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Abstract

Kolmogorov-Arnold Networks (KANs) have demonstrated remarkable expressive
capacity and predictive power in symbolic learning. However, existing general-
ization errors of KANs primarily focus on approximation errors while neglecting
estimation errors, leading to a suboptimal bias-variance trade-off and poor general-
ization performance. Meanwhile, the unclear generalization mechanism hinders the
design of more effective KANs. As the authors of KANs highlighted, they “would
like to explore ways to restrict KANs’ hypothesis space so that they can achieve
good performance.” To address these challenges, we explore the generalization
mechanism of KANs and design more effective KANs with lower model complex-
ity and better generalization. We define Lipschitz complexity as the first structural
measure for deep functions represented by KANs and derive novel generalization
bounds based on Lipschitz complexity, establishing a theoretical foundation for un-
derstanding their generalization behavior. To reduce Lipschitz complexity and boost
the generalization mechanism of KANs, we propose Lipschitz-Enhanced KANs
(LipKANSs) by integrating the Lip layers and pioneering the L; 5-regularization,
contributing to tighter generalization bounds. Empirical experiments validate that
the proposed LipKANs enhance the generalization mechanism of KANs when
modeling complex distributions. We hope our theoretical insights and proposed
LipKANs lay a foundation for the future development of KANS .

1 Introduction

KANSs represent multivariate functions as layer-wise iterative compositions of univariate continuous
functions [Liu et al.,2025], indicating the strong expressive capacity to model complex distributions
and possessing faster neural scaling laws. The fundamental difference between KANs and existing
neural network architectures [He et al.||2016}|Vaswanil [2017} [Brown et al., 2020] is that KANs replace
the single activation in each layer with a family of activations. KANs demonstrate strong accuracy and
interpretability on Al + Science tasks [Shukla et al., 2024] Wang et al.| |2025b]], while also achieving
promising results in socio-economic tasks [Xu et al.| |2024b|], engineering-related tasks [Mubarak
et al.| 2024} Kundu et al., 2024, Bresson et al.,|2024] (Carlo et al.,[2024], and interpretability-driven
tasks [Galitskyl, [2024]]. While KANs demonstrate strong approximation capabilities and excel in
symbolic learning, their generalization does not show a significant advantage over existing models [Yu
et al., 2024, |Zheng et al.| 2025]]. We suggest that the suboptimal generalization performance of KANs
arises from an increased hypothesis space complexity, which introduces an approximation-estimation
error trade-off: while lowering approximation error, it elevates sample complexity, thereby raising
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estimation error and ultimately harming generalization. Parameter count serves as an insufficient
proxy for hypothesis space complexity in KANs, and naively reducing parameter counts fails
to improve generalization. Consequently, understanding KANs’ generalization mechanisms and
developing complexity measures beyond parameter count are critical for enhancing their applicability
and advancing more effective KANs-based models.

Existing studies on the generalization of KANs primarily focus on bounding approximation error. For
instance, Ataei et al.|[2025]] derive a more general approximation result extending beyond depth-2
Kolmogorov-Arnold representations, and |Qiu et al.| [2024] provide distance-aware error bounds
for KANs. [Wang et al.[[2025a] rigorously establish that KANs are at least as expressive as MLPs
by showing that any MLP can be reparameterized as a KAN with degree k splines which is only
slightly larger and KANs can also be represented by MLPs, implying that KANs with large grid
sizes may be more efficient in approximating certain classes of functions. However, these studies
largely overlook the impact of estimation error, limiting their contribution to improving KANs’
generalization performance. To our knowledge, the only existing generalization bounds [Zhang and
Zhou, 2024] provide a foundation for KANs but overlook their structural complexity, yielding limited
insight into their generalization mechanisms and offering little guidance for more effective models.

In this paper, we derive the generalization bounds for KANs and propose more effective Lipschitz-
Enhanced KANs (LipKANs), with lower complexity and better generalization performance. We
reformulate KANSs in Eq. (T)) by treating each layer as a combination of activation functions and a
linear transformation, highlighting that the core of KANS’ expressive capacity arises from the family
of activations in each layer. We define a structural measure, Lipschitz complexity, for the function
family represented by KANs and, based on this, directly evaluate the generalization error of KANs
by deriving their generalization bounds in Theorem These bounds: (a) scale with Lipschitz
complexity of KANSs; (b) have no dependence on combinatorial parameters (e.g. number of layers or
cardinality of activations family) outside of log factors; (c) regard the previous generalization bounds
for MLPs as special cases; (d) accommodate the selection of various activations. We show that
adopting activations with lower Lipschitz complexity results in tighter bounds, while incorporating
complexity-related regularization during training helps trade off bias and variance. Leveraging
the theoretical analyses, we design LipKANs, which incorporate the Lip layers and replace the
L+ -regularized loss [Liu et al.l 2025]] with the Lq 5-regularized loss, where the Lip layers ensure the
low Lipschitz complexity, and regularization helps balance the bias-variance trade-off. Significantly,
we conclude that LipKANs lead to better generalization both theoretically and empirically.

Contributions This work establishes the generalization bounds for KANs and proposes LipK AN,
with an enhanced generalization mechanism. The central contributions are as follows:

* Theoretical Foundation: We are the first to rigorously define Lipschitz complexity as a
measure of the structural complexity of deep functions represented by KANs, and to derive
complexity-dependent generalization bounds.

* Architectural Innovation: We introduce a generalization-driven paradigm for model design
that establishes clearer generalization mechanisms. Specifically, we introduce LipKANS,
which insert Lip layers and apply L; 5-regularization to explicitly bound network complexity.

* Broad Adaptability: We evaluate LipKANs on vision, text, and multimodal benchmarks,
demonstrating that they consistently improve existing KANs, with significant accuracy gains
when modeling complex distributions.

2 Related works

2.1 Generalization of Deep Models

Generalization error is defined as the gap between the expected risk (expected loss over the data distri-
bution) and the empirical risk (observed loss on the training set). Therefore, a smaller generalization
error indicates better model generalization. A generalization bound is a theoretical upper bound on the
generalization error, taking the form: expected risk < empirical risk + complexity + confidence,
where the complexity term reflects the expressiveness of the hypothesis set, and the confidence term
quantifies how likely the bound holds.



Most of the studies on the generalization of deep models are based on generalization bounds [Jiang
et al.| 2019, Dziugaite et al., 2020]. Depending on the selection of the complexity term, they can be
classified into: VC dimension bounds [Shalev-Shwartz and Ben-David} 2014} Neal et al., 2018, |Ding
et al., |2020b, Yang et al., 2023|], Rademacher complexity bounds [Bartlett and Mendelson, 2002,
Sachs et al.| 2023|], margin bounds [Bartlett et al., 2017} |[Neyshabur et al.,[2017, Ding et al., 2018|
Barron and Klusowskil 2019]], NTK-based bounds [Arora et al., 2019], PAC-Bayes bounds [Eringis
et al.l [2024]], and uniform stability bounds [Hardt et al., 2016} Mou et al.| 2018, |Attia and Koren,
2022]. However, many generalization bounds fail to reveal the underlying generalization mechanism
of the models, making them less helpful for guiding model enhancements.

2.2 Kolmogorov-Arnold Networks (KANs)

Since the emergence of KANs [Liu et al., [2025]], future researches can be categorized into four
directions: (I) Explore the applications of KANS in fields such as graphs [Bresson et al., 2024} |Carlo
et al.| 2024} [Kiamari et al.l 2024} Zhang and Zhang, [2024]], computer vision [[Azam and Akhtar]
2024, |Li et al., [2024, |Cheonl, 2024/ |Seydi et al., [2024]], kernel learning [Zinage et al., [2024] and
quantum science [Kundu et al.| [2024] |Ahmed and Sifat, 2024]. These studies have expanded the
application scope of KANSs, but lack theoretical analysis [Liu et al., |2019]. (II) Explore various
activation functions, including Gaussian radial basis function [Li, [2024]], Fourier series [Xu et al.,
2024a], Chebyshev polynomials [SS and R} 2024], finite basis [[Howard et al., [2024] [Ta, [2024],
wavelet [Bozorgasl and Chen, 2024} Seydi et al., [2024], Jacobi basis functions [Aghaeil 2024a]],
polynomial basis functions [Seydi, [2024], and rational functions [Aghaei, 2024b|]. These KANs
variants propose empirically more effective KANs but lack a theoretical foundation. (III) Combine
KANs with models like Convolutional KANs [Bodner et al. 2024]], federated KANs [Zeydan et al.,
2024 and PowerMLP [Qiu et al.,[2024]. These works blend KANs with other deep networks, though
they may sacrifice KANs’ inherent expressive capacity. (IV) Research the approximation error of
KANSs [Q1u et al.} 2024, |Ataei et al., [2025]]. Our study on generalization error overlaps with this area,
suggesting that focusing only on approximation error may reduce the model’s reliability and stability
when handling real-world data, thus limiting its practical utility. The trade-off between estimation
and approximation errors is crucial for improving generalization performance.

3 Notations and Preliminaries

In the supervised learning scenario, we assume that data points (x;,y;) € X x ) for
i € [n] are drawn independently from a distribution P. The sample is denoted as S =
{(x1,91), (®2,92),- .., (Tn,yn)} ~ P". The input sample can be represented in matrix form
as X = (x1,®2,...,x,)T. Given aloss function £(-,-) : ) x ) — R and a hypothesis space
H, the expected loss of f € H is defined as R(f) = E(z,,)~p [L(f(x),y)] and the empirical loss

of f € H on the set S is given by R(f) = LS L(f(x), ). In Section@ we aim to derive
upper bounds for R(f) that hold for all f € H with high probability. These bounds will depend on
both R(f) and the complexity term. In Appendix we formally define the norms of vectors (e.g.,
x;), matrices (e.g., the input matrix X) and three-dimensional tensors (e.g., the weight tensor W; of
KANSs). Our analysis focuses on sub-Gaussian distributions P; formal definitions of sub-Gaussian
random variables and vectors are provided in Appendix [C.2]

KANs. It was established by KART [Kolmogorov, 1961] that, for a continuous f : [0, 1]" — R",
there exist continuous univariate functions ®, : R — R and ¢, , : [0, 1] — R such that:

2n+1 n
fx)=f(zr, - 2n) = Z o, <Z¢q,p (mp)> :

To expand the family of functions that a two-layer KAN can represent, it is generalized to be both
wider and deeper, and is parameterized by 1D functions using B-spline basis functions [Liu et al.|
2025]]. The underlying idea is that when using a two-layer KAN to represent functions, some of
1D functions may be difficult to learn, while these functions become learnable when the network is
sufficiently deep. For example, f (21, %2, 3, 4) = exp (sin (21 + 23) + sin (23 + 27)) cannot be
smoothly represented by a two-layer KAN but can be smoothly composited by a three-layer KAN
with the width [4, 2, 1, 1]. We define the activations family of cardinality Gas ¥ = {0, : R - R, k €
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[G]}. Generally, we consider a KAN of depth L and width [dy, ds, . .., dr], where the [-th layer is

defined by the vector-valued map ¥; : R%-1 — R% with W;(x) = (¢;,1(x), ..., %1.q4,(x)) and each

) A1 <G : . .
neuron given by 1 ;(x) = >3 D7 wi jx 0k (), where in w; j x, 4 indexes the neuron in the

next layer, j refers to the neuron in the current layer, and k corresponds to the basis function from ..

Lipschitz Property. Let (X,dx) and (Y, dy ) be metric spaces. A function f : X — Y is called
Lipschitz if there exists L € R, such that dy (f(u), f(v)) < L - dx(u,v),Vu,v € X. The infimum
of all L in this definition is called the Lipschitz norm of f and is denoted || f||Lip. As for binary
functions (such as loss functions L(-,-) : ¥ x Y — R,), we define their Lipschitz norm by fixing
the parameter at one position, represented as a function p(y) := || £(-, y)||Lip. The Lipschitz property
of various function families is discussed in Appendix

4 Generalization Analysis

In this section, we provide a theoretical framework for understanding a model’s ability to generalize
from training data to unseen data, which also plays a crucial role in guiding model selection and
regularization strategies. We first formalize KANs in terms of activation layers and linear layers, then
we define Lipschitz complexity as a measure for functions represented by KANs and derive uniform
high-probability generalization bounds, thereby revealing the generalization mechanism of KANs.

4.1 Reformulation of KANs

For reformulation, we denote the family of non-linearities 3. applied element-wise to € R? as
¥(z) € R¥Y, where each entry is given by (X(x)),, = (0k(z;)). We introduce the weight tensor
W, € Rxdi-1xG with W,)ijkx = w; k- Using the Einstein summation operation (einsum)
“o"" (defined in Appendix, we compactly express U; as:¥;(x) = W; o X(x). By iterating
x; = W, 0 X(x;_1) with g = x, we formally represent a KAN as a composition of linear layers
‘W, and non-linearities X :

Definition 4.1 (Reformulation of KANs). Given an activation family ¥ = {0, : R = R | k € [G]},
a KAN with depth L and layer widths [dg,d1,...,dy] is defined as a composition of nonlinear
activation layers X and linear layers WE = (W1, Wy, ..., Wp):

KAN(:E):leL(:E)Z(WLOZOWL_10~-~OW102) (). @))

For comparison, an MLP with linear weight matrices W; € R%*9-1 and non-linearity ¢ is expressed:
MLP(z) = (WroooWp_j0---000 W) (x),

where 0 : R — R is an activation function (e.g., ReLU, sigmoid, or Tanh). Thus, in each layer,
KANSs replace the single activation in MLPs with a family of activations, contributing to their strong
expressive capacity.

4.2 Assumptions

For our research subject, KANs, we make the following assumptions:

Assumption 1 (Sub-Gaussian). We assume that each row x; € RY of the input data matrix X
is an independent and identically distributed sub-Gaussian random vector, with the corresponding
sub-Gaussian norm K := max; ;|| ,,-

Assumption 1 is satisfied by a bounded dataset, and ensures the concentration of the data matrix

|| X||2 with high probability. Indeed, we have V¢ > 0, Pr (||@; |2 > C(v/nK +1)) < e~**, where C
is a constant. Using the concentration bound for the sum of squared sub-Gaussian vectors, we obtain
the following lemma:

Lemma 4.1. Under Assumption 1, we have

Pr(1X]> > CK \/ndlog(1/8)) < 6, @

where C'is a constant.



Lemma demonstrates that, under assumption 1, || X||2 concentrates around O(K+/nd) with
exponential tail decay, ensuring that deviations beyond this bound are extremely unlikely. A detailed
discussion of the theoretical extension to other distributions [Ding et al.l |2019] is provided in

Appendix [F]
Definition 4.2 (Lipschitz Norm of Functions Family). Consider a finite family of functions ¥ = {oy, :
R — R, k € [G]}, which corresponds one-to-one with a matrix-valued function My, : R? — RI*XE,

and for a given vector ¢ = (1,72, -+ ,74)T € R, the (i, k)-th element of the matrix Ms(x) is
given by o (z;). The Lipschitz norm of this matrix-valued function is then defined as:

[MslLp =

G

2
> lloxllg;,-
k=1

For convenience, we write ||X||rip := || Ms||Lip-

Assumption 2 (Lipschitz). We assume the family of basis functions ¥ applied to KANs has bounded
Lipschitz norm ||3||pi, < C, with ||| |Lip defined in Decinition[4.2}

To check the consistency of this definition with the previous definition of the Lipschitz norm for a
single function, we note that the vector space and matrix space are endowed with the vector 2-norm
and the matrix (2, 2)-norm, respectively. We cautiously point out that the notation ||F||Li, here
involves a slight abuse of symbol, as it does not represent a norm in the formal mathematical sense.

Assumption 3. We assume that the loss function £(-, -) is Lipschitz continuous with respect to its
first positional argument, i.e. max,cy p(y) < co. Further suppose that £(-,-) < M.

This assumption ensures the Lipschitz continuity of the mapping from the hypothesis space to the
loss function space. Both cross-entropy loss (p(y) = 1) and margin loss (p(y) = %) satisfy this
property, as well as L-loss on a bounded domain.

4.3 Generalization Bounds for KANs

The primary goal of this section is to derive uniform high-probability generalization bounds for
KANs with auxiliary lemmas (please refer to Appendix [A).

We outline the proof by first deriving layer-wise covering number bounds via induction (Lemmaf.2),
then establishing tensor covering results for the linear transformations within each layer (Lemma
[.3)), and finally obtaining the generalization bounds for KANs using standard generalization analysis
techniques (Theorem [4.4).

We begin by decomposing the covering number for multi-layer function compositions into covering
numbers for layer-wise functions. Our techniques are similar to Lemma A.7 in [Bartlett et al.| 2017].

Lemma 4.2. Let (€1, ..., €r) be given. Under Assumption 1 and 2, each oy, is Lipschitz continuous
with px = ||ok|lLp- Let p := (p1,...,pc). Suppose the tensors WE = (Wy,..., W) lie
within By X -+ X By, where B; are arbitrary classes with the property that each W; € B; has

IW;llo < ci. Then, letting 1 = €1 and 71 = 22:1(H§':i+1 cjllpll2)€i, the neural net images

Hy = {leL(X) WEeB x - x BL} have a covering number bound:

N Hx | Jl2) < s N ({Wios (R (X)) s Wie B el )

3)

The complete proof is provided in Appendix [E.I] Lemma [A.2]shows that it suffices to study the
covering number of the [-th layer of the KAN, given that the first [ — 1 layers are fixed.

To establish the tensor covering bounds for the linear transformation, we demonstrate Lemma
that considers W o (X)), where W represents the weight tensor for a given layer, and X denotes
the data passed through all preceding layers.



Lemma 4.3. Let conjugate exponents (p, q) and (u,v) be given with p < 2 as well as positive reals
(a, b, €) and positive integer m. Let data X be given with || X(X)||, < b. Then

2
a’bidw

In N ({W oN(X): W € RY*XC || W||,00 < a} 6l ||2) < { l In(2dd'G),
“

where [x] returns the smallest integer greater than or equal to .

The complete proof is provided in Appendix [E.2] Now we define Lipschitz complexity as a measure
for the functions represented by KANs.

Definition 4.3 (Lipschitz Complexity). The Lipschitz complexity Ry of a KAN Fy, . with weights
WE = (W1, Wa,...,Wp) is defined as:

3
L L 2
2/3
Ryyr = (EHfipH ||WZ||0> (Z |W;F||2/21> ;
i=1

i=1

where WlT refers to permuting the 3D tensor W from (dim1, dim2, dim3) to (dim2, dim3, dim1).

Remark on Lipschitz Complexity. Lipschitz Complexity acts as a complexity for hypothesis space
[Mohril, 2018}, Ding et al., [2020a]] and is indeed distinct from algorithmic complexity. While the
formal definition of Lipschitz complexity looks highly structured, it actually systematically accounts
for both intuitive factors (e.g., network depth L and spectral weight norm ||W;||,) and non-intuitive
factors (e.g., smoothness of the basis family ||X||.ip and specific (2,2,1) weight norm [WZ|l2.2.1)
that characterize KANs. Besides, the logarithmic dependence of generalization bounds on width
d and basis family size G ensures their marginal impact on complexity compared to the dominant
term RWlL. Finally, under Assumptions 1 & 3, we will strictly bound the leftover terms by constants.
These designs make Lipschitz complexity a sufficient measure — higher RWIL makes generalization

more challenging, whereas lower R, facilitates generalization.

With the above results, we can provide a bound on the covering number of H x, specializing to the
particular case of Lemma4.3| where we take p = ¢ =2, 4 = coand v = 1.

Theorem 4.4 (Full-Network Covering Bounds). Under Assumption 2, we can bound

R2 , log(2d2G)
Wl
IOgN(HX767 || : ||2) < 2 5 (5)
where d := max; d;.

The whole proof of Theorem[4.4]is provided in Appendix [E.3] It is worth noting that the above bound
has no dependence on combinatorial parameters such as the number of nodes and the number of
activations outside of the logarithmic factor. Built upon the above results, we now derive bounds on
the generalization error R(FWIL ). The following theorem provides generalization bounds for KANs
whose activations is fixed but Lipschitz complexity is bounded.

Theorem 4.5 (Generalization Bounds for KANSs). Under Assumption 2 and 3, let fixed Lipschitz
activations . = {0y | k € [G]} and weight tensors WE = {W 1, Wy, ..., W} be given. Then for

(x,9), (x1,Y1),- -, (Tn, yn) drawn i.i.d. from distribution P, we have with probability greater than
1—¢
R X2 Ryyr max; |p(y; - 1

Remark on Generalization Bounds. We acknowledge that the above bounds may not achieve
optimal tightness. Nevertheless, our bounds reveal KANs’ generalization mechanisms through
Lipschitz complexity, provide theoretical guidance for model design, and predict empirical behaviors
like the O(n’%) error decay. While our current generalization bound does not make inter-layer
dependencies explicit, it already captures layer-wise alignment through the operator norm products

Hle |lW;]|s, which originate from the covering number bound of the entire network in Lemma



This implicitly reflects structural relationships across layers. We agree that making these dependencies
more explicit could tighten the bound, and we consider this a valuable direction for future refinement.

Some studies [Qiu et al.| 2024, |Wang et al.,[2025a]] theoretically demonstrate stronger expressive
power of KANs than MLPs on bounded domains. Here, we remark that a special case of generalization
bounds corresponds precisely to the generalization bounds of the MLPs [Bartlett et al.,|2017]]. When
the activations family 3 contains only a single activation function, we have G = 1, then the result
coincides with the classical margin bound in [Bartlett et al.,[2017]].

Based on Assumption 1, which states that the distribution P satisfies the sub-Gaussian property, we
can bound || X ||z in Eq. (6) with high probability, leading to more applicable bounds in Corollary
(See Appendix [E.5). Based on the generalization bounds of KANSs in terms of Lipschitz complexity,
we gain the insight that adopting activations with lower Lipschitz complexity results in tighter
bounds, while incorporating ||[W |2 2,1-related regularization during training helps trade off bias
and variance in Eq. (6). Building upon this, in the next section, we propose LipKANs, which enjoy
tighter generalization bounds.

5 LipKANs: Generalization-Driven Models

With our efforts in Sectionf4], in this section, we introduce LipKANs, which incorporate the Lip layer
and replace the L;-regularized loss [Liu et al., [2025]] with the L, 5-regularized loss, where the Lip
layer ensures the low Lipschitz complexity, and regularization helps balance the trade-off between
bias and variance.

We first introduce the structure of LipKANs. From Theorem [4.3] it follows that adopting function
families with greater Lipschitz smoothness leads to tighter bounds, while incorporating complexity-
related regularization during training alleviates training costs. Therefore, we design the Lip layer in
each KANSs layer between each activation layer X and linear layer W to reduce the Lipschitz norm
of the basis function family. The fixed Lipschitz function £ : R — R satisfies ||¢||Li, < 1 (e.g., tanh,
Sigmoid, ReLU). Given an activations family ¥ = {0}, : R — R | k € [G]}, a LipKAN with depth
L and layer widths [do, d1, ..., d] is defined as a composition of nonlinear activation layers ¥, Lip
layers [ and linear layers WE = (W1, Wy, ..., Wp):

LipKAN(x) = FWILI(ZB) =(WpoloXoWp_j0---0Wjo0loX)(x), @)

where /¢ acts element-wise. Next, we define the L 5-regularized loss to address the imbalance between

Algorithm 1 Generalization-Driven LipKANs with L; 5-Regularization

Require: Sample S = {(x;,y;)}/,, Activations family ¥, Function ¢ with ||¢||.;, < 1, Learning
rate 1), Regularization coefficient \.
Ensure: Model weights WE = (Wy,..., Wp).
1: Initialize weight tensors W, > with Kaiming initialization [He et al., 2016].
2: Initialize AdamW optimizer with parameters:
0o = {WE3, 1, A (weight decay), 81 = 0.9, B2 = 0.999.

3: for eachepocht =0to7 — 1 do

4 for each batch (x;,y;) € S do

5 20 x;

6: for j =1to L do > Forward propagation.
7: 20« W;0loX(z07Y) > Leading to lower ||S|Lip and Ryyr (Deﬁnition.
8 end for

9: FW1117€((E7;) — 2B
10: L = Lengopy + A Zle ||WJT||221 > L1 5 enhances generalization (Corollary .
11: Update: 0,1 = AdamW (6, L, 1, Aya) > Employ the AdamW optimizer.
12: end for
13: end for

14: return WE* < Op
15: // Integrate Lip layers and design L; s-regularization optimized via AdamW to enhance general-
ization and training stability.




bias and variance. As illustrated in Algorithm[I] we note that the de81gn of L 5-loss originates from
generalization bounds (Theorem 4. i which regularize |[W7||2.2,1 in Ryyr, leading to an improved
E.1]

bias-variance trade-off (Corollary [E.1). Given dataset S = {(ml,yl) (mg,yg) Ty yn)} ~ P
basis function family ¥ and weight tensors W = {W;, Wy, ... 7WL}, we design the L1,5-
regularized loss to replace the L;-regularized loss in [Liu et al.| 2025]] based on Theorem[4.5]as:

L
L15(Ss W0 = Lo S;WELO + X [WH|
i=1
where L. is the cross-entropy loss and A controls the scale of regularization. Then we employ Ad-
maW optimizer [Loshchilov and Hutter, 2017 with the optimization problem of LipKANs designed
as: WlL* = arg minwlL Ly5(S; Wf, £). We base model selection on theoretical foundations, but
empirically compare regularization norms (L7, Ly 5) in Sectionand discuss their theoretical impli-
cations in Appendix [Bf Both KANs [Liu et al., 2025]] and Efficient-KANs|"|utilize L, -regularization
with the penalty term 25:1 |IW;||1 to promote sparsity and interpretability. In contrast, we adopt
L, 5-regularization, which enhances generalization performance. A promising future direction is
to explore integrating L, L; 5, and the entropy regularization to leverage their complementary
advantages. We analyze the cost of Lip layers and L 5-regularization in Appendix

2,2,15

Remark on LipKANs. Both components are principled and arise naturally from our formulation
of Lipschitz complexity (Definition[4.2)). Specifically, the Lip Layer constrains the smoothness of the
basis family through the Lipschitz norm of 3, while the L 5-regularization penalizes the structured
(2,2,1) norm of the linear weight tensors W. These two components regulate orthogonal axes of
Lipschitz complexity and hence play complementary roles in promoting generalization.

Finally, we prove that LipKAN s exhibit lower Lipschitz complexity, which tightens the generalization
bounds and theoretically enhances the generalization performance.

Corollary 5.1 (Generalization Bounds for LipKANs). Under Assumption 1, 2 and 3, let fixed
Lipschitz activations . = {0}, : k € [G]}, weight tensor WE = {W1, Wa,..., W} and Lipschitz
function | : R — R with ||l||pp < 1. Then for (x,y), (x1,y1),- (scn,yn) drawn iid. from a
sub-Gaussian distribution P, we have with probability greater than 1 —€—

KRyyr i i) [~ /1
R(FWLl) (FWL1)<(’)< i o)l d2 dlog /6>

where the right-hand side of the inequality is also bounded by the upper bound in Theorem 4.5}

The proof is deferred to Appendix[E.5] Due to Corollary[5.1] adopting activations with lower Lipschitz
complexity results in tighter generalization bounds, suggesting better generalization performance
theoretically. In the next section, we will empirically evaluate the performance of LipKANs.

Bias-Variance Trade-Off. To clarify the bias-variance trade-off in our setting, we revisit the
generalization bounds in Theorem [4.5] and Corollary [5.1] The Lipschitz complexity term reveals
that the model variance—its sensitivity to training data perturbations—is closely related to the
structured (2, 2, 1)-norm of the weight tensors, which controls the overall magnitude of the spline
coefficients. A larger norm enables greater flexibility in fitting the data but also increases the risk of
overfitting, thereby contributing to higher variance. In contrast, the bias stems from the approximation
capacity of the basis functions (e.g., B-spline, Fourier, and Chebyshev basis). These basis functions
provide strong approximation capacity for smooth target functions, enabling the learned model to
closely align with the underlying data distribution when appropriately regularized. To this end,
the proposed L1 5-regularization penalizes the structured norm, reducing variance while preserving
expressivity—thereby encouraging a favorable bias-variance trade-off and enhancing generalization.

6 Experiments

6.1 Deep Learning Tasks

Baseline. We choose Original KAN [Liu et al., 2025]], Rational-KAN [Yang and Wang| [2024],and
RBF-KAN ([Ta, [2024] as our baselines. In particular, Rational-KAN and RBF-KAN replace the

>https://github.com/Blealtan/efficient-kan




B-spline function with their respective basis functions. For all baseline methods, a LayerNorm layer
is added before each KAN-Linear layer to enhance training stability. All KANs are set with a grid
size of 5, a grid range of [—10, 10], and a hidden layer width of 64. The Lip layer of LipKANSs tried
using tanh, sigmoid, and ReLU, and selected the best-performing Lip function /.

Datasets. We test the performance of the Lip structures on original KAN, Rational-KAN, and
RBF-KAN through benchmark datasets spanning image (MNIST [LeCun et al.,|2010], CIFAR-10
[Krizhevsky et al.,2009], CIFAR-100 [Krizhevsky et al.,[2009], STL-10 [[Coates et al.,|2011]]), text
(AG News [Zhang et al.}2015]]), and multimodal domains (AVMNIST [Liang et al.| 2021]], MIMIC-
IIT [Johnson et al.| 2016l Harutyunyan et al., [2019]), confirming LipKANs’ robust generalization
improvements across broad applications.

All reported accuracy and F1 scores in Table[T]are evaluated on held-out test sets using the officially
predefined training/test splits for each dataset, consistent with the evaluation protocols established
in prior works [Liu et al., 2025| [Zheng et al., 2025[].As shown in TableE], the design of LipKANs
demonstrates significantly improved generalization across various KANs when evaluated on complex
datasets (SLT-10, CIFAR-100, AG News, and MIMIC-III). In contrast, simpler benchmark datasets
(MNIST, CIFAR-10, AVMNIST) demonstrate statistically insignificant performance variation, even
exhibiting marginal accuracy degradation in certain cases. This phenomenon stems from the inher-
ently low-complexity distributions captured by KANs on such datasets, rendering hypothesis space
complexity reduction unnecessary.

Table 1: Evaluation of KANs and LipKANs on broad domains including CV, NLP, and MM (F1
score (%) for MIMIC-III; accuracy (%) for others) with corresponding 95% confidence intervals
computed over five independent runs.

Model | SLT-10 MNIST CIFAR-10 CIFAR-100 AG News AVMNIST MIMIC-III
KAN 25.94+£0.53 95.62+0.08 46.01£0.50 14.77+0.33 65.58£0.45 71.91+0.28 66.39 £ 0.60
LipKAN 38.77+1.39 97.71+0.32 50.40+£0.84 20.514+0.57 68.12+£0.52 72.23+0.35 70.18+0.75
Increase +12.83 +1.09 +4.39 +5.74 +2.54 +0.32 +3.79

Rational-KAN 35.92+£0.85 96.79+0.15 50.23£0.62 20.84+0.42 71.56+£0.38 71.63+£0.31 65.97£0.55
LipRational-KAN | 40.67 +1.12 97.01 £0.25 51.12+0.78 22.79+0.51 74.98+0.43 72.424+0.33 69.12+£0.82

Increase +4.75 +0.22 +0.89 +1.95 +3.42 +0.79 +3.15
RBF-KAN 37.24+0.92 96.15+0.18 47.77+£0.58 18.46+0.39 62.85+0.50 70.58+0.30 67.52+0.65
LipRBF-KAN 40.93+1.25 96.63+0.22 49.15+0.72 20.05+0.48 66.27£0.56 71.04+0.36 74.25+0.88
Increase +3.69 +0.48 +1.38 +1.59 +3.42 +0.46 +6.73

6.2 Ablation Study

In this section, we perform ablation experiments to disentangle the contributions of the Lip layer
and L; 5-regularization. We train original KANs (with default L, regularization), KANs with L; 5-
regularization, KANs with Lip Layers, and LipKANs on datasets MNIST, CIFAR10, CIFAR100, and
STL10, with training dynamics visualized in Figure[I} Following prior practices, we consistently used
A = 1 for regularization and ¢ = tanh as the Lipschitz function. Experimental results demonstrated
that L, 5-regularization played a critical role in enhancing the generalization performance of Lip-
KAN:Ss. Besides, L 5-regularization shows stronger benefits in complex datasets (e.g., STL-10) due
to its ability to regularize high-dimensional weight interactions. Therefore, we strongly recommend
adopting L, 5-regularization instead of conventional L;-regularization in future research.

To rigorously assess generalization, we follow prior works [Hoffer et al.,[2017, |Fu et al.| [2023]] and
report three additional metrics in Table[2} Final Gap, Average Gap, and Overfitting Ratio. Notably,
on multiple datasets such as CIFAR-10 and MNIST, we observe that KANs + Lip Layers outperform
KANSs + L 5-regularization on most metrics, suggesting that basis smoothness control is particularly
effective in low-noise, low-complexity regimes where architectural inductive bias is more beneficial
than weight norm constraints. Conversely, on other datasets (e.g., CIFAR-100, STL-10), the L 5-
regularization yields greater improvements, indicating its strength in high-variance regimes where
structured norm constraints are better suited to mitigating overfitting. Overall, while both Lip Layers
and L 5-regularization aim to control model complexity, they mitigate training variance through
different mechanisms, leading to distinct sensitivities to sample-level noise.



Interestingly, some models achieve comparable validation performance yet differ markedly in their
generalization gaps. This phenomenon reflects differences in the underlying bias—variance trade-off:
models with high training variance may overfit the training data, resulting in deceptively strong
validation accuracy but poor generalization. In contrast, methods like those in LipK AN’ introduce
mild bias through regularization while substantially reducing variance, yielding more stable and
reliable generalization across datasets. Finally, we analyze the role of activation family size G

(a) MNIST (b) CIFAR-10 (c) STL-10 (d) CIFAR-100

Figure 1: Test accuracy across datasets: (a)-(d) show convergence dynamics of different archi-
tectures on four datasets. LipKANs (red diamonds) consistently achieve the highest accuracy with
fastest convergence. Comparative analysis reveals L 5-regularization (green triangles) contributes
more to generalization improvement than Lipschitz layers (orange squares).

Table 2: Comprehensive ablation analysis of generalization across datasets. Combining both compo-
nents (i.e., LipKANs) consistently yields the lowest generalization gap and best validation accuracy,
indicating their complementary effects.

Dataset Model Final Gap (%) Avg. Gap (%) Overfit Ratio (%) Val. Acc (%)
KANs (L-Regularization) 6.04 5.64 13.13 46.01
CIFAR-10 KANSs + Lip Layers 4.45 4.92 9.47 46.99
KANSs + L, 5-Regularization 4.99 5.28 10.11 49.37
LipKANs 3.16 4.89 6.26 50.40
KANSs (L -Regularization) 6.55 5.13 44.35 14.77
KANSs + Lip Layers 5.84 5.10 38.98 14.98
CIFAR-100 ¢ AN + I, 5-Regularization 3.76 5.0 19.89 19.93
LipKANs 2.32 5.03 11.31 20.51
KANSs (L -Regularization) 5.52 4.92 5.77 95.62
MNIST KANs + Lip Layers 3.17 4.77 3.30 96.06
KANs + L 5-Regularization 5.13 4.81 5.27 97.26
LipKANs 2.55 4.70 2.60 97.71
KANSs (L -Regularization) 6.93 5.27 26.72 25.94
STL-10 KANSs + Lip Layers 4.14 5.10 15.54 26.64
KANs + L 5-Regularization 3.95 5.06 10.47 37.73
LipKANs 3.31 4.98 8.53 38.77

in Appendix Our analysis shows that the activation family size alone does not determine
generalization; rather, the internal structure of the basis functions plays a crucial role.

7 Conclusion

In this paper, we establish the foundation for understanding the generalization mechanism of KANs
and introduces LipKANs, a new network architecture designed to improve generalization. We define
Lipschitz complexity as the first measure to quantify the structural complexity of deep functions
represented by KANs. Based on this measure, we derive complexity-driven generalization bounds,
providing a theoretical framework for analyzing KANs’ generalization properties. Furthermore, we
develop LipKANSs, which reduce Lipschitz complexity and enhance the generalization mechanism
of KANs. Both theoretical analysis and empirical results confirm that LipKANs achieve tighter
generalization bounds and superior performance, paving the way for more effective and theoreti-
cally grounded KANs variants. We strongly advocate replacing L;-regularization in KANs with
L 5-regularization in future research and hope our bounds establish theoretical foundations for
understanding the generalization mechanism of KANs.
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Supplementary Material

A Auxiliary Lemmas

This section contains a collection of results that are needed in the proofs, most of which are classical
theorems in statistical learning.

Lemma[A.T|uses a high-probability upper bound on the local Rademacher complexity[Bartlett et al.,
20035] to control the maximal deviation between empirical means and true means of a bounded
function, typically a loss function.

Lemma A.1. [(Theorem 2.1 in [Bartlett et al.| 2005]]] Let F be a class of functions that map X into
[a,b]. Assume that there is some r > 0 such that for every | € F, Var[f(Xi)jl < r. Then, for every
x > 0, with probability at least 1 — 2e~7 over the data S = [x1, T2, ..., Ty]

feF a€(0,1) n 3 a 2a(l—a)/)n

(3)
We denote that Pf = FEx.p[f(X)] and P,f = %Z?Zl f(x;). For a class F, set
Ry F = supycr Ry f. Besides, we represent empirical Rademacher complexity as E;Rp,F =

1 2 1 1 1
sup (Pf — Pf) < inf (21+3E0Rn}'+ L (b-a) < + =+ *a) ""”) .

E, [% SUp e F O f (xl)] where o; are Rademacher random variables.

Corollary A.1. Let F be a class of functions that map X into [—M, M. Assume that there is some
r > 0 such that for every f € F, Var[fgﬂX)] < r. Then for every € > 0, with probability at least
1 — e over the data S = [x1, 22, ..., Tp]

2rlog(2) N 32M log(2)

sup (Pf — P,f) < 6E,R,F + 9
feF n 3n
Proof. It suffices to take « = %, e = 2¢7* and b — a = 2M in Eq. (§) O

Lemma is a slight variant of the standard Dudley entropy integral bound on the empirical
Rademacher complexity.

Lemma A.2 (Lemma A.5 in [Bartlett et al., 2017]]). Let F be a real-valued function class taking
values in [0, M| and assume that 0 € F. Then we have

(4a 12 [Mvn
_’_7

n nJ,

VIg N (F(X),e, | - ||2)de> . (10)

Lemmal[A 3]is attributed to Maurey, and applied to bounding the covering number generally.

Lemma A.3. In a Hilbert space (H,| - ||), let U € H be given with the representation U =
Zf\il aiWi, where W; € ‘H and a; > 0. Then, for any positive integer k, there exists a choice of

nonnegative integers (k1, ..., kn) such that Zz]\;1 ki =k and
O T P T T L S )
kl:111_kl:1ll_ ina
where a = (a1, .., a) and laly = /%, a.

Proof. Denote 8 = ||al|1. Let Wy,..., W, be k i.i.d. r.v. such that P(W; = 5V;) = Assume

thatW:%,thenEW:Ewl:Ziﬁvi%:U.

a;
3
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On the other hand,

BlIW — UIP) = Bl S0 = WP

1
== |E ST =Will?| + E | > (U =W, U —W)
i i#j
1 1 1 12
=2k ZU—WinQ] = LE[IV - WilP) = 3 (B (Iwi)?] - o)

1 1 ;
<] = 1 S8V = £ Y advil?

2
<2 max VP

Therefore there exists realization (j1,...,jx) € {1,...,d}" such that Wy = BV, W = ZTW and
|U-W|<E [|IW — U||?]. Finally we conclude our result by taking k; = >, 1(;,—y. O

B Comparsion with Different Regularization Techniques

In this section we discuss the theoretical implications of different regularization techniques, such
as standard Lo penalties for ResNet50 [He et al.l 2016], L, penalities for KANs [Liu et al.,[2025],
dropout for BERT [Devlin et al.|[2019] and L; 5 penalities in our work.

L;-regularization For MLPs, L; regularization of linear weights is used to favor sparsity. In
KAN:s, linear weights are replaced by learnable activation functions, so Liu et al.| [2025]] define the
L1 norm of an activation function ¢ to be its average magnitude over its N, input, i.e.

=3 Jo ()]
s=1

Then for a KAN layer ® with n;, inputs and n., outputs, [Liu et al.| [2025] define the L; norm of ®
to be the sum of L1 norms of all activation functions, i.e.,
Min  Mout
1@l =)0 il -
i=1 j=1

The total training objective Liotal is the prediction loss Lpreq plus Ly regularization of all KAN
layers:

L-1

£t0tal = Epred + A Z Iq)l|17

1=0
where A controls overall regularization magnitude. The problem is in the sparsification which is
claimed to be critical to KAN’s interpretability. For efficiency, Efﬁcient-KANE]instead replaces the
L1 regularization on samples with the L1 regularization on the weights, which is more common in
neural networks and is compatible with the reformulation:

L

»Ctotal = ['pred + )‘Z HW1H1
=1

Lo-regularization L, regularization promotes smooth optimization landscapes and improves
generalization by penalizing large weights. The training objective is formulated as:

L—-1

£t0ta1 = ‘Cpred +A Z ||Vvl||2
1=0

*https://github.com/Blealtan/efficient-kan
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Theoretically, Lo regularization interacts with the implicit regularization induced by residual connec-
tions, further constraining the optimization path to smoother, more stable solutions. This synergy
ensures weight shrinkage toward zero while preserving gradient propagation through skip connections
[Zaeemzadeh et al., 2020, Neyshabur, 2017].

Dropout Dropout [Srivastava et al.l 2014 is a popular and effective heuristic for preventing large
neural networks from overfitting. Indeed, dropout improves the stability bounds generically [[Hardt
et al.| [2016]. From the point of view of stochastic gradient descent, dropout is equivalent to setting a
fraction of the gradient weights to zero. In our paper, L1 5-regularization also improve the bounds.

L, 5-regularization The design of L 5-loss originates from generalization bounds (Theorem 4.5)),
which regularize ||W;F ll2,2,1 in RWIL, leading to an improved bias-variance trade-off (Corollary .

C Supplementary Definition

C.1 Norms of Vectors, Matrices and Three-Dimensional Tensors

In this section, we define the norms of vectors (e.g., x;), matrices (e.g., the input matrix X)
and three-dimensional tensors (e.g., the weight tensor W; of KANs). Let 1 < p,r < oc.

1
Given a vector & = (a1, as...,a,)" € R™, the L, norm of a is [lafl, = (3/"a¥)?. Given
a matrix A = (a1,9,...,0,) € R™*" where the i-th column of A is a; € R™, we use
IAllpr = [[(laxllp, lazllp, - - -, llamllp) ], to represent the (p,r) norm of matrix A, denoted as

A||p,-. Especially, the standard L, induced norm and L, induced norm of matrix A can be repre-
sented respectively by || A||1,00 and ||A||s,1. Besides, we use || A||, to represent the standard spectral
norm (also called Lo induced norm) of A. To define norms for three-dimensional tensors similarly
to the matrix (p, ) norms, we can generalize the structure systematically. Let A € R™*"*¥ be a
three-dimensional tensor. Its elements are denoted by .A;;. The tensor .A can be thought of as a
stack of matrices, where the k-th matrix slice is A..x (i.e., fixing the third index of the tensor). Let

1/q
1 < p,r,q < oo, we define the (p,r, ¢) norm of A as: || Allprq = ( 2:1 HA”’“”Zm) . where
= (Al Nl Bl )

‘ for each slice A..,, € R™*™,

C.2 Sub-Gaussian Distribution

Our analysis focuses on sub-Gaussian distribution P, so we introduce sub-Gaussian random variables
and sub-Gaussian random vectors for preparation. Given a random variable x, if there exists i > 0
such that the tail of z satisfies P{|z| > ¢} < 2exp (—t?/K?),Vt > 0, then we call x a sub-Gaussian

random variable, where the quantity K2 is named the sub-Gaussian variance proxy. The sub-Gaussian
norm of z, denoted ||z||y,, is defined as |||y, := inf {t > 0: E [exp (2?/t?) < 2]}. It can be

deduced by Markov’s inequality that there exists ¢ > 0 such that P{|z| > ¢} < 2exp (—ct2 / ”x‘lsz)’

indicating that the tail decays slower as the sub-Gaussian norm becomes larger. A random vector
x in R™ is called sub-Gaussian if the one-dimensional marginals (X, x) are sub-Gaussian random
variables for all z € R™. The sub-Gaussian norm of X is defined as |||, := supycgn-1 (%, Y) |4,
In particular, a random vector with independent bounded coordinates is a sub-Gaussian random
vector.

C.3 Lipschitz Norm

In this section, we discuss Lipschitz properties of various function family.

Definition C.1 (Lipschitz functions). Let (X, dx) and (Y, dy ) be metric spaces. A function f :
X — Y is called Lipschitz if there exists L € R, such that

dy (f(u), f(v)) < L-dx(u,v),Vu,v € X.

The infimum of all L in this definition is called the Lipschitz norm of f and is denoted || f||rip.
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In other words, Lipschitz functions may not blow up distances between points too much. Lipschitz
functions with || f||Lip < 1 are usually called contractions. Specifically, the layer normalization

eti—e i

& = tanh(z) is a contraction with 7; = &2

Lemma C.1. Ifo : R? — R? is p-Lipschitz along every coordinate, then it is p-Lipschitz according
to| - ||pforanyp > 1.

Proof. For any x, ' € R?,

1/p 1/p
lo(x) —o(x)]l, = (Z |o(z)i — U(m/)i|p> < <pr |z — l‘ﬂp) =pllz -,

(13)
O

Lemma C.2. Let Y = {o; : [-1,1] = R | i € [G]} be a function family. If o; is p;-Lipschitz, then
1

My : R? — RIXC s (chzl pf) E-Lipschitz according to || - || for any p > 1, where the (i, j)-th
element of the matrix Ms,(x) is given by f;(x;).

Proof. For any x,z’ € R?,

[ Ms(z) — Ms(x)||, = (Z l|oi(x |p> < (szllw x ||p>
- (Z Pf) |z — w/Hp = ||p||p||$ - az'||p,

where p := (p1,...,pc)T. O

|~

Therefore, we define ||| |Lip := || Msx||Lip for brevity. We lead to Definition 4.2l when we take p = 2.
Now we prove Lemmal[E.T]

Lemma E.1If 0 : R — Rand [ : R — R are both Lipschitz continuous functions with Lipschitz
norms ||o||Lip and ||I||Lip, respectively, then the composition [ o o(z) is Lipschitz continuous with
Lipschitz norm ||l o o||rip < ||!]|Lip ||| Lip-

Proof. By the definition of Lipschitz continuity and Lipschitz norm, for any z, 2’ € R,
l{o(z)) = Uo(@)] < [UlLiplo(2) — ()]
< Nllluipllolluiple — =

Thus, the composition [ o ¢ satisfies the Lipschitz norm ||l o o||ip < |/I||Lip||o ]| Lip- O

Below, we discuss the Lipschitz property of various basis function families.

* When X is a set of univariate B-spline basis functions with degree p and knots {; }, we

have p; < %p where A = max; (§x4p — &k ). By default of [Liu et al.,[2025]], we set p = 3
with grid size 5. To ensure the continuity and smoothness of the interpolation, it is usually
necessary to extend p points at each end of the original data points. We get the knots &, as

[-2.2,-1.8,—-1.4,—-1.0,—0.6,—0.2,0.2,0.6,1.0,1.4,1.8, 2.2
with A = 1.2 and p, < %p = 5. See Figure 2| for the visualization of B-spline basis

functions. Finally, the Lipschitz norm of ¥ can be bounded as || ||1i, < 10v/2.

* When ¥ = {cos(kz),sin(kz)} is a set of Fourier basis functions[Xu et al., 2024a], we
have pj, < k based on Lemma|C.3] To ensure the consistency of the number of parameters,
we set k € [4] and deduce that ||3||r;, < 2v/15.
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3-order B-Spline Basis Functions
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Figure 2: Visualization of the 3-order B-spline basis functions.

Lemma C.3. cos(kx) and sin(kx) are k-Lipschitz continuous.

Proof. We only prove the case of the cosine function; the sine function is similar. For any

z,x' €R,
| cos(kx) — cos(ky)| = ’—QSin (kx ; ky) sin (kl‘ — ky> ’

2
= 2 |sin LC +ky sin LC —ky
B 2 2
< 2sin <k:ﬂ—ky>’ (14)
2
<o kx — ky’
- 2
= klz —y|
where the last inequality is due to the fact that |sin (’”gky) ‘ < ’”;ky ‘ O

* When ¥ = {7} is a set of Chebyshev polynomial[SS et al., 2024], which is defined
as Ty (z) = cos(karccos(x)) (please see Figure [3|for the visualization) and can also be
expressed using the explicit polynomial form:

TQ(I) =1
Ti(x)=x
To(z) =222 —1
Ts(x) = 423 — 3x
To(z) = 22T, -1 (z) — Th—2(z) forn > 2,

we can calculate the Lipschitz norm directly due to its polynomial nature. These polynomials
are a sequence of orthogonal functions, so only a smaller number of basis functions are

needed. We set |X| = 4 like [SS et al.| 2024] and in this case, ||X||Lip < V14

C.4 Einsum

To define the product between tensors, we first introduce the definition of matrix inner product.

The inner product of two matrices A, B € R"*" is defined as the sum of the products of their
corresponding entries. Mathematically, it is given by:

(4B =3 4,8y

i=1 j=1

Alternatively, this can be expressed using the trace of the product of A and B”

(A,B) =tr (A"B).
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Chebyshev Polynomials of the First Kind
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Figure 3: Visualization of the Chebyshev polynomials of the first kind.

Specifically, the inner product induces the Frobenius norm:
[Allr = V{4, A),
with the Cauchy-Schwarz inequality stated as
(4, B)| < | Allr - | Bl - (15)

Below we define the Einstein summation operation(einsum) “o” between W € R” ™! and ¥ € R™!
as

einsum(W,X); = (W o X); := Z Z WiikXigt=1...,m.
=1 k=1

We can also represent W o X € R™ as (W o X); = (W;, X) where W; = W;.. € R™L,

D Supplementary Experiments

D.1 Function Approximation

Datasets Feynman [Udrescu et al., 2020] is a symbolic regression and function approximation
dataset of physical equations collected from Feynman’s textbook. We implement a function approx-
imation task using the Feynman dataset, as suggested by |[Liu et al.|[2025] to investigate whether
LipKANSs can learn better activation functions compared to KANs.

To demonstrate that LipKANSs preserves the powerful expressive capacity of KANs, we first compare
the function approximation capabilities of LipK ANs with baselines. We utilize the function generation
script provided by PyKAN [Liu et al., 2025]] and assess model performance on the Feynman dataset.
We exclude some equations since the function generation script returns NaN in input and inf in label
(such as “Jackson 11.38 (Doppler)”). In Table E], we present the RMSE of each model on several

Table 3: RMSE Comparison between KANS (the first row of each cell) and LipKANs (the second
row of each cell) on Feynman Dataset.

Feynman Eq. Original Formula MLP KAN  Fourier-KAN Rational-KAN RBF-KAN Cheby-KAN

L6208 e 004859 000047 0.0235 0.00219 0.00082 0.04850
6. o - 0.00039 002884 0.00385 0.00482 0.04761
018 Gy ez oa27ss 041967 054147 0.41817 0.42203 041933
9. ey e . w ey A 041965 049766 0.42004 041955 041954
‘ 0.00877  0.10813 0.02019 0.01101 0.04750

1 2, 2\ .2
1.24.6 im (W +uf) @ 0.04384 500871 0.07405 0.03187 0.03415 0.04821
——— 001264 027906 0.01203 0.05021 026101

1 2 2 2
L134 am (v +u? 4 w?) 023311 —5 51187 —0.17017 0.07661 0.00352 0.23197
R TR 006437 0.15890 0.04542 0.03442 0.17830
1135.18 oo () rew(—25) | 1378 5o 014590 0.08346 0.07837 0.17846
p—E— 018712 042472 0.21685 0.19196 0.33203
TI1.4.33 exp () -1 027705 —5 18774 029129 0.20695 021895 0.35053

examples, where the second row of each cell represents the Lip version of the corresponding model.
It is clear in Table [3|that the Lip version of KANSs not only does not diminish the expressive power
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but even outperforms in many functions. Among all the baselines, the original KAN achieves the
best fitting performance, while Fourier-KAN exhibits the worst fitting performance. Rational-KAN
and RBF-KAN perform closely in RMSE. MLP is not comparable to the KAN-based architecture in
the experiment, reflecting the strong function approximation ability of KAN-based methods.

D.2 Generalization Gap

In this section, to provide a more comprehensive analysis of generalization performance, we follow
the prior works [Hoffer et al) 2017, |[Fu et al.| [2023]] and quantify generalization gaps using the
following three metrics:

* Final Generalization Gap: Difference between training and validation accuracy at conver-
gence.
* Average Generalization Gap: Mean gap across the entire training trajectory.

* Overfitting Ratio: Final gap normalized by final training accuracy.

The results are summarized below.

Table 4: Analysis of generalization performance using four metrics across datasets: LipKANs
achieves consistent advantages in generalization gaps and overfitting ratio.

Dataset Model Final Gap (%) Avg. Gap (%) Overfit Ratio (%) Val. Acc (%)
KANs (L-Regularization) 6.04 5.64 13.13 46.01
CIFAR-10 KANSs + Lip Layers 4.45 4.92 9.47 46.99
KANSs + L, 5-Regularization 4.99 5.28 10.11 49.37
LipKANs 3.16 4.89 6.26 50.40
KANSs (L;-Regularization) 6.55 5.13 44.35 14.77
KANs + Lip Layers 5.84 5.10 38.98 14.98
CIFAR-100 | ANs + L, 5-Regularization 376 5.09 19.89 19.93
LipKANs 2.32 5.03 11.31 20.51
KANSs (L;-Regularization) 5.52 4.92 5.77 95.62
MNIST KANs + Lip Layers 3.17 4.77 3.30 96.06
KANs + L 5-Regularization 5.13 4.81 5.27 97.26
LipKANs 2.55 4.70 2.60 97.71
KANSs (L-Regularization) 6.93 5.27 26.72 25.94
STL-10 KANSs + Lip Layers 4.14 5.10 15.54 26.64
KANs + L 5-Regularization 3.95 5.06 10.47 37.73
LipKANs 3.31 4.98 8.53 38.77

Across all datasets, the LipKANs consistently achieve the lowest overfitting ratio and final generaliza-
tion gap, suggesting stronger generalization. Interestingly, this advantage does not always manifest
as significantly higher validation accuracy—some models achieve similar validation accuracy, yet
differ notably in their generalization gaps. This discrepancy reflects a more favorable bias—variance
trade-off. Specifically, models with higher variance may fit the training data well yet generalize
poorly, resulting in larger generalization gaps despite acceptable validation accuracy. In contrast,
regularization methods such as those employed in LipKANs may introduce slight bias but effectively
reduce variance, leading to more reliable generalization behavior.

D.3 Computational Cost

We would like to clarify that both the Lip layer and the L, 5-regularization are lightweight mechanisms
that introduce minimal computational burden. The Lip layer imposes Lipschitz norm constraints to
control the smoothness of basis functions, without modifying the network architecture or introducing
auxiliary parameters. The L, 5-regularization is a direct substitute for the commonly used L,
penalty—it operates on the same weight tensors already present in training and does not incur
additional memory overhead.

Empirically, in Table 5| we quantify efficiency using two widely adopted metrics: training time (in
seconds) and peak GPU memory usage (in MB). Our measurements show that both the Lipschitz
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Table 5: Comprehensive ablation study on computational cost (training time and memory) across
datasets.

Model \ CIFAR-10 | CIFAR-100 | MNIST | STL-10

| Time (s) Memory (MB) | Time (s) Memory (MB) | Time (s) Memory (MB) | Time (s) Memory (MB)
KANS (L1-Regularization) 263.96 53.52 265.45 54.61 227.72 26.44 221.57 356.28
KANSs + Lip Layers 268.88 53.52 259.99 54.61 226.14 26.44 227.49 356.40
KANS (L1 5-Regularization) | 262.73 53.52 283.43 54.63 227.00 26.57 221.62 356.63
LipKANs 264.89 53.52 263.72 54.63 229.04 26.57 226.76 356.65

layers and the L 5-regularization incur only moderate overhead relative to baseline KANs, while
delivering notable improvements in generalization performance.

Table 6: Model performance across datasets with different grid sizes and spline orders.

Dataset Grid Size  Spline Order #Params  Final Gen Gap (%) Test Acc (%) Overfit Ratio (%) Train Time (s) Peak GPU Mem
3 2 1,387,008 1.42 50.42 2.81 196.96 39.57
3 3 1,584,256 0.79 49.60 1.59 201.86 42.17
3 4 1,781,504 0.59 49.51 1.19 212.61 45.08
5 2 1,781,504 4.00 52.39 7.64 201.16 45.05
CIFAR-10 5 3 1,978,752 3.06 52.33 5.85 210.33 48.03
5 4 2,176,000 2.30 52.15 441 221.63 50.50
7 2 2,176,000 6.94 53.19 13.05 203.14 50.47
7 3 2,373,248 5.78 52.94 10.92 215.97 53.51
7 4 2,570,496 4.50 53.23 845 228.08 56.85
3 2 1,427,328 1.47 22.00 6.68 202.60 40.22
3 3 1,630,336 1.65 21.08 7.82 198.90 42.90
3 4 1,833,344 1.52 21.00 7.24 211.00 45.90
5 2 1,833,344 3.09 23.29 13.27 197.98 45.87
CIFAR-100 5 3 2,036,352 2.57 23.57 10.91 204.95 48.93
5 4 2,239,360 248 22.59 10.98 220.06 51.49
7 2 2,239,360 4.66 24.63 18.93 201.39 51.47
7 3 2,442,368 4.05 24.12 16.78 214.83 54.59
7 4 2,645,376 3.92 24.04 16.31 227.14 58.02
3 2 357,408 4.12 97.28 4.24 25.06 50.66
3 3 408,224 3.49 97.59 3.58 26.35 52.84
3 4 459,040 3.14 97.54 3.22 29.00 54.18
5 2 459,040 3.56 97.33 3.66 31.87 54.18
MNIST 5 3 509,856 3.31 97.40 3.40 33.82 55.52
5 4 560,672 2.89 97.45 297 35.92 56.86
7 2 560,672 3.36 97.41 345 38.63 56.86
7 3 611,488 2.88 97.47 2.96 41.45 58.20
7 4 662,304 291 97.47 2.99 43.99 59.54
3 2 1,387,008 0.78 28.54 2.73 98.73 39.58
3 3 1,584,256 1.20 28.10 4.27 95.53 42.73
3 4 1,781,504 0.98 27.50 3.56 96.58 46.39
5 2 1,781,504 1.45 32.41 447 93.69 46.37
STL-10 5 3 1,978,752 1.62 31.20 5.19 95.50 48.03
5 4 2,176,000 1.01 31.25 3.23 97.00 51.81
7 2 2,176,000 1.68 34.40 4.88 93.14 51.79
7 3 2,373,248 1.95 3391 5.75 97.27 54.07
7 4 2,570,496 1.73 33.73 5.13 98.40 57.10

D.4 Activation Family Size

The activation family size G reflects the cardinality of the basis function family, treated as a constant
that captures overall family size, while its internal structure (e.g., smoothness) remains tunable. For
instance, KANs can employ different basis families—B-splines (original KAN), Fourier (Fourier-
KAN), and rational functions (Rational-KAN)—each with adjustable basis affect generalization
without altering G.

From a practical perspective, we conducted sensitivity analyses on B-spline basis functions by varying
degree and grid size in Table[6] which together determine the shape and cardinality of the activation
family. The key findings are:

1. Internal structure matters beyond size: Even when G = Grid size + Spline order is fixed,
generalization can vary significantly. On MNIST, both (3,4) and (5,2) yield the same G, yet
the Final Gen Gap differs by over 7x—highlighting that basis structure, not just size, plays
a crucial role.

2. Opposing effects of grid size vs. spline order: With fixed grid size, increasing spline order
improves generalization; conversely, with fixed spline order, increasing grid size degrades
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generalization. This aligns with our view that smoother basis functions (higher order) help
regulate model complexity.

3. Efficiency trade-offs: Larger GG increases computational cost, with spline order contributing
more to time and memory overhead than grid size.

These results reinforce our theoretical claims and demonstrate the framework’s robustness across
different architectural settings.

E Proof of Main Results

E.1 Proof of Lemma4.2]

As outlined in the text, constructing a whole-network cover through induction on layers requires
minimal assumptions about the norms imposed on the weight matrices. In this subsection, we delve
into a more general analysis of this approach. The structure of the networks is the same as before;
namely, given tensors W = (W7q,..., W), define the mapping F)y as Fyy(x) = KANyy,(x) in
Eq. (1). More generally for i < L define W} := (W1,..., W;) and

Fyi(z) = (W;o0Xo0---oWjoX)z
with the convention Fy(x) = @. For brevity, we write Iy (z) as F,; when data z is fixed.

Lemma 4.2 Let (€1, ..., €r) be given. Under Assumption 1 and 2, each oy, is Lipschitz continuous
with py, := ||ok||Lp- Let p := (p1,...,pc). Suppose the tensors WE = (Wy,...,Wp) lie

within By X --- x By where B; are arbitrary classes with the property that each W; € B; has

IW;lls < ¢;. Then, letting 71 = €, and 7; = Zé:l(Hé’:i+1 ¢jllpll2)ei, the neural net images

Hx = {leL (X):WEeBy x---x BL} have a covering number bound:

Nteml <[ s N ({Wion (B (0) s Wi e Bif el 12)
=)

Proof. Inductively construct covers Fi, ..., Fr, of Wa, ..., Wr; as follows,
* Choose an proper €;-cover Fyy1 of {Fyy1, Wi € By}, thus

\Fil = N({Fw:, W1 € Bi}en, | - [l2) =2 N1

* For every element F' € F7, construct an ¢;11-cover G; 11 (F) of

{Wi+1 o E(F) : Wi+1 € Bi+1}.

The covers are proper, so F' = FW;—I for some (Wy,..., W;) € By x --- x B;. It follows
that
IGis1(F)| < sup N ({Wi—i-lFW’li(Z) Wi € Bi-i—l} y€ig1s || - ||i+2) =: Nit1

(Wl,...,W,;)

Vji<i,W;EB;
Construct the cover

Fit1 = Urer,Git1(F), (16)
with cardinality
i+1

| Fig1| < |Fil - Nig1 < HN1~
=1

Below, we show that F; 1 is an 7;1-cover of {Fwi-f—l (Wi x oo X Wiy1) € By x - X B}

For any FW;‘Jrl = (W;110X0---0WjoX)x, by construction, we can find Fl € JF; such that

IFy = P < e =71
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Now suppose we can find E; € F; such that
I = Fyyil <7
By the construction of F;1 in Eq. (I6), we can find Fi+1 € F;+1 such that
||Fi+1 -W;i0 E(Fz)||2 < €41
Then we use the triangle inequality of norm || - ||2, we have
1Evr = Fyyislla =[1Fr1 = Wigr 0 S(F) + Wiga 0 (F) = Fyyel2
<1 = Wigr 0 S(F) |2 + [Wigs 0 S(F) = Fyyina g
<eip1 + [Wirallo|S(F = Fyyp)lla

<é€ir1 +cipllpllemi = Tipa
where the second < is due to Cauchy-Schwarz inequality in Eq. (T3). O

E.2 Proof of Lemma[4d.3

The proof relies upon the Lemma[A.3] which is stated in terms of sparsifying convex hulls, and in its
use here is inspired by covering number bounds for linear predictors.

Lemma 4.3 Let conjugate exponents (p, ¢) and (u, v) be given with p < 2 as well as positive reals
(a, b, €) and positive integer m. Let data X be given with ||X(X)||, < b. Then

2
a?b?d'u

In N ({W 0 B(X): W e RI*IXC W], ., < a} el - ||2) < { l 1n(2dd'G),

where [z returns the smallest integer greater than or equal to .

Proof. Letdata X € R™*? be given, with weight tensor W € R4*G*d" For brevity, we write tensor

3= N(X) € R™9%C with 3355 = [gr(2:)]; and W o B(z) € R4, Set k := [azbjf,“—‘.

We obtain tensor ¥ € R"* %G by rescaling the first dimension of tensor % to have unit p-norm:
S e ik
TE 1Sl

Define o € R¥G*4" to be a rescaling tensor such that for each i € [d'],

1Zaall, 1Zaezl, - 1Zaall,
= | Bl
1Z:aall, 1Z.acll,

which satisfies W o ¥ = (& © W) o ¥ where © denotes element-wise product. Note that

u

d/

lellp,p,u = Z il p
i=1
1

= (d/)i a::in,p

— (A% 5 P ’
= (@) | 22 Il
ik

P

n d G

= @) (DN Imnle
7 J k

= (d)*[|IZ]],
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Define W = o © W, whereby using conjugacy of || - || and || - [|4.s.0 gives
IWlh < (@, [W]) < [allppul Wilggo < (@) Z]pa =:a
Now we have
) d G d
WOE:WOSZ ZZZWW}CEUIC Oi
ik
’ (17)
d G d

=Wl ZZZ ||V&7||k i 0 %

where F;j;, € R4XGxd" ig 3 tensor where the element at position (7, j, k) is 1, and all other elements
are 0.

To derive the desired cover, we define
Vi,.... VWt ={g9EijroS |ge{-1,+1},ie(d,j € [Gl. ke [d]},

and construct a cover

a N N
C :{kgki%:kizo,;ki:k}:

where k;’s are integers and N := 2dd’'G. By construction, we have |C| < N*, and

k
Z 21,...,'k-)6[N]k ,

w\m

12l
— bl
ko (12l

max||VH2 < max

where the last inequality is due to p < 2.
To use Lemma We can view V;’s as elements in the Hilbert space R*d’ equipped with the
inner product (A, A) = trace (AR&) defined in Appendixand norm || A||2. Following Eq. (T7),
W o ¥ lies in the convex hull of {Vi,...,Vn} ie.

WoX=WoXeca -conv{Vi,...,Vy}

Combining the preceding constructions with Lemma [A.3] there exist nonnegative integers
(k1,...,kn) with ). k; = k such that

2
a*d’s |37

||WoE—fsz||2—HWoE—kaVHQ max||VH2 <€

The desired cover element is thus % > ; kiVi € C and the result follows. ]

E.3 Proof of Theorem 4.4

The whole-network covering bound now follows by the general norm covering number in Lemma.2]
and the matrix covering lemma in Lemma[4.3]

Theorem 4.4 Under Assumption 2, we can bound

Rgv% log(2d>G)
2 b

log N (Hx, €] - [l2) <

€
where d := max; d;.
Proof. Given tensors Wf_l = (Wyq,...,W,;_1), we define

X i= By (X) = (Wi 0800 Wi 0 9)X
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Setp = ¢ = 2,u = co,v = 1 in Lemma.3] define B; = {W € Ré4*di-1xG . |\W||, <
¢i, | Wll2,2,1 < a;}, then we can decompose the whole covering number based on Lemma

IOgN(HmaTIn || : ||2)

< Z sup  log ({w o (EFWH(a,-)) ‘W, € BZ} el - ||2)
i—1 Wi1,... W;_1) !
Vi<i-W;EB;

= Z sup  logV ({Wz o (EFW;—l(-’BD -~ W;0%(0): W, € Bz} c€is || - ||2)

(Wi,...,W,;_
= wizw 662) (18)

= Z sup log ({Wl o (Z(xl_l) —-¥%(0)) : W; € Bi} V€ || - ||2)
V]<1W éBl)

L 9 —1y _ 2
- €

%

Below, we use the Lipschitz property of 3 to bound the term || X(x!~1) — £(0)||» as follows:
1=z = 2(0)ll2 < [IZ/luipllz'~" (|2
< 1 Sip | Wi 0 B(z'2)]|2
< S lip Wi [lo 122 =2) 2
< [Z Wi llo [12(2'2) = £(0) + £(0) |2
< Sl Wizl (12(2'2) = £(0)[|2 + [I2(0)]|2)
< 12l Wi-illo (IIEIILipIIwHHz +1Zlls0)

-1 -1
S(IIELPIIXQHWZ»U) ZHEIIUPIEIIW IT Iwills

=1 i=l—j
-1 -1 -1
< (CZDHCZ'> + ZCJE H C;
i=1 j=1 i=l—j

where [|Zo = ZkG llgr]|%, represents the oo norm of function family ¥.. Now we suppose
[Wi|ls < 0;and ||X]|o < E, then we have

-1 -1
[2(z71) — 2(0)]|p < (CIDH@>+ S e ] @ (19)
j=1 i=l—j

Plugging Eq. (T9) into Eq. (T8)), we obtain that

L 9 -1 2
(|3 (2 — (0
o N (| - 1) < 3 ) = 2O 1oy 94,0, )

i

=1
. (20
L a? (C'DI[[Zicj+ Y- C'E i
S Z a ( H] 164 262 (Hk i— _] )) log(QdQG)

i=1 i

Define ) )
, L 3 i1 i—1 i1 3
a; =a} H Ce; ClDch—i—ZCjE H Ck
j=it1 j=1 j=1 k=i—j

and & = Zle ;. For any € > 0, set
;€

gy
O‘Hj:i+1 Cec;

€; =
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Then we have sj, = Zle (HJ i1 Cc]> ; = € and hence

a3 log(2d*@G)
2

IOgN(Hmaea || ' HZ) <

€

E.4 Proof of Theorem [4.3]

We prove our main result by integrating Theorem [4.4] with standard properties of Rademacher
complexity in Section [A]

Theorem 4.5 (Generalization Bounds for KANs) Under Assumption 2 and 3, let fixed Lipschitz
activations ¥ = {0}, | k € [G]} and weight tensors WE = {W, Wy, ..., W} be given. Then for

(z,y), (x1,91),- -, (Tn,yn) drawn iid from distribution P, we have with probability greater than
1—k¢
- 144 1 M 1 4M?log(2 2M log(2
B(Fg) — i) < SEVEBMI D) V1) | [ANITIogE]0) | 2 oo/
-0 (IIXlszf max; |p(ys)| - 1/e>
n n

where ¢ = Rf/vf [ X |12 log(2d%G) max; p? (y:).

Proof. Define the loss class £(S) := {(L(f(z1),y1), .-, L(f(®n),yn)) | f € H}. By theorem[d.4]
we have

a3 log(2d*G) max; p? (i) ¢

IOgN(E(S),E, || : ||2) < €2 : = ?
Lemma[A.2]implies that
da 12 vnM
R(L(S)) < inf ( a / V> de>
a>0
. 4a 12[
= ;I;% (\/» + lOg(M\/ﬁ/a))

J12VC 12 Clogn/(340)
_ 24V {log(nM/(3y/C)) v 1}

n

Using Lemmawith r = 2M?, we have with probability greater than 1 — e,

E[L(f(2),y)] g% S L () ) + 144y/C{log(nM/(3)) V 1}

n

4M?log(2/€) N 32M log(2/e)

n 3n
1 o as\/In(d2G
NI >+0<())
n ~ n
for any f € H, which completes our proof. O

E.5 Other Theoretical Results

Based on Assumption 1, which states that the distribution [P satisfies the sub-Gaussian property, we
can bound || X |2 in Eq. (6)) with high probability, leading to more applicable bounds in Corollary
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Corollary E.1 (Sub-Gaussian Generalization Bounds for KANSs). Under Assumption 1, 2 and 3, let
fixed Lipschitz activations ¥ = {O'k : k € [G]} and weight tensor WE = {W, Wy, ... . W} be
given. Then for (x,y), (x1,y1), - (:cn, Yn) drawn iid from sub-Gaussian distribution P, we have
with probability greater than 1 — ¢ —

K Ryyr max; | p(y:
R(Fyp) — (FWL)<0< wi masi [l pa 1/dlog +1/ /€> @

where K was defined in Assumption 1.

Proof. We conclude the result immediately by plugging Eq. (Z) into Eq. (6). O

We introduce LemmalE.T|that ensures the Lipschitz property of the composition of Lipschitz functions.

LemmaE.l. Ifo : R — Rand! : R — R are both Lipschitz continuous functions with Lipschitz
norms ||o||Lip and ||¢||Lip, respectively, then the composition | o o(x) is Lipschitz continuous with
Lipschitz norm ||€ o o ||, < ||||Lip]|o]|

Lip-

The proof of Lemma [E.T]is provided in Appendix[C.3] Lemma [E.T|demonstrates that composing with
a univariate function having a small Lipschitz norm reduces the Lipschitz norm of the activations
family, thereby reducing the complexity of the functions represented by LipKANss.

Corollary 5.1 (Generalization Bounds for LipKANs) Under Assumption 1, 2, and 3, let fixed
Lipschitz activations ¥ = {0}, : k € [G]}, weight tensor W} = {Wl, Wy,...,Wr}, and
Lipschitz function ! : R — R with ||{||Lip < 1. Then for (z,v), (z1,y1), - (:cn, Yn) drawn i.i.d.
from sub-Gaussian distribution P, we have with probability greater than 1 — € —

KR max; i
R(Eye ) - (qu><<9< Wi d X‘py g(d2G ,/dlog +y/ /E>

where the right-hand side of the inequality is also bounded by the upper bound in Eq. 21).

Proof. By LemmalE.T]

I 3
Ry = <II€O 206 I T IIWi||a> (Z IIWT||§/§1>

=1
3
2
2/3
1< )

where the right hand side of the inequality represents the complexity of KANs, thereby proving the
conclusion. O

L L
< <||E|ﬁpH||Wi||a) (Z W
=1

i=1

F Limitations and Future Work

Our analysis currently uses the sub-Gaussian assumption to control input tail behavior and derive
generalization bounds via standard concentration tools. However, the framework is not inherently
restricted to sub-Gaussian inputs. In principle, it can extend to broader distribution classes—such as
sub-exponential or heavy-tailed distributions—by leveraging tools from empirical process theory,
including Bernstein-type inequalities, truncation methods, or Orlicz norm bounds. We view this as
a natural direction for future theoretical extensions. For visualization of complexity metrics and
empirical study of covering bounds, we leave these directions for future work, viewing them as
promising avenues to further connect our theoretical analysis with practical model behavior.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [ Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
¢ Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the contributions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Section 6, this paper analyzes some failure cases specifically and identifies
when our approach is most beneficial.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical results are stated with explicit assumptions, and proofs are provided
in Appendix E.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Full architecture details, hyperparameters, and training procedures are de-
scribed.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: All datasets are released.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section 5 and Section 6 include all the training and test details.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported in our paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: It’s not the main focus of our paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The work adheres to ethical guidelines, including transparency in methodology
and reproducibility.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Section 6 discusses potential positive/negative societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work focuses on theoretical improvements to KANs; no high-risk models
or datasets are released.
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Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Publicly available datasets are cited with licenses.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: It’s not the main focus of this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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15.

16.

Answer: [NA]
Justification: The work does not involve human subjects or crowdsourcing experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects research was conducted.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used in the development of the core methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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