion as a Bayesian
inference, where the regressor and ranker contribute likelihoods that jointly determine the posterior.

Relation to Learning from Human Feedback. Recent works on fine-tuning with human feedback
(Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022) also use pairwise rankings modeled
via Bradley-Terry, but with a different goal. They (i) learn a global reward model and (ii) fine-tune a
pretrained model accordingly. In contrast, we apply a per-query, post training prediction correction
by combining the regressor’s likelihood with a calibrated ranker likelihood. This produces a one-
dimensional posterior without modifying the regressor’s parameters.

3 METHOD

In this section, we describe the base formulation of BAYES-ECR (Section 3.1), along with the
analyses of its behavior (Section 3.2) and proposed modifications for improving the performance
(Section 3.3). We provide the detailed proofs of the analysis in the Appendix.
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3.1 BAYESIAN INFERENCE ON EXPERT RANKINGS TO IMPROVE REGRESSION MODELS

Let f be a regressor trained on C = {(xj , yj)}Nj=1, with scalar labels yj ∈ R and predic-
tion f(xj) = ŷre

j . Let R be an expert pairwise ranker that returns a binary comparison:
R(xa, xb) = 1 if it predicts ya > yb, and R(xa, xb) = 0 otherwise. We are given a reference
set D = {(xi, yi)}ki=1 with known yi, which can be, but not always is, the regressor’s training
set C. For a query x0 with unknown y0 ∈ R, we collect expert rankings against all references:
G = {ri = R(x0, xi)}ki=1 where ri ∈ {0, 1}.
Assuming conditional independence of regressor and ranker given the true y0, the Bayes’ rule yields

p(y0 | ŷre
0 ,G)︸ ︷︷ ︸

posterior

∝ p(ŷre
0 | y0)}︸ ︷︷ ︸

reg. likelihood

p(G | y0)︸ ︷︷ ︸
rank likelihood

p(y0)︸ ︷︷ ︸
prior

(1)

with Gaussian regressor likelihood p(ŷre
0 | y0) = N (ŷre

0 ; y0, σ
2
re) and rank likelihood

p(ri = 1 | y0, yi) = s
(
y0 − yi

)
, s(z) = 1/(1 + e−z), (2)

p(G | y0) =
k∏

i=1

s
(
y0 − yi

)ri(
1− s

(
y0 − yi

))1−ri
, (3)

which is the product of all pairwise comparisons in G under the Bradley-Terry model (Bradley &
Terry, 1952).

With the two likelihoods, the base formulation of BAYES-ECR enhances a regressor prediction with
expert rankings using a maximum a posteriori (MAP) estimation (Murphy, 2022) which maximizes
y with the objective function

L(y) = − 1

2σ2
re
(ŷre

0 − y)2 +

k∑
i=1

[
ri log s(y − yi) + (1− ri) log(1− s(y − yi))

]
+ log p(y).

(4)
If we assume a flat (uninformative) prior, i.e., p(y) = 1, BAYES-ECR reduces to a maximum
likelihood estimation (MLE) (Murphy, 2022). The objective function of the BAYES-ECR (Equation
4) is strictly log-concave so we can obtain the maximum efficiently.

Lemma 3.1. (Strict log-concavity.) If σ2
re > 0 and log p(y0) is concave (including the flat prior),

then log p(y0 | ŷre
0 ,G) is strictly concave in y0. □

Corollary 3.2. (Existence and uniqueness.) The maximum a posteriori (and maximum likelihood
under a flat prior) estimate exists and is unique. □

Proposition 3.3. (RankRefine (Wijaya et al., 2025) is a special case of BAYES-ECR un-
der Gaussian assumption.) Let LBT (y) denote the rank-only log-likelihood and ŷra

0 =
argmaxy LBT (y). By assuming Gaussianity on the ranker likelihood (similar to Wijaya et al.
(2025)), the second-order expansion of LBT (y) around ŷra

0 yields

p(G | y) ≈ N (y; ŷra
0 , σ

2
ra), σ2

ra =
[ k∑

i=1

s(ŷra
0 − yi)(1− s(ŷra

0 − yi))
]−1

. (5)

Combining this with the Gaussian regressor likelihood and a flat prior gives the inverse-variance
weighted (IVW) (Cochran & Carroll, 1953) estimator, i.e., RankRefine (Wijaya et al., 2025), for
which the estimate ŷrr0 is,

ŷrr
0 =

ŷre
0 /σ

2
re + ŷra

0 /σ
2
ra

1/σ2
re + 1/σ2

ra
. □ (6)

Proof. The gradient and curvature of LBT (y) are

L′
BT (y) =

k∑
i=1

(
ri − s(y − yi)

)
, L′′

BT (y) = −
k∑

i=1

(
s(y − yi)(1− s(y − yi))

)
. (7)
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The second-order Taylor expansion of LBT around y = ŷra
0 is

LBT (y) ≈ LBT (ŷ
ra
0 ) + L′

BT (ŷ
ra
0 ) · (y − ŷra

0 ) +
1
2L′′

BT (ŷ
ra
0 ) · (y − ŷra

0 )
2. (8)

The first term is constant and the second term is zero, therefore,

LBT (y) ∝ −
1

2

k∑
i=1

s(ŷra
0 − yi)(1− s(ŷra

0 − yi))(y − ŷra
0 )

2. (9)

Similar to RankRefine, we make a strong assumption of Gaussianity for the BT likelihood,

p(G | y0) ∝ exp(LBT (y)) = exp
(
− 1

2

k∑
i=1

s(ŷra
0 −yi)(1− s(ŷra

0 −yi))(y− ŷra
0 )

2
)
≡ N (µra, σ

2
ra),

(10)

µra = ŷra0 , σ2
ra =

[ k∑
i=1

s(ŷra
0 − yi)(1− s(ŷra

0 − yi))
]−1

.

The joint likelihood of the conditionally independent regressor and ranker is now a product of two
Gaussians. The MLE, i.e., MAP estimate with a flat prior, then solves a weighted least-squares
problem whose maximizer is the inverse-variance weighted average. □

3.2 ANALYSIS OF POTENTIAL PERFORMANCE DEGRADATION OF BASE BAYES-ECR
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Figure 1: Soft- vs. hard-count mis-
match from Lemma 3.4. We gener-
ate a synthetic reference set {yi} and
ground truth y0. From Equation 11,
the rank-only MLE ŷra0 is the inter-
section between

∑
ui(y) and m, and

(ym, ym+1) forms the feasible range.
We can see that

∑
ui(y) with a step

function correctly intersects the feasi-
ble range. However, using a sigmoid
function results in a biased intersec-
tion outside the feasible range.

Under the base formulation, BAYES-ECR can degrade
when the reference size k and ranker accuracy a exceed cer-
tain thresholds. The effect is dataset-dependent and arises
from a mismatch between the Bradley-Terry model and the
behavior of real-world rankers.

Separating the rank likelihood from the objective in Equa-
tion 4 and maximizing it yields the rank-only MLE ŷra

0 . If
the ranker were perfectly accurate and the likelihood per-
fectly specified, then ŷra

0 ∈ (ym, ym+1), where ym < y0 <
ym+1 are the closest references and m =

∑
i ri is the num-

ber of references ranked below y0. In practice, the sigmoid
in the Bradley-Terry model induces a soft-. vs. hard-count
mismatch: the rank-only target solves a soft-count equation
and need not lie in (ym, ym+1).

Lemma 3.4 (Rank-only MLE may target a pseudo
ground truth.) Let ui(y) = s(y − yi) and m =

∑k
i=1 ri.

The Bradley-Terry log-likelihood LBT (y) is strictly con-
cave and its unique maximizer ŷra

0 satisfies

L′
BT (ŷ

ra
0 ) = 0 ⇐⇒

k∑
i=1

ui(ŷ
ra
0 ) = m. (11)

Because m is a hard count while ui are sigmoid soft counts,
the solution to

∑k
i=1 ui(ŷ

ra
0 ) = m is a pseudo target ỹ0,

which can lie outside (ym, ym+1) even under a perfectly
accurate ranker, biasing ŷra

0 . See Figure 1 for illustration. □

Bias from the rank-only target can increase the overall error
if the rank likelihood dominates the regressor likelihood.
Rank likelihood dominance is governed by its curvature (Fisher information (Ly et al., 2017)), which
grows with k.

Lemma 3.5. (Rank curvature (Fisher information) scales with k.) The Fisher information of
the rank log-likelihood is Irank(y) =

∑k
i=1 ui(y)(1 − ui(y)), so Irank(y) grows linearly with k.

Moreover, 0 ≤ Irank(y) ≤ k
4 . □
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Lemma 3.6. (Info-weighted Newton step and dominance.) As k grows, the optimization process
using Newton’s method (Murphy, 2022) to solve Equation 4 is dominated by the rank likelihood
term. That is, denoting gtot(y) and Itot(y) as the total gradient and Fisher information of both likeli-
hoods at y, Ireg as the Fisher information of the regressor likelihood, and ỹra(y) as the target of the
ranker likelihood term at y, a Newton step is

y ← y +
gtot(y)

Itot(y)
=

Ireg · ŷre
0 + Irank(y) · ỹra(y)

Ireg + Irank(y)
, (12)

which is an information-weighted average using Fisher information as the weights. □

Since Ireg = 1/σ2
re is constant, Lemma 3.5 implies the rank likelihood term eventually dominates as

k grows. Apart from Newton, for a first-order step y ← y+ ηgtot(y), the same decomposition yields
y ← y + η[Ireg(ŷ

re
0 − y) + Irank(y)(ỹ

ra(y)− y)], showing similar information-weighted pull. The
dominance of the rank likelihood then follows from Lemma 3.5.

Dominance alone is harmless, but combined with Lemma 3.4, a biased rank likelihood target ỹ0 can
steer the refinement away from y0. Note that dominance occurs only when both k and the ranker
accuracy a are sufficiently large. Moreover, the accuracy threshold decreases with k.

Lemma 3.7. (Accuracy-k threshold for rank dominance.) Define

p∗ =
1

k

k∑
i=1

1(y0 > yi), p̂(y) =
1

k

k∑
i=1

ui(y). (13)

Let a ∈ [0.5, 1] denote the ranker accuracy. Then, at any iterate y, the rank likelihood dominates the
regressor likelihood whenever

a >
1

2
+

|y − ŷre
0 |

2kσ2
re|p∗ − p̂(y)| . □ (14)

The right hand side of the inequality is the threshold accuracy athr(y), and it decreases as 1/k for a
fixed y, σ2

re, and |p∗ − p̂(y)| > 0. Therefore, the required ranker accuracy such that the rank term
dominates the Newton step shrinks as k grows.

Corollary 3.8. (Rank likelihood can degrade base BAYES-ECR.) Under the base formulation
of BAYES-ECR, the rank-only target can be biased (Lemma 3.4). This may lead to a performance
degradation when the ranker likelihood term dominates (Lemma 3.6). In general, ranker likelihood
dominance grows with the reference set size k and the ranker accuracy a. When k is large, the
required a for the ranker likelihood to dominate is lower (Lemma 3.7).

3.3 BAYES-ECR WITH CALIBRATED EXPERT RANKINGS

The degradation stems from the Bradley-Terry modeling mismatch (Lemma 3.4): when many pair-
wise gaps (ya−yb) fall on the sigmoid’s transition region rather than its saturated tails, the rank-only
target becomes biased. This is a unit-scale issue; datasets with small average |ya − yb| have higher
probability of placing many pairs on the transition slope.

We address this by introducing a temperature τ to adjust the slope, i.e., replace ui(y) = s(y − yi)
with vi(y; τ) = s((y− yi)/τ). This (i) aligns the logistic slope with label units so that the tempered
score

∑
i vi(ŷ

ra
0 ; τ) can match the observed count m =

∑
i ri, removing the soft- vs. hard-count

mismatch, and (ii) sets the rank curvature to

Irank(y; τ) = τ−2
∑
i

vi(y; τ)
(
1− vi(y; τ)

)
, (15)

thereby controlling rank dominance at large k. We estimate τ for a dataset via a one-parameter
logistic fit on the reference set, thus requiring no extra labeled data,

Pr(r = 1 | ya, yb; ω̂) = s(ω̂(ya − yb)), (ya, yb) ∈ D, (16)

and set τ = τ̂cal = 1/ω̂. With this calibration of expert rankings, the Newton update is an
information-weighted average with temperature-controlled curvature,

y ← Ireg · ŷre
0 + Irank(y; τ) · ỹra(y; τ)

Ireg + Irank(y; τ)
. (17)

5
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where ỹra(y; τ) = y +
∑k

i=1(ri−vi(y;τ))

Irank(y;τ)
.

Setting τ < 1 increases the rank likelihood curvature (via the τ−2 factor) and shifts the update
toward the rank target. When the ranker is accurate, this permits rank dominance without the bias
highlighted by Lemma 3.4, improving performance over the naive BAYES-ECR.

On the other hand, when the ranker is less accurate, overly large curvature would let noisy rank
signals dominate and harm performance. We therefore apply an accuracy-aware soft gate:

τ(a) = 1 + (τ̂cal − 1)(w(a))γ , γ ≥ 1, (18)

w(a) = max(0, 2a− 1) ∈ [0, 1]. (19)

Thus τ(a) ≈ 1 when a ≈ 0.5, τ(a) → τ̂cal as a → 1, and intermediate a produces a smooth
interpolation. The final BAYES-ECR with calibrated expert rankings is summarized in Algorithm 1.

Algorithm 1 BAYES-ECR Algorithm
Inputs: x0, ŷre

0 , σ2
re, G = {(xi, yi)}ki=1; D = {yi}ki=1 R; (optional: p(y))

Collect Comparisons: ri ← R(x0, xi)
Estimate Temperature: fit s(α(ya − yb)) on labeled pairs from D; set τ̂cal = 1/α̂. Estimate the
ranker accuracy a; set τ ← 1 + (τ̂cal − 1)(max(0, 2a− 1))γ .
MAP / MLE Optimization: Maximize Equation 4 with s(·) replaced by s((·)/τ). With Newton
steps described on Equation 17, iterate to convergence.
Output: ŷrr

0 and approximate uncertainty σ2
post ≈ (Ireg + Irank(ŷ

rr
0 ; τ))

−1.

4 EXPERIMENTS

To demonstrate the benefits of BAYES-ECR in data-scarce domains, we evaluate on 9 molecular
property prediction datasets from the TDC ADMET regression task (Huang et al., 2021): Caco-2
(Wang et al., 2016), Clearance Microsome and Clearance Hepatocyte (Di et al., 2012), log Half-Life
(Obach et al., 2008), FreeSolv (Mobley & Guthrie, 2014), Lipophilicity (Wu et al., 2018), PPBR,
Solubility (Sorkun et al., 2019), and VDss (Lombardo & Jing, 2016). For each experiment, we sam-
ple N = 100 molecules from the original training split and L = 100 molecules from the original
test split. We repeat this train/test resampling for 10 random seeds, similar to a Monte Carlo cross-
validation. The reference set D is sampled from the training set with k ∈ {3, 10, 20, 30, 50, 100}.
Two types of base regressors are used: random forest (RF) (Ho, 1995) and multilayer perceptron
(MLP) (Rumelhart et al., 1986), both trained on the N training labels. We also use three tabular re-
gression datasets: crop-yield prediction from sensor data (Soundankar, 2025), student-performance
prediction (Cortez, 2014), international-education cost estimation (Shamim, 2025).

We evaluate four BAYES-ECR variants: MAP with a Gaussian prior, MLE, MLE with tempera-
ture scaling (MLE-Temp), and MLE with temperature scaling and soft gating (MLE-GatedTemp).
The full BAYES-ECR, i.e., MLE-GatedTemp, is the default variant we use in the experiments. We
compare our method to two post-training regression enhancement baselines: (i) Projection-based
approach (Yan et al., 2024) and (ii) RankRefine (Wijaya et al., 2025). Additionally, we adapt
two pairwise ranking models to create rank-only regression enhancement baselines: (i) Bradley-
Terry (rank-only MLE using the Bradley-Terry model), (ii) Thurstone (rank-only MLE using the
Thurstone-Mosteller model (Thurstone, 1927; Mosteller, 1951)). Following Wijaya et al. (2025),
we report β ≡ MAEpost/MAEbase, which is the ratio between the post-enhancement Mean Absolute
Error (MAE) and the MAE of the regressor-only predictions (lower is better).

We use two types of rankers: (i) oracle ranker to study the effect of ranker accuracy, and (ii) LLM
ranker to demonstrate real-world use cases. For the oracle ranker, we set ri = 1(y0, yi) and then
flip the outcomes with probability 1 − a to simulate a ranker with accuracy a ∈ [0.5, 1]. For
LLM rankers, we prompt publicly-available models to compare a list of pairs of molecular text
representations (SMILES (Weininger, 1988)) and measure the accuracy a on a small validation set.

Additional discussions and experiments on LLM usage, temperature calibration, multi-target regres-
sion, and reference set size are available in Appendix.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.5 0.6 0.7 0.8 0.9 1.0
Ranker Accuracy

0.00

0.25

0.50

0.75

1.00

M
AE

 R
at

io
 (

)

Caco2_Wang

0.5 0.6 0.7 0.8 0.9 1.0
Ranker Accuracy

0.00

0.25

0.50

0.75

1.00

M
AE

 R
at

io
 (

)

Clearance_Hepatocyte_AZ

0.5 0.6 0.7 0.8 0.9 1.0
Ranker Accuracy

0.00

0.25

0.50

0.75

1.00

M
AE

 R
at

io
 (

)

Clearance_Microsome_AZ

0.5 0.6 0.7 0.8 0.9 1.0
Ranker Accuracy

0.00

0.25

0.50

0.75

1.00

M
AE

 R
at

io
 (

)

Half_Life_Obach

0.5 0.6 0.7 0.8 0.9 1.0
Ranker Accuracy

0.00

0.25

0.50

0.75

1.00

M
AE

 R
at

io
 (

)

HydrationFreeEnergy_FreeSolv

0.5 0.6 0.7 0.8 0.9 1.0
Ranker Accuracy

0.00

0.25

0.50

0.75

1.00

M
AE

 R
at

io
 (

)

Lipophilicity_AstraZeneca

0.5 0.6 0.7 0.8 0.9 1.0
Ranker Accuracy

0.00

0.25

0.50

0.75

1.00

M
AE

 R
at

io
 (

)

PPBR_AZ

0.5 0.6 0.7 0.8 0.9 1.0
Ranker Accuracy

0.00

0.25

0.50

0.75

1.00

M
AE

 R
at

io
 (

)
Solubility_AqSolDB

0.5 0.6 0.7 0.8 0.9 1.0
Ranker Accuracy

0.00

0.25

0.50

0.75

1.00

M
AE

 R
at

io
 (

)

VDss_Lombardo

Regressor-only Projection Bradley-Terry Thurstone RankRefine Bayes-ECR (ours)

Figure 2: MAE ratio β (lower is better) as a function of oracle ranker accuracy a on nine TDC
ADMET datasets (k = 30). We report the mean and standard deviation across 10 random splits.
BAYES-ECR (MLE-GatedTemp variant) outperforms projection and RankRefine across ranker ac-
curacies, with especially strong gains at moderate, real-world accuracy. Results for other k values
with similar trends are available in Appendix.

4.1 MAIN RESULTS WITH ORACLE RANKERS

Across all nine ADMET datasets at k = 30, BAYES-ECR (MLE-GatedTemp variant) consis-
tently outperforms previous state-of-the-art, RankRefine, and 3 other baselines (Figure 2). Gains
over recent custom-built enhancement methods, RankRefine and Projection, are largest in the mid-
accuracy regime (65% - 90%). At lower ranker accuracies (<65%), BAYES-ECR matches or
exceeds RankRefine and clearly outperforms Projection. At high ranker accuracies, RankRefine
performance plateaus, while BAYES-ECR continues to improve, converging to Projection’s perfor-
mance at perfect (yet unrealistic) ranker accuracy.

4.2 ABLATION: PRIOR, TEMPERATURE, AND ACCURACY-AWARE SOFT GATING

Figure 3 shows that MAP/MLE variants of BAYES-ECR can degrade as k grows, confirming that
rank-dominance in the Newton step and the soft-hard count mismatch on the rank term can bias the
enhancement (Corollary 3.8). The rank-only Bradley-Terry and Thurstone models in Figure 2 also
exhibit similar degradation, validating that the source of degradation is the ranker likelihood. Inter-
estingly, MAP degrades less than MLE, indicating that prior can act as a regularizer. As proposed in
Lemma 3.7, the ranker accuracy threshold at which degradation appears shifts lower as k increases.

Our full method (MLE-GatedTemp variant) solves the performance degradation issue. Temperature
scaling aligns the sigmoid slope to the label scale and controls the rank curvature, mitigating degra-
dation at high ranker accuracy, but can worsen performance at low ranker accuracy (Figure 3, MLE-
Temp). Adding accuracy-aware soft-gating removes this trade-off (Figure 3, MLE-GatedTemp), en-
abling full BAYES-ECR to deliver strong performance across the complete ranker accuracy range.
Note that Figure 3 also confirms that our enhancement method works with a reference set as small
as k = 3, which is highly practical in the real-world setting.
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Figure 3: Effects of reference set size k and temperature scaling / soft gating on the Clearance
Hepatocyte dataset. The shown methods are the four variants of BAYES-ECR, with ours being
MLE-GatedTemp. We show the MAE ratio β (lower is better) as a function of oracle ranker accuracy
a for k ∈ {3, 10, 20, 30, 50, 100}. Without temperature scaling, MAP and MLE variants degrade at
larger k due to rank curvature dominance. Temperature (MLE-Temp) fixes the scale mismatch, and
soft-gating (MLE-GatedTemp) further improves robustness when ranker accuracy is low.
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Figure 4: MAE ratio β on three non-molecular tabular datasets with Random Forest (RF) and Multi-
layer Perceptron (MLP) as base regressor models. We show that the refinements are generalizable to
other domains and regressor models. Baseline (non-refined) MAEs are: International Education
Cost: 0.0926 (MLP), 0.0609 (RF); Smart Farming Yield: 0.1448 (MLP), 0.1361 (RF); Student
Exam Performance: 0.0727 (MLP), 0.0819 (RF).

4.3 CROSS-DOMAIN GENERALITY AND REGRESSOR DIVERSITY

To test cross-domain and cross-model generalization, we add three non-molecular tabular datasets
and run both Random Forest (RF) and Multilayer Perceptron (MLP) regression models. Figure 4
shows that BAYES-ECR yields β < 1 across the ranker accuracy range, improving both RF and
MLP models, and proving its generalization capability to other domains and regression models.

4.4 LLM AS IMPERFECT YET PRACTICAL RANKER

We replace the oracle ranker with off-the-shelf LLMs to obtain noisy but scalable expert rankings.
With ChatGPT5 Thinking and Claude Sonnet 4 as rankers at N = 50 and k = 20, BAYES-ECR
generally achieves the best β across five ADMET datasets. Detailed results are shown in Table 1.

4.5 RUNTIME ANALYSIS ON VARYING REFERENCE SET SIZE

Excluding the ranking predictions, BAYES-ECR runs in less than 1 ms on an Intel i7-13700 CPU
when the reference set size k ≤ 1000, covering realistic scenarios in data-scarce domains. The
average running time to predict expert rankings using ChatGPT5-Thinking for 1000 queries and 50
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Dataset Name Half Life FreeSolv PPBR Solubility VDss
ChatGPT5 PRA (%) 62.20 ± 1.89 62.27 ± 2.00 63.29 ± 2.65 62.87 ± 3.27 65.95 ± 1.96

BAYES-ECR (β) 0.952 ± 0.057 0.997 ± 0.021 0.928 ± 0.045 0.985 ± 0.015 0.853 ± 0.194
RankRefine (β) 0.977 ± 0.024 1.002 ± 0.022 0.968 ± 0.016 0.985 ± 0.020 0.952 ± 0.055

Projection (β) 1.056 ± 0.171 1.119 ± 0.100 1.007 ± 0.026 0.992 ± 0.039 0.949 ± 0.082

Dataset Name Half Life FreeSolv PPBR Solubility VDss
Claude4 PRA (%) 52.36 ± 2.22 72.47 ± 1.40 51.73 ± 3.25 60.41 ± 2.45 60.85 ± 2.12

BAYES-ECR (β) 0.955 ± 0.058 0.977 ± 0.011 0.965 ± 0.042 0.990 ± 0.010 0.850 ± 0.191
RankRefine (β) 0.981 ± 0.010 1.070 ± 0.052 0.979 ± 0.019 0.988 ± 0.016 0.951 ± 0.056

Projection (β) 1.124 ± 0.279 1.153 ± 0.126 1.031 ± 0.039 0.995 ± 0.014 0.959 ± 0.038

Table 1: Results using LLMs (ChatGPT5, Claude4) as external rankers, measured in β over ten
train/test splits with N = 50, k = 20. PRA stands for pairwise ranking accuracy. Best result for
each dataset-ranker is bolded. BAYES-ECR generally outperforms other refinement methods.

Dataset Name Half Life FreeSolv PPBR Solubility VDss
∆y · 10−7 0.028 ± 0.028 0.030 ± 5.71 8.51 ± 1.42 0.029 ± 1.33 3.24 ± 2.96

Table 2: Mean absolute difference between the refined predictions of RankRefine and BAYES-ECR
with Gaussianity assumptions. The values are around the range of machine epsilon for a floating
point precision, confirming that RankRefine is a special case of BAYES-ECR.

references (50,000 pairs in total) in parallel is 152.4 ± 54.7 seconds. Therefore, BAYES-ECR can
be run efficiently on consumer-grade computes, and LLM inference is not a significant bottleneck.

4.6 RANKREFINE IS A SPECIAL CASE OF BAYES-ECR.

We showed that RankRefine (Wijaya et al., 2025) is a special case of BAYES-ECR in Proposition
3.3. We verify this empirically by comparing enhanced predictions from RankRefine and BAYES-
ECR under the Gaussianity assumptions. Across five ADMET tasks, the mean absolute difference
∆y is at the level of machine epsilon (Table 2), confirming that Rankrefine is a special case of
BAYES-ECR with Gaussianity assumptions.

5 LIMITATIONS

• Noise model for the oracle ranker. We inject pairwise flips uniformly to reach the desired
oracle ranker accuracy. Real rankers (human or LLM) might exhibit systematic biases,
which could negatively affect the Bayesian inference at lower ranker accuracies.

• Dependence on regressor uncertainty. BAYES-ECR requires a base regressor that can
quantify uncertainty, which many off-the-shelf regressors lack. A straightforward solution
is to use ensembling or Monte Carlo dropout.

• Reference-set selection. Regression improvements may depend on the composition of
the reference set (coverage, label diversity, resolution). Future works can explore more
sophisticated, sequential sampling strategy to select the references.

6 CONCLUSION

We introduced BAYES-ECR, framing post training regression enhancement as a problem of
Bayesian inference rather than heuristic fusion. This perspective not only generalizes prior state-
of-the-art, but also reveals subtle failure modes, explains when and why performance degrades, and
offers principled solutions through temperature calibration and gating. Empirically, BAYES-ECR
delivers consistent gains across 12 diverse datasets, operates effectively with both oracle and noisy
LLM rankers, and runs under 1 ms per query. We believe BAYES-ECR can serve as a practi-
cal bridge between label-scarce applications and the growing availability of pairwise signals from
LLMs.
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A APPENDIX

A.1 DETAILED PROOFS

Lemma 3.1. Proof. The regressor log-likelihood contributes − 1
2σ2

re
(ŷre

0 − y0)
2 with curvature

−1/σ2
re < 0 . Each BT term adds log s(y0 − yi) or log 1 − s(y0 − yi), whose second deriva-

tive is −s(1 − s) ≤ 0. Sum of concave terms and a concave prior is concave; the Gaussian term’s
strictly negative curvature makes the sum strictly concave.

Lemma 3.4. Proof. L′
BT(y) (Proposition 3.3.) is strictly decreasing, therefore, LBT(y) is strictly

concave. Setting L′
BT(y) = 0 gives the equation. Since F (y) =

∑
i ui(y) is continuous and strictly

increasing with F (−∞) = 0, F (∞) = k, there is a unique solution at the observed count m.

Let y1 ≤ ... ≤ yk be the ordered reference set and suppose the true y0 ∈ (ym, ym+1),

• if most (y − yi) are in the sigmoid saturated regime, F behaves like a hard count, so
F (y0) ≈ m, F (ỹ0) = m, and ŷra

0 = ỹ0 ≈ y0 up to the resolution (ym+1 − ym).

• if many (y − yi) lie in the transition region, F (y0) ̸≈ m, F (ỹ0) = m, and ŷra
0 = ỹ0 ̸≈ y0.

This shifts does not induce rank bias as long as ỹ0 ∈ (ym, ym+1).

• rank bias arises if the shift exits the interval, i.e., |ỹ0 − y0| ≥ min{y0 − ym, ym+1 − y0},
which is more likely when the number of (y − yi) that lie in the transition region is high.

Lemma 3.6. Proof. Let Ireg = 1/σ2
re be the Fisher information of the regressor term and write the

total gradient and Fisher information at y as

gtot(y) = greg(y) + grank(y)

= − 1

σ2
re
(y − ŷre

0 ) +

k∑
i=1

(ri − ui(y)),
(20)

Itot(y) = Ireg + Irank(y). (21)

Define the local rank target for a single Newton step

ỹra(y) = y +
grank(y)

Irank(y)

= y +

∑k
i=1(ri − ui(y))

Irank(y)
.

(22)

By substituting greg(y) = Ireg · (ŷre
0 − y) and grank(y) = Irank(y) · (ỹra(y) − y), a single Newton

step is an information-weighted average as written in Equation 12.

Lemma 3.7. Proof. Using E[ri] = (1 − a) + (2a − 1)1(y0 > yi) to model flip errors in a noisy
binary ranker gives

E[grank(y)] =

k∑
i=1

E[ri]−
k∑

i=1

ui(y) = k ((1− a) + (2a− 1)p∗ − p̂(y)) , (23)

If p∗ ≥ 1/2 ≥ p̂(y) or p∗ ≤ 1/2 ≤ p̂(y), then∣∣∣E[grank(y)]
∣∣∣ ≥ k(2a− 1)|p∗ − p̂(y)|. (24)

Substituting grank(y) with −1/σ2
re(y − ŷre0 ), the expected Newton step is rank-dominated whenever

(2a− 1)|p∗ − p̂(y)| > |y − ŷre
0 |

kσ2
re

. (25)
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A.2 USE OF LARGE LANGUAGE MODELS

We use large language models (LLMs) to (i) polish writing (restructuring sentences and proofread
grammars and typos), (ii) search for related works, (iii) predict pairwise rankings of molecule pairs.
For writing and search, we use ChatGPT5. For pairwise ranking predictions, we use ChatGPT5 and
Claude Sonnet 4 (Copilot version). The prompt that we used for pairwise ranking prediction is as
follow,

You are an expert molecular reasoning model tasked with
predicting pairwise rankings of molecules based on a described
molecular property of interest (e.g., solubility, polarity, etc.).

You will be given json files containing the test molecules to be
compared with the reference molecules. The property of interest
is described within the json files with the key "description".

* Your Task - Follow These Steps:
1. Read the dataset’s description to understand the molecular
property being ranked (e.g., "higher solubility", "lower toxicity").
- Be careful with the mesurement unit. For example, a higher number
in IC50 could mean lower toxicity.
2. For each molecule pair (test molecule vs. reference molecule):
- Use your internal knowledge to infer which molecule ranks higher
for the property.
- You may use structural patterns, substrings, atom types,
SMARTS-like features, token-level patterns, or other insights
you may have.
- You are encouraged to develop your own heuristics or scoring logic
using Python.
3. Assign a "pairwise_rank" to each pair:
1 → test molecule ranks higher than reference, meaning
test_property > reference_property
0 → test molecule ranks lower or equal to reference
Caution! Only care for the value of the property. For example,
if toxicity is measured in IC50, and test_molecule IC50 value
is greater than reference_molecule IC50 value, you should output 1.
4. Save your results as a new JSON file with similiar structure.

* You Are Allowed To:
1. Write your own Python logic.
2. Use basic Python and string-based pattern recognition
3. Think step-by-step to develop useful ranking heuristics
4. Use helper functions from ChemInformatics libraries, as long
as you do not use them to directly predict the porperty of interest
values.

* You Are NOT Allowed To:
1. Use the internet to search for the property values
2. Use cheminformatics libraries like RDKit to directly predict
the property of interest values, e.g., solubility of molecule A
for solubility datasets.
3. Access files not specified in this prompt

* Each entry in your output JSON should look like this:
"test_molecule": "smiles": "...",
"reference_molecules": [

{ "id": "...",
"smiles": "..."
"pairwise_ranks": 1,

14
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},
that is, put the pairwise_rank predictions inside the
reference_molecule. Your output json file should be named
"pairwise_ranking_predictions_{split_id}.json"

* Tips for Better Performance:
1. Think aloud: before you begin ranking, describe what is the
property of interest and why one molecule might rank higher
based on your knowledge
2. Use token or substring patterns (e.g., "more OH groups" or
"more aromatic rings")
3. Define scoring rules: e.g., "count(’O’) - count(’N’)"
to estimate polarity

A.3 EFFECTS OF NUMBER OF SAMPLES FOR TEMPERATURE CALIBRATION
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Figure 5: Effects of number of samples
used to calibrate the temperature on the
value of τ̂cal.

In Section 3.3, the temperature τ is set to τ̂cal, the cal-
ibrated value estimated from the labeled reference set.
A natural question is the robustness of this procedure
in data-scarce regimes, where only a few labeled refer-
ences are available. Figure 5 shows τ̂cal as a function of
the calibration set size kcal. Across the 9 TDC ADMET
datasets, τ̂cal converges at around kcal ≈ 10, indicating
that optimal calibration can be obtained with only 10 la-
beled samples. Furthermore, except for PPBR AZ, the
estimates obtained with kcal < 10 are already close to
their converged values. This suggests that τ̂cal remains
reliable even when very limited calibration data are avail-
able. Consistent with this observation, in the experiment
where we fix the reference set size at k = 50 but vary
kcal ∈ [3, 50] (Figure 6), the resulting performance curves
are nearly identical. Together, these results demonstrate
that the number of references used for temperature cal-
ibration has a negligible effect on overall regression en-
hancement performance.

A.4 REGRESSION
ENHANCEMENT FOR MULTIPLE TARGETS

The discussion and experiments in Sections 3 and 4 fo-
cus on scalar regression tasks. In many practical settings,
however, the goal is to predict multiple properties simul-
taneously, i.e., to produce vector-valued outputs. Extend-
ing BAYES-ECR to this setting is straightforward: one can assume independence across output di-
mensions and apply BAYES-ECR separately to each component of a target vector y ∈ Rd, yielding
d independent regression enhancement processes.

In practice, the components of y are often correlated. For example, in molecular chemistry, aqueous
solubility and membrane permeability are often related, as are clearance and half-life. In such
cases, dependencies among outputs can be captured by employing a low-rank approximation of
the covariance structure, which enables a computationally efficient implementation. Exploring this
extension is an interesting direction for future work.

A.5 MORE RESULTS ON TDC ADMET

We show results for more k values in Figure 7-Figure 15. In general, BAYES-ECR can improve the
regression error (i.e., β < 1) with a reference set size as small as k = 3.
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Figure 6: Effects of number of samples on the regression enhancement. We measure β (lower is
better) as a function of number of samples used to calibrate the temperature kcal. The reference set
size k is set to 50.
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Figure 7: Caco2 Wang
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Figure 8: Clearance Hepatocyte AZ
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Figure 9: Clearance Microsome AZ
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Figure 10: Half Life Obach
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Figure 11: HydrationFreeEnergy FreeSolv
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Figure 12: Lipophilicity AstraZeneca
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Figure 13: PPBR AZ
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Figure 14: Solubility AqSolDB
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Figure 15: VDss Lombardo
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