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Abstract

Supervised Causal Learning (SCL) aims to learn causal relations from observational1

data by accessing previously seen datasets associated with ground truth causal2

relations. This paper presents a first attempt at addressing a fundamental question:3

What are the benefits from supervision and how does it benefit? Starting from seeing4

that SCL is not better than random guessing if the learning target is non-identifiable5

a priori, we propose a two-phase paradigm for SCL by explicitly considering6

structure identifiability. Following this paradigm, we tackle the problem of SCL on7

discrete data and propose ML4C. The core of ML4C is a binary classifier with a8

novel learning target: it classifies whether an Unshielded Triple (UT) is a v-structure9

or not. Starting from an input dataset with the corresponding skeleton provided,10

ML4C orients each UT once it is classified as a v-structure. These v-structures are11

together used to construct the final output. To address the fundamental question12

of SCL, we propose a principled method for ML4C featurization: we exploit the13

vicinity of a given UT (i.e., the neighbors of UT in skeleton), and derive features by14

considering the conditional dependencies and structural entanglement within the15

vicinity. We further prove that ML4C is asymptotically perfect. Last but foremost,16

thorough experiments conducted on benchmark datasets demonstrate that ML4C17

remarkably outperforms other state-of-the-art algorithms in terms of accuracy,18

robustness and transferability. In summary, ML4C shows promising results on19

validating the effectiveness of supervision for causal learning.20

1 Introduction21

The problem of causal learning is to learn causal relations from observational data [13]. The learned22

causal relations are typically represented in the form of a Directed Acyclic Graph (DAG), where each23

edge in the DAG indicates direct cause-effect relation between the parent node and child node.24

The methods of causal learning mostly fall into four categories: constraint-based, score-based,25

continuous optimization method and functional causal models. Each of these methods takes a given26

dataset as input and outputs a DAG but with different criteria. For instance, the DAG should be27

consistent with conditional independencies in the data (constraint-based); or it is optimal w.r.t. a28

pre-defined score function under either combinatorial constraint (score-based) or continuous equality29

constraint (continuous optimization). In a nutshell, these methods can be viewed as unsupervised30

since they do not access additional datasets associated with ground truth causal relations.31

A new line of research called Supervised Causal Learning (SCL), on the other hand, aims to learn32

causal relations in the supervised fashion: the algorithm has access to datasets associated with33

ground truth causal relations, in the hope that such supervision is beneficial to learning causal34

relations on newly unseen datasets. Despite several existing works on this direction (see Related35

Work), a fundamental question remains unanswered: How is supervised causal learning possible?36
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Figure 1: (a) Two-phase paradigm for supervised causal learning. (b) ML4C’s workflow.

Specifically, compared with unsupervised causal learning methods, can we gain additional benefits37

from supervision? If the answer is positive, then what are the benefits and how does it benefit?38

We tackle the problem by first seeing crucial connection between SCL and causal structure identi-39

fiability. Considering the problem of causal learning on discrete data, theorem in [24] states that,40

under standard assumptions (i.e., Markov assumption, faithfulness and causal sufficiency), we can41

only identify a graph up to its Markov equivalence class. Markov equivalence class is the set of42

DAGs having same skeleton and same v-structures, which can be represented by CPDAG (Com-43

pleted Partially Directed Acyclic Graph). Thus, the (un)directed edges in the CPDAG indicate44

(non-)identifiable causal relations. Each non-identifiable edge in CPDAG can be oriented by either45

direction to equivalently fit the observational data. Given an SCL algorithm with learning target as46

the orientation of an edge, we see that it is not better than random guessing (or could be worse due to47

sample bias in training data) to predict any non-identifiable edge since we can assign either X → Y48

or X ← Y with same input dataset. This statement is applicable to general learning target since an49

SCL algorithm can take different target such as orientation of an edge, the whole DAG, or others.50

Proposition 1. If the learning target is non-identifiable (i.e., every edge in the target is non-51

identifiable) a priori, then SCL is not better than random guessing.52

Consequently, we propose and advocate a two-phase paradigm for SCL, as depicted in Figure 1(a):53

phase one corresponds to a binary classification task, where an SCL algorithm needs to classify54

whether a specific learning target is identifiable or not; only if it is classified as identifiable, then we55

go to phase two to classify the specific orientation of the learning target. Following this paradigm,56

we tackle the problem of SCL on discrete data and propose an algorithm ML4C. The core of ML4C57

is a binary classifier with a novel learning target: it classifies whether an Unshielded Triple (UT: a58

triple of variables 〈X,T, Y 〉 where X and Y are adjacent to T but are not adjacent to each other) is a59

v-structure or not. Starting from an input dataset with the corresponding skeleton provided, ML4C60

orients each UT once it is classified as a v-structure. These v-structures are further used to construct61

a CPDAG as output. Such a single classifier facilitates both learning tasks in the two phases, since an62

identifiable UT implies that it is a v-structure [32] (i.e., up to the partial DAG before applying Meek63

rules [23] which is a standard post processing).64

To address the fundamental question of SCL, we propose a principled method for ML4C featurization.65

Specifically, we exploit the vicinity of a given UT (i.e., the neighbors of UT in skeleton), and derive66

features by considering the conditional dependencies and structural entanglement within the vicinity.67

We further define discriminative predicate (i.e., a binary predicate function with domain as ML4C’s68

feature set) and prove that there exist weak discriminative predicates and strong discriminative69

predicates (i.e., values of the predicates are one-to-one correspondence with ground truth labels).70

We further prove that ML4C is asymptotically perfect. Last but foremost, thorough experiments on71

benchmark datasets demonstrate that ML4C remarkably outperforms other state-of-the-art algorithms72

w.r.t. accuracy, robustness and transferability. Our main contributions are summarized as follows:73

1. We advocate the two-phase paradigm for SCL with consideration of causal structure identifiability.74

2. We propose an SCL algorithm ML4C, with the following novelties: i) Learning Target: The core75

of ML4C is a binary classifier with the orientation of a UT as its learning target to address the two-76

phase tasks simultaneously. ii) Featurization: A principled method to exploit vicinity information77

in terms of dependencies and entanglement of a given UT. iii) Learnability: We prove that ML4C78
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is asymptotically perfect. iv) Empirical Performance: Experiments conducted on benchmark79

datasets demonstrate that ML4C remarkably outperforms other state-of-the-art algorithms.80

2 Related Work81

We divide literature on causal learning into supervised and unsupervised approaches, depending on82

whether additional datasets (associated with ground truth causal relations) are accessed (supervised)83

or not (unsupervised). In the literature of unsupervised causal learning, constraint-based methods aim84

to identify a DAG which is consistent with conditional independencies. The learning procedure of85

constraint-based methods first identifies the corresponding skeleton and then conducts orientation86

based on v-structure identification [34]. The typical algorithm is PC [31], and there are also PC-87

derived algorithms such as Conservative-PC [26], PC-stable [7] and Consistent-PC [19] which88

improve the robustness on v-structure identification. Score-based methods aim to find the DAG which89

is optimal w.r.t. a pre-defined score function under combinatorial constraint by a specific search90

procedure, such as forward-backward search GES [6], hill-climbing [16], integer programming [8], or91

by approximate algorithms based on order search [27]. Continuous optimization methods transform92

the discrete search procedure into continuous equality constraint: NOTEARS [36] formulates the93

acyclic constraint as a continuous equality constraint, it is further extended by DAG-GNN [35] to94

support learning non-linear causal relations.95

SCL emerges from the task of orienting edge in the continuous, non-linear bivariate case under96

Functional Causal Model (FCM) formalism. Given a collection of cause-effect samples (dataset97

∼ binary label indicating whether X → Y or X ← Y ), supervised approaches such as RCC [20],98

NCC [21], D2C [4] and Jarfo [12] achieve better performance on predicting pairwise relations (i.e.,99

orientation of an edge) than unsupervised approaches such as ANM [14] or IGCI [15]. Differently,100

[18] sets the learning target as the whole DAG structure instead of pairwise relation and it is applied on101

data which is generated by linear Structural Equation Model (SEM). We summarize the differences in102

problem space between ML4C and the other SCL approaches as follows: i) We advocate a two-phase103

learning paradigm and emphasize the relationship between identifiability and learnability. Specifically,104

presuming additive noise model [14] or linear SEM with non-Gaussian noise [29] provides license105

to identifiability thus the aforementioned approaches can be viewed as specific tasks in phase two.106

ii) We tackle SCL’s learnability not only via empirical evaluation but also by theoretical analysis to107

shed light on the fundamental question of learnability. iii) ML4C deals with discrete data while other108

approaches mainly focus on continuous data.109

3 Background110

3.1 Basic Notations111

A discrete dataset Di consists of ni records and di categorical columns, which represents ni instances112

drawn i.i.d. from di discrete variables X1, X2, · · · , Xdi
by a joint probability distribution Pi, which113

is entailed by an underlying data generating process, denoted as DAG Gi.114

Markov factorization property: Given a joint probability distribution P and a DAG G, P is said to115

satisfy Markov factorization property w.r.t. G if P := P (X1, X2, · · · , Xd) =
∏d

i=1 P
(
Xi|paGi

)
,116

where paGi is the parent set of Xi in G.117

Markov assumption: P is said to satisfy Markov assumption (or Markovian) w.r.t. a DAG G if118

X⊥GY |Z ⇒ X⊥Y |Z. Here ⊥G denotes d-separation, and ⊥ denotes statistical independence.119

Markov assumption indicates that any d-separation in graph G implies conditional independence in120

distribution P . Markov assumption is equivalent to Markov factorization property [17].121

Faithfulness: Distribution P is faithful w.r.t. a DAG G if X⊥Y |Z ⇒ X⊥GY |Z.122

Canonical dataset: We say a discrete dataset D is canonical if its underlying probability distribution123

P is Markovian and faithful w.r.t. some DAG G.124

3



3.2 Causal Structure Identifiability125

Identifiability discusses which parts of the causal structure can in principle be inferred from the126

distribution. Below we present the established theory of identifiability on discrete data.127

Causal sufficiency: There are no latent common causes of any of the variables in the graph.128

Definition 1 (Markov equivalence). Two graphs are Markov equivalent if and only if they have129

same skeleton and same v-structures. A Markov equivalence class can be represented by a CPDAG130

having both directed and undirected edges. A CPDAG can be derived from a DAG G, denoted as131

CPDAG(G). The theorem of Markov completeness in [24] states that, under causal sufficiency, we132

can only identify a causal graph up to its Markov equivalence class on canonical data. Therefore, the133

(non-)identifiable causal relations are the (un)directed edges in the CPDAG. Formally,134

Definition 2 (Identifiability). Assuming P is Markovian and faithful w.r.t. a DAG G and causal135

sufficiency, then each (un)directed edge in CPDAG(G) indicates (non-)identifiable causal relation.136

3.3 ML4C Related Notations137

Definition 3 (Skeleton). A skeletonE defined over distribution P (X1, X2, · · · , Xd) is an undirected138

graph such that there is an edge between Xi and Xj if and only if Xi and Xj are always dependent,139

i.e., @Z ⊆ {X1, X2, · · · , Xd} s.t. Xi⊥Xj |Z. Skeleton is a statistical concept, which can be140

obtained prior to facilitating various downstream tasks. Recently, there have been some novel141

skeleton learning algorithms such as [10]. In particular, skeleton can be used for causal learning:142

theorem in [32] states that if distribution P is Markovian and faithful w.r.t. a DAG G, then skeleton143

E is the same as the undirected graph of G.144

Definition 4 (UT). A triple of variables 〈X,T, Y 〉 in a skeleton is an unshielded triple, or short145

for UT, if X and Y are adjacent to T but are not adjacent to each other. 〈X,T, Y 〉 can be further146

oriented to become a v-structure X → T ← Y , in which T is called the collider.147

Definition 5 (PC). Denote the set of parents and children of X in a skeleton as PCX , in other words,148

PCX are the neighbors of X in the skeleton. For convenience, if we discuss PCX in the context of a149

UT 〈X,T, Y 〉, we intentionally mean the set of parents and children of X but exclude T .150

Definition 6 (Vicinity). We define the vicinity of a UT 〈X,T, Y 〉 as V〈X,T,Y 〉 := {X,T, Y }∪PCX∪151

PCY ∪PCT . Vicinity is a generalized version of PC, i.e., the neighbors of {X,T, Y } in the skeleton.152

ML4C’s training set: The training set is a collection of discrete datasets D1, · · · , Dn, where each153

dataset Di is associated with a ground truth DAG Gi, such that Di is sampled from Gi. Gi derives154

labels (depends on the chosen learning target), thus {Di, Gi}i∈{1,··· ,n} form ML4C’s training set.155

We can sample graphs from DAG space and generate corresponding datasets, thus obtaining training156

set in our problem is straightforward.157

4 Approach158

4.1 Overview159

The core of ML4C is a binary classifier called ML4C-Learner, which takes the orientation of a UT160

as its learning target, i.e., it classifies whether an input UT 〈X,T, Y 〉 is a v-structure (orientation:161

X → T ← Y ) or not (orientation remains unknown). Figure 1(b) depicts the overall workflow of162

ML4C, which is composed of ML4C-Learner with other important inductive biases. Starting from an163

input dataset Di with corresponding skeleton Ei, we first obtain all the UTs from Ei. Featurization is164

then conducted to represent each UT as an embedded vector, which is further fed into ML4C-Learner.165

In the inference stage, we obtain all the v-structures which are classified by ML4C-Learner and166

reconstruct a partial DAG and then, a CPDAG is output by applying Meek rules on the partial DAG.167

In the training stage, the label of each UT is obtained by querying from ground truth DAG Gi. We168

collect labeled data from multiple datasets in ML4C’s training set.169

Proposition 2. If ML4C-Learner is a perfect classifier, then ML4C outputs correct CPDAG of a170

canonical dataset (i.e., ML4C is perfect).171

By Markov completeness, the set of v-structures is invariant across all Markov equivalent DAGs for172

a canonical dataset, and it can fully recover the CPDAG, provided that the skeleton is given. Thus,173
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besides its dedicated role in phase 2, ML4C-Learner also facilitates learning task in phase 1 since an174

identifiable UT implies that it is a v-structure (up to the partial DAG before applying Meek rules).175

4.2 Featurization176

We propose a principled method for ML4C-Learner’s featurization, which avoids the need of hand-177

crafted features. More importantly, we further prove that ML4C-Learner is asymptotically perfect.178

Design Principles: Our key aspect of featurization is to broaden focus from a specific UT 〈X,T, Y 〉179

to its vicinity and seeking conditional dependencies and structural entanglement within the vicinity, to180

reveal reliable and robust asymmetry to distinguish v-structure and non-v-structure UTs. Specifically,181

conditional dependencies are the key materials for traditional causal learning methods (e.g., condi-182

tional independences for constraint-based methods), and structural entanglement (e.g., PCX = PCT )183

are relevant to identifiability: higher entanglement makes the UT less likely to be identifiable.184

• Dependencies within Vicinity185

Conditional dependency: Denoted as X ∼ Y |Z , which is a non-negative scalar that measures the186

dependence between two random variables X and Y given variable set Z. Operationally, X ∼ Y |Z187

is composed of two parts, bivariable X ∼ Y , and conditional Z. We further extend the definition to188

allow a set of variables in bivariable, and an ensemble (i.e., a set of set) as conditional:189

Extended conditional dependency: Denoted as A ∼ B|Z:= {X ∼ Y |Z :X ∈ A, Y ∈ B,Z ∈190

Z}, where A and B are set of variables, and Z is an ensemble. Thus, extended conditional191

dependency is a set of scalars.192

Within the vicinity of 〈X,T, Y 〉, we start from measuring dependencies between {X, PCX} and193

{Y, PCY } by conditioning on {T, PCT }. Intuitively, if 〈X,T, Y 〉 is a v-structure, conditioning on194

T or T ’s descendants tends to strengthen the dependency between PCX and PCY since the paths195

passing X − T − Y are unblocked; otherwise, conditioning on T tends to weaken the dependency196

between PCX and PCY because T blocks the paths passingX−T −Y . Therefore, such conditional197

dependencies reflect potential asymmetry to distinguish v-structure and non-v-structure. Formally,198

Definition 7 (Domain of bivariable). Denoted as B := {X, PCX} × {Y, PCY } ≡199

{X ∼ Y,X ∼ PCY , PCX ∼ Y, PCX ∼ PCY }, here symbol × is Cartesian product.200

Definition 8 (Sepsets). Denoted as S := {S : X⊥Y |S, S ⊂ PCX ∪ T, or S ⊂ PCY ∪ T}. Under201

faithfulness assumption, sepsets S is an ensemble where each item is a subset of variables within the202

vicinity that d-separates X and Y .203

Definition 9 (Domain of conditional). Denoted as C := {∅, T,PCT } ∨ {∅, S} ≡204

{∅, T,PCT ,S,S ∨ T,S ∨ PCT }, where PCT := {{I} : I ∈ PCT } which is an ensemble version205

of PCT , and S ∨ PCT := {S ∪ I : S ∈ S, I ∈ PCT }. Here symbol ∨ is element-wise union.206

We exploit the extended conditional dependencies from B × C, i.e., we pick a bivariable from B207

and a conditional from C, and calculate the extended conditional dependency. There are in total208

|B| × |C| = 24 extended conditional dependencies.209

Lemma 1. Sepsets S of any UT of a canonical dataset is non-empty. All proofs are available in the210

supplementary material.211

Remark 1. We intend to restrict the sepsets within the vicinity of 〈X,T, Y 〉. Lemma 1 shows the212

existence of such d-separation sets within vicinity. Furthermore, searching for all d-separation sets is213

highly time-consuming, thus the computational cost can also be saved drastically.214

• Entanglement within Vicinity215

Structural entanglement reflects complex structure within the vicinity of 〈X,T, Y 〉. Variables X , Y216

and T can mutually share common neighbors, and their neighbors may also overlap with sepsets217

S. We call such overlaps structural entanglement. Intuitively, stronger entanglement indicates218

denser structure of vicinity thus making the UT less likely to be identifiable. Therefore, structural219

entanglement is an important aspect for featurization. Specifically, we exploit the overlap coefficient220

[33] to measure the entanglement:221

Definition 10 (Overlap coefficient). OLP (A,B) := |A ∩B|/min (|A|, |B|), where A and B are222

two sets of variables. We extend this formula to support ensemble as input:223
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(Extended) Overlap coefficient: OLP (A,S) :=
∑|S|

i=1 OLP (A, Si) /|S|. Naturally, we consider the224

entanglement in terms of overlap coefficient on each pair of items in domain {PCX , PCY , PCT ,S}.225

Thus, we use 6 scalars to represent the entanglement within the vicinity of a UT.226

• Embedding227

We aim to represent the dependencies and entanglement by a feature vector with fixed dimensionality,228

which can be used to train ML4C-Learner. Regarding each extended conditional dependency A ∼229

B|Z : A ∼ B ∈ B,Z ∈ C, it consists of a set of scalars with varied set size across UTs, we230

adopt the kernel mean embedding technique in [30] to represent each A ∼ B|Z as a vector with231

fixed dimensionality. We further modify the embedding algorithm by adding min {A ∼ B|Z} and232

max {A ∼ B|Z} as two additional features. We directly use the 6 scalars to represent structural233

entanglement without further transformation. We concatenate all the embedded vectors to form the234

final feature vector, as input for ML4C-Learner.235

4.3 Learnability236

We have presented ML4C’s featurization and started seeing that conditional dependencies and237

structural entanglement have potential to reveal asymmetry to distinguish v-structure and non-v-238

structure UTs. Now we provide rigorous analysis to show that, for a canonical dataset with sufficient239

samples, ML4C-Learner tends to a perfect classifier. To prove this, we first propose a surrogate object240

called discriminative predicate:241

Definition 11 (Discriminative predicate). A discriminative predicate is a binary predicate function242

with domain as ML4C’s feature set. A discriminative predicate can be viewed as a special classifier243

with pre-specified form of mechanism (i.e., not learned from data).244

Definition 12 (Weak / Strong discriminative predicate). Whenever a discriminative predicate takes245

the feature vector of a UT as input, a weak discriminative predicate satisfies one of the following246

two criteria; a strong discriminative predicate satisfies both: i) it is evaluated to TRUE if the UT is a247

v-structure; ii) it is evaluated to FALSE if the UT is not a v-structure.248

By definition, a weak discriminative predicate exhibits discriminative power since it is evaluated false249

implies the UT is a non-v-structure (or true implies v-structure). A strong discriminative predicate250

can be viewed as a perfect classifier. Denote {A ∼ B|Z} > δ := X ∼ Y |Z > δ : ∀X ∈ A, Y ∈251

B,Z ∈ Z , then we have:252

Lemma 2 (Existence of weak discriminative predicate). For a canonical dataset with infinite samples,253

the following are three weak discriminative predicates: i) {X ∼ Y |T} > 0, ii) {X ∼ Y |PCT } = 0254

, iii) {PCX ∼ PCY |S ∪ T} > 0.Take {X ∼ Y |T} > 0 as an example, 〈X,T, Y 〉 is a v-structure255

⇒ T is a collider ⇒ T unblocks X and Y through path X − T − Y ⇒ {X ∼ Y |T} > 0 ⇒256

min {X ∼ Y |T} > 0, where min {X ∼ Y |T} is a feature of ML4C-Learner since X ∼ Y ∈257

B, {T} ∈ C.258

Lemma 3 (Existence of strong discriminative predicate). For a canonical dataset with infinite259

samples, the following are three strong discriminative predicates: i) OLP(T,S) = 0, ii) OLP(T,S) <260

0.5, iii) OLP(T,S) < 1 ∧min {X ∼ Y |T ∪ S} > 0.261

CPC/MPC/GLL-MB as special cases of ML4C-Learner: Predicate OLP (T,S) = 0 ⇐⇒ ∀S ∈262

S, T /∈ S, which states that the predicate is TRUE if T is not in any d-separation set of X and Y .263

Having correct skeleton provided, this is the criterion of Conservative PC algorithm (CPC) [25] for264

identifying v-structures. Thus, CPC can be viewed as a special case of ML4C by replacing ML4C-265

Learner with such a pre-specified logic; OLP (T,S) < 0.5 indicates that if more than half of the d-266

separation sets do not contain T , then the UT is oriented as a v-structure, which is called majority rule267

PC algorithm (MPC) [9]; predicate OLP (T,S) < 1∧min {X ∼ Y |T ∪ S} > 0⇒ ∃S ∈ S, T /∈ S268

and X and Y are dependent when conditioning on T ∪ S, which is used for GLL-MB [2] to more269

securely identify v-structures. These predicates are with suboptimal performance because only a270

small portion of features are exploited and the overall loss function of training data is disregarded,271

thus in practice when an appropriate machine learning model is adopted, ML4C-Learner achieves272

better performance.273

Theorem 1. ML4C-Learner tends to a perfect classifier on classifying a canonical dataset with274

sufficient samples.275

6



5 Evaluation276

Benchmark Datasets We use discrete datasets sampled by all 24 networks from bnlearn reposi-277

tory [28] for evaluation. For each network, we sample 1k, 5k, 10k, 15k, 20k records for use.278

ML4C’s Training and Inference We generate ML4C’s training data synthetically (which is also279

used for other SCL competitors). Specifically, 400 unique DAGs are randomly generated by two280

models: Erdős-Rényi (ER) model [11] and Scale-Free (SF) model [1], with the number of nodes281

ranging from 10 to 1,000. A standard random forward data generation process is applied to obtain282

10k observational samples for each graph. We further extract UTs from the 400 DAGs, consisting of283

97,010 v-structures (label = 1) and 195,691 non-v-structures (label = 0). We use these instances to284

train ML4C-Learner, which is implemented by a XGBoost [5] binary classifier with default hyper-285

parameters and we use binary cross-entropy as the loss function. Details on our synthesis procedure,286

configurations and implementation of ML4C-Learner are available in the supplementary material.287

Competitors We categorize state-of-the-art causal learning algorithms from two aspects, supervised288

vs. unsupervised, and can or cannot take skeleton as input. We choose Jarfo [12], D2C [4], RCC [20],289

and NCC [21] as SCL competitors. Same as ML4C, all these algorithms can and do require skeleton290

as input. All these algorithms use ML4C’s training set for training but with different learning target291

extracted. Regarding unsupervised algorithms, we choose PC [31], Conservative-PC (CPC) [26],292

Majority-rule PC (MPC) [7], GLL-MB (GMB) [2], GES [6], Grow-Shrink (GS) [22], Hill-Climbing293

(HC) [16], and Conditional Distribution Similarity (CDS) [12]. which can also take skeleton as input.294

Lastly, we also compare with DAG-GNN (DGNN) [35], BLIP [27], and GOBNILP (GNIP) [8],295

which are unsupervised algorithms but cannot take skeleton as input. All these competitors are296

capable of dealing with discrete data. All experiments are done in a Windows Server with 2.8GHz297

Intel E5-2680 CPU and 256G RAM. Details are in the supplementary material.298

Design Our evaluation mainly consists of two parts: end-to-end comparison with competitors on299

benchmark datasets, and in-depth experiments on ML4C’s learnability. The latter is further divided300

into four aspects: i) Towards a perfect classifier. As stated in proposition proposition 2, ML4C-301

Learner is the core component and we would like to know how far it is from a perfect classifier.302

ii) Reliability (against weak / strong discriminative predicates). As stated in lemma 2 and 3, there303

exist weak and strong discriminative predicates, which have discriminative power and thus are helpful304

for ML4C-Learner. Some strong discriminative predicates are equivalent to specific logics of existing305

work such as CPC or GLL-MB. Thus, we would like to see how ML4C-Learner takes the advantage306

of machine learning, to learn a more reliable classification mechanism (which is also latent and307

more sophisticated) than individual weak / strong discriminative predicates. iii) Robustness (against308

varied sample size). It is known that many causal learning algorithms lack robustness w.r.t sample309

noise for finite datasets [20], especially CI tests are error-prone on small samples for constraint-310

based algorithms. We would like to evaluate the robustness of ML4C (i.e., the latent classification311

mechanism) against varied sample sizes. iv) Transferability. It’s important for a machine learning312

model to generalize well to various types of testing data which are different from training data, such313

as different scale (#nodes), graph sparsity, different generating mechanisms, etc.314

Metrics We use two standard metrics for performance evaluation: Structural Hamming Distance315

(SHD) and F1-score. For each dataset, we measure the SHD / F1-score of the output CPDAG (learned316

by a specific algorithm) against the ground truth CPDAG. Specifically, SHD is calculated at CPDAG317

level, which is the smallest number of edge additions, deletions, direction reversals and type changes318

(directed vs. undirected) to convert the output CPDAG to ground truth CPDAG. F1-score is calculated319

over identifiable edges. Roughly, F1-score can be viewed as a normalized version of SHD. Now we320

present the experiment results:321

End-to-End Comparison Due to page limit, we report SHD and F1-score of all algorithms on322

19 large-scale datasets (full results including other 5 smallest and trivial datasets are available in323

the supplementary material), as depicted in Table 1. ‘-’ means the algorithm fails on the dataset324

(either out-of-memory / exceeds 24 hours execution time / break caused by unknown errors). ML4C325

significantly outperforms all other competitors. The average F1-score of ML4C is the highest (0.92,326

first column in Table 2). Moreover, ML4C exhibits the most stable performance across all datasets,327

its average ranking is 1.5 ± 0.7, while the second best is GLL-MB (GMB), with average ranking328
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Table 1: Experiment results for end-to-end comparison with SOTA causal learning algorithms on
benchmark datasets. Algorithm names are abbreviated. SHD and F1-score are reported. The last two
rows show statistics of rank by SHD and F1-score for all competitors (Note: F1-score is at UT level).

Datasets
#nodes/#edges

supervised unsupervised no skeleton input

ML4C Jarfo D2C RCC NCC PC CPC MPC GMB GES GS HC CDS DGNN BLIP GNIP

child SHD 0 18 16 18 20 22 13 9 20 15 13 13 18 23 0 0
20/25 F1 1.0 .24 .43 .33 .12 .12 .00 .74 .12 .47 .59 .57 .34 .25 1.0 1.0

insurance SHD 5 41 30 34 28 36 34 21 29 34 28 19 36 53 35 14
27/52 F1 .89 .26 .44 .42 .44 .39 .00 .66 .55 .46 .56 .76 .36 .05 .51 .82

water SHD 5 33 43 31 0 4 60 7 8 38 27 38 18 61 65 52
32/66 F1 .94 .52 .34 .56 1.0 .97 .00 .91 .87 .49 .62 .46 .76 .00 .20 .50

mildew SHD 6 - 17 25 34 21 - - 7 3 9 23 18 52 36 -
35/46 F1 .87 - .68 .50 .33 .56 - - .85 .93 .80 .64 .65 .19 .41 -

alarm SHD 1 21 26 18 20 20 20 6 17 8 3 21 18 46 17 2
37/46 F1 .98 .57 .44 .64 .57 .57 .57 .92 .64 .86 .94 .66 .62 .12 .82 .98

barley SHD 5 48 55 50 0 3 - - 8 42 - 34 50 87 60 42
48/84 F1 .95 .46 .38 .44 1.0 .96 - - .91 .59 - .72 .43 .00 .48 .67

hailfinder SHD 11 47 41 43 0 17 - - 26 60 - 59 44 76 111 118
56/66 F1 .80 .37 .45 .42 1.0 .85 - - .70 .21 - .23 .42 .00 .18 .12

hepar2 SHD 0 54 81 59 0 35 27 37 14 46 40 35 75 123 79 61
70/123 F1 1.0 .59 .34 .54 1.0 .72 .81 .70 .89 .75 .70 .81 .39 .00 .54 .68

win95pts SHD 1 65 51 33 0 8 42 7 5 32 21 16 50 112 103 -
76/112 F1 .99 .43 .54 .73 1.0 .95 .64 .95 .97 .77 .85 .91 .57 .00 .47 -

pathfinder SHD 25 157 145 151 0 150 - - 147 158 - 168 148 196 241 -
109/195 F1 .77 .21 .29 .21 1.0 .29 - - .30 .29 - .28 .31 .00 .07 -

munin1 SHD 10 169 154 153 72 86 117 - 84 109 - 233 151 - 257 -
186/273 F1 .97 .42 .47 .46 .77 .71 .58 - .72 .67 - .26 .50 - .42 -

andes SHD 0 226 209 246 0 4 83 4 5 47 15 38 149 - 175 -
223/338 F1 1.0 .35 .41 .29 1.0 .99 .75 .99 .98 .92 .96 .92 .60 - .76 -

diabetes SHD 25 220 395 237 48 0 - - 204 146 - 592 368 - 534 -
413/602 F1 .96 .62 .38 .62 .96 1.0 - - .68 .77 - .03 .43 - .43 -

pigs SHD 0 350 332 263 400 400 - - 268 0 - 532 316 - 6 -
441/592 F1 1.0 .44 .46 .59 .35 .35 - - .56 1.0 - .18 .50 - 1.0 -

link SHD 0 731 630 638 749 737 - - 204 324 - 1047 400 - 947 -
724/1125 F1 1.0 .38 .45 .45 .39 .40 - - .81 .80 - .14 .64 - .49 -

munin SHD 72 967 790 816 0 156 - - 458 661 - 1397 795 - 1599 -
1041/1397 F1 .95 .36 .48 .44 1.0 .89 - - .69 .62 - .00 .51 - .29 -

munin2 SHD 118 554 611 646 1052 898 - - 536 632 - 1240 753 - 1321 -
1003/1244 F1 .92 .60 .56 .55 .19 .30 - - .57 .58 - .01 .49 - .46 -

munin3 SHD 113 616 629 688 1048 860 - - 544 566 - 1306 819 - 1539 -
1041/1306 F1 .92 .58 .57 .54 .25 .37 - - .60 .65 - .00 .46 - .26 -

munin4 SHD 126 696 658 776 1058 876 - - 649 618 - 1388 812 - 1627 -
1038/1388 F1 .93 .54 .56 .50 .29 .39 - - .55 .64 - .00 .49 - .28 -

rank(SHD) mean 1.5 9.1 8.2 7.9 5.1 6.3 10.8 9.5 4.4 5.8 9.6 8.7 7.9 13.3 10.5 10.7
±stdd 0.7 3.2 3.7 2.2 4.2 3.7 2.9 4.1 2.4 2.9 3.6 2.7 2.4 1.8 3.5 4.3

UT-F1 mean .90 .22 .19 .27 .66 .50 .53 .87 .59 .54 .77 .47 .30 .09 .36 .70
±stdd .13 .17 .13 .18 .40 .34 .33 .16 .32 .28 .24 .35 .22 .07 .29 .33

Table 2: Reliability: average F1-score of ML4C vs. 8 discriminative predicates extracted from ML4C
features on benchmark datasets.

strong predicates weak predicates

id ML4C 1 2 3 4 1 2 3 4

F1 .92±.20 .77±.31 .52±.27 .38±.25 .66±.27 .72±.25 .61±.29 .73±.30 .55±.27

4.4 ± 2.4. Among the competitors, NCC ranks #1 on 8 datasets (note that ML4C ranks #1 on 11329

datasets), but its performance fluctuates. Overall it only ranks 5.1± 4.2. Last but not least, ML4C330

shows high accuracy (F1>0.9) on very large-scale datasets (e.g., medicine datasets ‘munin*’ [3])331

while max(others) ∼ 0.6.332

Towards a Perfect Classifier The last row of Table 1 shows the performance of ML4C-Learner333

component at UT level by UT-F1 (i.e., F1-score of classifying UTs): such UT level accuracy is334

crucial for causal learning on discrete data, since the set of v-structures is invariant across all Markov335

equivalent DAGs and it can fully recover the CPDAG. The average F1-score of ML4C-Learner is336

0.90± 0.13, which shows promising results towards a perfect classifier.337
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Table 3: Robustness: ML4C is trained on synthetic datasets with sample size = 10k, but tested on
benchmark datasets with different sample sizes ∈ {1k, 5k, 10k, 15k, 20k}.

size 1k 5k 10k 15k 20k size 1k 5k 10k 15k 20k size 1k 5k 10k 15k 20k

SHD insurance 11 1 5 1 0 water 12 11 5 8 6 mildew 8 5 3 6 1
F1 27/52 .81 .97 .89 .97 1.0 32/66 .86 .87 .94 .89 .93 35/46 .83 .89 .93 .87 .98

SHD alarm 5 4 0 1 5 barley 13 9 4 8 6 hailfinder 15 15 6 15 13
F1 37/46 .93 .95 1.0 .98 .93 48/84 .88 .93 .97 .92 .94 56/66 .74 .72 .90 .72 .76

SHD hepar2 8 2 0 1 2 win95pts 7 1 0 1 1 pathfinder 1 7 25 7 1
F1 70/123 .96 .99 1.0 .99 .99 76/112 .96 .99 1.0 .99 .99 109/195 .99 .92 .77 .92 .99

SHD munin1 32 7 10 9 15 andes 3 2 0 2 0 diabetes 18 28 4 26 27
F1 186/273 .89 .98 .97 .97 .95 223/338 .99 .99 1.0 .99 1.0 413/602 .97 .95 .99 .96 .96

SHD pigs 0 0 0 0 0 link 88 13 0 0 0 munin 107 76 71 93 87
F1 441/592 1.0 1.0 1.0 1.0 1.0 724/1125 .93 .99 1.0 1.0 1.0 1041/1397 .93 .95 .96 .94 .94

SHD munin2 117 95 120 110 97 munin3 151 119 113 99 62 munin4 165 130 123 146 133
F1 1003/1244 .92 .93 .92 .93 .93 1041/1306 .90 .92 .92 .94 .96 1038/1388 .90 .92 .93 .91 .93

Table 4: Transferability: ML4C trains/tests both on synthetic datasets with different configurations.

train test SHD F1 test SHD F1 test SHD F1 test SHD F1

#
no

de

10 10 1.2±2.4 .94±.12 50 4.8±3.4 .95±.03 100 6.6±4.7 .97±.02 1k 50.6±8.4 .97±.00
50 10 0.4±0.8 .97±.05 50 0.8±1.0 .99±.01 100 4.4±4.7 .98±.02 1k 23.2±5.7 .99±.00
100 10 0.0±0.0 1.0±.00 50 1.2±1.6 .99±.01 100 4.0±4.6 .98±.02 1k 21.6±4.8 .99±.00
1k 10 0.4±0.8 .97±.05 50 0.8±1.0 .99±.01 100 1.4±2.3 .99±.01 1k 14.8±8.2 .99±.00

sp
ar

si
ty

1 1 0.8±1.6 .99±.02 2 3.4±2.9 .97±.02 3 3.0±2.5 .98±.01 4 11.4±3.9 .95±.02
2 1 1.8±1.6 .98±.02 2 2.2±1.7 .98±.01 3 2.2±2.0 .99±.01 4 8.2±2.5 .97±.01
3 1 1.0±1.3 .98±.02 2 2.2±1.3 .98±.01 3 4.4±3.6 .97±.02 4 4.0±3.2 .98±.01
4 1 2.4±2.3 .97±.03 2 2.2±1.9 .98±.01 3 3.2±2.7 .98±.02 4 4.8±3.7 .98±.01

sa
m

pl
es

iz
e 1k 1k 2.8±2.3 .97±.02 5k 2.0±2.2 .98±.02 10k 1.6±2.3 .98±.02 20k 1.0±1.3 .99±.01

5k 1k 5.2±2.9 .95±.03 5k 1.0±2.0 .99±.02 10k 2.2±3.5 .98±.04 20k 0.6±0.8 .99±.01
10k 1k 5.2±4.8 .95±.05 5k 1.8±2.7 .98±.02 10k 2.0±3.1 .98±.03 20k 0.6±0.8 .99±.01
20k 1k 4.8±3.3 .95±.03 5k 2.4±2.6 .98±.02 10k 1.2±1.6 .99±.02 20k 1.0±1.3 .99±.02

gt
yp

e ER ER 1.0±2.0 .99±.02 SF 2.2±1.6 .98±.01
SF ER 1.6±1.9 .98±.02 SF 2.2±2.4 .98±.02

Reliability We manually identify 4 strong discriminative predicates and 4 weak discriminative338

predicates and treat each one as a replacement of ML4C-Learner. Table 2 shows the performance of339

these predicates. Although most predicates show value on discriminating UTs (e.g., 5/8 predicates340

are with >0.6 F1-score), ML4C-Learner has higher performance (average F1-score = 0.92) than each341

individual predicate (best average F1-score = 0.77). Thus, it is evident that ML4C-Learner learns a342

more reliable classification mechanism, by taking advantage of machine learning techniques.343

Robustness To evaluate robustness, ML4C is trained on synthetic datasets with sample size =344

10k, but it is tested on benchmark datasets with different sample sizes: 1k, 5k, 10k, 15k and 20k345

respectively. Table 3 shows that ML4C exhibits satisfactory robustness (decrease of F1-score is less346

than 0.1) against sample size on most datasets (17/18, except for ‘hailfinder’).347

Transferability To evaluate whether ML4C generalizes well to various types of testing data, we348

vary scale (#nodes), graph sparsity, generating mechanism and sample size. ML4C is trained on349

a fixed configuration but it is tested with different domains (i.e., data generated under different350

configuration). Result is depicted in Table 4, ML4C transfers well on different domains, e.g., even351

if it is trained on 10 nodes but tested on 1,000 nodes (last column of the first row in Table 4), the352

F1-score only drops 0.02.353

6 Conclusion and Future Work354

We have proposed a supervised causal learning algorithm ML4C, with theoretical guarantee on355

learnability and remarkable empirical performance. More importantly, ML4C shows promising356

results on validating the effectiveness of supervision. To make SCL practical in real-world scenarios,357

one important direction for future work is to identify reliable and accurate skeleton from data,358

considering ML4C requires skeleton as additional input.359
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(b) Did you describe the limitations of your work? [Yes] See §6. ML4C requires skeleton as441

additional input, thus we put identifying reliable and accurate skeleton from data as future work.442

(c) Did you discuss any potential negative societal impacts of your work? [N/A]443

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]444

2. If you are including theoretical results...445

(a) Did you state the full set of assumptions of all theoretical results? [Yes]446

(b) Did you include complete proofs of all theoretical results? [Yes] Details of proofs are in the447

supplementary material due to page limit.448

3. If you ran experiments...449

(a) Did you include the code, data, and instructions needed to reproduce the main experimental450

results (either in the supplemental material or as a URL)? [Yes] We have included the main451

functionalities of ML4C, synthetic data generator, and ML4C’s training data (include instructions)452

for reproducibility. Details are in the supplementary material.453

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?454

[Yes] Key information is in content. Details are in the supplementary material.455
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(c) Did you report error bars (e.g., with respect to the random seed after running experiments456

multiple times)? [Yes] We carefully design experiments, by running experiments multiple times,457

including error bars in report to ensure reproducibility. For instance, Table 4 contains error bar458
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(d) Did you discuss whether and how consent was obtained from people whose data you’re us-470

ing/curating? [Yes] Due to page limit, the detailed discussion is available in the supplementary471

material.472

(e) Did you discuss whether the data you are using/curating contains personally identifiable informa-473

tion or offensive content? [N/A] We double-checked that the data we are using/curating contains474

no personally identifiable information or offensive content.475
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