

000 001 002 003 004 005 BAYESIAN POST TRAINING ENHANCEMENT OF 006 REGRESSION MODELS WITH CALIBRATED RANKINGS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895

054 with (i) a learned temperature that calibrates the sigmoid slope of the Bradley-Terry model, and (ii)
 055 an accuracy-aware soft gate that regulates the influence of the ranker.
 056

057 Specifically, our contributions are:

058

- 059 1. We introduce BAYES-ECR which combines a regressor likelihood with a calibrated ranker
 060 likelihood to enhance predictions without retraining. We prove that the state-of-the-art,
 061 RankRefine (Wijaya et al., 2025), is a special case under the Gaussian assumption.
- 062 2. We show how an uncalibrated Bradley-Terry model can bias the estimates when ranker
 063 likelihood dominates, and we provide a temperature calibration with accuracy-aware soft
 064 gating mechanism to mitigate the issue.
- 065 3. Across 12 cross-domain datasets (including real-world molecular datasets), BAYES-ECR
 066 significantly improves over existing post-training enhancement methods (Wijaya et al.
 067 (2025); Yan et al. (2024), and 3 other baselines) and remains effective when using imperfect
 068 LLM rankers. Specifically, BAYES-ECR achieves 19.33% median MAE reduction relying
 069 on 30 reference samples and a ranker with 65% accuracy, which translates to a stunning
 070 97.65% relative improvement compared to RankRefine’s 9.78% median MAE reduction.

071 Together, these results position BAYES-ECR as a practical and principled way to leverage readily-
 072 available pairwise information to enhance scalar regressor in data-scarce domains. Source code will
 073 be made public upon publication.

074 2 BACKGROUND

075

076 **Pairwise Comparison Models.** In pairwise (binary) comparisons, the probability of item x_i is
 077 preferred to x_j is often modeled as $P(x_i \succ x_j) = F(y_i - y_j)$, where y are latent scores and F
 078 is a cumulative distribution function (Cattelan, 2012). Classic pairwise comparison models include
 079 Thurstone-Mosteller with a Gaussian *link* function (Thurstone, 1927; Mosteller, 1951) and Bradley-
 080 Terry with a logistic *link* function (Bradley & Terry, 1952). These models provide a one-dimensional
 081 likelihood for the unknown scalar label that can be estimated using MAP or MLE estimation.

082 **LLM-as-a-judge.** General-purpose LLMs have demonstrated strong performance on relative com-
 083 parisons across various domains (Qin et al., 2024; Wu et al., 2024; Guo et al., 2023), with evidence
 084 of better performance in pairwise comparison compared to score prediction (Zheng et al., 2023).
 085 With widely available web APIs (OpenAI, 2025; Anthropic, 2025; Google, 2025), collecting com-
 086 parisons at scale is increasingly easy, making LLMs a convenient external ranker when numeric
 087 absolute labels are scarce.

088 **Regression Refinement using Pairwise Rankings.** Two representative approaches in this area are
 089 the Projection method (Yan et al., 2024) and RankRefine (Wijaya et al., 2025). Projection constrains
 090 the regressor’s prediction to a feasible interval implied by non-contradictory pairwise outcomes.
 091 Meanwhile, RankRefine fuses the regressor’s output with a rank-only estimate via inverse variance
 092 weighting. Our proposed method introduces a different paradigm: it reframes fusion as a Bayesian
 093 inference, where the regressor and ranker contribute likelihoods that jointly determine the posterior.

094 **Relation to Learning from Human Feedback.** Recent works on fine-tuning with human feedback
 095 (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022) also use pairwise rankings modeled
 096 via Bradley-Terry, but with a different goal. They (i) learn a global reward model and (ii) fine-tune a
 097 pretrained model accordingly. In contrast, we apply a per-query, post training prediction correction
 098 by combining the regressor’s likelihood with a calibrated ranker likelihood. This produces a one-
 099 dimensional posterior without modifying the regressor’s parameters.

100 3 METHOD

101 In this section, we describe the base formulation of BAYES-ECR (Section 3.1), along with the
 102 analyses of its behavior (Section 3.2) and proposed modifications for improving the performance
 103 (Section 3.3). We provide the detailed proofs of the analysis in the Appendix.

108 3.1 BAYESIAN INFERENCE ON EXPERT RANKINGS TO IMPROVE REGRESSION MODELS
109

110 Let f be a regressor trained on $\mathbb{C} = \{(x_j, y_j)\}_{j=1}^N$, with scalar labels $y_j \in \mathbb{R}$ and prediction $f(x_j) = \hat{y}_j^{\text{re}}$. Let R be an expert pairwise ranker that returns a binary comparison: $R(x_a, x_b) = 1$ if it predicts $y_a > y_b$, and $R(x_a, x_b) = 0$ otherwise. We are given a reference set $\mathbb{D} = \{(x_i, y_i)\}_{i=1}^k$ with known y_i , which can be, but not always is, the regressor's training set \mathbb{C} . For a query x_0 with unknown $y_0 \in \mathbb{R}$, we collect *expert rankings* against all references: $\mathbb{G} = \{r_i = R(x_0, x_i)\}_{i=1}^k$ where $r_i \in \{0, 1\}$.

116 Assuming conditional independence of regressor and ranker given the true y_0 , the Bayes' rule yields
117

$$\underbrace{p(y_0 \mid \hat{y}_0^{\text{re}}, \mathbb{G})}_{\text{posterior}} \propto \underbrace{p(\hat{y}_0^{\text{re}} \mid y_0)}_{\text{reg. likelihood}} \underbrace{p(\mathbb{G} \mid y_0)}_{\text{rank likelihood}} \underbrace{p(y_0)}_{\text{prior}} \quad (1)$$

121 with Gaussian regressor likelihood $p(\hat{y}_0^{\text{re}} \mid y_0) = \mathcal{N}(\hat{y}_0^{\text{re}}; y_0, \sigma_{\text{re}}^2)$ and rank likelihood

$$p(r_i = 1 \mid y_0, y_i) = s(y_0 - y_i), \quad s(z) = 1/(1 + e^{-z}), \quad (2)$$

$$p(\mathbb{G} \mid y_0) = \prod_{i=1}^k s(y_0 - y_i)^{r_i} (1 - s(y_0 - y_i))^{1-r_i}, \quad (3)$$

124 which is the product of all pairwise comparisons in \mathbb{G} under the Bradley-Terry model (Bradley &
125 Terry, 1952).

126 With the two likelihoods, the *base* formulation of BAYES-ECR enhances a regressor prediction with
127 expert rankings using a maximum *a posteriori* (MAP) estimation (Murphy, 2022) which maximizes
128 y with the objective function
129

$$\mathcal{L}(y) = -\frac{1}{2\sigma_{\text{re}}^2} (\hat{y}_0^{\text{re}} - y)^2 + \sum_{i=1}^k \left[r_i \log s(y - y_i) + (1 - r_i) \log(1 - s(y - y_i)) \right] + \log p(y).$$

(4)

130 If we assume a flat (uninformative) prior, i.e., $p(y) = 1$, BAYES-ECR reduces to a maximum
131 likelihood estimation (MLE) (Murphy, 2022). The objective function of the BAYES-ECR (Equation
132 4) is strictly log-concave so we can obtain the maximum efficiently.

133 **Lemma 3.1. (Strict log-concavity.)** If $\sigma_{\text{re}}^2 > 0$ and $\log p(y_0)$ is concave (including the flat prior),
134 then $\log p(y_0 \mid \hat{y}_0^{\text{re}}, \mathbb{G})$ is strictly concave in y_0 . \square

135 **Corollary 3.2. (Existence and uniqueness.)** The maximum *a posteriori* (and maximum likelihood
136 under a flat prior) estimate exists and is unique. \square

137 **Proposition 3.3. (RankRefine (Wijaya et al., 2025) is a special case of BAYES-ECR under Gaussian assumption.)** Let $\mathcal{L}_{BT}(y)$ denote the rank-only log-likelihood and $\hat{y}_0^{\text{ra}} = \arg \max_y \mathcal{L}_{BT}(y)$. By assuming Gaussianity on the ranker likelihood (similar to Wijaya et al.
138 (2025)), the second-order expansion of $\mathcal{L}_{BT}(y)$ around \hat{y}_0^{ra} yields
139

$$p(\mathbb{G} \mid y) \approx \mathcal{N}(y; \hat{y}_0^{\text{ra}}, \sigma_{\text{ra}}^2), \quad \sigma_{\text{ra}}^2 = \left[\sum_{i=1}^k s(\hat{y}_0^{\text{ra}} - y_i)(1 - s(\hat{y}_0^{\text{ra}} - y_i)) \right]^{-1}. \quad (5)$$

140 Combining this with the Gaussian regressor likelihood and a flat prior gives the inverse-variance
141 weighted (IVW) (Cochran & Carroll, 1953) estimator, i.e., RankRefine (Wijaya et al., 2025), for
142 which the estimate \hat{y}_0^{rr} is,
143

$$\hat{y}_0^{\text{rr}} = \frac{\hat{y}_0^{\text{re}}/\sigma_{\text{re}}^2 + \hat{y}_0^{\text{ra}}/\sigma_{\text{ra}}^2}{1/\sigma_{\text{re}}^2 + 1/\sigma_{\text{ra}}^2}. \quad \square \quad (6)$$

144 *Proof.* The gradient and curvature of $\mathcal{L}_{BT}(y)$ are
145

$$\mathcal{L}'_{BT}(y) = \sum_{i=1}^k (r_i - s(y - y_i)), \quad \mathcal{L}''_{BT}(y) = - \sum_{i=1}^k (s(y - y_i)(1 - s(y - y_i))). \quad (7)$$

162 The second-order Taylor expansion of \mathcal{L}_{BT} around $y = \hat{y}_0^{\text{ra}}$ is
 163

$$\mathcal{L}_{BT}(y) \approx \mathcal{L}_{BT}(\hat{y}_0^{\text{ra}}) + \mathcal{L}'_{BT}(\hat{y}_0^{\text{ra}}) \cdot (y - \hat{y}_0^{\text{ra}}) + \frac{1}{2} \mathcal{L}''_{BT}(\hat{y}_0^{\text{ra}}) \cdot (y - \hat{y}_0^{\text{ra}})^2. \quad (8)$$

164 The first term is constant and the second term is zero, therefore,
 165

$$\mathcal{L}_{BT}(y) \propto -\frac{1}{2} \sum_{i=1}^k s(\hat{y}_0^{\text{ra}} - y_i)(1 - s(\hat{y}_0^{\text{ra}} - y_i))(y - \hat{y}_0^{\text{ra}})^2. \quad (9)$$

170 Similar to RankRefine, we make a strong assumption of Gaussianity for the BT likelihood,
 171

$$\begin{aligned} p(\mathbb{G} | y_0) &\propto \exp(\mathcal{L}_{BT}(y)) = \exp\left(-\frac{1}{2} \sum_{i=1}^k s(\hat{y}_0^{\text{ra}} - y_i)(1 - s(\hat{y}_0^{\text{ra}} - y_i))(y - \hat{y}_0^{\text{ra}})^2\right) \equiv \mathcal{N}(\mu_{ra}, \sigma_{ra}^2), \\ \mu_{ra} &= \hat{y}_0^{\text{ra}}, \quad \sigma_{ra}^2 = \left[\sum_{i=1}^k s(\hat{y}_0^{\text{ra}} - y_i)(1 - s(\hat{y}_0^{\text{ra}} - y_i))\right]^{-1}. \end{aligned} \quad (10)$$

172 The joint likelihood of the conditionally independent regressor and ranker is now a product of two
 173 Gaussians. The MLE, i.e., MAP estimate with a flat prior, then solves a weighted least-squares
 174 problem whose maximizer is the inverse-variance weighted average. \square
 175

182 3.2 ANALYSIS OF POTENTIAL PERFORMANCE DEGRADATION OF BASE BAYES-ECR

184 Under the base formulation, BAYES-ECR can degrade
 185 when the reference size k and ranker accuracy a exceed cer-
 186 tain thresholds. The effect is dataset-dependent and arises
 187 from a mismatch between the Bradley-Terry model and the
 188 behavior of real-world rankers.

189 Separating the rank likelihood from the objective in Equa-
 190 tion 4 and maximizing it yields the rank-only MLE \hat{y}_0^{ra} . If
 191 the ranker were perfectly accurate and the likelihood per-
 192 fectly specified, then $\hat{y}_0^{\text{ra}} \in (y_m, y_{m+1})$, where $y_m < y_0 <$
 193 y_{m+1} are the closest references and $m = \sum_i r_i$ is the num-
 194 ber of references ranked below y_0 . In practice, the sigmoid
 195 in the Bradley-Terry model induces a *soft- vs. hard-count*
 196 mismatch: the rank-only target solves a soft-count equation
 197 and need not lie in (y_m, y_{m+1}) .

198 **Lemma 3.4 (Rank-only MLE may target a pseudo**
 199 **ground truth.)** Let $u_i(y) = s(y - y_i)$ and $m = \sum_{i=1}^k r_i$.
 200 The Bradley-Terry log-likelihood $\mathcal{L}_{BT}(y)$ is strictly con-
 201 cave and its unique maximizer \hat{y}_0^{ra} satisfies

$$\mathcal{L}'_{BT}(\hat{y}_0^{\text{ra}}) = 0 \iff \sum_{i=1}^k u_i(\hat{y}_0^{\text{ra}}) = m. \quad (11)$$

202 Because m is a *hard count* while u_i are sigmoid *soft counts*,
 203 the solution to $\sum_{i=1}^k u_i(\hat{y}_0^{\text{ra}}) = m$ is a pseudo target \tilde{y}_0 ,
 204 which can lie outside (y_m, y_{m+1}) even under a perfectly
 205 accurate ranker, biasing \hat{y}_0^{ra} . See Figure 1 for illustration. \square

206 Bias from the rank-only target can increase the overall error
 207 if the rank likelihood dominates the regressor likelihood.

208 Rank likelihood dominance is governed by its curvature (Fisher information (Ly et al., 2017)), which
 209 grows with k .

210 **Lemma 3.5. (Rank curvature (Fisher information) scales with k .)** The Fisher information of
 211 the rank log-likelihood is $I_{\text{rank}}(y) = \sum_{i=1}^k u_i(y)(1 - u_i(y))$, so $I_{\text{rank}}(y)$ grows linearly with k .
 212 Moreover, $0 \leq I_{\text{rank}}(y) \leq \frac{k}{4}$. \square

213 Figure 1: Soft- vs. hard-count mismatch from Lemma 3.4. We gen-
 214 erate a synthetic reference set $\{y_i\}$ and
 215 ground truth y_0 . From Equation 11,
 216 the rank-only MLE \hat{y}_0^{ra} is the inter-
 217 section between $\sum u_i(y)$ and m , and
 218 (y_m, y_{m+1}) forms the feasible range.
 219 We can see that $\sum u_i(y)$ with a step
 220 function correctly intersects the feasible
 221 range. However, using a sigmoid
 222 function results in a biased intersec-
 223 tion outside the feasible range.

216 **Lemma 3.6. (Info-weighted Newton step and dominance.)** As k grows, the optimization process
 217 using Newton’s method (Murphy, 2022) to solve Equation 4 is dominated by the rank likelihood
 218 term. That is, denoting $g_{\text{tot}}(y)$ and $I_{\text{tot}}(y)$ as the total gradient and Fisher information of both likeli-
 219 hoods at y , I_{reg} as the Fisher information of the regressor likelihood, and $\tilde{y}^{\text{ra}}(y)$ as the target of the
 220 ranker likelihood term at y , a Newton step is

$$221 \quad y \leftarrow y + \frac{g_{\text{tot}}(y)}{I_{\text{tot}}(y)} = \frac{I_{\text{reg}} \cdot \hat{y}_0^{\text{re}} + I_{\text{rank}}(y) \cdot \tilde{y}^{\text{ra}}(y)}{I_{\text{reg}} + I_{\text{rank}}(y)}, \quad (12)$$

224 which is an information-weighted average using Fisher information as the weights. \square

225 Since $I_{\text{reg}} = 1/\sigma_{\text{re}}^2$ is constant, Lemma 3.5 implies the rank likelihood term eventually dominates as
 226 k grows. Apart from Newton, for a first-order step $y \leftarrow y + \eta g_{\text{tot}}(y)$, the same decomposition yields
 227 $y \leftarrow y + \eta [I_{\text{reg}}(\hat{y}_0^{\text{re}} - y) + I_{\text{rank}}(y)(\tilde{y}^{\text{ra}}(y) - y)]$, showing similar information-weighted pull. The
 228 dominance of the rank likelihood then follows from Lemma 3.5.

229 Dominance alone is harmless, but combined with Lemma 3.4, a biased rank likelihood target \tilde{y}_0 can
 230 steer the refinement away from y_0 . Note that dominance occurs only when both k and the ranker
 231 accuracy a are sufficiently large. Moreover, the accuracy threshold decreases with k .

232 **Lemma 3.7. (Accuracy- k threshold for rank dominance.)** Define

$$234 \quad p^* = \frac{1}{k} \sum_{i=1}^k \mathbb{1}(y_0 > y_i), \quad \hat{p}(y) = \frac{1}{k} \sum_{i=1}^k u_i(y). \quad (13)$$

237 Let $a \in [0.5, 1]$ denote the ranker accuracy. Then, at any iterate y , the rank likelihood dominates the
 238 regressor likelihood whenever

$$239 \quad a > \frac{1}{2} + \frac{|y - \hat{y}_0^{\text{re}}|}{2k\sigma_{\text{re}}^2 |p^* - \hat{p}(y)|}. \quad \square \quad (14)$$

241 The right hand side of the inequality is the threshold accuracy $a_{\text{thr}}(y)$, and it decreases as $1/k$ for a
 242 fixed y , σ_{re}^2 , and $|p^* - \hat{p}(y)| > 0$. Therefore, the required ranker accuracy such that the rank term
 243 dominates the Newton step shrinks as k grows.

244 **Corollary 3.8. (Rank likelihood can degrade base BAYES-ECR.)** Under the base formulation
 245 of BAYES-ECR, the rank-only target can be biased (Lemma 3.4). This may lead to a performance
 246 degradation when the ranker likelihood term dominates (Lemma 3.6). In general, ranker likelihood
 247 dominance grows with the reference set size k and the ranker accuracy a . When k is large, the
 248 required a for the ranker likelihood to dominate is lower (Lemma 3.7).

250 3.3 BAYES-ECR WITH CALIBRATED EXPERT RANKINGS

252 The degradation stems from the Bradley-Terry modeling mismatch (Lemma 3.4): when many pair-
 253 wise gaps $(y_a - y_b)$ fall on the sigmoid’s transition region rather than its saturated tails, the rank-only
 254 target becomes biased. This is a *unit-scale* issue; datasets with small average $|y_a - y_b|$ have higher
 255 probability of placing many pairs on the transition slope.

256 We address this by introducing a temperature τ to adjust the slope, i.e., replace $u_i(y) = s(y - y_i)$
 257 with $v_i(y; \tau) = s((y - y_i)/\tau)$. This (i) aligns the logistic slope with label units so that the tempered
 258 score $\sum_i v_i(\hat{y}_0^{\text{ra}}; \tau)$ can match the observed count $m = \sum_i r_i$, removing the *soft-* vs. *hard-count*
 259 mismatch, and (ii) sets the rank curvature to

$$260 \quad I_{\text{rank}}(y; \tau) = \tau^{-2} \sum_i v_i(y; \tau) (1 - v_i(y; \tau)), \quad (15)$$

262 thereby controlling rank dominance at large k . We estimate τ for a dataset via a one-parameter
 263 logistic fit on the reference set, thus requiring no extra labeled data,

$$265 \quad \Pr(r = 1 | y_a, y_b; \hat{\omega}) = s(\hat{\omega}(y_a - y_b)), \quad (y_a, y_b) \in \mathbb{D}, \quad (16)$$

266 and set $\tau = \hat{\tau}_{\text{cal}} = 1/\hat{\omega}$. With this calibration of expert rankings, the Newton update is an
 267 information-weighted average with temperature-controlled curvature,

$$268 \quad \boxed{269 \quad y \leftarrow \frac{I_{\text{reg}} \cdot \hat{y}_0^{\text{re}} + I_{\text{rank}}(y; \tau) \cdot \tilde{y}^{\text{ra}}(y; \tau)}{I_{\text{reg}} + I_{\text{rank}}(y; \tau)}}. \quad (17)$$

270 where $\hat{y}^{\text{ra}}(y; \tau) = y + \frac{\sum_{i=1}^k (r_i - v_i(y; \tau))}{I_{\text{rank}}(y; \tau)}$.
 271

272 Setting $\tau < 1$ increases the rank likelihood curvature (via the τ^{-2} factor) and shifts the update
 273 toward the rank target. When the ranker is accurate, this permits rank dominance *without* the bias
 274 highlighted by Lemma 3.4, improving performance over the naive BAYES-ECR.

275 On the other hand, when the ranker is less accurate, overly large curvature would let noisy rank
 276 signals dominate and harm performance. We therefore apply an *accuracy-aware soft gate*:
 277

$$\tau(a) = 1 + (\hat{\tau}_{\text{cal}} - 1)(w(a))^\gamma, \quad \gamma \geq 1, \quad (18)$$

$$w(a) = \max(0, 2a - 1) \in [0, 1]. \quad (19)$$

281 Thus $\tau(a) \approx 1$ when $a \approx 0.5$, $\tau(a) \rightarrow \hat{\tau}_{\text{cal}}$ as $a \rightarrow 1$, and intermediate a produces a smooth
 282 interpolation. The final BAYES-ECR with calibrated expert rankings is summarized in Algorithm 1.
 283

284 **Algorithm 1** BAYES-ECR Algorithm
 285

286 **Inputs:** $x_0, \hat{y}_0^{\text{re}}, \sigma_{\text{re}}^2, \mathbb{G} = \{(x_i, y_i)\}_{i=1}^k; \mathbb{D} = \{y_i\}_{i=1}^k R$; (optional: $p(y)$)

287 **Collect Comparisons:** $r_i \leftarrow R(x_0, x_i)$

288 **Estimate Temperature:** fit $s(\alpha(y_a - y_b))$ on labeled pairs from \mathbb{D} ; set $\hat{\tau}_{\text{cal}} = 1/\hat{\alpha}$. Estimate the
 289 ranker accuracy a ; set $\tau \leftarrow 1 + (\hat{\tau}_{\text{cal}} - 1)(\max(0, 2a - 1))^\gamma$.

290 **MAP / MLE Optimization:** Maximize Equation 4 with $s(\cdot)$ replaced by $s(\cdot)/\tau$. With Newton
 291 steps described on Equation 17, iterate to convergence.

292 **Output:** \hat{y}_0^{rr} and approximate uncertainty $\sigma_{\text{post}}^2 \approx (I_{\text{reg}} + I_{\text{rank}}(\hat{y}_0^{\text{rr}}; \tau))^{-1}$.
 293

294 **4 EXPERIMENTS**
 295

296 To demonstrate the benefits of BAYES-ECR in data-scarce domains, we evaluate on 9 molecular
 297 property prediction datasets from the TDC ADMET regression task (Huang et al., 2021): Caco-2
 298 (Wang et al., 2016), Clearance Microsome and Clearance Hepatocyte (Di et al., 2012), log Half-Life
 299 (Obach et al., 2008), FreeSolv (Mobley & Guthrie, 2014), Lipophilicity (Wu et al., 2018), PPBR,
 300 Solubility (Sorkun et al., 2019), and VDss (Lombardo & Jing, 2016). For each experiment, we sample
 301 $N = 100$ molecules from the original training split and $L = 100$ molecules from the original
 302 test split. We repeat this train/test resampling for 10 random seeds, similar to a Monte Carlo cross-
 303 validation. The reference set \mathbb{D} is sampled from the training set with $k \in \{3, 10, 20, 30, 50, 100\}$.
 304 Two types of base regressors are used: random forest (RF) (Ho, 1995) and multilayer perceptron
 305 (MLP) (Rumelhart et al., 1986), both trained on the N training labels. We also use three tabular re-
 306 gression datasets: crop-yield prediction from sensor data (Soundankar, 2025), student-performance
 307 prediction (Cortez, 2014), international-education cost estimation (Shamim, 2025).

308 We evaluate four BAYES-ECR variants: MAP with a Gaussian prior, MLE, MLE with tempera-
 309 ture scaling (MLE-Temp), and MLE with temperature scaling and soft gating (MLE-GatedTemp).
 310 The full BAYES-ECR, i.e., MLE-GatedTemp, is the default variant we use in the experiments. We
 311 compare our method to two post-training regression enhancement baselines: (i) Projection-based
 312 approach (Yan et al., 2024) and (ii) RankRefine (Wijaya et al., 2025). Additionally, we adapt
 313 two pairwise ranking models to create rank-only regression enhancement baselines: (i) Bradley-
 314 Terry (rank-only MLE using the Bradley-Terry model), (ii) Thurstone (rank-only MLE using the
 315 Thurstone-Mosteller model (Thurstone, 1927; Mosteller, 1951)). Following Wijaya et al. (2025),
 316 we report $\beta \equiv \text{MAE}_{\text{post}}/\text{MAE}_{\text{base}}$, which is the ratio between the post-enhancement Mean Absolute
 317 Error (MAE) and the MAE of the regressor-only predictions (lower is better).

318 We use two types of rankers: (i) *oracle* ranker to study the effect of ranker accuracy, and (ii) LLM
 319 ranker to demonstrate real-world use cases. For the oracle ranker, we set $r_i = \mathbb{1}(y_0, y_i)$ and then
 320 flip the outcomes with probability $1 - a$ to simulate a ranker with accuracy $a \in [0.5, 1]$. For
 321 LLM rankers, we prompt publicly-available models to compare a list of pairs of molecular text
 322 representations (SMILES (Weininger, 1988)) and measure the accuracy a on a small validation set.

323 Additional discussions and experiments on LLM usage, temperature calibration, multi-target regres-
 324 sion, and reference set size are available in Appendix.

Figure 2: MAE ratio β (lower is better) as a function of oracle ranker accuracy a on nine TDC ADMET datasets ($k = 30$). We report the mean and standard deviation across 10 random splits. BAYES-ECR (MLE-GatedTemp variant) outperforms projection and RankRefine across ranker accuracies, with especially strong gains at moderate, real-world accuracy. Results for other k values with similar trends are available in Appendix.

4.1 MAIN RESULTS WITH ORACLE RANKERS

Across all nine ADMET datasets at $k = 30$, BAYES-ECR (MLE-GatedTemp variant) consistently outperforms previous state-of-the-art, RankRefine, and 3 other baselines (Figure 2). Gains over recent custom-built enhancement methods, RankRefine and Projection, are largest in the mid-accuracy regime (65% - 90%). At lower ranker accuracies (<65%), BAYES-ECR matches or exceeds RankRefine and clearly outperforms Projection. At high ranker accuracies, RankRefine performance plateaus, while BAYES-ECR continues to improve, converging to Projection’s performance at perfect (yet unrealistic) ranker accuracy.

4.2 ABLATION: PRIOR, TEMPERATURE, AND ACCURACY-AWARE SOFT GATING

Figure 3 shows that MAP/MLE variants of BAYES-ECR can degrade as k grows, confirming that rank-dominance in the Newton step and the soft-hard count mismatch on the rank term can bias the enhancement (Corollary 3.8). The rank-only Bradley-Terry and Thurstone models in Figure 2 also exhibit similar degradation, validating that the source of degradation is the ranker likelihood. Interestingly, MAP degrades less than MLE, indicating that prior can act as a regularizer. As proposed in Lemma 3.7, the ranker accuracy threshold at which degradation appears shifts lower as k increases.

Our full method (MLE-GatedTemp variant) solves the performance degradation issue. Temperature scaling aligns the sigmoid slope to the label scale and controls the rank curvature, mitigating degradation at high ranker accuracy, but can worsen performance at low ranker accuracy (Figure 3, MLE-Temp). Adding accuracy-aware soft-gating removes this trade-off (Figure 3, MLE-GatedTemp), enabling full BAYES-ECR to deliver strong performance across the complete ranker accuracy range. Note that Figure 3 also confirms that our enhancement method works with a reference set as small as $k = 3$, which is highly practical in the real-world setting.

Figure 3: Effects of reference set size k and temperature scaling / soft gating on the Clearance Hepatocyte dataset. The shown methods are the four variants of BAYES-ECR, with *ours* being MLE-GatedTemp. We show the MAE ratio β (lower is better) as a function of oracle ranker accuracy a for $k \in \{3, 10, 20, 30, 50, 100\}$. Without temperature scaling, MAP and MLE variants degrade at larger k due to rank curvature dominance. Temperature (MLE-Temp) fixes the scale mismatch, and soft-gating (MLE-GatedTemp) further improves robustness when ranker accuracy is low.

Figure 4: MAE ratio β on three non-molecular tabular datasets with Random Forest (RF) and Multi-layer Perceptron (MLP) as base regressor models. We show that the refinements are generalizable to other domains and regressor models. Baseline (non-refined) MAEs are: **International Education Cost**: 0.0926 (MLP), 0.0609 (RF); **Smart Farming Yield**: 0.1448 (MLP), 0.1361 (RF); **Student Exam Performance**: 0.0727 (MLP), 0.0819 (RF).

4.3 CROSS-DOMAIN GENERALITY AND REGRESSOR DIVERSITY

To test cross-domain and cross-model generalization, we add three non-molecular tabular datasets and run both Random Forest (RF) and Multilayer Perceptron (MLP) regression models. Figure 4 shows that BAYES-ECR yields $\beta < 1$ across the ranker accuracy range, improving both RF and MLP models, and proving its generalization capability to other domains and regression models.

4.4 LLM AS IMPERFECT YET PRACTICAL RANKER

We replace the oracle ranker with off-the-shelf LLMs to obtain noisy but scalable expert rankings. With ChatGPT5 Thinking and Claude Sonnet 4 as rankers at $N = 50$ and $k = 20$, BAYES-ECR generally achieves the best β across five ADMET datasets. Detailed results are shown in Table 1.

4.5 RUNTIME ANALYSIS ON VARYING REFERENCE SET SIZE

Excluding the ranking predictions, BAYES-ECR runs in less than 1 ms on an Intel i7-13700 CPU when the reference set size $k \leq 1000$, covering realistic scenarios in data-scarce domains. The average running time to predict expert rankings using ChatGPT5-Thinking for 1000 queries and 50

	Dataset Name	Half Life	FreeSolv	PPBR	Solubility	VDss
432	ChatGPT5 PRA (%)	62.20 \pm 1.89	62.27 \pm 2.00	63.29 \pm 2.65	62.87 \pm 3.27	65.95 \pm 1.96
433	BAYES-ECR (β)	0.952 \pm 0.057	0.997 \pm 0.021	0.928 \pm 0.045	0.985 \pm 0.015	0.853 \pm 0.194
434	RankRefine (β)	0.977 \pm 0.024	1.002 \pm 0.022	0.968 \pm 0.016	0.985 \pm 0.020	0.952 \pm 0.055
435	Projection (β)	1.056 \pm 0.171	1.119 \pm 0.100	1.007 \pm 0.026	0.992 \pm 0.039	0.949 \pm 0.082
436	Dataset Name	Half Life	FreeSolv	PPBR	Solubility	VDss
437	Claude4 PRA (%)	52.36 \pm 2.22	72.47 \pm 1.40	51.73 \pm 3.25	60.41 \pm 2.45	60.85 \pm 2.12
438	BAYES-ECR (β)	0.955 \pm 0.058	0.977 \pm 0.011	0.965 \pm 0.042	0.990 \pm 0.010	0.850 \pm 0.191
439	RankRefine (β)	0.981 \pm 0.010	1.070 \pm 0.052	0.979 \pm 0.019	0.988 \pm 0.016	0.951 \pm 0.056
440	Projection (β)	1.124 \pm 0.279	1.153 \pm 0.126	1.031 \pm 0.039	0.995 \pm 0.014	0.959 \pm 0.038

Table 1: Results using LLMs (ChatGPT5, Claude4) as external rankers, measured in β over ten train/test splits with $N = 50, k = 20$. PRA stands for pairwise ranking accuracy. Best result for each dataset-ranker is bolded. BAYES-ECR generally outperforms other refinement methods.

Dataset Name	Half Life	FreeSolv	PPBR	Solubility	VDss
$\Delta_y \cdot 10^{-7}$	0.028 \pm 0.028	0.030 \pm 5.71	8.51 \pm 1.42	0.029 \pm 1.33	3.24 \pm 2.96

Table 2: Mean absolute difference between the refined predictions of RankRefine and BAYES-ECR with Gaussianity assumptions. The values are around the range of machine epsilon for a floating point precision, confirming that RankRefine is a special case of BAYES-ECR.

references (50,000 pairs in total) in parallel is 152.4 ± 54.7 seconds. Therefore, BAYES-ECR can be run efficiently on consumer-grade computes, and LLM inference is not a significant bottleneck.

4.6 RANKREFINE IS A SPECIAL CASE OF BAYES-ECR.

We showed that RankRefine (Wijaya et al., 2025) is a special case of BAYES-ECR in Proposition 3.3. We verify this empirically by comparing enhanced predictions from RankRefine and BAYES-ECR under the Gaussianity assumptions. Across five ADMET tasks, the mean absolute difference Δ_y is at the level of machine epsilon (Table 2), confirming that Rankrefine is a special case of BAYES-ECR with Gaussianity assumptions.

5 LIMITATIONS

- **Noise model for the oracle ranker.** We inject pairwise flips uniformly to reach the desired oracle ranker accuracy. Real rankers (human or LLM) might exhibit systematic biases, which could negatively affect the Bayesian inference at lower ranker accuracies.
- **Dependence on regressor uncertainty.** BAYES-ECR requires a base regressor that can quantify uncertainty, which many off-the-shelf regressors lack. A straightforward solution is to use ensembling or Monte Carlo dropout.
- **Reference-set selection.** Regression improvements may depend on the composition of the reference set (coverage, label diversity, resolution). Future works can explore more sophisticated, sequential sampling strategy to select the references.

6 CONCLUSION

We introduced BAYES-ECR, framing post training regression enhancement as a problem of Bayesian inference rather than heuristic fusion. This perspective not only generalizes prior state-of-the-art, but also reveals subtle failure modes, explains when and why performance degrades, and offers principled solutions through temperature calibration and gating. Empirically, BAYES-ECR delivers consistent gains across 12 diverse datasets, operates effectively with both oracle and noisy LLM rankers, and runs under 1 ms per query. We believe BAYES-ECR can serve as a practical bridge between label-scarce applications and the growing availability of pairwise signals from LLMs.

486 REFERENCES
487

488 Alice EA Allen and Alexandre Tkatchenko. Machine learning of material properties: Predictive and
489 interpretable multilinear models. *Science advances*, 8(18):eabm7185, 2022.

490 Anthropic. Anthropic api guide. <https://docs.anthropic.com/en/api/overview>,
491 2025. Accessed: 2025-09-16.

492

493 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
494 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

495

496 Manuela Cattelan. Models for paired comparison data: A review with emphasis on dependent data.
497 *Statistical Science*, pp. 412–433, 2012.

498

499 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
500 reinforcement learning from human preferences. *Advances in neural information processing systems*, 30, 2017.

501

502 William G Cochran and Sarah Porter Carroll. A sampling investigation of the efficiency of weighting
503 inversely as the estimated variance. *Biometrics*, 9(4):447–459, 1953.

504

505 Paulo Cortez. Student Performance. UCI Machine Learning Repository, 2014.

506

507 Li Di, Christopher Keefer, Dennis O Scott, Timothy J Strelevitz, George Chang, Yi-An Bi, Yurong
508 Lai, Jonathon Duckworth, Katherine Fenner, Matthew D Troutman, et al. Mechanistic insights
509 from comparing intrinsic clearance values between human liver microsomes and hepatocytes to
guide drug design. *European journal of medicinal chemistry*, 57:441–448, 2012.

510

511 Google. Gemini developer api. <https://ai.google.dev/gemini-api/docs>, 2025. Ac-
cessed: 2025-09-16.

512

513 Taicheng Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh Chawla, Olaf Wiest, Xiangliang
514 Zhang, et al. What can large language models do in chemistry? a comprehensive benchmark on
515 eight tasks. *Advances in Neural Information Processing Systems*, 36:59662–59688, 2023.

516

517 Tin Kam Ho. Random decision forests. In *Proceedings of 3rd international conference on document
analysis and recognition*, volume 1, pp. 278–282. IEEE, 1995.

518

519 Eva JI Hoeijmakers, Bibi Martens, Babs MF Hendriks, Casper Mihl, Razvan L Miclea, Walter H
520 Backes, Joachim E Wildberger, Frank M Zijta, Hester A Gietema, Patricia J Nelemans, et al.
521 How subjective ct image quality assessment becomes surprisingly reliable: pairwise comparisons
522 instead of likert scale. *European Radiology*, 34(7):4494–4503, 2024.

523

524 Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor Co-
525 ley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine learning
526 datasets and tasks for drug discovery and development. *Advances in neural information process-
527 ing systems*, 2021.

528

529 Qiaohao Liang, Aldair E Gongora, Zekun Ren, Armi Tiihonen, Zhe Liu, Shijing Sun, James R De-
530 neault, Daniil Bash, Flore Mekki-Berrada, Saif A Khan, et al. Benchmarking the performance
531 of bayesian optimization across multiple experimental materials science domains. *npj Computational
Materials*, 7(1):188, 2021.

532

533 Franco Lombardo and Yankang Jing. In silico prediction of volume of distribution in humans.
534 extensive data set and the exploration of linear and nonlinear methods coupled with molecular
535 interaction fields descriptors. *Journal of chemical information and modeling*, 56(10):2042–2052,
2016.

536

537 Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul PPP Grasman, and Eric-Jan Wagenmak-
538 ers. A tutorial on fisher information. *Journal of Mathematical Psychology*, 80:40–55, 2017.

539

David L Mobley and J Peter Guthrie. Freesolv: a database of experimental and calculated hydration
free energies, with input files. *Journal of computer-aided molecular design*, 28:711–720, 2014.

540 Frederick Mosteller. Remarks on the method of paired comparisons: III. a test of significance for
 541 paired comparisons when equal standard deviations and equal correlations are assumed. *Psychometrika*, 16(2):207–218, 1951.

542

543 Kevin P Murphy. *Probabilistic machine learning: an introduction*. MIT press, 2022.

544

545 R Scott Obach, Franco Lombardo, and Nigel J Waters. Trend analysis of a database of intravenous
 546 pharmacokinetic parameters in humans for 670 drug compounds. *Drug Metabolism and Disposi-*
 547 *tion*, 36(7):1385–1405, 2008.

548

549 OpenAI. Openai api reference. [https://platform.openai.com/docs/](https://platform.openai.com/docs/api-reference/introduction)
 550 api-reference/introduction, 2025. Accessed: 2025-09-16.

551

552 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 553 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 554 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 27730–27744, 2022.

555

556 Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu,
 557 Jialu Liu, Donald Metzler, et al. Large language models are effective text rankers with pairwise
 558 ranking prompting. In *Findings of the Association for Computational Linguistics: NAACL 2024*,
 559 pp. 1504–1518, 2024.

560

561 Jennifer Routh, Sharmini Julita Paramasivam, Peter Cockcroft, Sarah Wood, John Remnant,
 562 Cornélie Westermann, Alison Reid, Patricia Pawson, Sheena Warman, Vishna Devi Nadarajah,
 563 et al. Rating and ranking preparedness characteristics important for veterinary workplace clin-
 564 ical training: a novel application of pairwise comparisons and the elo algorithm. *Frontiers in
 Medicine*, 10:1128058, 2023.

565

566 David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
 567 propagating errors. *nature*, 323(6088):533–536, 1986.

568

569 Benjamin Sanchez-Lengeling and Alán Aspuru-Guzik. Inverse molecular design using machine
 570 learning: Generative models for matter engineering. *Science*, 361(6400):360–365, 2018.

571

572 Adil Shamim. Cost of international education, 2025. URL <https://www.kaggle.com/datasets/adilshamim8/cost-of-international-education>.

573

574 Murat Cihan Sorkun, Abhishek Khetan, and Süleyman Er. Aqsoldb, a curated reference set of
 575 aqueous solubility and 2d descriptors for a diverse set of compounds. *Scientific data*, 6(1):143,
 2019.

576

577 Atharva Soundankar. Smart farming sensor data for yield prediction, 2025.
 578 URL <https://www.kaggle.com/datasets/atharvasoundankar/smart-farming-sensor-data-for-yield-prediction>.

579

580 Michael Sun, Gang Liu, Weize Yuan, Wojciech Matusik, and Jie Chen. Foundation molecular
 581 grammar: Multi-modal foundation models induce interpretable molecular graph languages. In
 582 *International Conference on Machine Learning*. PMLR, 2025.

583

584 LL Thurstone. A law of comparative judgment. *Psychological Review*, 34(4):273–286, 1927.

585

586 Ning-Ning Wang, Jie Dong, Yin-Hua Deng, Min-Feng Zhu, Ming Wen, Zhi-Jiang Yao, Ai-Ping Lu,
 587 Jian-Bing Wang, and Dong-Sheng Cao. Adme properties evaluation in drug discovery: prediction
 588 of caco-2 cell permeability using a combination of nsga-ii and boosting. *Journal of chemical
 information and modeling*, 56(4):763–773, 2016.

589

590 David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
 591 ology and encoding rules. *Journal of chemical information and computer sciences*, 28(1):31–36,
 1988.

592

593 Kevin Tirta Wijaya, Minghao Guo, Michael Sun, Hans-Peter Seidel, Wojciech Matusik, and Vahid
 Babaei. Two-stage pretraining for molecular property prediction in the wild. *arXiv preprint
 arXiv:2411.03537*, 2024.

594 Kevin Tirta Wijaya, Michael Sun, Minghao Guo, Hans-Peter Seidel, Wojciech Matusik, and Vahid
 595 Babaei. Post hoc regression refinement via pairwise rankings. *arXiv preprint arXiv:2508.16495*,
 596 2025.

597 Tong Wu, Guandao Yang, Zhibing Li, Kai Zhang, Ziwei Liu, Leonidas Guibas, Dahua Lin, and
 598 Gordon Wetzstein. Gpt-4v (ision) is a human-aligned evaluator for text-to-3d generation. In
 599 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22227–
 600 22238, 2024.

601 Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
 602 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
 603 ing. *Chemical science*, 9(2):513–530, 2018.

604 Le Yan, Zhen Qin, Honglei Zhuang, Rolf Jagerman, Xuanhui Wang, Michael Bendersky, and Harrie
 605 Oosterhuis. Consolidating ranking and relevance predictions of large language models through
 606 post-processing. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Lan-
 607 guage Processing*, pp. 410–423, 2024.

608 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 609 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 610 chatbot arena. *Advances in neural information processing systems*, 36:46595–46623, 2023.

611 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
 612 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv
 613 preprint arXiv:1909.08593*, 2019.

614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 **A APPENDIX**649 **A.1 DETAILED PROOFS**

650 **Lemma 3.1.** *Proof.* The regressor log-likelihood contributes $-\frac{1}{2\sigma_{\text{re}}^2}(\hat{y}_0^{\text{re}} - y_0)^2$ with curvature
 651 $-1/\sigma_{\text{re}}^2 < 0$. Each BT term adds $\log s(y_0 - y_i)$ or $\log 1 - s(y_0 - y_i)$, whose second derivative is
 652 $-s(1 - s) \leq 0$. Sum of concave terms and a concave prior is concave; the Gaussian term's
 653 strictly negative curvature makes the sum strictly concave.

654 **Lemma 3.4.** *Proof.* $\mathcal{L}'_{\text{BT}}(y)$ (Proposition 3.3.) is strictly decreasing, therefore, $\mathcal{L}_{\text{BT}}(y)$ is strictly
 655 concave. Setting $\mathcal{L}'_{\text{BT}}(y) = 0$ gives the equation. Since $F(y) = \sum_i u_i(y)$ is continuous and strictly
 656 increasing with $F(-\infty) = 0$, $F(\infty) = k$, there is a unique solution at the observed count m .

657 Let $y_1 \leq \dots \leq y_k$ be the ordered reference set and suppose the true $y_0 \in (y_m, y_{m+1})$,

- 658 • if most $(y - y_i)$ are in the sigmoid saturated regime, F behaves like a hard count, so
 $F(y_0) \approx m$, $F(\tilde{y}_0) = m$, and $\hat{y}_0^{\text{ra}} = \tilde{y}_0 \approx y_0$ up to the resolution $(y_{m+1} - y_m)$.
- 659 • if many $(y - y_i)$ lie in the transition region, $F(y_0) \not\approx m$, $F(\tilde{y}_0) = m$, and $\hat{y}_0^{\text{ra}} = \tilde{y}_0 \not\approx y_0$.
 This shifts does not induce rank bias as long as $\tilde{y}_0 \in (y_m, y_{m+1})$.
- 660 • rank bias arises if the shift exits the interval, i.e., $|\tilde{y}_0 - y_0| \geq \min\{y_0 - y_m, y_{m+1} - y_0\}$,
 which is more likely when the number of $(y - y_i)$ that lie in the transition region is high.

661 **Lemma 3.6.** *Proof.* Let $I_{\text{reg}} = 1/\sigma_{\text{re}}^2$ be the Fisher information of the regressor term and write the
 662 total gradient and Fisher information at y as

$$663 \begin{aligned} g_{\text{tot}}(y) &= g_{\text{reg}}(y) + g_{\text{rank}}(y) \\ 664 &= -\frac{1}{\sigma_{\text{re}}^2}(y - \hat{y}_0^{\text{re}}) + \sum_{i=1}^k (r_i - u_i(y)), \end{aligned} \tag{20}$$

$$665 I_{\text{tot}}(y) = I_{\text{reg}} + I_{\text{rank}}(y). \tag{21}$$

666 Define the local rank target for a single Newton step

$$667 \begin{aligned} \tilde{y}^{\text{ra}}(y) &= y + \frac{g_{\text{rank}}(y)}{I_{\text{rank}}(y)} \\ 668 &= y + \frac{\sum_{i=1}^k (r_i - u_i(y))}{I_{\text{rank}}(y)}. \end{aligned} \tag{22}$$

669 By substituting $g_{\text{reg}}(y) = I_{\text{reg}} \cdot (\hat{y}_0^{\text{re}} - y)$ and $g_{\text{rank}}(y) = I_{\text{rank}}(y) \cdot (\tilde{y}^{\text{ra}}(y) - y)$, a single Newton
 670 step is an information-weighted average as written in Equation 12.

671 **Lemma 3.7.** *Proof.* Using $\mathbb{E}[r_i] = (1 - a) + (2a - 1)\mathbb{1}(y_0 > y_i)$ to model flip errors in a noisy
 672 binary ranker gives

$$673 \mathbb{E}[g_{\text{rank}}(y)] = \sum_{i=1}^k \mathbb{E}[r_i] - \sum_{i=1}^k u_i(y) = k((1 - a) + (2a - 1)p^* - \hat{p}(y)), \tag{23}$$

674 If $p^* \geq 1/2 \geq \hat{p}(y)$ or $p^* \leq 1/2 \leq \hat{p}(y)$, then

$$675 \left| \mathbb{E}[g_{\text{rank}}(y)] \right| \geq k(2a - 1)|p^* - \hat{p}(y)|. \tag{24}$$

676 Substituting $g_{\text{rank}}(y)$ with $-1/\sigma_{\text{re}}^2(y - \hat{y}_0^{\text{re}})$, the expected Newton step is rank-dominated whenever

$$677 (2a - 1)|p^* - \hat{p}(y)| > \frac{|y - \hat{y}_0^{\text{re}}|}{k\sigma_{\text{re}}^2}. \tag{25}$$

702 A.2 USE OF LARGE LANGUAGE MODELS
703704 We use large language models (LLMs) to (i) polish writing (restructuring sentences and proofread
705 grammars and typos), (ii) search for related works, (iii) predict pairwise rankings of molecule pairs.
706 For writing and search, we use ChatGPT5. For pairwise ranking predictions, we use ChatGPT5 and
707 Claude Sonnet 4 (Copilot version). The prompt that we used for pairwise ranking prediction is as
708 follow,

709

710 You are an expert molecular reasoning model tasked with
711 predicting pairwise rankings of molecules based on a described
712 molecular property of interest (e.g., solubility, polarity, etc.).

713

714 You will be given json files containing the test molecules to be
715 compared with the reference molecules. The property of interest
716 is described within the json files with the key "description".

717

* Your Task - Follow These Steps:

1. Read the dataset's description to understand the molecular
property being ranked (e.g., "higher solubility", "lower toxicity").
- Be careful with the measurement unit. For example, a higher number
in IC50 could mean lower toxicity.2. For each molecule pair (test molecule vs. reference molecule):
- Use your internal knowledge to infer which molecule ranks higher
for the property.- You may use structural patterns, substrings, atom types,
SMARTS-like features, token-level patterns, or other insights
you may have.- You are encouraged to develop your own heuristics or scoring logic
using Python.

3. Assign a "pairwise_rank" to each pair:

1 → test molecule ranks higher than reference, meaning
test_property > reference_property

0 → test molecule ranks lower or equal to reference

Caution! Only care for the value of the property. For example,
if toxicity is measured in IC50, and test_molecule IC50 value
is greater than reference_molecule IC50 value, you should output 1.

4. Save your results as a new JSON file with similar structure.

736

* You Are Allowed To:

1. Write your own Python logic.
2. Use basic Python and string-based pattern recognition
3. Think step-by-step to develop useful ranking heuristics
4. Use helper functions from Cheminformatics libraries, as long
as you do not use them to directly predict the property of interest
values.

744

* You Are NOT Allowed To:

1. Use the internet to search for the property values
2. Use cheminformatics libraries like RDKit to directly predict
the property of interest values, e.g., solubility of molecule A
for solubility datasets.
3. Access files not specified in this prompt

751

* Each entry in your output JSON should look like this:

"test_molecule": "smiles": "...",
"reference_molecules": [
 { "id": "...",
 "smiles": "..."
 "pairwise_ranks": 1,

```

756 },
757 that is, put the pairwise_rank predictions inside the
758 reference_molecule. Your output json file should be named
759 "pairwise_ranking_predictions_{split_id}.json"
760
761 * Tips for Better Performance:
762 1. Think aloud: before you begin ranking, describe what is the
763 property of interest and why one molecule might rank higher
764 based on your knowledge
765 2. Use token or substring patterns (e.g., "more OH groups" or
766 "more aromatic rings")
767 3. Define scoring rules: e.g., "count('O') - count('N')"
768 to estimate polarity
769
770
```

A.3 EFFECTS OF NUMBER OF SAMPLES FOR TEMPERATURE CALIBRATION

In Section 3.3, the temperature τ is set to $\hat{\tau}_{\text{cal}}$, the calibrated value estimated from the labeled reference set. A natural question is the robustness of this procedure in data-scarce regimes, where only a few labeled references are available. Figure 5 shows $\hat{\tau}_{\text{cal}}$ as a function of the calibration set size k_{cal} . Across the 9 TDC ADMET datasets, $\hat{\tau}_{\text{cal}}$ converges at around $k_{\text{cal}} \approx 10$, indicating that optimal calibration can be obtained with only 10 labeled samples. Furthermore, except for PPBR_AZ, the estimates obtained with $k_{\text{cal}} < 10$ are already close to their converged values. This suggests that $\hat{\tau}_{\text{cal}}$ remains reliable even when very limited calibration data are available. Consistent with this observation, in the experiment where we fix the reference set size at $k = 50$ but vary $k_{\text{cal}} \in [3, 50]$ (Figure 6), the resulting performance curves are nearly identical. Together, these results demonstrate that the number of references used for temperature calibration has a negligible effect on overall regression enhancement performance.

A.4 REGRESSION ENHANCEMENT FOR MULTIPLE TARGETS

The discussion and experiments in Sections 3 and 4 focus on scalar regression tasks. In many practical settings, however, the goal is to predict multiple properties simultaneously, i.e., to produce vector-valued outputs. Extending BAYES-ECR to this setting is straightforward: one can assume independence across output dimensions and apply BAYES-ECR separately to each component of a target vector $\mathbf{y} \in \mathbb{R}^d$, yielding d independent regression enhancement processes.

In practice, the components of \mathbf{y} are often correlated. For example, in molecular chemistry, aqueous solubility and membrane permeability are often related, as are clearance and half-life. In such cases, dependencies among outputs can be captured by employing a low-rank approximation of the covariance structure, which enables a computationally efficient implementation. Exploring this extension is an interesting direction for future work.

A.5 MORE RESULTS ON TDC ADMET

We show results for more k values in Figure 7-Figure 15. In general, BAYES-ECR can improve the regression error (i.e., $\beta < 1$) with a reference set size as small as $k = 3$.

Figure 5: Effects of number of samples used to calibrate the temperature on the value of $\hat{\tau}_{\text{cal}}$.

Figure 6: Effects of number of samples on the regression enhancement. We measure β (lower is better) as a function of number of samples used to calibrate the temperature k_{cal} . The reference set size k is set to 50.

Figure 7: Caco2_Wang

Figure 8: Clearance_Hepatocyte_AZ

Figure 9: Clearance_Microsome_AZ

Figure 10: Half_Life_Obach

Figure 11: HydrationFreeEnergy_FreeSolv

Figure 12: Lipophilicity_AstraZeneca

Figure 13: PPBR_AZ

Figure 14: Solubility_AqSolDB

Figure 15: VDss_Lombardo

1026
1027

A.6 REBUTTAL

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Figure 16: Non-calibrated Bayes-ECR vs. RankRefine and Projection. Reference set size $k = 20$. Non-calibrated Bayes-ECR consistently achieves lower error compared to RankRefine and Projection baselines across datasets, often by a large margin

Figure 17: Sensitivity analysis on under or overestimation of regressor uncertainty. Overestimating uncertainty (e.g., $s = 10.0$) has minimal impact on performance, while underestimating it (e.g., $s = 0.1$) degrades performance due to excessive confidence in the regressor.

Figure 18: Sensitivity analysis when ranker accuracy is under or overestimated, resulting in non-optimal tau values. Bayes-ECR is robust even when using a suboptimal tau value caused by softgating bias

Figure 19: We evaluated our method, Bayes-ECR, on three larger (≥ 1000 training labels) TDC ADME datasets: Lipophilicity, PPBR, and Solubility. With a reference set size of 1000, Bayes-ECR consistently delivered the best overall performance across the entire spectrum of ranker accuracy.

1230 Figure 20: We extend our method, Bayes-ECR, to listwise rankings (MLE-Listwise). For $k = 3$,
 1231 the listwise variant achieves reasonable performance, confirming that Bayes-ECR can indeed be
 1232 extended to listwise ranking. However, its performance is not yet on par with our pairwise version.

1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241