
MoCoKGC: Momentum Contrast Entity Encoding for Knowledge Graph
Completion

Anonymous ACL submission

Abstract

In recent years, a multitude of studies have001
aimed to enhance the capabilities of pretrained002
language models (PLMs) for handling Knowl-003
edge Graph Completion (KGC) tasks by in-004
tegrating structural information from knowl-005
edge graphs. However, existing approaches006
have not effectively combined the structural007
attributes of knowledge graphs with textual de-008
scriptions of entities to generate entity encod-009
ings. To address this issue, this paper proposes010
MoCoKGC (Momentum Contrast Entity En-011
coding for Knowledge Graph Completion), in-012
corporating three primary encoders: the entity-013
relation encoder, the entity encoder, and the014
momentum entity encoder. Through a slowly015
updated entity encoding mechanism, we main-016
tain a negative sample queue and characterize017
the entity neighborhood. On the standard eval-018
uation metric, Mean Reciprocal Rank (MRR),019
the MoCoKGC model demonstrates superior020
performance, achieving a 7.1% improvement021
on the WN18RR dataset and an 11% improve-022
ment on the Wikidata5M dataset, while also023
surpassing the current best model on the FB15k-024
237 dataset. Through a series of experiments,025
this paper deeply studies the role and contribu-026
tion of each component and parameter of the027
model.028

1 Introduction029

As an important method of knowledge representa-030

tion, the fundamental building blocks of a knowl-031

edge graph are factual triples, such as (Steve Jobs,032

founded, Apple Inc.). However, the process of con-033

structing knowledge graphs, whether manually or034

through automation, inevitably leads to the pres-035

ence of many missing triplets within the knowledge036

graph. Therefore, the knowledge graph completion037

task (KGC) aims to complete the missing triples.038

Among the numerous methods for KGC, knowl-039

edge graph embedding (KGE) techniques are the040

most classical and widely adopted. The core idea041

behind these methods is to generate embedding 042

vectors for entities and relationships and use differ- 043

ent scoring functions to predict the missing triplets 044

(Bordes et al., 2013; Dettmers et al., 2018; Sun 045

et al., 2019; Balazevic et al., 2019). Building upon 046

this, some studies introduce the structure of knowl- 047

edge graphs as supplementary information in the 048

reasoning process to improve prediction accuracy 049

(Schlichtkrull et al., 2018; Vashishth et al., 2020; 050

Chen et al., 2021). 051

In recent years, researchers have begun explor- 052

ing the integration of Pre-trained Language Mod- 053

els (PLMs) into the task of KGC, aiming to im- 054

prove accuracy through the textual descriptions 055

of entities and relationships. Models based on 056

pre-trained language encoders can be broadly cat- 057

egorized into three types: (1) Cross-encoder mod- 058

els (Yao et al., 2019) ; (2) Bi-encoder models 059

(Wang et al., 2021a, 2022);(3) Single-encoder mod- 060

els (Liu et al., 2022b; Chen et al., 2023a). Al- 061

though cross-encoder models fully utilize the se- 062

mantic information of triplets, their performance is 063

often not as good as other methods due to the high 064

cost of obtaining negative samples during training. 065

Bi-encoder models, by separating the tail entity, 066

not only preserve the textual information of the 067

tail entity but also effectively increase the number 068

of negative samples. Single-encoder models, de- 069

spite removing the textual information of the tail 070

entity, demonstrate unique advantages by acquiring 071

a large number of negative samples for tail entities 072

and introducing graph information through entity 073

embeddings. 074

In order to preserve the textual information of en- 075

tities while flexibly integrating entity encoding into 076

the training and prediction phases of the model, this 077

study adopts the momentum contrastive learning 078

mechanism (He et al., 2020), thereby proposing 079

the MoCoKGC model. This model draws inspi- 080

ration from the Bi-encoder architecture, equipped 081

with a head entity-relation encoder and an entity 082
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encoder. The distinction lies in that, within the083

MoCoKGC model, the update of entity encoding084

relies on a momentum entity encoder, rather than085

directly utilizing the entity encoder, thus achieving086

a smoothing of the entity encoding update process.087

Consequently, the MoCoKGC model exhibits two088

significant features compared to other methods: (1)089

Entity Queue. This queue is maintained in the order090

of entity encodings generated by the momentum091

entity encoder, providing the model with a rich092

source of negative tail entity samples; (2) Reuti-093

lization of entity encoding. Under this mechanism,094

entity encoding, as a part of integrating the struc-095

tural information of the knowledge graph, is re-096

imported into the encoder. Through this approach,097

MoCoKGC effectively addresses the challenges of098

negative sample generation and the integration of099

textual and structural information.100

In terms of experimental validation, the Mo-101

CoKGC model not only successfully preserved102

the textual information of entities but also flex-103

ibly integrated entity encoding into the model’s104

training and prediction processes. Its performance105

on standard datasets WN18RR, FB15k-237, and106

Wikidata5M demonstrates the model’s superior ca-107

pabilities: on the WN18RR dataset, in Mean Re-108

ciprocal Rank (MRR), the model achieved a 7.1%109

improvement, an 11% increase on the Wikidata5M110

dataset, and surpassed previous models on the111

FB15k-237 dataset. Furthermore, comparative ex-112

perimental data reveal that MoCoKGC effectively113

overcomes the inconsistency issues exhibited by114

PLMs when dealing with sparse and dense knowl-115

edge graphs (Wang et al., 2022).116

2 Related Work117

Knowledge Graph Completion (KGC) tasks is to118

predict missing triplet information within a knowl-119

edge graph. In the domain of knowledge graph120

embeddings, a typical method is TransE (Bordes121

et al., 2013), which utilizes the Euclidean distance122

between the sum of head entity and relation em-123

beddings and the tail entity embedding as a scoring124

function. The RotatE (Sun et al., 2019) method is125

based on the core concept of interpreting relations126

in the knowledge graph as rotational operations in127

complex space. In tensor decomposition models128

such as Tucker (Balazevic et al., 2019), the knowl-129

edge graph is viewed as a three-dimensional tensor130

and is realized by decomposing it into matrices for131

entities, relations, and a core tensor. Graph-based132

approaches, such as R-GCN (Schlichtkrull et al., 133

2018), address the problem of relation learning by 134

introducing weight matrices for different types of 135

relations in graph neural networks, thereby cap- 136

turing the unique semantics of each relation type. 137

CompGCN (Vashishth et al., 2020) encodes rela- 138

tions and replaces the relation transformation ma- 139

trix by combining entity and relation embeddings. 140

Methods based on Pre-trained Language Models 141

(PLMs), such as KG-BERT (Yao et al., 2019), 142

concatenate the descriptions of head entities, 143

relations, and tail entities, and directly obtain 144

the triplet score by inputting it into the BERT 145

(Devlin et al., 2019) model. StAR (Wang 146

et al., 2021a) adopts a dual-encoder architecture, 147

which significantly reduces the inference time 148

overhead of language models. SimKGC (Wang 149

et al., 2022) introduces a contrastive learning 150

approach. Meanwhile, CSProm-KG (Chen et al., 151

2023a) enhances the model’s understanding of the 152

knowledge graph structure by using entity and 153

relation embeddings as prompts for the language 154

model. 155

156

Prompt Tuning has emerged as a strategy aimed 157

at significantly improving the performance of 158

PLMs by adding prompt tokens to the input. This 159

approach was initially developed to address the 160

challenge of fine-tuning Large Language Models 161

(LLMs) for downstream tasks (Brown et al., 2020). 162

Further developments such as Lester et al. (2021) 163

train the model with special tokens as soft prompts, 164

and p-tuning v2 (Liu et al., 2022a) introduces 165

prompt parameters at every layer of the model, 166

utilizing this deep prompting to enhance training 167

effectiveness. Recently, in KGC tasks, researchers 168

have improved the performance of PLMs through 169

immediate learning, Lv et al. (2022) adding 170

prompt templates and soft prompts to the input, 171

while Chen et al. (2022) and Liu et al. (2022b) 172

specified different soft prompt tokens for different 173

types of relations. Chen et al. (2023a) not only 174

introduced relation prompts but also added entity 175

co-prompting to the model. This paper views 176

relations as deep prompt parameters and introduces 177

entity neighborhood prompts, achieving the 178

objective of leveraging both textual descriptions 179

and knowledge graph structural information. 180

181

Contrastive Learning by differentiating positive 182

and negative sample features, learns distinctive 183

feature representations and has been successfully 184
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applied in multiple domains, including computer185

vision. MoCo (He et al., 2020) proposed a186

momentum-based contrastive learning method, ef-187

fectively solving the problem of sample pair con-188

struction in unsupervised learning by building a189

dynamically changing encoder queue. SimCLR190

(Chen et al., 2020), as a method of visual represen-191

tation learning, significantly improved the perfor-192

mance of image recognition tasks through large-193

scale unsupervised contrastive learning. In KGC194

tasks, SimKGC (Wang et al., 2022) treats tail enti-195

ties as positive and negative samples, implementing196

efficient training through three different simple neg-197

ative sampling strategies. This paper combines the198

momentum contrast method of MoCo, utilizing it199

while dynamically updating entity encodings.200

3 Methodology201

3.1 Notations202

Knowledge Graphs (KGs) represent a crucial data203

structure for organizing and storing factual rela-204

tionships in the real world, which can be formally205

represented as G = {E ,R, T }. Here, E and R de-206

note the sets of entities and relationships, respec-207

tively. T = {(h, r, t)} ⊆ E × R × E defines a208

set of triples, each comprising a head entity (h), a209

relation (r), and a tail entity (t). The task of KGC210

aims to fill in missing triples within a knowledge211

graph, with link prediction as its core task. This212

task focuses on predicting the missing entity part213

in given triples (h, r, ?) or (?, r, t). This task is typ-214

ically accomplished by generating a ranked list of215

all possible candidate entities, where the ranking is216

based on the likelihood of a candidate entity being217

the missing head or tail entity.218

3.2 Neighborhood Prompts219

To integrate the structural information of knowl-220

edge graphs into pre-trained language models, this221

study proposes a method that utilizes the neigh-222

borhood information of entities as prompts. In223

knowledge graphs, the neighborhood of an entity is224

defined as the directly connected entities and their225

corresponding relations, formally represented as226

follows:227

N(e) = {(ei, ri)|(ei, ri, e) ∈ T } (1)228

Given the variation in the neighborhood size of229

entities within knowledge graphs, this research in-230

troduces a parameter—σ—to standardize the di-231

mension of sampled neighborhood information.232

Specifically, when the neighborhood size of an en- 233

tity exceeds the set σ, a corresponding number of 234

entity-relation pairs are randomly extracted from 235

this neighborhood to meet the σ; conversely, if the 236

neighborhood size is smaller than the σ, specific 237

padding tokens (pad tokens) are introduced to fill 238

up to the σ. This treatment ensures the dimensional 239

consistency of neighborhood information across all 240

entities, facilitating subsequent processing. To ob- 241

tain neighborhood prompts, entities and relations 242

within the neighborhood are summed and then pro- 243

cessed through a Multilayer Perceptron (MLP): 244

pN(e) = MLP([e0 + r0, ..., eσ + rσ]) (2) 245

3.3 Model Architecture 246

The MoCoKGC model is comprised of three pri- 247

mary components: the entity-relation encoder, the 248

entity encoder, and the momentum entity encoder, 249

as illustrated in Figure 1. The principal duties of 250

these encoders are to generate encodings for the 251

head entity and its relations, update the momentum 252

entity encoder and pseudo-entity encodings, and 253

produce entity encodings, respectively. It is note- 254

worthy that the generation of entity encodings is de- 255

pendent on the slower-updating momentum entity 256

encoder, rather than the entity encoder . The follow- 257

ing provides a detailed exposition of the function- 258

ality and operational flow of these three encoders. 259

Within the entity-relation encoder, the process 260

initiates by aggregating the encodings of all entities 261

within the vicinity of the head entity and their corre- 262

sponding relations, followed by processing through 263

a Multilayer Perceptron (MLP) to obtain neighbor- 264

hood prompt information. Subsequently, the de- 265

scription of the head entity, the relation description, 266

and the neighborhood prompt information are con- 267

catenated and inputted into a Transformer encoder. 268

To more effectively amalgamate various types of 269

information, we employ the p-tuning v2 strategy, 270

as referenced in (Liu et al., 2022a), introducing the 271

relation as deep prompt information at every layer 272

of the Transformer encoder. The encoding of the 273

head entity-relation is acquired through a pooling 274

layer followed by normalization. This procedure 275

can be formalized as: 276

hr = ER_Encoder(d(h),d(r),pN(h),pr) (3) 277

It is important to highlight that the relation encod- 278

ing within the neighborhood and the relation pa- 279

rameters in the deep prompts are not identical. 280
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[SEP]
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Figure 1: The MoCoKGC framework primarily consists of three encoders: the entity-relation encoder, the entity
encoder, and the momentum entity encoder. As illustrated, the momentum entity encoder does not directly participate
in the gradient backpropagation process; its parameter updates are based on the Exponential Moving Average (EMA)
strategy. MoCoKGC updates entity encodings E using a momentum entity encoder and augments the number
of negative samples by maintaining an entity queue. Importantly, all entity encodings required for generating
neighborhood prompts are sourced from E .

In contrast to the entity-relation encoder, the en-281

tity encoder lacks the input of relation descriptions282

and relation cues, which can be represented as:283

t = E_Encoder(d(t),pN(t)) (4)284

The input to the momentum entity encoder is285

identical to that of the entity encoder.286

t = ME_Encoder(d(t),pN(t)) (5)287

In every iteration, newly generated entity encod-288

ings are utilized to update the old entity encodings.289

Uniquely, the parameters of this encoder are not290

updated through backpropagation but evolve itera-291

tively based on the parameter updates of the entity292

encoder after each iteration. The iterative formula293

is as follows:294

θME = mθME + (1−m)θE (6)295

Where θME and θE denote the parameters of the296

momentum entity encoder and the entity encoder,297

respectively. m ∈ [0, 1] represents the momentum298

coefficient. This process is also referred to as the 299

Exponential Moving Average (EMA). The larger 300

the momentum coefficient m, the slower the update 301

of θME . 302

It is crucial to highlight that the neighborhood 303

representation of entity encodings, employed by 304

all three encoders, is shared and generated by the 305

momentum entity encoder. Conversely, the relation 306

encoding is unique to each model component and 307

is not shared. 308

3.4 Negative Sampling 309

In-batch Negatives like most contrastive learning 310

methods, our study uses tail entities from within 311

the same batch as negative samples. In our 312

approach, we not only utilize entity encodings as 313

positive and negative examples but also integrate 314

them into the representations of their respective 315

neighborhoods. Therefore, we not only process 316

entities present in the given batch of triples but also 317

sequentially generate additional entity encodings 318

and pseudo-entity encodings. 319

320
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Entity Queue is maintained by MoCoKGC321

throughout the training process to generate a larger322

pool of negative sample entities. Unlike conven-323

tional queues, the entity elements in this queue are324

unique. If an entity that is about to be enqueued325

is already present in the queue, it is first dequeued326

and then enqueued again. This mechanism ensures327

that a greater variety of different entities can be328

stored while the queue length remains fixed.329

3.5 Training and Inference330

During the training phase of the model, considering331

that the neighborhood sampling of the head entity332

may contain the tail entity, and similarly, the neigh-333

borhood sampling of the tail entity may include the334

head entity, this study adopts a target link dropout335

strategy after the neighborhood sampling process.336

Specifically, the target links existing in the neigh-337

borhoods of the head and tail entities are discarded338

and replaced with a padding token. This measure339

aims to ensure that training target data is not leaked340

into the model, thereby affecting the model’s gen-341

eralization capability. In addition to the dropout342

of target links, to enhance the diversity of neigh-343

borhood information, this study also introduces a344

mechanism to randomly drop entity-relation pairs345

in the neighborhood with a certain probability.346

As illustrated in Figure 1, the process of loss347

calculation in this study involves multiplying the348

generated head entity relation encoding hr with349

both the pseudo-entity encoding t and the actual350

entity encoding t, based on which the loss is cal-351

culated. This study employs the same method of352

calculating the loss function as SimKGC (Wang353

et al., 2022), use InfoNCE loss with additive mar-354

gin (Chen et al., 2020; Yang et al., 2019):355

L(hr, t) = − log
e(hrtT−γ)/τ

e(hrtT−γ)/τ +
∑|N |

i=1 e
(hrt

′
i

T
)/τ

(7)356

Where γ is the margin coefficient greater than 0,357

τ ∈ [0, 1] is the temperature coefficient and N is all358

negative sample entities. Based on the formula 7,359

the final loss function can be expressed as:360

loss = L(hr, t) + L(hr, t) (8)361

To enhance the update frequency of entity encod-362

ings, this study not only updates a portion of entity363

encodings at each iteration but also separately uti-364

lizes the momentum entity encoder for inference365

after a certain number of iterations, to achieve up-366

dates of all entities. After completing all training367

processes, a final update of all entities will be con- 368

ducted. 369

For the prediction inference of KGC, it is only 370

necessary to generate the head entity-relation en- 371

coding through the entity-relation encoder, and 372

then multiply it with all entity encodings to obtain 373

the predictive scores for all entities. 374

scores = {hrt
T
i |ti ∈ E} (9) 375

In terms of time complexity, the time complexity 376

of this study in the test set is consistent with that of 377

most KGC models, which is |Ttest|. 378

4 Experiments 379

Dataset # entity relation # train # valid # test
WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466
Wikidata5M 4,594,485 822 20,614,279 5,163 5,163

Table 1: Summary statistics of benchmark datasets.

4.1 Experimental Setup 380

Dataset Evaluation In this study, three benchmark 381

datasets were utilized to assess the performance 382

of the proposed model, specifically: WN18RR, 383

FB15k-237, and Wikidata5M. Table 1 presents 384

the detailed distribution of these datasets. The 385

WN18RR dataset (Dettmers et al., 2018) is 386

constructed based on the WordNet knowledge 387

base (Miller, 1998), aimed at link prediction tasks, 388

containing entities represented by English phrases 389

and their semantic relationships. The FB15k-237 390

dataset (Toutanova et al., 2015) is a subset derived 391

from the Freebase knowledge base (Bollacker et al., 392

2008), encompassing entities in the real world 393

and their interrelations. The Wikidata5M dataset 394

(Wang et al., 2021b) is a large-scale knowledge 395

graph dataset, integrating information from the 396

Wikidata knowledge graph and Wikipedia pages, 397

providing Wikipedia page descriptions for each 398

entity. Compared to WN18RR and FB15k-237, the 399

Wikidata5M dataset surpasses them by two orders 400

of magnitude in both the number of entities and 401

triples, indicating its larger scale and complexity. 402

403

Evaluation Metrics In the task of KGC, the 404

assessment of model performance is primarily 405

achieved by measuring the ranking of target triples 406

among all potential triples’ scores. This study 407

adopts the commonly used evaluation metrics in 408

previous research, including Hits@1, Hits@3, 409
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WN18RR FB15k-237 Wikidata5M

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Knowledge graph embedding method
TransE (Bordes et al., 2013)♢ 0.243 0.043 0.441 0.532 0.279 0.198 0.376 0.441 0.253 0.170 0.311 0.392
DistMult (Yang et al., 2015)♢ 0.444 0.412 0.470 0.504 0.281 0.199 0.301 0.446 0.253 0.209 0.278 0.334
ComplEx (Trouillon et al., 2016)♢ 0.449 0.409 0.469 0.530 0.278 0.194 0.297 0.450 0.308 0.255 - 0.398
R-GCN (Schlichtkrull et al., 2018)† 0.123 0.080 0.137 0.207 0.164 0.100 0.181 0.300 - - - -
ConvE (Dettmers et al., 2018)† 0.456 0.419 0.470 0.531 0.312 0.225 0.341 0.497 - - - -
RotatE (Sun et al., 2019)♢ 0.476 0.428 0.492 0.571 0.338 0.241 0.375 0.533 0.290 0.234 0.322 0.390
TuckER (Balazevic et al., 2019) 0.470 0.443 0.482 0.526 0.358 0.266 0.394 0.544 - - - -
CompGCN (Vashishth et al., 2020) 0.479 0.443 0.494 0.546 0.355 0.264 0.390 0.535 - - - -
HittER (Chen et al., 2021) 0.503 0.462 0.516 0.584 0.373 0.279 0.409 0.558 - - - -
N-Former (Liu et al., 2022b) 0.486 0.443 0.501 0.578 0.372 0.277 0.412 0.556 - - - -
PLM-Based method
KG-BERT (Yao et al., 2019) 0.216 0.041 0.302 0.524 - - - 0.420 - - - -
StAR (Wang et al., 2021a) 0.401 0.243 0.491 0.709 0.296 0.205 0.322 0.482 - - - -
KEPLER(Wang et al., 2021b)♢ - - - - - - - - 0.210 0.173 0.224 0.277
KG-S2S (Chen et al., 2022) 0.574 0.531 0.595 0.661 0.336 0.257 0.373 0.498 - - - -
N-BERT (Liu et al., 2022b) 0.583 0.529 0.607 0.686 0.381 0.287 0.420 0.562 - - - -
SimKGC (Wang et al., 2022) 0.671 0.585 0.731 0.817 0.333 0.246 0.362 0.510 0.358 0.313 0.376 0.441
CSProm-KG (Chen et al., 2023b) 0.575 0.522 0.596 0.678 0.358 0.269 0.393 0.538 0.380 0.343 0.399 0.446
GHN (Qiao et al., 2023) 0.678 0.596 0.719 0.821 0.339 0.251 0.364 0.518 0.364 0.317 0.380 0.453
Ensemble method
StAR(Self-Adp) (Wang et al., 2021a) 0.551 0.459 0.594 0.732 0.365 0.266 0.404 0.562 - - - -
CoLE (Liu et al., 2022b) 0.587 0.532 0.608 0.694 0.389 0.294 0.430 0.574 - - - -
MoCoKGC(Ours) 0.742 0.665 0.792 0.881 0.391 0.296 0.431 0.580 0.490 0.435 0.517 0.591

Table 2: Experimental results for various baseline methods on WN18RR, FB15k-237, and Wikidata5M datasets. †: Results are
sourced from Wang et al. (2021a); ♢: Results are sourced from Chen et al. (2023b). The best methods are highlighted in bold,
with the most effective methods in each category underscored for emphasis. The results for the MoCoKGC model are reported
as the average of three experimental runs.

Hits@10, and MRR. The Hits@k metric measures410

the frequency with which the target triple appears411

among the top k triples with the highest scores,412

while the MRR is the average of the reciprocal413

ranks of the target triples. To enhance the accuracy414

and fairness of the evaluation, we employed415

the filtered ranking setting proposed by (Bordes416

et al., 2013), which eliminates potential ranking417

biases by excluding all possible triples (h, r, ?)418

or (t, r−1, ?) that already exist in the training set.419

Furthermore, following the random evaluation420

protocol suggested by Sun et al. (2020), we421

accurately assess model performance. The final422

metric is the average of the forward prediction423

(h, r, ?) and the backward prediction (t, r−1, ?).424

425

Implementation Details To ensure the compara-426

bility of the results of this study with existing re-427

search, we selected the "bert-base-uncased" version428

of the BERT model as the Transformer encoder for429

this research. The experimental environment was430

configured on a GeForce RTX 4090 GPU server431

equipped with 24GB of graphics card memory. uti-432

lizing the AdamW optimizer for model training.433

The learning rate was set to 5 × 10−5. The batch434

size was selected from the set {256, 512, 1024}.435

The range of the momentum coefficient m was436

chosen from {0, 0.5, 0.9, 0.99, 0.999}. The neigh-437

borhood sampling size σ was selected from438

the set {256, 512, 1024}. The length of the 439

maintained entity queue was chosen from the 440

set {512, 1024, 2048, 4096, 8192, 16384, 32768}. 441

For the WN18RR, FB15k-237, and Wikidata5M 442

datasets, training was conducted for 30, 3, and 1 443

epochs, respectively. For further details, please 444

refer to Appendix A. 445
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Figure 2: MRR performance of different models on
WN18RR and FB15k-237 datasets.

4.2 Main Results 446

On the WN18RR, FB15k-237, and Wikidata5M 447

datasets, we compared the MoCoKGC model with 448

other leading models, as shown in Table 2. The 449

experimental results demonstrate that MoCoKGC 450
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achieved state-of-the-art performance across all451

evaluation metrics. Notably, on the WN18RR and452

Wikidata5M datasets, MoCoKGC realized signifi-453

cant improvements of 7.1% (from 0.671 to 0.742)454

and 11% (from 0.343 to 0.399), respectively. As455

a method based on pre-trained language models456

(PLM-Based), MoCoKGC also achieved a 1.0%457

performance improvement (from 0.381 to 0.391)458

on the FB15k-237 dataset, surpassing the previous459

best ensemble learning approach.460

Furthermore, we conducted a separate analysis461

on the MRR values of models that performed well462

on the WN18RR and FB15k-237 datasets, as de-463

picted in Figure 2. The analysis revealed that464

knowledge graph embedding methods exhibited rel-465

atively balanced performance on these two datasets466

(i.e., models that performed well on WN18RR also467

excelled on FB15k-237). In PLM-based models,468

SimKGC and GHN exhibit significant performance469

improvements on the WN18RR dataset, yet they470

lag on the FB15k-237 dataset. We attribute this471

phenomenon to SimKGC’s use of entity descrip-472

tions, generating entity encodings through an entity473

encoder, and the absence of knowledge graph struc-474

tural information during inference. MoCoKGC475

successfully addressed the inconsistency in perfor-476

mance of PLM-based models on these two datasets.477

On the larger Wikidata5M dataset, the perfor-478

mance improvement of MoCoKGC was especially479

pronounced, which is closely related to the rich en-480

tity textual descriptions and significant knowledge481

graph structure within the Wikidata5M dataset.482

Our proposed MoCoKGC model, as a PLM-based483

method, not only integrates the entity encoder from484

SimKGC (Wang et al., 2022) but also, like models485

such as CoLE (Liu et al., 2022b) and CSProm-KG486

(Chen et al., 2023b), incorporates the structure of487

knowledge graphs (e.g., relation and neighborhood488

prompts) into the model. This effectively com-489

bines the advantages of textual descriptions with490

the knowledge graph structure.491

4.3 Ablation Studies492

Model MRR Hits@1 Hits@10

MoCoKGC w/o neighborhood prompt 0.696 0.614 0.845
MoCoKGC w/o relation prompt 0.597 0.476 0.818

MoCoKGC 0.742 0.665 0.881

Table 3: Ablation Study regarding important compo-
nents in MoCoKGC on the benchmark of WN18RR.

Model MRR H@1 H@10

MoCoKGC w/o neighborhood prompt 0.385 0.292 0.570
MoCoKGC w/o relation prompt 0.327 0.242 0.496

MoCoKGC 0.391 0.296 0.580

Table 4: Ablation Study regarding important compo-
nents in MoCoKGC on the benchmark of FB15k-237.

Structural component. In this study, we con- 493

ducted an in-depth analysis of the impact on per- 494

formance by removing two key components from 495

the MoCoKGC model: the neighborhood prompt 496

and the relation prompt. Specific experiments were 497

carried out on two benchmark knowledge graph 498

datasets, WN18RR and FB15k-237, with their re- 499

sults presented in Table 3 and Table 4, respec- 500

tively. The experimental outcomes reveal that the 501

absence of neighborhood prompts diminished the 502

model’s performance on the WN18RR and FB15k- 503

237 datasets by 4.9% (from 0.745 to 0.696) and 504

0.6% (from 0.391 to 0.385), respectively. This 505

strongly evidences that the model indeed learns rel- 506

evant information about neighborhood structures 507

from the neighborhood prompts. More notably, the 508

removal of relation prompts led to a substantial per- 509

formance decline of 14.5% (from 0.745 to 0.597) 510

and 6.4% (from 0.391 to 0.327) on the WN18RR 511

and FB15k-237 datasets, respectively. This signifi- 512

cant performance drop was even more pronounced 513

than that of the SimKGC model. 514

This phenomenon suggests that the simple 515

reuse of entity encodings might interfere with 516

the encoder’s effective capture of deep semantic 517

information about entities and their relations. To 518

overcome this issue, the introduction of relation 519

prompts is crucial for restoring and enhancing 520

the synergistic effect of textual semantics and 521

knowledge graph structural information within 522

PLMs. 523

524

m 0 0.5 0.9 0.99 0.999

MRR (WN18RR) 0.727 0.728 0.728 0.733 0.742
MRR (FB15k-237) 0.369 0.367 0.375 0.380 0.391

Table 5: Demonstrates the MRR of MoCoKGC on the
datasets WN18RR and FB15k-237, with varying mo-
mentum coefficient m used during training.

Momentum coefficient. In Table 5, we present 525

the results of the MRR for models trained 526

with different momentum coefficients m on the 527

7



WN18RR and FB15k-237 datasets. Analysis528

indicates that higher momentum coefficients m529

can stably enhance model performance, whereas530

lower momentum coefficients m have not shown531

significant improvement in performance. This532

experimental outcome aligns with our initial533

rationale for employing a momentum entity534

encoder, which is to introduce a steady yet gradual535

entity encoding update mechanism, in the hope of536

achieving performance improvement.537

538
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Figure 3: Variation of MRR with entity queue size on
WN18RR in MoCoKGC
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Figure 4: Variation of MRR with entity queue size on
FB15k-237 in MoCoKGC

Entity queue size. In the training framework539

of MoCoKGC, a pivotal component is the540

maintenance of a dynamic entity queue, aimed at541

accumulating and leveraging a broader spectrum542

of negative tail entity samples throughout the543

training process. To investigate the impact of544

the entity queue, we examined how variations545

in the size of the entity queue influence model546

performance. As illustrated in Figures 3 and 4,547

the Mean Reciprocal Rank (MRR) on WN18RR548

and FB15k-237 varies with different entity queue549

sizes. The results demonstrate a consistent upward550

trend in the MRR metric as the size of the entity 551

queue increases. This indicates that expanding the 552

entity queue significantly augments the quantity of 553

effective negative entity samples, thereby exerting 554

a positive impact on model performance. 555

556
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Figure 5: Variation of MRR with training set size
on Wikidata5M in MoCoKGC, with comparative final
MRR sesults from SimKGC and CSProm-KG on the
entire training set.

Impact of Training Set Size. During the train- 557

ing process of the MoCoKGC model, we observed 558

that the model could achieve commendable per- 559

formance even with a limited amount of training 560

data. As depicted in Figure 5, for comparison pur- 561

poses, we presented the training outcomes of the 562

SimKGC and CSProm-KG models on the complete 563

training set in dashed lines. Notably, when utiliz- 564

ing only 20% of the training data, the MRR of the 565

MoCoKGC model could reach 0.460. This result 566

significantly surpasses the final performance of the 567

other two methods. This finding underscores the ex- 568

ceptional generalization capability of MoCoKGC 569

in scenarios of data scarcity. 570

5 Conclusion 571

This study proposes MoCoKGC, a novel KGC 572

model that leverages momentum contrastive learn- 573

ing in conjunction with PMLs. By expanding the 574

pool of negative samples, it further enhances KGC 575

through the aggregation of entity textual descrip- 576

tions and their structural information. The Mo- 577

CoKGC model demonstrated superior performance 578

across multiple datasets. Furthermore, we further 579

validated the critical role of its constituent compo- 580

nents and parameter configurations. Future work 581

will focus on adapting MoCoKGC for open knowl- 582

edge graphs to better manage the emergence of new 583

entities. 584
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6 Limitations585

The MoCoKGC model relies on pre-trained lan-586

guage models to integrate textual representations587

with the structure of knowledge graphs. This re-588

sults in an increase in training time and memory589

consumption as the length of the structure input590

into the model increases. In response, MoCoKGC591

opts for a compromise by sampling the neigh-592

borhoods of entities, rather than aggregating the593

entire knowledge graph structure as done by R-594

GCN (Schlichtkrull et al., 2018) and CompGCN595

(Vashishth et al., 2020). Moreover, the random596

sampling does not take into account the varying597

importance of different links within the neighbor-598

hood. This leads to the model predictions being599

more focused on the features within the sampled600

neighborhoods. In the future, we plan to address601

this issue.602
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A Details on Implementation833

# of GPUs 1
learning rate 5× 10−5

initial temperature τ 0.05
gradient clip 10
warmup steps 400
dropout 0.1
neighborhood dropout 0.1
weight decay 10−4

InfoNCE margin 0.02
momentum coefficient m 0.999
pooling mean

Table 6: Shared hyperparameters for MoCoKGC.

WN18RR FB15k-237 Wikidata5M
batch size 1024 256 1024
additional entity size 512 1024 512
max # of word tokens 64 128 64
neighborhood sampling size σ 16 128 32
entity queue size 16384 14541 16384
epochs 30 3 1

Table 7: Hyperparameters of the MoCoKGC model that
are not shared across different datasets.

In this study, the hyperparameter settings were834

primarily aligned with the configuration strategy of835

SimKGC (Wang et al., 2022). As demonstrated in836

Table 6, we have listed the hyperparameter settings837

shared across all datasets. Concurrently, Table 7838

showcases the specific hyperparameter configura-839

tions for the MoCoKGC model across different840

datasets.841

Given that the experiments were conducted us-842

ing a single GeForce RTX 4090 graphics card, and843

faced with memory capacity limitations, we em- 844

ployed gradient accumulation techniques to enable 845

larger batch sizes. It is noteworthy that, due to 846

the infeasibility of directly applying conventional 847

gradient accumulation methods in the contrastive 848

learning process, we first generate all necessary 849

contrastive encodings for the three encoders using 850

smaller batch sizes and disabling gradient saving 851

during each accumulation step. Subsequently, we 852

update the entity-relation encoder and the entity 853

encoder using gradient accumulation techniques. 854

To eliminate the potential randomness introduced 855

by dropout operations, a random number is gener- 856

ated and recorded as the random seed during each 857

gradient accumulation, and this seed is set every 858

time an encoder is invoked. In addition to gradient 859

accumulation, in the experiments on Wikidata5M, 860

we stored the entity encodings in CPU memory 861

rather than in GPU memory to reduce the usage of 862

GPU memory. 863

During each training epoch, the MoCoKGC 864

model runs on a single GeForce RTX 4090 graph- 865

ics card, utilizing a configuration that includes four 866

workers for data loading. The runtime varies de- 867

pending on the dataset: it takes approximately 7 868

minutes for the WN18RR dataset, about 40 minutes 869

for the FB15k-237 dataset, and roughly 65 hours 870

for the Wikidata5M dataset. 871

Furthermore, drawing from the practices of 872

SimKGC, we made the following adjustments to 873

the textual descriptions of entities: (1) the names of 874

neighboring entities in the training set are concate- 875

nated to the description of the entity, and the correct 876

entities are dynamically excluded from the input 877

text during the training process; (2) the descrip- 878

tions of inverse relations are formed by appending 879

the term "inverse" to the beginning of the original 880

relation descriptions. 881

Our implementation is based on open-source 882

project transformers 1. 883

1https://github.com/huggingface/transformers
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