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Abstract

Real-time novel-view image synthesis on mobile devices is prohibitive due to the
limited computational power and storage. Using volumetric rendering methods,
such as NeRF and its derivatives, on mobile devices is not suitable due to the high
computational cost of volumetric rendering. On the other hand, recent advances in
neural light field representations have shown promising real-time view synthesis
results on mobile devices. Neural light field methods learn a direct mapping from a
ray representation to the pixel color. The current choice of ray representation is
either stratified ray sampling or Plücker coordinates, overlooking the classic light
slab (two-plane) representation, the preferred representation to interpolate between
light field views. In this work, we find that using the light slab representation is an
efficient representation for learning a neural light field. More importantly, it is a
lower-dimensional ray representation enabling us to learn the 4D ray space using
feature grids which are significantly faster to train and render. Although mostly
designed for frontal views, we show that the light-slab representation can be further
extended to non-frontal scenes using a divide-and-conquer strategy. Our method
offers superior rendering quality compared to previous light field methods and
achieves a significantly improved trade-off between rendering quality and speed.

1 Introduction

Real-time rendering of photo-realistic 3D content on mobile devices such as phones is crucial for
mixed-reality applications. However, this presents a challenge due to the limited computational power
and memory of mobile devices. The current graphics pipeline requires storing tens of thousands of
meshes for complex scenes and performing ray tracing for realistic lighting effects, which demands
powerful graphics processing power that is not feasible on current mobile devices. Recently, neural
radiance field (NeRF [23]) has been the next popular choice for photo-realistic view synthesis, which
offers a simplified rendering pipeline. However, the computational cost of integrating the radiance
field remains a bottleneck for real-time implementation on mobile devices. There have been several
attempts to reduce the computational cost of this integration step, such as using more efficient radiance
representations [13, 40, 28, 17, 5, 10] or distilling meshes from radiance field [34, 6, 39, 35, 27, 29].
Among these approaches, only a handful of mesh-based methods [6, 29] have demonstrated real-
time rendering capabilities on mobile phones, but with a significant sacrifice in rendering fidelity.
Moreover, all aforementioned methods require significant storage space (over 200MB), which is
undesirable for mobile devices with limited onboard storage.

†These authors contributed equally.
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(a) Rendering latency v/s fidelity. (b) Faster training speed.

Figure 1: Our LightSpeed approach demonstrates a superior trade-off between on-device rendering
quality and latency while maintaining a significantly reduced training time and boosted rendering
quality. (a) rendering quality and latency on the 400× 400 Lego scene [23] running on an iPhone 13.
(b) training curves for the 756× 1008 Fern scene [22].

Alternatively, researchers have used 4D light field1 (or lumigraph) to represent radiance along rays
in empty space [11, 24, 12, 19], rather than attempting to model the 5D plenoptic function as in
NeRF-based approaches. Essentially, the light field provides a direct mapping from rays to pixel
values since the radiance is constant along rays in empty space. This makes the light field suitable for
view synthesis, as long as the cameras are placed outside the convex hull of the object of interest.
Compared to integrating radiance fields, rendering with light fields is more computationally efficient.
However, designing a representation of light field that compresses its storage while maintaining
high view-interpolation fidelity remains challenging. Previous methods, such as image quilts [38]
or multiplane images (MPI) [41, 16, 32, 9], suffer from poor trade-offs between fidelity and storage
due to the high number of views or image planes required for reconstructing the complex light field
signal. Recent works [36, 4, 2, 31] have proposed training neural networks to represent light fields,
achieving realistic rendering with a relatively small memory footprint. Among those, MobileR2L [4]
uses less than 10MB of storage per scene, and it is currently the only method that demonstrates
real-time performance on mobile phones.

However, prior neural light field (NeLF) representations, including MobileR2L, suffer from
inefficiencies in learning due to the high number of layers (over 60 layers), and consequently,
a long training time is required to capture fine scene details. One promising strategy to address
this issue is utilizing grid-based representations, which have proven to be effective in the context of
training NeRFs [30, 25, 17, 10]. Nonetheless, incorporating such grid-based representation directly
to prior NeLFs is problematic due to the chosen ray parameterization. R2L [36] and MobileR2L [4]
parameterize light rays using a large number of stratified 3D points along the rays, which were
initially motivated by the discrete formulation of integrating radiance. However, this motivation is
unnecessary and undermines the simplicity of 4D light fields because stratified sampling is redundant
for rays with constant radiance. This becomes problematic when attempting to incorporate grid-based
representations for more efficient learning, as the high-dimensional stratified-point representation is
not feasible for grid-based discretization. Similarly, the 6-dimensional Plücker coordinate used by
Sitzmann et al. [31] also presents issues for discretization due to the fact that Plücker coordinates
exist in a projective 5-space, rather than Euclidean space.

In this paper, we present LightSpeed, the first NeLF method designed for mobile devices that uses a
grid-based representation. As shown in Fig. 1, our method achieves a significantly better trade-off
between rendering quality and speed compared to prior NeLF methods, while also being faster to
train. These advantages make it well-suited for real-time applications on mobile devices. To achieve
these results, we propose the following design choices:

First, we revisit the classic 4D light-slab (or two-plane) representation [12, 19] that has been largely
overlooked by previous NeLF methods. This lower-dimensional parameterization allows us to
compactly represent the rays and efficiently represent the light field using grids. To our knowledge,

1For the rest of the paper, we will use the term ‘light field’ to refer to the 4D light field, without explicitly
stating the dimensionality.
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Attal et al. [2] is the only other NeLF method that has experimented with the light-slab representation.
However, they did not take advantage of the grid-based representation, and their method is not
designed for real-time rendering. Second, to address the heavy storage consumption of 4D light field
grids, we take inspiration from k-planes [10] and propose decomposing the 4D grids into six 2D
feature grids. This ensures that our method remains competitive for storage consumption compared
to prior NeLF methods. Third, we apply the super-resolution network proposed by MobileR2L [4],
which significantly reduces the computational cost when rendering high-resolution images. Finally,
the light-slab representation was originally designed for frontal-view scenes, but we demonstrate that
it can be extended to represent non-frontal scenes using a divide-and-conquer strategy.

Our contributions pave the way for efficient and scalable light field representation and synthesis,
making it feasible to generate high-quality images of real-world objects and scenes. Our method
achieves the highest PSNR and among the highest frame rates (55 FPS on iPhone 14) on LLFF
(frontal-view), Blender (360◦), and unbounded 360◦ scenes, proving the effectiveness of our approach.

2 Related work

Light Field. Light field representations have been studied extensively in the computer graphics and
computer vision communities [38]. Traditionally, light fields have been represented using the 4D
light slab representation, which parameterizes the light field by two planes in 4D space [12, 19].
More recently, neural-based approaches have been developed to synthesize novel views from the light
field, leading to new light field representations being proposed.

One popular representation is the multi-plane image (MPI) representation, which discretizes the light
field into a set of 2D planes. The MPI representation has been used in several recent works, including
[41, 16, 32, 9, 7]. However, the MPI representation can require a large amount of memory, especially
for high-resolution light fields. Another recent approach that has gained substantial attention is
NeRF [23] (Neural Radiance Fields), which can synthesize novel views with high accuracy, but is
computationally expensive to render and train due to the need to integrate radiance along viewing
rays. There has been a substantial amount of works [37, 26, 28, 21, 13, 40, 28, 17, 5, 10, 34, 6, 39, 35,
27, 29, 36, 4, 2, 31] studying how to accelerate training and rendering of NeRF, but in the following,
we focus on recent methods that achieve real-time rendering with or without mobile devices.

Grid Representation of Radiance Field. The first group of methods trade speed with space, by
precomputing and caching radiance values using grid or voxel-like data structures such as sparse
voxels [30, 13], octrees [40], and hash tables [25]. Despite the efficient data structures, the memory
consumption for these methods is still high, and several approaches have been proposed to address
this issue. First, Chen et al. [5] and Fridovich-Keil et al. [10] decompose voxels into matrices that
are cheaper to store. Takikawa et al. [33] performs quantization to compress feature grids. These
approaches have enabled real-time applications on desktop or server-class GPUs, but they still require
significant computational resources and are not suitable for resource-constrained devices such as
mobile or edge devices.

Baking High Resolution Mesh. Another group of methods adopts the approach of extracting
high-resolution meshes from the learned radiance field [6, 29, 35]. The texture of the mesh stores
the plenoptic function to account for view-dependent rendering. While these approaches have been
demonstrated to run in real-time on mobile devices, they sacrifice rendering quality, especially for
semi-transparent objects, due to the mesh-based representation. Additionally, storing high-resolution
meshes with features is memory-intensive, which limits the resolution and complexity of the mesh
that can be used for rendering.

Neural Light Fields. Recent works such as R2L [36], LFNS [31] and NeuLF [20] have framed
the view-synthesis problem as directly predicting pixel colors from camera rays, making these
approaches fast at inference time without the need for multiple network passes to generate a pixel
color. However, due to the complexity of the 4D light field signal, the light field network requires
sufficient expressibility to be able to memorize the signal. As a result, Wang et al. [36] end up using
as many as 88 network layers, which takes three seconds to render one 200 × 200 image on iPhone 13.
In this regard, Cao et al. [4] introduce a novel network architecture that dramatically reduces R2L’s
computation through super-resolution. The deep networks are only evaluated on a low-resolution ray
bundle and then upsampled to the full image resolution. This approach, termed MobileR2L, achieves
real-time rendering on mobile phones. NeuLF [20] also proposes to directly regress pixel colors
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using a light slab ray representation but is unable to capture fine-level details due to lack of any sort
of high-dimensional input encoding and is limited to frontal scenes. Another notable work, SIGNET
[8], utilizes neural methods to compress a light field by using a ultra spherical input encoding to
the light slab representation. However, SIGNET doesn’t guarantee photorealistic reconstruction and
hence deviates from task at hand. Throughout the paper, we will mainly compare our method to
MobileR2L [4], which is currently the state-of-the-art method for real-time rendering on mobile
devices and achieves the highest PSNR among existing methods.

It is important to note that training NeLFs requires densely sampled camera poses in the training
images and may not generalize well if the training images are sparse, as NeLFs do not explicitly
model geometry. While there have been works, such as those by Attal et al. [2], that propose a
mixture of NeRF and local NeLFs, allowing learning from sparse inputs, we do not consider this to be
a drawback since NeLFs focus on photo-realistic rendering rather than reconstructing the light field
from sparse inputs, and they can leverage state-of-the-art reconstruction methods like NeRF to create
dense training images. However, it is a drawback for prior NeLFs [36, 4] that they train extremely
slowly, often taking more than two days to converge for a single scene. This is where our new method
comes into play, as it offers improvements in terms of training efficiency and convergence speed.

3 Methodology

3.1 Prerequisites

4D Light Fields or Lumigraphs are a representation of light fields that capture the radiance
information along rays in empty space. They can be seen as a reduction of the higher-dimensional
plenoptic functions. While plenoptic functions describe the amount of light (radiance) flowing in
every direction through every point in space, which typically has five degrees of freedom, 4D light
fields assume that the radiance is constant along the rays. Therefore, a 4D light field is a vector
function that takes a ray as input (with four degrees of freedom) and outputs the corresponding
radiance value. Specifically, assuming that the radiance c is represented in the RGB space, a 4D light
field is mathematical defined as a function, i.e.:

F : r ∈ RM 7→ c ∈ R3, (1)

where r is M -dimensional coordinates of the ray depending how it is parameterized.

Generating images from the 4D light field is a straightforward process. For each pixel on the image
plane, we calculate the corresponding viewing ray r that passes through the pixel, and the pixel value
is obtained by evaluating the light field function F(r). In this paper, our goal is to identify a suitable
representation for F(r) that minimizes the number of parameters required for learning and facilitates
faster evaluation and training.

MobileR2L. We adopt the problem setup introduced by MobileR2L [6] and its predecessor R2L [36],
where the light field F(r) is modeled using neural networks. The training of the light field network is
framed as distillation, leveraging a large dataset that includes both real images and images generated
by a pre-trained NeRF. Both R2L and MobileR2L represent r using stratified points, which involves
concatenating the 3D positions of points along the ray through stratified sampling. In addition, the
3D positions are encoded using sinusoidal positional encoding [23]. Due to the complexity of the
light field, the network requires a high level of expressiveness to capture fine details in the target
scene. This leads to the use of very deep networks, with over 88 layers in the case of R2L. While this
allows for detailed rendering, it negatively impacts the rendering speed since the network needs to be
evaluated for every pixel in the image.

To address this issue, MobileR2L proposes an alternative approach. Instead of directly using deep
networks to generate high-resolution pixels, they employ deep networks to generate a low-resolution
feature map, which is subsequently up-sampled to obtain high-resolution images using shallow
super-resolution modules. This approach greatly reduces the computational requirements and enables
real-time rendering on mobile devices. In our work, we adopt a similar architecture, with a specific
focus on improving the efficiency of generating the low-resolution feature map.
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Figure 2: LightSpeed Model for Frontal Scenes. Taking a low-resolution ray bundle as input, our
approach formulates rays in two-plane ray representation. This enables us to encode each ray using
multi-scale feature grids, as shown. The encoded ray bundle is fed into a decoder network consisting
of convolutions and super-resolution modules yielding the high-resolution image.

3.2 LightSpeed

We first describe the light-slab ray representation for both frontal and non-frontal scenes in Sec. 3.2.1.
Next, we detail our grid representation for the light-slab in Sec. 3.2.2 and explain the procedure for
synthesizing images from this grid representation in Sec. 3.3. Refer to Fig. 2 for a visual overview.

3.2.1 Ray Parameterization

Light Slab (two-plane representation). Instead of utilizing stratified points or Plücker coordinates,
we represent each directed light ray using the classic two-plane parameterization[19] as an ordered
pair of intersection points with two fixed planes. Formally,

r = (x, y, u, v), (2)

where (x, y) ∈ R2 and (u, v) ∈ R2 are ray intersection points with fixed planes P1 and P2 in their
respective coordinate systems. We refer to these four numbers as the ray coordinates in the 4D ray
space. To accommodate unbounded scenes, we utilize normalized device coordinates (NDC) and
select the planes P1 and P2 as the near and far planes (at infinity) defined in NDC.

Divided Light Slabs for Non-frontal Scenes. A single light slab is only suitable for modeling
a frontal scene and cannot capture light rays that are parallel to the planes. To model non-frontal
scenes, we employ a divide-and-conquer strategy by using a composition of multiple light slab
representations to learn the full light field. We partition the light fields into subsets, and each subset
is learned using a separate NeLF model. The partitions ensure sufficient overlap between sub-scenes,
resulting in a continuous light field representation without additional losses while maintaining the
frontal scene assumption. To perform view synthesis, we identify the scene subset of the viewing
ray and query the corresponding NeLF to generate pixel values. Unlike Attal et al. [2], we do not
perform alpha blending of multiple local light fields because our division is based on ray space rather
than partitioning 3D space.

For object-centric 360◦ scenes, we propose to partition the scene into 5 parts using surfaces of a
near-isometric trapezoidal prism and approximate each sub-scene as frontal (as illustrated in Fig. 3).
For unbounded 360◦ scenes, we perform partitioning using k-means clustering based on camera
orientation and position. We refer the reader to the supplementary material for more details on our
choice of space partitioning.

3.2.2 Feature Grids for Light Field Representation

Storing the 4D light-slab directly using a high-resolution grid is impractical in terms of storage and
inefficient for learning due to the excessive number of parameters to optimize. The primary concern
arises from the fact that the 4D grid size increases quartically with respect to resolutions. To address
this, we suggest the following design choices to achieve a compact representation of the light-slab
without exponentially increasing the parameter count.
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Figure 3: Space Partitioning for Non-frontal scenes. We partition object-centric 360◦ scenes into 5
parts as shown. Each colored face of the trapezoidal prism corresponds to a partitioning plane. Each
scene subset is subsequently learned as a separate NeLF

Lower Resolution Feature Grids. Instead of storing grids at full resolution, we choose to utilize
low-resolution feature grids to take advantage of the quartic reduction in storage achieved through
resolution reduction. We anticipate that the decrease in resolution can be compensated by employing
high-dimensional features. In our implementation, we have determined that feature grids of size
1284 are suitable for synthesizing full HD images. Additionally, we adopt the approach from Instant-
NGP [25] to incorporate multi-resolution grids, which enables an efficient representation of both
global and local scene structures.

Decompose 4D Grids into 2D Grids. Taking inspiration from k-planes [10], we propose to
decompose the 4D feature grid using

(
4
2

)
= 6 number of 2D grids, with each 2D grid representing a

sub-space of the 4D ray space. This results in a storage complexity of O(6N2), greatly reducing the
storage required to deploy our grid-based approach to mobile devices.

3.3 View Synthesis using Feature Grids

Similar to MobileR2L [4], LightSpeed takes two steps to render a high resolution image (see Fig. 2).

Encoding Low-Resolution Ray Bundles. The first step is to render a low-resolution (HL ×WL)
feature map from the feature grids. This is accomplished by generating ray bundles at a reduced
resolution, where each ray corresponds to a pixel in a downsampled image. We project each ray’s 4D
coordinates r = (x, y, u, v) onto 6 2D feature grids Gxy,Gxu,Gxv,Gyu,Gyv,Guv to obtain feature
vectors from corresponding sub-spaces. The feature values undergo bilinear interpolation from the
2D grids, resulting in six interpolated F -dimensional features. These features are subsequently
concatenated to form a 6F -dimensional feature vector. As the feature grids are multi-resolutional
with L levels, features gl(r) ∈ R6F from different levels (indexed by l) are concatenated together to
create a single feature g(r) ∈ R6LF . Combining the features from all rays generates a low-resolution
2D feature map G̃ ∈ RHL×WL×6LF , which is then processed further in the subsequent step.

Decoding High-Resolution Image. To mitigate the approximation introduced by decomposing
4D grids into 2D grids, the features g(r) undergo additional processing through a MLP. This is
implemented by applying a series of 1× 1 convolutional layers to the low-resolution feature map .
Subsequently, the processed feature map is passed through a sequence of upsampling layers (similar
to MobileR2L [4]) to generate a high-resolution image.

4 Experiments
Datasets. We benchmark our approach on the real-world forward-facing [22] [23], the realistic
synthetic 360◦ datasets [23] and unbounded 360◦ scenes [3]. The forward-facing dataset consists of
8 real-world scenes captured using cellphones, with 20-60 images per scene and 1/8th of the images
used for testing. The synthetic 360◦ dataset has 8 scenes, each having 100 training views and 200
testing views. The unbounded 360◦ dataset consists of 5 outdoor and 4 indoor scenes with a central
object and a detailed background. Each scene has between 100 to 300 images, with 1 in 8 images
used for testing. We use 756× 1008 LLFF dataset images, 800× 800 resolution for the 360◦ scenes,
and 1/4th of the original resolution for the unbounded 360◦ scenes.
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Figure 4: Qualitative Results on frontal and non-frontal scenes. Zoomed-in comparison between
NeRF [23], MobileR2L [4] and our LightSpeed approach.

Training Details. We follow a similar training scheme as MobileR2L: train the LightSpeed model
using pseudo-data mined from a pre-trained NeRF teacher. We specifically train MipNeRF teachers
to sample 10k pseudo-data points for the LLFF dataset. For synthetic and unbounded 360◦ scenes,
we mine 30k samples per scene using Instant-NGP [25] teachers. Following this, we fine-tune the
model on the original data. We optimize for the mean-squared error between generated and ground
truth images. We refer the reader to the supplementary material for more training details.

We use 63 × 84 (12× downsampled from the desired 756 × 1008 resolution) input ray bundles
for the forward-facing scenes. For 360◦ scenes, we use 100 × 100 (8× downsampled from the
desired 800× 800 image resolution) ray bundles. For unbounded scenes, we use ray bundles 12×
downsampled from the image resolution we use. We train our frontal LightSpeed models as well as
each sub-scene model in non-frontal scenes for 200k iterations.

Baselines and Metrics. We compare our method’s performance on bounded scenes with
MobileR2L[6], MobileNeRF[6] and SNeRG[13]. We evaluate our method for rendering quality
using three metrics: PSNR, LPIPS, and SSIM. For unbounded scenes, we report the PSNR metric
on 6 scenes and compare it with MobileNeRF [6] and NeRFMeshing [27]. To further demonstrate
the effectiveness of our approach, we compare our approach with others on two other criteria: (a)
On-device Rendering Speed: We report and compare average inference times per rendered frame
on various mobile chips, including Apple A15, Apple M1 Pro and Snapdragon SM8450 chips; and
(b) Efficient Training: We compare the number of iterations LightSpeed and MobileR2L require to
reach a target PSNR. We pick Lego scene from 360◦ scenes and Fern from forward-facing scenes as
representative scenes to compare. We also report the storage requirements of our method per frontal
scene and compare it with baselines.

4.1 Results and Analysis

Rendering Quality. As in Tab. 1, we obtain better results on all rendering fidelity metrics on the two
bounded datasets. We also outperform MobileNeRF and NeRFMeshing on 4 out of 6 unbounded 360◦

scenes. We refer the reader to Fig. 4 for a visual comparison of our approach with MobileR2L and
NeRF. Our method has much better rendering quality, capturing fine-level details where MobileR2L,
and in some cases, even the original NeRF model, fails. Note that we use Instant-NGP teachers for
360◦ scenes, which have slightly inferior performance to MipNeRF teachers used by MobileR2L.
This further shows the robustness of our approach to inferior NeRF teachers.

Storage Cost. We report storage requirements in Tab. 1. Our approach has a competitive on-device
storage to the MobileR2L model. Specifically, we require a total of 16.3 MB of storage per frontal
scene. The increase in storage is expected since we’re using grids to encode our light field. We also
report storage values for lighter LightSpeed networks in the ablation study (see Tab. 5), all of which
have similar or better rendering quality than the full-sized MobileR2L network.

Training Speed. We benchmark the training times and the number of iterations required for
LightSpeed and MobileR2L in Tab. 2 with a target PSNR of 24 for Fern scene and 32 for the
Lego scene. Our approach demonstrates a training speed-up of 2.5× on both scenes. Since we are
modeling 360◦ scenes as a composition of 5 light fields, we can train them in parallel (which is not
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Table 1: Quantitative Comparison on Forward-facing, Synthetic 360◦ and Unbounded 360◦

Datasets. LighSpeed achieves the best rendering quality with competitive storage. We use an
out-of-the-box Instant-NGP [25] implementation [1] (as teachers for 360◦ scenes) which dose not
report SSIM and LPIPS values. We omit storage for NeRF-based methods since they are not
comparable.

Method Synthetic 360◦ Forward-Facing

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Storage ↓
NeRF [23] 31.01 0.947 0.081 26.50 0.811 0.250 -
NeRF-PyTorch 30.92 0.991 0.045 26.26 0.965 0.153 -

SNeRG [13] 30.38 0.950 0.050 25.63 0.818 0.183 337.3 MB
MobileNeRF [6] 30.90 0.947 0.062 25.91 0.825 0.183 201.5 MB
MobileR2L [4] 31.34 0.993 0.051 26.15 0.966 0.187 8.2 MB

LightSpeed (Ours) 32.23 0.994 0.038 26.50 0.968 0.173 16.3 MB

Our Teacher 32.96 - - 26.85 0.827 0.226 -

Unbounded 360◦

Method Bicycle Garden Stump Bonsai Counter Kitchen

MobileNeRF [6] 21.70 23.54 23.95 - - -
NeRFMeshing [27] 21.15 22.91 22.66 25.58 20.00 23.59

LightSpeed (Ours) 22.51 24.54 22.22 28.24 25.46 27.82

Instant-NGP (Our teacher) [25] 21.70 23.40 23.20 27.4 25.80 27.50

Table 2: Training Time for Lego and Fern scenes with 32 and 24 target PSNRs. LightSpeed trains
significantly faster than MobileR2L. It achieves even greater speedup when trained in parallel for
360◦ scenes (parallel training is not applicable for frontal scenes).

Forward-Facing: Fern Synthetic 360◦: Lego

Method Duration ↓ Iterations ↓ Duration ↓ Iterations ↓
MobileR2L 12.5 hours 70k 192 hours 860k
LightSpeed 4 hours 27k 75 hours 425k
LightSpeed (Parallelized) - - 15 hours 85k

possible for MobileR2L), further trimming down the training time. Moreover, the training speedup
reaches ∼ 4× when networks are trained beyond the mentioned target PSNR (see Fig. 1).

Inference Speed. Tab. 3 shows our method’s inference time as compared to MobileR2L and
MobileNeRF. We maintain a comparable runtime as MobileR2L while having better rendering fidelity.
Since on-device inference is crucial to our problem setting, we also report rendering times of a smaller
30-layered decoder network that has similar rendering quality as the MobileR2L model (see Tab. 5).

Table 3: Rendering Latency Analysis. LightSpeed maintains a competitive rendering latency (ms)
to prior works. MobileNeRF is not able to render 2 out of 8 real-world scenes ( N

M in table) due to
memory constraints, and no numbers are reported for A13, M1 Pro and Snapdragon chips.

Forward-Facing Synthetic 360◦

Chip MobileNeRF MobileR2L Ours Ours (30-L) MobileNeRF MobileR2L Ours Ours (30-L)

Apple A13 (Low-end) - 40.23 41.06 32.29 - 65.54 66.10 53.89
Apple A15(Low-end) 27.15 2

8 18.04 19.05 15.28 17.54 26.21 27.10 20.15
Apple A15(High-end) 20.98 2

8 16.48 17.68 15.03 16.67 22.65 26.47 20.35
Apple M1 Pro - 17.65 17.08 13.86 - 27.37 27.14 20.13
Snapdragon SM8450 - 39.14 45.65 32.89 - 40.86 41.26 33.87

4.2 Ablations

Data Requirements. We use 10k samples as used by MobileR2L to train LightField models for
frontal scenes. However, for non-frontal scenes, we resort to using 30k pseudo-data samples per
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Figure 5: Test PSNR v/s Training Iterations. We compare test set PSNR obtained by LightSpeed
(Grid)(ours), LightSpeed (frequency encoded), and Plücker-based neural light field as the training
progresses for 3 different network configurations.

scene. Dividing 10k samples amongst 5 sub-scenes assigns too few samplers per sub-scene, which is
detrimental to grid learning. We experimentally validate data requirements by comparing MobileR2L
and LightSpeed trained for different amounts of pseudo-data. We train one 400 × 400 sub-scene
from the Lego scene for 200k iterations with 1/5th of 10k and 30k samples, i.e., 2k and 6k samples.
Tab. 4 exhibits significantly decreased rendering quality for the LightSpeed network as compared to
MobileR2L when provided with less pseudo-data.

Table 4: Pseudo-Data Requirement for Non-Frontal Scenes. We analyze the importance of mining
more pseudo-data for non-frontal scenes. Using 1/5th of 10k and 30k sampled pseudo-data points,
we find more pseudo-data is crucial for the boosted performance of the LightSpeed model.

2k Samples 6k Samples

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
MobileR2L 30.19 0.9894 0.0354 30.56 0.9898 0.0336
LightSpeed (Ours) 30.44 0.9899 0.0299 31.2 0.9906 0.0284

Decoder Network Size. We further analyze the trade-off between inference speed and rendering
quality of our method and MobileR2L. To this end, we experiment with decoders of different
depths and widths. Each network is trained for 200k iterations and benchmarked on an iPhone 13.
Tab. 5 shows that a 30-layered LightSpeed model has a better inference speed and rendering quality
as compared to the 60-layered MobileR2L model. This 30-layered variant further occupies less
storage as compared to its full-sized counterpart. Furthermore, lighter LightSpeed networks obtain
a comparable performance as the 60-layered MobileR2L. Note that reducing the network capacity
of MobileR2L results in significant drops in performance. This means that we can get the same
rendering quality as MobileR2L with considerably reduced on-device resources, paving the way for a
much better trade-off between rendering quality and on-device inference speed.

Table 5: Decoder Network Size. Our approach maintains a much better tradeoff between inference
speeds v/s rendering quality, with our smallest network achieving comparable quality to the
MobileR2L. Benchmarking done on an iPhone 13. L is network depth, and W is network width.

Method PSNR ↑ Latency ↓ Storage ↓ FLOPs ↓
15-L W-256 MobileR2L 27.69 14.54 ms 2.4 MB 12626M
30-L W-128 MobileR2L 27.54 14.47 ms 1.4 MB 8950M
30-L W-256 MobileR2L 29.21 18.59 ms 4.5 MB 23112M
60-L W-256 MobileR2L 30.34 22.65 ms 8.2 MB 42772M

15-L W-256 LightSpeed 30.37 14.94 ms 10.5 MB 12833M
30-L W-128 LightSpeed 30.13 14.86 ms 9.5 MB 9065M
30-L W-256 LightSpeed 31.70 20.35 ms 12.6 MB 23319M
60-L W-256 LightSpeed 32.34 26.47 ms 16.3 MB 42980M

Ray-Space Grid Encoding. We provide an ablation in Tab. 6 below on how the proposed ray-space
grid encoder helps as compared to just using the light-slab representation with a traditional frequency
encoder. We compare different LightSpeed configurations with grid-encoder and frequency encoders.
Networks are trained for 200k iterations on a full-resolution 800×800 Lego sub-scene from Synthetic
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360◦ dataset. Further, we show the training dynamics of all the trained variants in Fig. 5 (red and
green plots). As claimed, our approach offers better visual fidelity and training dynamics (iterations to
reach a target PSNR) for both computationally cheaper small networks as well as full sized networks.

Table 6: Effect of using a Ray-Space Grid Encoder. We demonstrate the effect of using a grid-based
LightSpeed by comparing with a frequency encoded variant (no grid). L is network depth, and W is
network width.

Method PSNR ↑
15-L W-256 LS (PE) 28.84
30-L W-256 LS (PE) 30.63
60-L W-256 LS (PE) 32.16

15-L W-256 LS (Grid) 30.37
30-L W-256 LS (Grid) 31.70
60-L W-256 LS (Grid) 32.34

Comparison with Plücker Representation. Given the challenges of discretizing Plücker
representation, we compare between using positionally encoded Plücker coordinates and our grid-
based light-slab approach in Tab. 7 below for different network sizes to demonstrate the effectiveness
of our approach. We train all models for 200k iterations on one 800×800 Lego sub-scene. We also
share training curves for the variants in question in Fig. 5 (red and blue curves). As claimed, our
integrated approach performs better in terms of training time and test-time visual fidelity for large
and small models (having less computational costs) alike whereas the Plücker-based network shows a
sharp decline in visual fidelity and increased training times to reach a target test PSNR as network
size is reduced.

Table 7: Light-Slab Grid Representation vs. Plücker Coordinates. We compare the light-slab
based LightSpeed (LS) with a positionally encoded variant of the Plücker ray representation. L is
network depth, and W is network width.

Method PSNR ↑
15-L W-256 Plücker 28.65
30-L W-256 Plücker 30.84
60-L W-256 Plücker 32.14

15-L W-256 LS 30.37
30-L W-256 LS 31.70
60-L W-256 LS 32.34

5 Discussion and Conclusion

In this paper, we propose an efficient method, LightSpeed, to learn neural light fields using the
classic two-plane ray representation. Our approach leverages grid-based light field representations
to accelerate light field training and boost rendering quality. We demonstrate the advantages of our
approach not only on frontal scenes but also on non-frontal scenes by following a divide-and-conquer
strategy and modeling them as frontal sub-scenes. Our method achieves SOTA rendering quality
amongst prior works at same time providing a significantly better trade-off between rendering fidelity
and latency, paving the way for real-time view synthesis on resource-constrained mobile devices.

Limitations. While LightSpeed excels at efficiently modeling frontal and 360◦ light fields, it currently
lacks the capability to handle free camera trajectories. The current implementation does not support
refocusing, anti-aliasing, and is limited to static scenes without the ability to model deformable
objects such as humans. We plan to explore these directions in future work.

Broader Impact. Focused on finding efficiencies in novel view synthesis, our study could
significantly reduce costs, enabling wider access to this technology. However, potential misuse,
like unsolicited impersonations, must be mitigated.
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A Training Details

Network architecture. Our multi-scale feature grids have 16 levels, with resolutions exponentially
growing from 16 to 256, and 4-D features in every grid. Our LightSpeed network follows a similar
architecture to MobileR2L: 60 point-wise residual convolutions with 256 channels and BatchNorm
[15]and GeLU [14] activation interleaved. The convolutions are followed by 3 super-resolution
modules to upsample the low-resolution input to the desired resolution. The first two super-resolution
modules upsample the input by 2× and consist of transposed convolution layers with 4× 4 kernel
size followed by 2 residual convolution layers each. The third super-resolution module consists of
transposed kernel size with 4× 4 kernel size (upsample by 2×) for 360◦ scenes (both bounded and
unbounded) and 3× 3 kernel size (upsample by 3×) for forward-facing [22] scenes.

Training details. We use Adam [18] optimizer with a batch size of 32 to train the feature grids
and decoder network. We use an initial learning rate of 1e-5 with 100 warmup steps taking the
learning rate to 5e-4. Beyond that, the learning rate decays linearly until the training finishes. All our
experiments are conducted on Nvidia V100s and A100s.

B More Ablation Analysis

Choice of Splitting Planes. We discuss two aspects of dividing non-frontal scenes into separate
light fields: the number of parts to divide the scene into and the placement of the splitting planes.
We find the optimal number of splits for 360◦ scenes to be 5 since more number of splits would
mean increased storage cost, which is detrimental to mobile deployment. We also want the scene
splits to be collectively exhaustive (but not mutually exclusive to maintain continuity while switching
from one light field to another) in the poses sampled around the object. Consequently, fewer planes
would mean placing the splitting planes near the scene origin to cover the entire scene, which starts
to violate the frontal assumption for each sub-scene.

Given poses distributed on the surface of a sphere with radius r, we propose assigning each pose to
(possibly multiple) sub-scenes based on the camera origin satisfying one or more of the 5 following
criteria: 
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These five hyperplanes form the surface of a near-isometric trapezoidal prism, as shown in Fig.
3 (main paper). We experimentally show the effect of the choice of splitting plane by training
LightSpeed models on a Lego sub-scene with different plane placements and compare with the
corresponding MobileR2L models trained on the same data. Specifically, we choose two axis-aligned
planes at a distance of radius√

2
and radius√

3
from the scene origin and train models with 6k pseudo

data points sampled independently from the two resulting sub-scenes. As shown in Tab. 8, placing
the splitting plane at a distance of radius√

3
results in inferior performance as compared to placing

the splitting plane at a distance of radius√
2

from the origin. This suggests that frontal sub-scene
approximation starts to break down as we move the splitting plane closer to the origin.

Table 8: Choice of Splitting Planes. We experiment with two planes parallel to the x-y sub-space at
different distances. Splitting planes further from the origin work better empirically maintaining the
frontal sub-scene assumption.

LF Representation PSNR ↑ SSIM ↑ LPIPS ↓

radius /
√
2 30.44 0.9903 0.028

radius /
√
3 30.23 0.9899 0.031
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C Per-Scene Quantitative Results

We provide a per-scene quantitative comparison between LightSpeed, MobileR2L [6] and NeRF [23]
on the synthetic 360◦ dataset (Tab. 9, Tab. 10, and Tab. 11) and forward-facing dataset (Tab. 12, Tab.
13, and Tab. 14). We use PSNR, LPIPS, and SSIM as comparison metrics. As can be seen from
the comparisons, LighSpeed (our approach) outperforms MobileR2L [4] on almost all the metrics.
Further, LightSpeed performs comparably or even better than NeRF [23]. We also provide additional
zoom-in comparisons between LightSpeed and MobileR2L in Fig. 7.

Table 9: Per-scene PSNR ↑ comparison on the Synthetic 360◦ dataset between NeRF [23], MobileR2L
[4], and our approach.

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Average

NeRF[23] 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.01
MobileR2L [4] 33.66 25.05 29.80 36.84 32.18 30.54 34.37 28.75 31.34
LightSpeed (Ours) 34.21 25.63 32.82 36.77 34.35 29.51 35.65 28.90 32.23

Table 10: Per-scene SSIM ↑ comparison on the Synthetic 360◦ dataset between NeRF [23],
MobileR2L [4], and our approach.

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Average

NeRF[23] 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947
MobileR2L [4] 0.998 0.986 0.996 0.998 0.992 0.992 0.997 0.982 0.993
LightSpeed (Ours) 0.998 0.988 0.998 0.998 0.994 0.990 0.998 0.984 0.994

Table 11: Per-scene LPIPS ↓ comparison on the Synthetic 360◦ dataset between NeRF [23],
MobileR2L [4], and our approach.

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Average

NeRF[23] 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
MobileR2L [4] 0.027 0.083 0.025 0.026 0.043 0.029 0.012 0.162 0.051
LightSpeed (Ours) 0.017 0.061 0.016 0.023 0.019 0.030 0.007 0.138 0.039

Table 12: Per-scene PSNR ↑ comparison on the forward-facing dataset between NeRF [23],
MobileR2L [4], and our approach.

Method Room Fern Leaves Fortress Orchids Flower T-Rex Horns Average

NeRF[23] 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45 26.50
MobileR2L [4] 32.09 24.39 20.52 30.81 20.06 27.61 26.71 27.01 26.15
LightSpeed (Ours) 32.32 25.05 21.01 31.45 20.33 27.88 26.93 27.04 26.50

Table 13: Per-scene SSIM ↑ comparison on the forward-facing dataset between NeRF [23],
MobileR2L [4], and our approach.

Method Room Fern Leaves Fortress Orchids Flower T-Rex Horns Average

NeRF[23] 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828 0.811
MobileR2L [4] 0.995 0.973 0.923 0.995 0.916 0.971 0.973 0.982 0.966
LightSpeed (Ours) 0.991 0.976 0.931 0.996 0.921 0.972 0.975 0.983 0.968
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Table 14: Per-scene LPIPS ↓ comparison on the forward-facing dataset between NeRF [23],
MobileR2L [4], and our approach.

Method Room Fern Leaves Fortress Orchids Flower T-Rex Horns Average

NeRF[23] 0.178 0.280 0.316 0.171 0.321 0.219 0.249 0.268 0.250
MobileR2L [4] 0.088 0.239 0.280 0.103 0.296 0.150 0.121 0.217 0.187
LightSpeed (Ours) 0.085 0.211 0.255 0.093 0.272 0.145 0.119 0.209 0.173

D Limitations

Results on Unbounded Scenes. The rendering fidelity of LightSpeed is closely tied to the
performance of the corresponding NeRF teacher. LightSpeed uses Instant NGP [25] teachers for both
bounded and unbounded scenes to maintain experimental consistency. We would like to highlight that
Instant-NGP introduces the artifacts to unbounded scenes, which are carried forward to LightSpeed
via the mined pseudo-data. We share some of the pseudo-data images from Instant-NGP in Fig. 6.
MipNeRF360 [3] specifically uses space contraction techniques to model the unbounded nature of the
scene and deal with blurriness in the renderings. It further introduces a distortion-based regularizer to
remove floater artifacts and prevent background collapse. The techniques introduced by MipNeRF360
tackle the same type of artifacts pointed out in Fig. 6. Hence, using MipNeRF360 teachers will
mitigate both these issues and could boost the visual fidelity on unbounded scenes for LightSpeed.

Figure 6: Instant NGP Failure Cases for Unbounded Scenes. Such artifacts carry over to
LightSpeed, affecting its visual fidelity on unbounded scenes.
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(a) Scene (b) Ground truth (c) MobileR2L (d) LightSpeed

Figure 7: Qualitative Results on frontal and non-frontal scenes. Zoomed-in comparison between
MobileR2L and our LightSpeed approach.
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